Exotic normal fusion subsystems of the General Linear group

Albert Ruiz

Universitat Autònoma de Barcelona

Groups Geometry Topology
Málaga 06
Contents

1 Introduction

2 Saturated fusion subsystems
 • Saturated fusion subsystems of index prime to p

3 General Linear Group
 • p-radical subgroups in the linear group
 • Examples

4 Saturated fusion subsystems in the Linear Group
 • Subsystems
 • Identifying the examples
 • Application: Oliver-Ventura’s examples
p-local finite groups arose in the work of Broto-Levi-Oliver as a formalization of the fusion in a finite group for a fixed prime p.

A p-local finite group consists on a triple $(S, \mathcal{F}, \mathcal{L})$ where:

<table>
<thead>
<tr>
<th>S is a p-group</th>
<th>\mathcal{F} is a category</th>
<th>\mathcal{L} is a category with extra information in such a way that there is a classifying space.</th>
</tr>
</thead>
<tbody>
<tr>
<td>and plays the role of a Sylow p-subgroup.</td>
<td>and models a fusion over S.</td>
<td></td>
</tr>
</tbody>
</table>

Theorem (BLO)

If G is a finite group and S is a Sylow p-subgroup, we can construct a p-local finite group $(S, \mathcal{F}_S(G), \mathcal{L}_S^c(G))$ and $|\mathcal{L}_S^c(G)|_p^\wedge \simeq BG^\wedge_p$.
p-local finite groups arose in the work of Broto-Levi-Oliver as a formalization of the fusion in a finite group for a fixed prime p.

A p-local finite group consists on a triple (S, F, L) where:

| S is a p-group and plays the role of a Sylow p-subgroup. | F is a category and models a fusion over S. | L is a category with extra information in such a way that there is a classifying space. |

Theorem (BLO)

If G is a finite group and S is a Sylow p-subgroup, we can construct a p-local finite group $(S, \mathcal{F}_S(G), \mathcal{L}^c_S(G))$ and $|\mathcal{L}^c_S(G)|_p \wedge p \simeq B G^\wedge_p$.

Albert Ruiz

Exotic normal fusion subsystems of the General Linear group
\(p \)-local finite groups arose in the work of Broto-Levi-Oliver as a formalization of the fusion in a finite group for a fixed prime \(p \).

A \(p \)-local finite group consists on a triple \((S, \mathcal{F}, \mathcal{L})\) where:

| S is a \(p \)-group and plays the role of a Sylow \(p \)-subgroup. | \(\mathcal{F} \) is a category and models a fusion over \(S \). | \(\mathcal{L} \) is a category with extra information in such a way that there is a classifying space. |

\[|\mathcal{L}^c_S(G)|_p^\wedge \cong BG_p^\wedge. \]

Theorem (BLO)

If \(G \) is a finite group and \(S \) is a Sylow \(p \)-subgroup, we can construct a \(p \)-local finite group \((S, \mathcal{F}_S(G), \mathcal{L}^c_S(G))\) and \(|\mathcal{L}^c_S(G)|_p^\wedge \cong BG_p^\wedge. \)
There are p-local finite groups which cannot be constructed from a finite group: exotic examples.

Construction of exotic examples:
- Solomon’s group. Levi-Oliver.
- Homotopic fixed points. Broto-Møller.
- Fusion subsystems. R.
There are p-local finite groups which cannot be constructed from a finite group: **exotic examples**.

Construction of exotic examples:

- **Combinatorial.** Broto-Levi-Oliver, R-Viruel i Díaz-R-Viruel.
- **Solomon’s group.** Levi-Oliver.
- **Homotopic fixed points.** Broto-Møller.
- **Fusion subsystems.** R.
Contents

1 Introduction

2 Saturated fusion subsystems
 - Saturated fusion subsystems of index prime to p

3 General Linear Group
 - p-radical subgroups in the linear group
 - Examples

4 Saturated fusion subsystems in the Linear Group
 - Subsystems
 - Identifying the examples
 - Application: Oliver-Ventura’s examples
Broto-Castellana-Grodal-Levi-Oliver study the saturated fusion subsystems (and the extensions) of a p-local finite group $(S, \mathcal{F}, \mathcal{L})$, and they give a description in the following cases:

- **p-power index subsystems**: these are the subsystems containing all the \mathcal{F}-automorphisms of P of order prime to p, for all $P \leq S$.
- **Subsystems of index prime to p**: these are the subsystems containing all the \mathcal{F}-automorphisms of P of p-power order, for all $P \leq S$.

Albert Ruiz

Exotic normal fusion subsystems of the General Linear group
Saturated fusion subsystems of index prime to p

Notation:
- $O_{p'}^*(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.
- $\text{Out}^0_{\mathcal{F}}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O_{p'}^*(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric } P \leq S \rangle$

Theorem (BCGLO)
There is a bijection between the saturated fusion subsystems of index prime to p of \mathcal{F} and the subgroups of $\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_\mathcal{F}(S)/\text{Out}^0_{\mathcal{F}}(S)$.

Lemma
$\text{Out}^0_{\mathcal{F}}(S) = \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O_{p'}^*(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric, } \mathcal{F}\text{-radical } P \leq S \rangle$

Albert Ruiz
Exotic normal fusion subsystems of the General Linear group
Saturated fusion subsystems of index prime to p

Notation:
- $O^p_*(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.
- $\text{Out}^0_\mathcal{F}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O^p_*(\mathcal{F})}(P, S), \text{some } S\text{-centralizer} P \leq S \rangle$

Theorem (BCGLO)
There is a bijection between the saturated fusion subsystems of index prime to p of \mathcal{F} and the subgroups of $\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_\mathcal{F}(S)/\text{Out}^0_\mathcal{F}(S)$.

Lemma
$\text{Out}^0_\mathcal{F}(S) = \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O^p_*(\mathcal{F})}(P, S), \text{some } S\text{-centralizer} P \leq S \rangle$

$P \leq S$ is \mathcal{F}-centric if P and all its \mathcal{F}-conjugated subgroups contain their S-centralizer.
Saturated fusion subsystems of index prime to p

Notation:
- $O_{\ast}^p(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.
- $\text{Out}_0^\mathcal{F}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O_{\ast}^p(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric } P \leq S \rangle$

Theorem (BCGLO)
There is a bijection between the saturated fusion subsystems of index prime to p of \mathcal{F} and the subgroups of $\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_\mathcal{F}(S)/\text{Out}_0^\mathcal{F}(S)$.

Lemma
$\text{Out}_0^\mathcal{F}(S) = \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O_{\ast}^p(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric, } \mathcal{F}\text{-radical } P \leq S \rangle$
Saturated fusion subsystems of index prime to p

Notation:
- $O_{p'}^*(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.

 \[
 \text{Out}_0^0 F(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_F(S) \mid \alpha|_P \in \text{Mor}_{O_{p'}^*(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric } P \leq S \rangle
 \]

Theorem (BCGLO)

There is a bijection between the saturated fusion subsystems of index prime to p of \mathcal{F} and the subgroups of

\[
\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_F(S)/\text{Out}_0 F(S).
\]

Lemma

\[
\text{Out}_0^0 F(S) = \langle \alpha \in \text{Out}_F(S) \mid \alpha|_P \in \text{Mor}_{O_{p'}^*(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric, } \mathcal{F}\text{-radical } P \leq S \rangle
\]
Saturated fusion subsystems of index prime to p

Notation:
- $O_{*}^{p'}(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.
- $\text{Out}_{\mathcal{F}}^{0}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_{\mathcal{F}}(S) \mid \alpha|_{P} \in \text{Mor}_{O_{*}^{p'}(\mathcal{F})}(P, S), \text{ some } \mathcal{F}\text{-centric } P \leq S \rangle$

Theorem (BCGLO)

There is a bijection between the saturated fusion subsystems of index prime to p of \mathcal{F} and the subgroups of $\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_{\mathcal{F}}(S)/\text{Out}_{\mathcal{F}}^{0}(S)$.

Lemma

$\text{Out}_{\mathcal{F}}^{0}(S) = \langle \alpha \in \text{Out}_{\mathcal{F}}(S) \mid \alpha|_{P} \in \text{Mor}_{O_{*}^{p'}(\mathcal{F})}(P, S), \text{ some } \mathcal{F}\text{-centric, } \mathcal{F}\text{-radical } P \leq S \rangle$
Saturated fusion subsystems of index prime to p

Notation:
- $O^p_*(\mathcal{F})$ smallest subcategory in \mathcal{F} with the same objects and containing all the restrictions of automorphisms of p-power order.
- $\text{Out}^0_{\mathcal{F}}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_{\mathcal{F}}(S) \mid \alpha|_P \in \text{Mor}_{O^p_*(\mathcal{F})}(P, S), \text{some } \mathcal{F}\text{-centric } P \leq S \rangle$

Theorem (BCGLO)

There is a bijection between the saturated fusion subsystems of index prime to p and the subgroups of $\Gamma_{p^*}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_{\mathcal{F}}(S) / \text{Out}^0_{\mathcal{F}}(S)$.

Lemma

$P \leq S$ is \mathcal{F}-radical if $\text{Out}_{\mathcal{F}}(P)$ does not contain any nontrivial normal p-subgroup.
Contents

1 Introduction

2 Saturated fusion subsystems
 • Saturated fusion subsystems of index prime to p

3 General Linear Group
 • p-radical subgroups in the linear group
 • Examples

4 Saturated fusion subsystems in the Linear Group
 • Subsystems
 • Identifying the examples
 • Application: Oliver-Ventura’s examples
Remark 1

If \((S, \mathcal{F}, \mathcal{L})\) is the fusion system of a finite group \(G\) over a Sylow \(p\)-subgroup \(S\), being \(\mathcal{F}\)-radical and being \(p\)-radical in \(G\) are independent definitions.

Remark 2

If \(P \leq S\) is a \(\mathcal{F}\)-radical, \(\mathcal{F}\)-centric subgroup, then \(P\) is \(p\)-radical in \(G\).

Alperin-Fong give a list of the \(p\)-radical subgroups in \(\text{GL}_n(q)\), where \(q\) is a prime power prime to \(p\), so we can use it as a list of the possible \(\mathcal{F}\)-centric, \(\mathcal{F}\)-radical subgroups.
Remark 1
If \((S, \mathcal{F}, \mathcal{L})\) is the fusion system of a finite group \(G\) over a Sylow \(p\)-subgroup \(S\), being \(\mathcal{F}\)-radical and being \(p\)-radical in \(G\) are independent definitions.

Remark 2
If \(P \leq S\) is a \(\mathcal{F}\)-radical, \(\mathcal{F}\)-centric subgroup, then \(P\) is \(p\)-radical in \(G\).

Alperin-Fong give a list of the \(p\)-radical subgroups in \(\text{GL}_n(q)\), where \(q\) is a prime power prime to \(p\), so we can use it as a list of the possible \(\mathcal{F}\)-centric, \(\mathcal{F}\)-radical subgroups.
p-radical subgroups in $GL_n(q)$ (AF)

Remark 1

If (S, F, L) is the fusion system of a finite group G over a Sylow p-subgroup S, being F-radical and being p-radical in G are independent definitions.

Remark 2

If $P \leq S$ is a F-radical, F-centric subgroup, then P is p-radical in G.

Alperin-Fong give a list of the p-radical subgroups in $GL_n(q)$, where q is a prime power prime to p, so we can use it as a list of the possible F-centric, F-radical subgroups.
Example 1

Notation

- q a prime power,
- p a prime such that $p \mid (q - 1)$.
- $l = \nu_p(q - 1)$ i.e. $p^l \mid (q - 1)$ and $p^{l+1} \nmid (q - 1)$.

Possible F-centric, F-radical subgroups in $GL_p(q)$

- A cyclic subgroup of order p^l in the center of $GL_p(q)$.
- The *maximal torus*, generated by the diagonal matrices of p-power order.
- The *Sylow p-subgroup*, generated by the maximal torus and the permutation $(1, 2, \ldots, p)$.
- A subgroup isomorphic to an extension of a cyclic subgroup of order p^l and a extraspecial subgroup p^{1+2}.
- A cyclic subgroup of order p^{l+1}.
Example 1

Notation

- \(q \) a prime power,
- \(p \) a prime such that \(p \mid (q - 1) \).
- \(l = \nu_p(q - 1) \) i.e. \(p^l \mid (q - 1) \) and \(p^{l+1} \nmid (q - 1) \).

Possible \(\mathcal{F} \)-centric, \(\mathcal{F} \)-radical subgroups in \(\text{GL}_p(q) \)

- A cyclic subgroup of order \(p^l \) in the center of \(\text{GL}_p(q) \).
- The \textit{maximal torus}, generated by the diagonal matrices of \(p \)-power order.
- The \textit{Sylow \(p \)-subgroup}, generated by the maximal torus and the permutation \((1, 2, \ldots, p)\).
- A subgroup isomorphic to an extension of a cyclic subgroup of order \(p^l \) and a extraspecial subgroup \(p^{1+2}_+ \).
- A cyclic subgroup of order \(p^{l+1} \).
Example e

Notation

- q a prime power,
- p a prime such that $p \nmid q$.
- e the order of q modulo p, so $p \mid (q^e - 1)$.
- $l = \nu_p(q^e - 1)$ i.e. $p^l \mid (q^e - 1)$ and $p^{l+1} \nmid (q^e - 1)$.

Possible F-centric, F-radical subgroups in $GL_{ep}(q)$

- The maximal torus, generated by p-power order $e \times e$ boxes in the diagonal.
- The Sylow p-subgroup, generated by the maximal torus and the permutation $(1, 2, \ldots, p)$.
- A subgroup isomorphic to a extension of a cyclic subgroup of order p^l and a extraspecial p^{1+2}.
Example e

Notation

- q a prime power,
- p a prime such that $p \nmid q$.
- e the order of q modulo p, so $p \mid (q^e - 1)$.
- $l = \nu_p(q^e - 1)$ i.e. $p^l \mid (q^e - 1)$ and $p^{l+1} \nmid (q^e - 1)$.

Possible F-centric, F-radical subgroups in $GL_{ep}(q)$

- The *maximal torus*, generated by p-power order $e \times e$ boxes in the diagonal.
- The *Sylow p-subgroup*, generated by the maximal torus and the permutation $(1, 2, \ldots, p)$.
- A subgroup isomorphic to a extension of a cyclic subgroup of order p^l and an extraspecial p_{1+2}^{1+2}.
Comparing examples 1 and e

Similarities
- $GL_p(q^e)$ and $GL_{ep}(q)$ have isomorphic Sylow p-subgroups.
- There is an inclusion $GL_p(q^e) \leq GL_{ep}(q)$, so the fusion of $GL_p(q^e)$ is contained in the fusion of $GL_{ep}(q)$.

Differences
- For any p-subgroup P, the difference between $Aut_{GL_p(q^e)}(P)$ and $Aut_{GL_{ep}(q)}(P)$ are copies of \mathbb{Z}/e.
- The Galois group of the extension $\mathbb{F}_q \leq \mathbb{F}_{q^e}$ is a cyclic subgroup of order e which acts over the \mathcal{F}-centric, \mathcal{F}-radical subgroups in $GL_{ep}(q)$.
Comparing examples 1 and e

Similarities

- $\text{GL}_p(q^e)$ and $\text{GL}_{ep}(q)$ have isomorphic Sylow p-subgroups.
- There is an inclusion $\text{GL}_p(q^e) \leq \text{GL}_{ep}(q)$, so the fusion of $\text{GL}_p(q^e)$ is contained in the fusion of $\text{GL}_{ep}(q)$.

Differences

- For any p-subgroup P, the difference between $\text{Aut}_{\text{GL}_p(q^e)}(P)$ and $\text{Aut}_{\text{GL}_{ep}(q)}(P)$ are copies of \mathbb{Z}/e.
- The Galois group of the extension $\mathbb{F}_q \leq \mathbb{F}_{q^e}$ is a cyclic subgroup of order e which acts over the \mathcal{F}-centric, \mathcal{F}-radical subgroups in $\text{GL}_{ep}(q)$.
Contents

1. Introduction

2. Saturated fusion subsystems
 - Saturated fusion subsystems of index prime to p

3. General Linear Group
 - p-radical subgroups in the linear group
 - Examples

4. Saturated fusion subsystems in the Linear Group
 - Subsystems
 - Identifying the examples
 - Application: Oliver-Ventura’s examples
As before, \(q \) a prime power prime to \(p \), and \(e \) the order of \(q \) modulo \(p \).

\((S_n, q, \mathcal{F}_n, q, \mathcal{L}_n, q)\) the \(p \)-local finite group induced by \(GL_n(q) \) over \(S_n, q \) (a fixed Sylow \(p \)-subgroup).

Theorem

If \(n \geq ep \), then \(\Gamma_p'(\mathcal{F}_n, q) \cong \mathbb{Z}/e \).

Corollary

For each divisor \(r \) of \(e \), there exists a \(p \)-local finite group \((S_n, q, \mathcal{F}_n, q, r, \mathcal{L}_n, q, r)\) such that \(\mathcal{F}_n, q, r \) is a saturated fusion subsystem in \(\mathcal{F}_n, q \) of index prime to \(p \).
As before, \(q \) a prime power prime to \(p \), and \(e \) the order of \(q \) modulo \(p \).

\((S_n,q, \mathcal{F}_{n,q}, \mathcal{L}_{n,q})\) the \(p \)-local finite group induced by \(\text{GL}_n(q) \) over \(S_n,q \) (a fixed Sylow \(p \)-subgroup).

Theorem

If \(n \geq ep \), then \(\Gamma^p_2(\mathcal{F}_{n,q}) \cong \mathbb{Z}/e \).

Corollary

For each divisor \(r \) of \(e \), there exists a \(p \)-local finite group \((S_n,q, \mathcal{F}_{n,q},r, \mathcal{L}_{n,q},r)\) such that \(\mathcal{F}_{n,q},r \) is a saturated fusion subsystem in \(\mathcal{F}_{n,q} \) of index prime to \(p \).
Fusion subsystems

As before, q a prime power prime to p, and e the order of q modulo p.

$(S_{n,q}, \mathcal{F}_{n,q}, \mathcal{L}_{n,q})$ the p-local finite group induced by $\text{GL}_n(q)$ over $S_{n,q}$ (a fixed Sylow p-subgroup).

Theorem

If $n \geq ep$, then $\Gamma_{p'}(\mathcal{F}_{n,q}) \cong \mathbb{Z}/e$.

Corollary

For each divisor r of e, there exists a p-local finite group $(S_{n,q}, \mathcal{F}_{n,q,r}, \mathcal{L}_{n,q,r})$ such that $\mathcal{F}_{n,q,r}$ is a saturated fusion subsystem in $\mathcal{F}_{n,q}$ of index prime to p.
Sketch of the proofs

We must compute $\Gamma_{p'}(\mathcal{F}) \overset{\text{def}}{=} \text{Out}_\mathcal{F}(S)/\text{Out}^0_\mathcal{F}(S)$, where:

- S is the Sylow p-subgroup of $\text{GL}_n(q)$,
- \mathcal{F} is the induced fusion by $\text{GL}_n(q)$ over S,
- $O_{p'}^*(\mathcal{F})$ is the smallest subcategory in \mathcal{F} with the same objects and the restrictions of all the automorphisms of p-power order.

$$\text{Out}^0_\mathcal{F}(S) \overset{\text{def}}{=} \langle \alpha \in \text{Out}_\mathcal{F}(S) \mid \alpha|_P \in \text{Mor}_{O_{p'}^*(\mathcal{F})}(P, S), \text{ some } \mathcal{F}\text{-centric and } \mathcal{F}\text{-radical } P \leq S \rangle$$
Sketch of the proofs

Proof of the Theorem

1. Out$_F(S)$ is described in (AF): a product of semidirect products which involves copies of \mathbb{Z}/e, $\mathbb{Z}/(p-1)$ and symmetric groups Σ_a, with $a < p$.

2. First, consider $e = 1$ and prove Out$_0^F(S) = \text{Out}_F(S)$.

3. Then compare GL$_m(q^e)$ and GL$_{em}(q)$.

4. Prove that just a copy of \mathbb{Z}/e survives (the one induced by the Galois group).

Proof of the corollary

Follows from BCGLO’s Theorem and the calculus of Out$_F(S)/\text{Out}_0^F(S)$.
Sketch of the proofs

Proof of the Theorem

1. \(\text{Out}_F(S) \) is described in (AF): a product of semidirect products which involves copies of \(\mathbb{Z}/e, \mathbb{Z}/(p - 1) \) and symmetric groups \(\Sigma_a \), with \(a < p \).
2. First, consider \(e = 1 \) and prove \(\text{Out}^0_F(S) = \text{Out}_F(S) \).
3. Then compare \(\text{GL}_m(q^e) \) and \(\text{GL}_{em}(q) \).
4. Prove that just a copy of \(\mathbb{Z}/e \) survives (the one induced by the Galois group).

Proof of the corollary

Follows from BCGLO’s Theorem and the calculus of \(\text{Out}_F(S)/\text{Out}^0_F(S) \).
Two questions

1. Are there exotic examples of type \((S_n,q, F_{n,q,r}, \mathcal{L}_{n,q,r})\)?
2. Can we identify them?
Relation with p-compact groups

Let p be a prime number, $r \geq 1$, $e \geq 1$ natural numbers such that $r|e|(p - 1)$. Let $G(e, r, m) \leq \text{GL}_m(\mathbb{Z}_p^\wedge)$ be the subgroup generated by:

$$A(e, r, m) \overset{\text{def}}{=} \{\text{diag}(a_1, \ldots, a_m) | a_i^e = 1 \text{ i } (a_1 \cdots a_m)^{e/r} = 1\}$$

and the permutation matrices.

Consider $BX(e, r, m)$ the p-compact group realizing the pseudoreflexion group $G(e, r, m)$. Finally consider the pullback:

$$BX(e, r, m)(q) \xrightarrow{\phi^q} BX(e, r, m)$$

$$BX(e, r, m) \xrightarrow{1 \times \phi^q} BX(e, r, m) \times BX(e, r, m)$$

where Δ the diagonal map and ϕ^q is an unstable Adams map of exponent q, a p-adic unit.
Relation with p-compact groups

Let p be a prime number, $r \geq 1$, $e \geq 1$ natural numbers such that $r|e|(p-1)$.

Let $G(e, r, m) \leq \text{GL}_m(\mathbb{Z}_p)$ be the subgroup generated by:

$$A(e, r, m) \overset{\text{def}}{=} \{ \text{diag}(a_1, \ldots, a_m) \mid a_i^e = 1 \text{ i } (a_1 \cdots a_m)^{e/r} = 1 \}$$

and the permutation matrices.

Consider $BX(e, r, m)$ the p-compact group realizing the pseudoreflexion group $G(e, r, m)$.

Finally consider the pullback:

$$\begin{array}{ccc}
BX(e, r, m)(q) & \overset{\rightarrow}{\longrightarrow} & BX(e, r, m) \\
\downarrow & & \downarrow \Delta \\
BX(e, r, m) & \overset{1 \times \varphi^q}{\longrightarrow} & BX(e, r, m) \times BX(e, r, m)
\end{array}$$

where Δ the diagonal map and φ^q is an unstable Adams map of exponent q, a p-adic unit.
Relation with p-compact groups

Let p be a prime number, $r \geq 1$, $e \geq 1$ natural numbers such that $r | e | (p - 1)$.

Let $G(e, r, m) \leq \text{GL}_m(\mathbb{Z}_p^\wedge)$ be the subgroup generated by:

$$A(e, r, m) \overset{\text{def}}{=} \{ \text{diag}(a_1, \ldots, a_m) \mid a_i^e = 1 \text{ i } (a_1 \cdot \cdots a_m)^{e/r} = 1 \}$$

and the permutation matrices.

Consider $BX(e, r, m)$ the p-compact group realizing the pseudoreflexion group $G(e, r, m)$.

Finally consider the pullback:

$$BX(e, r, m)(q) \to BX(e, r, m)$$

$$BX(e, r, m) \xrightarrow{1 \times \varphi^q} BX(e, r, m) \times BX(e, r, m)$$

where Δ the diagonal map and φ^q is an unstable Adams map of exponent q, a p-adic unit.
Relation with p-compact groups

Let p be a prime number, $r \geq 1$, $e \geq 1$ natural numbers such that $r|e|(p−1)$.

Let $G(e, r, m) \leq \text{GL}_m(\mathbb{Z}_p)$ be the subgroup generated by:

$$A(e, r, m) \overset{\text{def}}{=} \{ \text{diag}(a_1, \ldots, a_m) \mid a_i^e = 1 \text{ i } (a_1 \cdots a_m)^{e/r} = 1 \}$$

and the permutation matrices.

Consider $BX(e, r, m)$ the p-compact group realizing the pseudoreflexion group $G(e, r, m)$.

Finally consider the pullback:

$$BX(e, r, m)(q) \to BX(e, r, m)$$

$$BX(e, r, m) \xrightarrow{1 \times \varphi^q} BX(e, r, m) \times BX(e, r, m)$$

where Δ the diagonal map and φ^q is an unstable Adams map of exponent q, a p-adic unit.
Introduction

Sat.fus.subsys.

GL

Subsystems in GL

Subsystems

Identifying the examples

Appl: OV’s examples

Relation with p-compact groups

Let p be a prime number, $r \geq 1$, $e \geq 1$ natural numbers such that $r|e|(p-1)$.

Let $G(e, r, m) \leq \text{GL}_m(\mathbb{Z}_p^\wedge)$ be the subgroup generated by:

$$A(e, r, m) \overset{\text{def}}{=} \{ \text{diag}(a_1, \ldots, a_m) \mid a_1^{e_i} = 1 \ (i) \ (a_1 \cdot \ldots \cdot a_m)^{e/r} = 1 \}$$

and the permutation matrices.

Consider $BX(e, r, m)$ the pseudoreflexion group $G(e, r, m)$.

Finally consider the pullback:

$$BX(e, r, m)(q) \rightarrow BX(e, r, m)$$

where Δ the diagonal map and φ^q is an unstable Adams map of exponent q, a p-adic unit.

Broto-Møller proved that this construction gives a p-local finite group.
Identifying \((S_{n,q}, F_{n,q,r}, L_{n,q,r})\)

Theorem

\[|L_{n,q,r}| \simeq BX(e, r, [n/e])(q^e) \text{ up to } p\text{-completion, where} BX(e, r, [n/e]) \text{ is a generalized Grassmannian.}\]

Corollary

If \(r > 2\), \((S_{n,q}, F_{n,q,r}, L_{n,q,r})\) is an exotic p-local finite group.

Corollary

There is a fibration:

\[|L_{n,q,r}| \to |L_{n,q}| \to B(\mathbb{Z}/r)\]

where the basis and the total space correspond to finite groups and the fibre is an exotic p-local finite group.
Identifying \((S_{n,q}, \mathcal{F}_{n,q,r}, \mathcal{L}_{n,q,r})\)

Theorem

\[|\mathcal{L}_{n,q,r}| \simeq BX(e, r, [n/e])(q^e) \text{ up to } p\text{-completion, where} \]

\[BX(e, r, [n/e]) \text{ is a generalized Grassmannian.} \]

Corollary

If \(r > 2\), \((S_{n,q}, \mathcal{F}_{n,q,r}, \mathcal{L}_{n,q,r})\) is an exotic p-local finite group.

Corollary

There is a fibration:

\[|\mathcal{L}_{n,q,r}| \rightarrow |\mathcal{L}_{n,q}| \rightarrow B(\mathbb{Z}/r) \]

where the basis and the total space correspond to finite groups and the fibre is an exotic p-local finite group.
Identifying \((S_{n,q}, \mathcal{F}_{n,q,r}, \mathcal{L}_{n,q,r})\)

Theorem

\[|\mathcal{L}_{n,q,r}| \simeq BX(e, r, [n/e])(q^e) \text{ up to } p\text{-completion}, \text{ where } BX(e, r, [n/e]) \text{ is a generalized Grassmannian.} \]

Corollary

If \(r > 2\), \((S_{n,q}, \mathcal{F}_{n,q,r}, \mathcal{L}_{n,q,r})\) is an exotic \(p\)-local finite group.

Corollary

There is a fibration:

\[|\mathcal{L}_{n,q,r}| \to |\mathcal{L}_{n,q}| \to B(\mathbb{Z}/r) \]

where the basis and the total space correspond to finite groups and the fibre is an exotic \(p\)-local finite group.
Identifying \((S_{n,q}, F_{n,q,r}, L_{n,q,r})\)

Theorem

\[|L_{n,q,r}| \simeq BX(e, r, [n/e])(q^e)\text{ up to }p\text{-completion, where }BX(e, r, [n/e])\text{ is a generalized Grassmannian.}\]

Corollary

If \(r > 2\), \((S_{n,q}, F_{n,q,r}, L_{n,q,r})\) is an exotic \(p\)-local finite group.

Corollary

There is a fibration:

\[|L_{n,q,r}| \to |L_{n,q}| \to B(\mathbb{Z}/r)\]

where the basis and the total space correspond to finite groups and the fibre is an exotic \(p\)-local finite group.
Sketch of the proofs

Proof of the Theorem

1. Check the case \((S_{ep,q}, \mathcal{F}_{ep,q,r}, \mathcal{L}_{ep,q,r})\) from the description of the \(\mathcal{F}\)-centric, \(\mathcal{F}\)-radical subgroups and their \(\mathcal{F}\)-automorphisms.

2. Induction using the centralizers decomposition.

Proof of the first Corollary

Broto-Møller prove that \(BX(e, r, m)(q)\) is exotic for \(r \geq 2\).

Proof of the second Corollary

Broto-Castellana-Grodal-Levi-Oliver describe this fibration for any saturated fusion subsystem of index prime to \(p\).
Sketch of the proofs

Proof of the Theorem
1. Check the case \((S_{e\text{p},q}, \mathcal{F}_{e\text{p},q,r}, \mathcal{L}_{e\text{p},q,r})\) from the description of the \(\mathcal{F}\)-centric, \(\mathcal{F}\)-radical subgroups and their \(\mathcal{F}\)-automorphisms.
2. Induction using the centralizers decomposition.

Proof of the first Corollary
Broto-Møller prove that \(BX(e, r, m)(q)\) is exotic for \(r \geq 2\).

Proof of the second Corollary
Broto-Castellana-Grodal-Levi-Oliver describe this fibration for any saturated fusion subsystem of index prime to \(p\).
Sketch of the proofs

Proof of the Theorem

1. Check the case \((S_{ep,q}, F_{ep,q,r}, L_{ep,q,r})\) from the description of the \(F\)-centric, \(F\)-radical subgroups and their \(F\)-automorphisms.
2. Induction using the centralizers decomposition.

Proof of the first Corollary

Broto-Møller prove that \(BX(e, r, m)(q)\) is exotic for \(r \geq 2\).

Proof of the second Corollary

Broto-Castellana-Grodal-Levi-Oliver describe this fibration for any saturated fusion subsystem of index prime to \(p\).
Application: Oliver-Ventura’s examples

Example [OV] Fix a finite group G with $S \in \text{Syl}_p(G)$, and a finite p-group A. Fix

$$\chi: \pi_1(|\mathcal{L}_S^c(G)|) \longrightarrow \text{Aut}(A),$$

such that $|\text{Im}(\chi)|$ has order prime to p. Let $\mathcal{T}_1 \subseteq \mathcal{T}$ be the subcategory with the same objects, and with morphisms those $\varphi \in \text{Mor}(\mathcal{T})$ with $\chi(\varphi) = \text{Id}_A$. Let $\mathcal{F}_1^c \subseteq \mathcal{F}^c$ be the image of \mathcal{T}_1 in \mathcal{F}. Then \mathcal{F}_1^c is a full subcategory of a saturated fusion system $\mathcal{F}_1 \subseteq \mathcal{F}$. If \mathcal{F}_1 is exotic, then for any extension

$$1 \longrightarrow A \longrightarrow \tilde{\mathcal{T}} \longrightarrow \mathcal{L}_S^c(G) \longrightarrow 1$$

where $\mathcal{L}_S^c(G)$ acts on A via χ, $\tilde{\mathcal{T}}$ is a centric linking system associated to an exotic saturated fusion system $\tilde{\mathcal{F}}$.
Application: Oliver-Ventura’s examples

To construct new exotic examples they need:

- p a prime, q a p-power such that e, the order of q modulo p, is bigger than 2: for example $p = 5$ and $q = 2$. Then $e = 4$.
- G a finite group: $G = \text{GL}_{20}(2)$.
- A a p-group, and a map $\chi: \pi_1(|L_{S}(G)|) \to \text{Aut}(A)$ such that $p \nmid |\text{Im}(\chi)|$.
- Moreover we need the “kernel” of χ to be exotic.

So consider $A = \mathbb{Z}/5$ ($\text{Aut}(A) = \mathbb{Z}/4$) and use the fibration:

$$|L_{20,2,4}| \to |L_{20,2}| \to B(\mathbb{Z}/4).$$

Then we can construct a new exotic example as an extension:

$$1 \to \mathbb{Z}/5 \to T \to L_{S}^{E}(\text{GL}_{20}(2)) \to 1$$

where $L_{S}^{E}(\text{GL}_{20}(2))$ acts on $\mathbb{Z}/5$ via χ.
Application: Oliver-Ventura’s examples

To construct new exotic examples they need:

- p a prime, q a p-power such that e, the order of q modulo p, is bigger than 2: for example $p = 5$ and $q = 2$. Then $e = 4$.

- G a finite group: $G = \text{GL}_{20}(2)$.

- A a p-group, and a map $\chi: \pi_1(|L^c_S(G)|) \to \text{Aut}(A)$ such that $p \nmid |\text{Im}(\chi)|$.

Moreover we need the “kernel” of χ to be exotic.

So consider $A = \mathbb{Z}/5$ ($\text{Aut}(A) = \mathbb{Z}/4$) and use the fibration:

$$|L_{20,2,4}| \to |L_{20,2}| \to B(\mathbb{Z}/4).$$

Then we can construct a new exotic example as an extension:

$$1 \to \mathbb{Z}/5 \to \mathcal{T} \to \mathcal{L}^c_S(\text{GL}_{20}(2)) \to 1$$

where $\mathcal{L}^c_S(\text{GL}_{20}(2))$ acts on $\mathbb{Z}/5$ via χ.
Application: Oliver-Ventura’s examples

To construct new exotic examples they need:
p a prime, q a p-power such that e, the order of q modulo p, is bigger than 2: for example p = 5 and q = 2. Then e = 4.
G a finite group: G = GL_{20}(2).
A a p-group, and a map \(\chi : \pi_1(|L^c_S(G)|) \to \text{Aut}(A) \) such that \(p \nmid |\text{Im}(\chi)| \).
Moreover we need the “kernel” of \(\chi \) to be exotic.
So consider \(A = \mathbb{Z}/5 \) (Aut(A) = \(\mathbb{Z}/4 \)) and use the fibration:

\[
|L_{20,2,4}| \to |L_{20,2}| \to B(\mathbb{Z}/4).
\]

Then we can construct a new exotic example as an extension:

\[
1 \to \mathbb{Z}/5 \to T \to L^c_S(\text{GL}_{20}(2)) \to 1
\]

where \(L^c_S(\text{GL}_{20}(2)) \) acts on \(\mathbb{Z}/5 \) via \(\chi \).
Application: Oliver-Ventura’s examples

To construct new exotic examples they need:
p a prime, q a \(p \)-power such that \(e \), the order of \(q \) modulo \(p \), is bigger than 2: for example \(p = 5 \) and \(q = 2 \). Then \(e = 4 \).

\(G \) a finite group: \(G = \text{GL}_{20}(2) \).

\(A \) a \(p \)-group, and a map \(\chi: \pi_1(|\mathcal{L}^c_S(G)|) \to \text{Aut}(A) \) such that \(p \not| \text{Im}(\chi) \).

Moreover we need the “kernel” of \(\chi \) to be exotic.

So consider \(A = \mathbb{Z}/5 \) (\(\text{Aut}(A) = \mathbb{Z}/4 \)) and use the fibration:

\[
|\mathcal{L}_{20,2,4}| \to |\mathcal{L}_{20,2}| \to B(\mathbb{Z}/4).
\]

Then we can construct a new exotic example as an extension:

\[
1 \to \mathbb{Z}/5 \to T \to \mathcal{L}^c_S(\text{GL}_{20}(2)) \to 1
\]

where \(\mathcal{L}^c_S(\text{GL}_{20}(2)) \) acts on \(\mathbb{Z}/5 \) via \(\chi \).
Application: Oliver-Ventura’s examples

To construct new exotic examples they need:

- p a prime, q a p-power such that e, the order of q modulo p, is bigger than 2: for example $p = 5$ and $q = 2$. Then $e = 4$.
- G a finite group: $G = \text{GL}_{20}(2)$.
- A a p-group, and a map $\chi : \pi_1(|L_S^c(G)|) \to \text{Aut}(A)$ such that $p \not|| \text{Im}(\chi)$.
- Moreover we need the “kernel” of χ to be exotic.

So consider $A = \mathbb{Z}/5$ ($\text{Aut}(A) = \mathbb{Z}/4$) and use the fibration:

$$|L_{20,2,4}| \to |L_{20,2}| \to B(\mathbb{Z}/4).$$

Then we can construct a new exotic example as an extension:

$$1 \to \mathbb{Z}/5 \to T \to L_S^c(\text{GL}_{20}(2)) \to 1$$

where $L_S^c(\text{GL}_{20}(2))$ acts on $\mathbb{Z}/5$ via χ.