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Abstract: It is known that for a sequence {2} of convex sets expanding over the whole hyperbolic space
H™1 the limit of the quotient vol (2;)/vol (9€2) is less or equal than 1/n, and exactly 1/n when the sets
considered are convex with respect to horocycles. When convexity is with respect to eguidistant lines, i.e.,
curveswith constant geodesic curvature A lessthan one, theabovelimit has . / n aslower bound. L ooking how
the boundary bends, in this paper we give bounds of the above quatient for a compact A-convex domain in
acompl ete simply-connected manifold of negative and bounded sectional curvature, a Hadamard manifold.
Then we seethat thelimit of vol (€2)/vol (€2t ) for sequences of A-convex domains expanding over thewhole
space lies between the values A /nkZ and 1/nk;.

Keywords: Hyperbolic space, Hadamard manifold, normal curvature, volume, A-geodesic, horocycle, A-
convex set.

MS classification: 52A55; 52A10.

1. Introduction

When we consider a circumference passing through a point in the hyperbolic space H"*
and make the center of it to go to infinity, the resulting curveis called an horocycle. This curve
is characterized by having geodesic curvature equal £1. Given two points in H'* there is a
family of horocycles joining them. We say that a set is h-convex if for every couple of points
in it, every horocycle joining them is completely contained in the set.

In 1972 Santal6 and Yafiez ([8]) proved the following result. Let {Q(t)}icr be afamily of
compact h-convex domains in H? expanding over the whole plane. Then
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For H"* it was proven in [1] the generdization of this result. Let {Q(t)}er be a family of
compact h-convex domains expanding over the whole space, then

vol(Q() 1

im-— = —.
t—oo vol(02(t)) n

On the other hand, the following linear isoperimetric inequality holds for a domain 2 in
a complete simply-connected manifold with negative least upper bound K of the sectional
curvatures (cf. [9])

nv —Kvol(R2) < vol(0L).

This give us an upper bound for the quotient of volumes, vol (€2)/vol 3€2) < 1/n/—K.

An h-convex domain in asimply connected riemannian space M of nonpositive curvature is
adomain 2 C M with boundary 9$2 such that, for every p € 9<2, there is a horosphere H of
M through p such that 2 islocally contained in the horoball of M bounded by H. When M is
a L obachevsky space, then this definition is equivalent to the above definition.

For simply-connected riemannian manifoldswith sectional curvature satisfying —k2 < K <
—k2 it was proved in [2] that

L liminf vol (L2(t)) < lim vol (2(t)) < i
nky t—oo vol(92(t)) t>oo VOI(OS2(1)) ~ nkg

where Q(t) are h-convex bodies expanding over the whole space.

In[4] it was shown that equation (1) is not true for general convex sets. Thislimit can take,
in the hyperbolic plane, any value between 0 and 1. Since horocycles are curves of geodesic
curvature +1 and geodesics are curves of geodesic curvature 0, they can be considered as
particular cases of curves of constant geodesic curvature A, 0 < [A] < 1.

Thus if convexity is defined with respect to horocycles this limit is 1 and when convexity
is defined with respect to geodesics the limit of the quotient area(Q(t))/length(2(t)) is less or
equal than 1. In[1] it wasintroduced the notion of A-convexity and the question of theinfluence
of A in this limit was posed. When convexity is defined with respect to A-geodesic curves it
was proved in [5] that for each « € [A, 1] there exists a sequence of A-convex polygons {Kn}
expanding over the whole hyperbolic plane such that

area(£2(t))
m ——— =«
t—o0 length(Q(t))

v

and if the sequence is formed by A-convex sets with piecewise C? boundary, then the limsup
and liminf of these ratios lie between A and 1. For Lobachevsky space H™! it was proved
in[2] that

& < liminf vol (2(t)) < limsu vol (2(t)) < 1

n t—oo vol(3€2(1)) tsoo VOI(OQ(L)) N
for afamily {Qt)};cgr+ Of A-convex domains expanding over the whole space.

It is possible to generalize in a natural way the notion of A-convexity for riemannian man-

ifolds. A domain 2 with regular boundary is A-convex when all the normal curvatures are
bounded below by A (see Section 2 for a precise definition). The main result of thiswork is
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Theorem 2. Let M bea (n + 1)-dimensional Hadamard manifold with sectional curvature K
such that

— ks <K < —K2, ki, ko > 0.

Let Q2 be a compact A-convex domain in M with A < ky. Then there are functions «(r) of the
inradius and B(R) of the circumradius such that «(r) — 1/(nk) and 8(R) — 1/(nki) whenr
and R grow to infinity and that

A vol(Q2)
a(r)k—2 S vol (092)

< B(R).

As a consequence we see that

Theorem 3. If M isa (n + 1)-dimensional Hadamard manifold with sectional curvature K
such that —k3 < K < —k? with kg, k, > 0

A vol@) vol@) _ 1
nk =t vol(3Q(1) T tmeo VOI(IQ(D) T nky

for a family {Q()}r+ Of compact A-convex domains with A < ky expanding over the whole
space.

The case A = ky corresponds to a sequence of h-convex sets.

The main tool for proving these results will be an estimation of the angle between the radial
direction from aninterior point of 2 and thenormal of 3<2. Thiswill weprovedin Section 4. We
aso prove an interesting formula relating the variation of this angle and the normal curvature
in adirection of the boundary.

2. Definitionsand preliminary results

Definition 2.1. A Hadamard manifold is a simply-connected complete Riemannian manifold
of non-positive sectional curvature.

In this paper we shall deal with (n + 1)-dimensional pinched Hadamard manifolds, this
means the sectional curvature K satisfies the relation —k3 < K < —k? with 0 < k; < ke.

Definition 2.2. A C? hypersurface N C M such that in every point all the normal curvatures
are greater or equal than a non-negative A is said a regular A-convex hypersurface. When N
isthe boundary of adomain Q it is said that 2 isaregular A-convex domain when its normal
curvature with respect to the inward normal direction is greater than A.

This definition can be generalized to the non-regular case.

Definition 2.3. A 1-convex hypersurfaceisahypersurface N ¢ M such that for every point P
thereisaregular A-convex hypersurface Sleaving aneighborhood of P in N inthe convex side
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of S. A domain € of M is A-convexif its boundary isa A-convex hypersurface (see Figure 1).

convex side of S

Fig. 1.

Remark. Itcanbeseenthat a0-convex hypersurfaceisanordinary locally convex hypersurface
and a0-convex domainisan ordinary convex domain. Also notethat A.-convex impliesO-convex.

We shall need the fact, proved for instance in [6], that if (M, g) is a Hadamard manifold
with sectional curvature K satisfying —k5 < K < —k? then the normal curvature k, in any
direction of ageodesic sphere of radiusr satisfies

kq coth(kir) < ky, < ko coth(kor). 3

Note that the value k coth(kr) is the geodesic curvature of a circumference of radiusr in
L obachevsky plane of curvature —k?.

Remark. Sincek; < kj coth(kir) < ky we deduce that for every A < ki, geodesic spheresare
A-convex hypersurfaces. Noticealsothat, if €2 isai-convex setwithx > k, then every inscribed
ball B(r) must satisfy that r < (1/kz) arctanh(k,/2). Indeed there are pointsin a2 such that the
normal curvature is less or equal than the curvature of 9 B(r), therefore A < ks, coth(kor) and
theinequality for r follows. We conclude that A-convex sets of any radiusexistsonly if A < ko.

Definition 2.4. An horospherein aHadamard manifold isthe limit of ageodesic sphere asthe
radius tends to infinity

Given apoint P and a complete geodesic ray y starting on P, the limit of the sequence of
geodesic spheres centered in y (t) and passing by P when t tends to infinity is an horosphere.
Using (3) we see that horospheres have normal curvature between k; and k, when the sectional
curvature K of ambient space satisfies —k3 < K < —k2.

Definition 2.5. A locally convex hypersurface N of aHadamard manifoldissaid to be h-convex
if every point has alocally supporting horosphere.

Remark. Thismeansthat for every x in N thereisan horosphere H such that x belongsto H
and N islocally contained in the convex side defined by H. A convex domain €2 is h-convex if
its boundary is an h-convex hypersurface. Note also that every A-convex domain with A > ko
is h-convex.
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3. Normal curvature on riemannian manifolds

In this section we want to find an estimation of the normal curvature in apoint P of N, a
hypersurface of a riemannian manifold M. Consider N defined by the equationt = p(#) of
class C?, thedistance to apoint O. N can be seen asthe O-level set of the function F =t — p.
Remember that for afunction f in M the gradient, grad f, isthe unique vector field in M such
that (grad f, v) = df (v) = v(f). V will denote always covariant derivativein M.

With respect to the point O we consider polar coordinates (t, %, ..., 6"). The arc element
isgiven by ds? = dt2 + g;j (t, 6)do' d’. If wewrite n = gradF /||gradF | for the normal unit
vector to N and ¢ for the angle between the radial direction and the unit normal we have that
cos¢ = (n, d/d). Then 1/|jgradF || = cose. Let f =t asafunctionon M. If Z € TyN then
Z(f)= (d/a, Z). It follows that grady, p is the orthogonal projection of d/3; onto N and the
vectorsn, d/9; and Y = grady p/llgrady o || belong to a2-dimensional plane (see Figure 2). Let
denote by X the unit vector in this plane and orthogonal to a/a;.

A
n 19}

ot

X

Fig. 2.
The normal curvatureat P € N inthedirection givenby Y is

kn == (VYY, n).
Next proposition was announced by A.A. Borisenko who gave afirst version of its proof.

Proposition 3.1. If i, isthe normal curvature in the direction of X of the sphere centered in
O with radius p and dg/ds the derivative of ¢ with respect the arc parameter of the integral
curveof Y by P, then

d
kn = n COS@ + d_(g' 4)

Remark. Thisisakind of Liouville formula. It must be noticed that when this formulais
applied to the boundary of a convex domain containing the point O, k, and ., are both nega-
tive.

Proof. We have that
n=cosy -9/0 —sSing - X
Y =cos¢ - X+sing -9/d;.



22 A.A. Borisenko, E. Gallego ana A. Reventos

Hence
Kn = SiNg(Vy/5,Y, N) 4+ cose (VxY, n).

A straightforward cal culation shows that the first term vanishes. L et us decompose the second

term.
(VxY,n) =cosg (Vxcoseg X,d/d) —sSing(Vx cose X, X)

4+ cosg (Vx Sing 0/d;, 9/0;) — Sing(Vyx Sing 8/d;, X).
But
(Vxcosp X, d/dt) = cose (VxX, 3/3) = pun COSe

with u, thenormal curvaturein thedirection X of the n-dimensional sphere centeredin O with
radius p.

(Vxcosg X, X) = —X(p) Sing,
(Vxsing d/d, 3/0r) = X(p) cosg,
and
(Vxsing 8/0¢, X) = —un SiNg.
Therefore we obtain

Kn = pn COS@ + X(¢) COS@ . (5)
Usingthat X = Y/cosg + (tang)d/0d; we obtain
kn = inC0S@ + Y(¢). (6)

But differentiation in direction Y of ¢ is the derivative with respect the arc parameter of the
integral curve of Y by P. Thisfinishesthe proof. [

4. Lower bound for cos¢ = (n, d/0)

Inthissectionweshall study theangle ¢ betweentheradial directionandthenormal direction
to the hypersurface. We divide the proof in the regular and the non-regular case.

4.1. Regular case

We shall prove the following

Theorem 1. Let M bea (n + 1)-dimensional Hadamard manifold with sectional curvature K
suchthat —k3 < K < —kZ withky, k, > 0. Let  be a A-convex domain with C2 boundary N,
A < ko and O aninterior point of Q. If ¢ denotesthe angle of the normal to N and the exterior
radial direction, when d(O, N) < (1/ky) arctanh(A/k») we have

1 -
cosg > ;- V22 cosh? ks — k2 sinh? ks.
2
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If d(O, dN) > (1/ky) arctanh(}/k2) we have

Ccos >)\
§0/k2-

We start studying what happens in the hyperbolic space.

Lemma 4.1 ([2]). Let y be a A-geodesic line in the Lobachevsky plane of constant curva-
ture —k?. Let O be a point in the convex side of y. Let r be the distance between y and O.
For each point in y we define 8 as the angle between the radial field from O and the outwards
normal field of y. If

1 A k+ 2
r<d:.= EarctanhE (_ log m)
then J
2 A — k—A
cosp > p( kp)(z p) )
K(1— p%)
where p = tanh  kr. Alternatively, if r > d then
A
cosp > o 8
Remark. The estimate (7) can be given in the following equivalent form
1 2 2 2 cinh2
cosp > K \/k cosh” ks — k“sinh“ ks, 9

wheres=d —r.

We shall see now in a synthetic way a new proof of those expressions. Assume that we are
in the conformal Poincaré disk model and that O is the origin. We can also suppose that y is
the intersection with the disk/o@ circle C centered at Q = (0, q) with g < 0. Now, at any
point P € y, B isthe angle QP O. Consider the curves defined as the locus of the point from
which OQ isin agiven angle. It is known that these level curves arearcs of circlesjoining O
and Q. Two of such arcs are tangent to C. Thus, the mamjm of QPO for P € Cisattained
when P isone of these tangency points. That is, when POQ = /2.

Fig. 3.
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Now, by definition y isthe equidistant curve at distance d to somegeodesico. If r < d then
O isintheregion bounded by y and o. SO, y meetsthe bo%diry of the model at points with
negative second coordinate. Thus, the points P € C where QP O ismaximum arein y. Then,
the maximum of g isalso attained in P. If O’ and P’ are the pointsin o a minimum distance,
respectively, from O and P, then O'OPP’ is a quadrilateral with three right angles and an
acute angle equal to 8. Using a hyperbolic trigonometric formula for quadrilaterals (cf. [7]),

_ coshkOO’
coshkPP’

From this we obtain easily the expression (9). A straightforward computation shows that it is
equivalent to (7).

Inthecasethatr > d, the points P € C with the greatest angIeQ/P\O are outside the disk.
Then, at every point of y, B isless than the angle between the A-geodesic and the boundary of
the disk and thisangle has cosine A /k. [

Proof of Theorem 1. Let y beanintegral curveof thefield Y = grady e through apoint P of
the boundary. Following y in the direction that o decreases we arrive at a point Q (maybe at
infinitetime of the parameter). InthispointY = 0, hence¢p = 0.Letd(O, Q) =d (= d(O, N)).
If d = d(O, P) we can parametrize the segment of y between P and Q with the distance
t € (d, d’] of O tothe corresponding point in the segment. If s isthe arc parameter we have by
Lemma3.1

doy dt
kn(y (1)) = cosp(y (1)) un(y (1)) + ot ds
but
dt Y (grady o, grady o) .
ds — IVl = =Ssing.
ds ~ 1 P T lgradgpl v

As N is A-convex and using the comparison formula (3) we have

_d
— A > —kycoth(ks - t) cOSg + Sing d—f. (10)

Now consider in H?(—k3) an arbitrary A-geodesic line ¥ and a point Q in it. Consider an
orthogonal geodesic from Q to a point O at distance d from Q. In ¥ consider a point P at
distanced’ = d(O, P) from O. We have the same situation as before, but now in the hyperbolic
plane of constant curvature —k3. If B is the angle between the normal to  in the direction of
the ray vector from O and this ray vector, we have the exact formula

d
— A = —kycoth(ks - t) cosg + sinf d—f 11
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wheret is again the distance from O to the corresponding point iny (see Figure 4).

Fig. 4.

Suppose that v (t) > (). Asy () = B(d) = Owemust have y’ > B’ at some point. From
equations (10) and (11) we deduce

—ko coth(k, - t) cosg + sing 3—’?2 —ko coth(ks - t) cosg + sing :I_(tp

. d
> —ky coth(k, - t) cosB + sing d—f
which is a contradiction. Therefore we must have ¢ < 8, hence cose(t) > cosgB(t) and the
bound follows. [

It ispossible to provein an easier way aless strong result

Proposition 4.1. Let M be a Hadamard manifold with sectional curvature —k3 < K < —k2.
Suppose 2 be a C? 1-convex set with A < ko, and Q2 a connected boundary component. Let
O beapointintheinterior of Q. Then the angle ¢ between geodesic rays from O and the unit
normal to 92 satisfies the inequality

A
cosg > — tanh(kar)
ko
wherer isthe minimum distance from O to 3€2.

Proof. Notethat thefieldgrady p iszeroif andonlyif cos¢ = landinthiscased/dt = gradF.

Theangle ¢ takesitsvalueintheinterval [0, 7 /2] then thereisasupremum ¢g of it. Consider
any integral curve y of Y/||Y|. If a some point y () the value g is achieved we have in this
point that ¢’ = 0 and so

kn
cosgp = —
Hn

concluding that
A

D e o —
C05¢ 2 Yz cothikapo)

(12)
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If the maximum value is not achieved we have two different possibilities, there existsavalue
S such that ¢(y (S)) increaseswhen s > s, inthiscase ¢’ > 0 and then (—k,)cos¢ > —pun,
it follows (12) again. The other case isthat ¢ (y (S)) goesto g in a nhon-monotone way, in this
case there is aincreasing sequence s, such that ¢’ (v (sh)) = 0 and (¥ (1)) — @o. Again we
obtain (12). O

4.2. Non-regular case

Now we shall consider a genera A-convex domain Q2. Let N, be the outer parallel set at
distance € to N = 9. Then it isageneral fact that N, isof class of regularity C11. When N
is A-convex, N, isA-convex with A, > A — Ce. Itistrue aso that

[imN, =N lime. = ¢.
e—>0 ¢ ’ e—)O(p€ ¢

Here ¢ corresponds to the angle of the normal of the limit supporting tangent plane with the
radial direction 9/dt (see Figure 5).

If we found a bound for ¢. then we will obtain an evaluation for ¢. Now we consider the
gradient of the distance function for N, thisfield hasintegral curves of class of regularity C1-2.
In fact in almost all points the classis C2. Therefore the function ¢, (t) giving the angle is C*
in those points. Applying Proposition 3.1 to ¢, and using that

s d
0(S) = p(s0) + / d—Zdt (13)
S

we obtain that the same evaluation for cosg asin the regular case is valid now. Taking limits
with respect to ¢ we obtain the proof of Theorem 1 for the general case.

5. Estimates for theratio of volumes

First of all we state the following lemma (see for instance [3]).

Lemma5.1. Suppose that on the geodesic line y : [0, s] — M of a manifold M there are no
conjugate points to y (0) and at every point of y all the sectional curvatures K, are bounded
by

ko < Ky < K.
Then, for t <s

I (1) < J® < I, (D
Jo(8) IS T Ju(s)
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where J(t) and Jk(t) denote thejacobiansat the points corresponding to y (t) by the exponential
maps of M and of the space with constant curvature k, respectively.

Fig. 5.

Theorem 2. Let M bea (n + 1)-dimensional Hadamard manifold with sectional curvature K
such that

— k5 <K < —K, ki, ko > O.
Let ©2 be a compact A-convex domainin M. Thenif A < kp
A vol(Q2)
f(r) . Cr)— < < h(R
(r) ()k2 Vol (9%2) (R
wherer istheinradiusof Q, Risthe circumradius,
1 1
e l_e—kznr o
(1— e Zen)n [kzn ( ) ko(n —2)

f(r):= (e—Zkzr _ e—kznr):|

1
h(R) 1= 7— (1— e "R
(R =in =&

and
1 1 A
= /32 cosh? kos — k2 sinh? ks if r < — arctanh —,
k2 k2 k2
Cr) = .
1 if r> —arctanhi.
ko 2

Proof. Let O beany pointinteriorto ©2. Consider theexponential mapin O,exp: ToM — M.
For each unitary vector u € ToM we definel (u) as the positive real number such that

exp((U)u) € 9.

Let r and R be respectively the minimum and the maximum of |. Let A = {(u,t € S" x R;
0 <t < lW)}. Identifying S" x R with ToM — {O} we have Q = exp(A). Hence

(u)
voI(Q):/ n:/ n:/exp*n=/ f J(exp) t" dt dS.
Q exp(A) A s'JO
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where n and dS are, respectively, the volume elements of M and S".
Anaogoudly, if wedefine¢ : S" — 9Q by ¢(u) = exp (I (u)) u, then

vol(asz>=/ u=/ u=/ ¢*u=/ Jecy () dS
9Q #(S Sn S

where 1 isthe volume element of 3$2. Now, we compute the jacobian of ¢ at apointu € S".
Letey, ..., e, beanorthonormal basisof T,S". By definition, we have

Jac, () = u(gs€r, ..., ¢:€1) = n(N, €1, ..., Ps€n)
where N is orthogonal to 0L2. If 9; isthe radial field from O, we can write

O
<at7 N)

JaCu(¢)=77( ,¢*91,,¢*Qw)

Now, ¢.(g) = exp,(di(e)u+1(u)e), so

1
Jac, (¢) = ————n({3, N), exp, (I(u) ep), ..., exp, (I(u) &)
(9, N)

- <Iat,(uN)> n(exp”(u), exp, (I (W) ey). . .., exp, (I (u) &n))

1w
= m Jac) wyu (exp).

Therefore,

I
n
vol(Q) /y 5 Jag wyu(exp) t" dt dS

e NIy JaCI (u)u(exp) ds

vol(82) / ["(u)
Sn<at7N>
Setting
'Y Jacy(exp) t"
=] Towuep "
we can write

vol (@) = fsn g(u) | (U)"Jac;  (exp) dS,

Now, from Lemma 5.1, comparing with the spaces of constant curvature —k? and —k3 we can
state that

Jecuu(exp™) _ Jacw(exp) _ Jacu(exp)
Jecsu(exp™) T JaCsu(XD) T Jacg (exp™)

fort <s
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where exp‘qu denotes the exponential map at any point of the space of curvature —kiz. Itis
known that Jac, (exp~%") = ((1/k)sinhkt)"t—". Hence

W (sinhkyt)" W (sinhkt)"
/ (anhigt) )ndt < gu) <f (snhiat) )n :
o (sinhkys) o (sinhkis)
We can estimate the first integral by usingthefactthat (1—a)" > 1—nafor 0<a< 1

S ginh(kyt)" 1 s ol N
dt = 1 — g 2etyngen=s) gt
./0 sinh(kzs)" (1 — e Zesyn /0 (1-e%)

l S
> = / (1 — ne~%ket) gent=s) g
—e 0

1 |:i (1 _ e—kzns) _ (e—Zkzs _ e—kan)]

T (1—e 25| kon ko(n —2)
=: f(s).
On the other hand,
s sinh(kt)" s 1 -
————dt < [ "Vdt = — (1-eM™) = h(s).
/o sinh(k;s)" /o kln( © ) )

Therefore, sincer < 1(u) < Rforeveryu € S,
f(r)/snl(U)”Jaq(um(exp) dS < vol(Q) < h(R)LI(U)”m<u>u(%p) ds.
Finally, using Theorem 1, we find that
Fr) .o < I

k,  vol(99)

Now, choosing O to be the incenter and the circumcenter of 2, we have proved the two
inegualitieswithr and R the inradius and the circumradius respectively. O

< h(R).

Note that the theorem would be true, with the same proof, if r and R were the radius of any
geodesic ball contained and containing, respectively, €.
Now, we get the main result of the paper

Theorem 3. Let M bea (n + 1)-dimensional Hadamard manifold with sectional curvature K
such that

—k%gKg—k%, kl,k2>0.
Let {Q(t)}cr+ beafamily of A-convex compact domains expanding over thewhole space. Then,
if 2 <k
vol(2(1)) < limsu vol (L2(t)) < 1

5 < liminf ———— < — 7 L )
nk5 vol (0€2(t)) vol(0Q2(t)) ~ nkq
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Proof. Since Q(t) expands over the whole hyperbolic space, r and R go to infinity. Then
h(R) goesto 1/nk; and f (r) goesto 1/nk,. When A = k, the domains are h-convex and the
inequality followsfrom[2]. O
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