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Abstract. We study if two non isomorphic Lie algebras can appear as trans-

verse algebras to the same Lie foliation. In particular we prove a quite sur-
prising result: every Lie G-flow of codimension 3 on a compact manifold, with

basic dimension 1, is transversely modeled on one, two or countable many Lie

algebras. We also solve an open question stated in [GR91] about the realiza-
tion of the three dimensional Lie algebras as transverse algebras to Lie flows

on a compact manifold.

0. Introduction

This paper deals with the problem of the realization of a given Lie algebra as
transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors (cf. [KAH86], [KAN91],
[Fed71], [Mas], [Ton88]). The importance of this study was increased by the fact
that they arise naturally in Molino’s classification of Riemannian foliations (cf.
[Mol82]).

To each Lie foliation are associated two Lie algebras, the Lie algebra G of the
Lie group on which the foliation is modeled and the structural Lie algebra H. The
latter algebra is the Lie algebra of the Lie foliation F restricted to the clousure
of any one of its leaves. In particular, it is a subalgebra of G. We remark that
although H is canonically associated to F , G is not.

Thus two interesting problems are naturally posed: the realization problem and
the change problem.

The realization problem is to know which pairs of Lie algebras (G,H), with H
subalgebra of G, can arise as transverse and structural Lie algebras, respectively, of
a Lie foliation F on a compact manifold M .

This problem is closely related to the following Haefliger’s problem (see [Hae84]):
given a subgroup Γ of a Lie group G, is there a Lie G-foliation on a compact
manifoild M with holonomy group Γ?

The present formulation of the realization problem in terms of Lie algebras was
first considered in [Lla88], and [GR91] made a very detailed study of Lie flows
of codimension 3. But a completre classification was not obtained because of the
following open questions:

i) Let Gk
7 be the family of Lie algebras for which there is a basis {e1, e2, e3}

such that

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = ke2, k ∈ [−1, 0) ∪ (0, 1].

For which k is there a Lie Gk
7 -flow on a compact manifold with basic di-

mension 1 ?
ii) Let Gh

8 be the family of Lie algebras for which there is a basis {e1, e2, e3}
such that

[e1, e2] = 0, [e1, e3] = e2, [e2, e3] = −e1 + he2, h ∈ (0, 2).
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For which h is there a Lie Gh
8 -flow on a compact manifold with basic di-

mension 1 or basic dimension 2 ?
We solve these problems here, for basic dimension 1, and give a complete char-

acterization in terms of k and h for a given Lie algebra of the families Gk
7 and Gh

8

to be realizable in the above conditions.
The change problem is to know if a given Lie G-foliation can be at the same time

a Lie G′-foliation, where G and G′ are two non isomorphic Lie algebras. An exemple
of this situation, given by P. Molino, can be found in [GR91]. As far as we know
this problem has no been treated for non-trivial basic dimension. The only a priori
restriction is that the structural Lie algebra H must be a Lie subalgebra of G and
G′.

As a first step in the study of this two problems we consider the case of codi-
mension 3 (the cases of codimension 1 and 2 are trivial). We expect that this study
becomes useful in order to attack the general case.

We begin this paper with some results on abelian and nilpotent Lie foliations,
that we shall use later. We first prove:

Proposition 2.2. Every no dense Lie abelian foliation of codimension 3 on a
compact manifold M is also a Lie Gh=0

8 -foliation.

We also give an example to show that the converse is not true. But the converse
is true for Lie flows of basic dimension 1 or 2:

Corollary 2.4. Let F be a Lie Gh=0
8 -flow on a compact manifold M with basic

dimension 1, then F is also a Lie abelian flow.

Corollary 2.7. Let F be a Lie Gh=0
8 -foliation on a compact manifold M with

basic dimension 2, then F is also a Lie abelian foliation. This corollary enable

us to construct a pair of Lie groups (G, Γ), with Γ a finitely generated subgroup
of G, Γ̄ uniform, such that there are no Lie G-flows on a compact manifold with
holonomy group Γ. But Γ is realizable as the holonomy group of a Lie G-foliation
of a compact manifold.

We also prove (Proposition 2.9) that if a given Lie foliation is transversely mod-
eled on two nilpotent Lie algebras, then these algebras are isomorphic.

In §4 we study the realization problem and we obtain:

Theorem 4.1. There is a compact manifold M endowed with a Lie Gh
8 -flow F ,

h 6= 0, of basic dimension 1 if and only if

h =
2 ln λ√

4ω2 + ln2 λ

where λ and ω are two real numbers, with λ > 1 and ω 6= kπ (k ∈ Z), such that

λ,
1√
λ

(cos ω ± i sinω) are the roots of a monic polynomial of degree 3 with integer

coefficients.

Theorem 4.4. There is a compact manifold M endowed with a Gk
7 -flow F of

basic dimension 1 if and only if

k =
ln b

ln a
and k 6∈ Q

where a, b, 1
ab are positive real roots of a monic polynomial of degree 3 with integer

coefficients.

We devote §5 to the change problem. We obtain a quite surprising result, es-
sentially that each Lie flow of codimension 3 on a compact manifold with basic
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dimension 1 is transversely modeled on one, two or countable many Lie algebras.
Concretely, we prove (see §1 for the description of the algebras Gi):

Theorem 5.4. Let F be a Lie flow of codimension 3 on a compact manifold M
with basic dimension 1. Then only three cases are possible:

i) F is transversely modeled exactly on one Lie algebra. This occurs if and
only if the transverse Lie algebra is G5 or Gk

7 .
ii) F is transversely modeled exactly on two Lie algebras. This occurs if and

only if these two transverse Lie algebras are G1 and Gh=0
8 .

iii) F is transversely modeled on countable many Lie algebras. This occurs if
and only if F is transversely modeled on Gh6=0

8 .
In this case

a) There exist two real numbers λ > 1 and ω such that h =
2 ln λ√

4ω2 + ln2 λ
.

b) F is also transversely modeled on Gh′

8 for each

h′ =
2 ln λ√

4(ω + 2kπ)2 + ln2 λ
(∀k ∈ Z).

c) If F is also transversely modeled on G then G = Gh′

8 for some of the
above h′.

1. Preliminaries

Let F be a smooth foliation of codimension n on a differentiable manifold M
given by an integrable subbundle L ⊂ TM . We denote by TF the Lie algebra of
the vector fields tangents to the foliation, i.e. the sections of L. A vector field
Y ∈ X (M) is said to be F-foliated (or simply foliated) if and only if [X, Y ] ∈ TF
for all X ∈ TF . The Lie algebra of foliated vector fields is denoted by L(M,F).
Clearly, TF is an ideal of L(M,F) and the elements of X (M/F) = L(M,F)/TF
are called transverse (or basic) vector fields.

If there is a family {X1, . . . , Xn} of foliated vector fields on M such that the
corresponding family {X1, . . . , Xn} of basic vector fields has rank n everywhere
the foliation is called transversely parallelizable and {X1, . . . , Xn} is a transverse
parallelism. If the vector subspace G of X (M/F) generated by {X1, . . . , Xn} is a Lie
subalgebra, the foliation is called Lie G-foliation and we say that F is transversely
modeled on the Lie algebra G.

We shall use the following structure theorems:

Theorem 1.1. [Mol82] Let F be a transversely parallelizable foliation on a compact
manifold M , of codimension n. Then

a) There is a Lie algebra H of dimension g ≤ n.
b) There is a locally trivial fibration π : M → W with compact fibre F and

dim W = n− g = m.

c) There is a dense Lie H-foliation on F such that :
i) The fibres of π are the adherences of the leaves of F .
ii) The foliation induced by F on each fibre of π : M → W is isomorphic

to the H-foliation on F.

H is called the structural Lie algebra of (M,F), π the basic fibration and W the
basic manifold. The foliation given by the fibres of π is denoted by F .

Note that the basic dimension (i.e. the dimension of W ) is

dim W = codim F = codim F − dim H.
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Theorem 1.2. [Fed71] Let G be the connected and simply connected Lie group with
Lie algebra G. F is a Lie G-foliation on a compact manifold M if and only if there
exists a homomorphism Φ : π1(M) −→ G and a covering p : M̃ −→ M such that

i) There is a locally trivial fibration D : M̃ −→ G equivariant under the action of
π1(M), where Aut(p) ∼= Im Φ.

ii) The fibres of D are the leaves of the lifted foliation F̃ = p∗F of F .

Condition i) means that if gγ = Φ([γ]) and γ̃ is the corresponding element to [γ]
in Aut(p), then

D(γ̃(x)) = gγ ·D(x) ∀x ∈ M̃.

The subgroup Γ = Im Φ is called the holonomy group of the foliation.
For a Lie G-foliation the structural Lie algebra H is always a subalgebra of G.
A geometrical characterization of the fact that H is an ideal of G is the following

Lemma 1.3. [Lla88] Let F be a Lie G-foliation of codimension n on a compact
manifold M . The structural algebra H is an ideal of G if and only if there exist a
Lie G parallelism {Y 1, . . . , Y n} such that the foliated vector fields Y1, . . . , Yt (t =
dim H) are tangent to F at each point.

The basic cohomology H∗(M/F) of a foliation F on a manifold M is the coho-
mology of the complex of basic forms, i.e., the subcomplex Ω∗(M/F) ⊂ Ω(M) of
the De Rham complex given by the forms α satisfiying iXα = 0 and LXα = 0 for
all vector field X ∈ TF .

For a Riemannian foliation it is well known (cf. [KAHS85]) that Hn(M/F) = 0
or R, where n is the codimension of the foliation. We have the following result

Theorem 1.4. [LR88] Let F be a Lie G-foliation of codimension n on a compact
manifold M .
i) If Hn(M/F) = R then Hn(G) = R and Hp(G) ⊂ Hp(M/F). In this case F will
be called unimodular.
ii) If Hn(G) = R and the structural Lie algebra is an ideal of G then Hn(M/F) =
R.

Given a basis {e1, . . . , en} of G with structure constants {ck
ij}, we say that the

foliated vector fields Y1, . . . , Yn ∈ L(M,F) are a foliated realization of the basis
{e1, . . . , en} if the Lie brackets of these vector fields are

[Yi, Yj ] =
n∑

k=1

ck
ijYk + TF mod TF .

We shall use the following classification of the 3 dimensional Lie algebras:
• G1 (Abelian):

[e1, e2] = [e1, e3] = [e2, e3] = 0.

• G2 (Heisenberg):

[e1, e2] = [e1, e3] = 0, [e2, e3] = e1.

• G3 (so(3)):

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

• G4 (sl(2)):

[e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = e2.

• G5 (Affine):

[e1, e2] = e1, [e1, e3] = [e2, e3] = 0.
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• G6:

[e1, e2] = 0, [e1, e3] = e1 [e2, e3] = e1 + e2.

• The family Gk
7 :

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = ke2 k 6= 0.

The algebras Gk
7 and Gk′

7 are isomorphic if and only if k = k′ or k = 1
k′ . From

now on we consider that the family is parametrized by k ∈ [−1, 0) ∪ (0, 1].
• The family Gh

8 :

[e1, e2] = 0, [e1, e3] = e2, [e2, e3] = −e1 + he2 h2 < 4.

The algebras Gh
8 and Gh′

8 are isomorphic if and only if h = h′ or h = −h′.
From now on we consider that the family is parametrized by h ∈ [0, 2).
Notice that for h2 ≥ 4 we obtain an algebra isomorphic to G6.

The Lie algebras G1, G2, G3, G4 are unimodular. The Lie algebras G5, G6 are not
unimodular. The only unimodular Lie algebra of the family G7 is Gk=−1

7 and the
only unimodular Lie algebra of the family G8 is Gh=0

8 .
In §3 we shall need an explicit description of the connected simply connected Lie

groups corresponding to G5, Gk
7 , Gh

8 . These groups are given by

G5 =


et 0 x

0 1 y
0 0 1

 ; x, y, t ∈ R


Gk

7 =


e−t 0 x

0 e−kt y
0 0 1

 ; x, y, t ∈ R


Gh

8 =


c(t) cos(ϕ + t) −c(t) sin t x

c(t) sin t c(t) cos(ϕ− t) y
0 0 1

 ; x, y, t ∈ R


where c(t) =

2eβt

α
, α =

√
4− h2 and β = tan ϕ =

h

α
.

These groups can also be thought as R3 = R2 × R with the product

(p, t) · (p′, t′) = (p + e−Λtp′, t + t′)

where Λ depends on the algebra:
For G5,

Λ =
(
−1 0
0 0

)
, e−Λt =

(
et 0
0 1

)
.

For Gk
7 ,

Λ =
(

1 0
0 k

)
, e−Λt =

(
e−t 0
0 e−kt

)
.

For Gh
8 ,

Λ =
(

0 1
−1 h

)
, e−Λt = c(t)

(
cos(ϕ + t) − sin t

sin t cos(ϕ− t)

)
.
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The above basis of these Lie algebras are given by:

for G5



e1 = et ∂

∂x

e2 =
∂

∂y

e3 = − ∂

∂t

for Gk
7



e1 = e−t ∂

∂x

e2 = e−kt ∂

∂y

e3 =
∂

∂t

for Gh
8



e1 =
2
α

e−βt(cos(ϕ + t)
∂

∂x
+ sin t

∂

∂y
)

e2 =
2
α

e−βt(− sin t
∂

∂x
+ cos(ϕ− t)

∂

∂y
)

e3 = −α

2
∂

∂t

2. Abelian and nilpotent Lie foliations

Many of the problems about Lie foliations are, in fact, problems on Lie groups.
For instance, as a consequence of the following proposition, every Lie abelian foli-
ation without dense leaves is also a Lie Gh=0

8 -foliation:

Proposition 2.1. Let H be a proper closed uniform subgroup of the abelian group
(R3,+). Then there is a product � on R3 such that the Lie group (R3,�) is
isomorphic to Gh=0

8 and

h + g = h� g ∀h ∈ H, ∀g ∈ R3.

Proof. The proper closed uniform subgroups of (R3,+) are isomorphic to

R2 × Z, R× Z2 or Z3.

Thus there are vectors v1, . . . , va, w1, . . . , wb linearly independent in R3 with a+b =
3 and a 6= 3, such that H is exactly the set of vectors that can be written in the
form

x1v1 + · · ·+ xava + y1w1 + · · ·+ ybwb

where x1, . . . , xa ∈ R and y1, . . . , yb ∈ Z. With respect to this new basis we define

(x, y, z)� (x′, y′, z′) = ((x, y) + R2πz(x′, y′), z + z′)

∀(x, y, z), (x′, y′, z′) ∈ R3, where R2πz is the rotation of angle 2πz.
Then (R3,�) is clearly isomorphic to Gh=0

8 .
Moreover, since z ∈ Z for each (x, y, z) ∈ H, we have

(x, y, z)� (x′, y′, z′) = (x, y, z) + (x′, y′, z′)

∀(x, y, z) ∈ H,∀(x′, y′, z′) ∈ R3.�
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Proposition 2.2. Every no dense Lie abelian foliation of codimension 3 on a
compact manifold M is also a Lie Gh=0

8 -foliation.

Proof. Since F is a Lie abelian foliation we have, by Theorem 1.2, a homomor-
phism
Φ : π1(M) −→ (R3,+) and a locally trivial fibration D : M̃ −→ R3 equivari-
ant under the action π1(M). Put Γ = Im Φ.

Then H = Γ is a proper closed uniform subgroup of the abelian group (R3,+).
Proposition 2.1 implies that Φ also defines a homomorphism π1(M) −→ (R3,�)

with respect to which D is again equivariant.
Thus F is a Lie Gh=0

8 -foliation. �
This proposition is a generalization of the following example given by P. Molino

(cf. [GR91]) in which the change of the parallelism was explicitely given:
Let us consider the flow given by the fibres of the trivial bundle

T1 × T3 −→ T3

Let θ0, θ1, θ2, θ3 denote the canonical coordinates in T1×T3. The parallelism given

by
∂

∂θ1
,

∂

∂θ2
,

∂

∂θ3
shows that the fibres of this bundle are the leaves of a Lie abelian

foliation. But the parallelism given by the vector fields

e1 = cos θ1 ∂

∂θ2
+ sin θ1 ∂

∂θ3

e2 = − sin θ1 ∂

∂θ2
+ cos θ1 ∂

∂θ3

e3 = − ∂

∂θ1

is a Lie parallelism with [e1, e2] = 0, [e1, e3] = e2, [e2, e3] = −e1, that is, the flow is
also transversely modeled on Gh=0

8 .
The converse of Proposition 2.2 is not true in general. That is, there are Lie

Gh=0
8 -foliations which are not abelian foliations.
For instance, take the uniform discrete subgroup

Γ = {(m,n, πt)| m,n, t ∈ Z} ⊂ Gh=0
8

Let M be the compact manifold Γ\Gh=0
8 . Then the trivial fibration M×S1 −→

M is a Lie Gh=0
8 -flow with basic dimension 3 that can not be abelian. In fact any

abelian parallelism of the above flow would induce 3 linearly independent vector
fields on M which pairwise commute, i.e. M would be a 3-dimensional torus T3.
But this is impossible because the fundamental group of M is the non abelian group
Γ.

The converse of Proposition 2.2 is, however, true for Lie flows of basic dimension
1 and for Lie foliations of basic dimension 2.

For basic dimension 1 it is a corollary of the following:

Proposition 2.3. Let G be an unimodular Lie algebra of dimension n. If F is
a Lie G-flow on a compact manifold with basic dimension 1, then F is also a Lie
abelian flow.

Proof. It is well known that the structural Lie algebra H of a Lie flow is abelian
(cf. [Car84]). In this case it is a subalgebra of dimension n − 1 of an unimodular
Lie algebra G of dimension n. Then H is an ideal of G. By Lemma 1.3, one can
find a G-parallelism Y1, . . . , Yn such that Yi ∈ TF for i = 1, . . . , n − 1 and, hence,
Yn /∈ TF at any point.

In this situation we have that F is an unimodular Lie flow, that is Hn(M/F) 6= 0
(cf. [Lla88]). By [MS85] there exist X1, . . . , Xn−1 foliated vector fields such that
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[Xi, Y ] ∈ TF for all foliated vector field Y (i.e. the transverse central sheaf has a
global trivialization). Thus, X1, . . . , Xn−1, Yn is a Lie abelian parallelism. �

Corollary 2.4. Let F be a Lie Gh=0
8 -flow on a compact manifold M with basic

dimension 1, then F is also a Lie abelian flow.

In the case of basic dimension 2, we have

Proposition 2.5. Let F be a Lie Gh=0
8 -foliation on a compact manifold M with

basic dimension 2, then F is also a Lie abelian foliation.

The proof is based on the following lemma:

Lemma 2.6. Let F be a Lie Gh=0
8 -foliation on a compact manifold M with basic di-

mension 2 and let Y 1, Y 2, Y 3 be the Lie Gh=0
8 -parallelism corresponding to the basis

{e1, e2, e3} given in §1. Then the foliated vector field Y3 is not tangent to F at any
point and there exists a global foliated vector field Y tangent to F which commutes
(modulo TF) with every foliated vector field (i.e., the commuting sheaf is globally
trivial).

Proof. For each point x ∈ M there exists a foliated vector field ZU in a neigh-
bourhood U of x, such that ZU is tangent to F , no tangent to F , and commutes
(modulo TF) with every global foliated vector field. Here we are considering a local
section of the commuting sheaf (cf. [God91], [Mol82]). Moreover if ZV is another
vector field in a neighbourhood V of x with the same property then ZV = αZU

(modulo TF) where α is a locally constant function.
We can assume that the vector field ZU can be written as

ZU = aUY1 + bUY2 + cUY3

where aU , bU , cU are basic functions on U .
Since [Yi, ZU ] ∈ TF we obtain the equations:

Y1(aU ) = 0 Y2(aU ) = cU Y3(aU ) = −bU

Y1(bU ) = −cU Y2(bU ) = 0 Y3(bU ) = aU

Y1(cU ) = 0 Y2(cU ) = 0 Y3(cU ) = 0.

We deduce from these equations that cU is constant on U .
Since ZV = αZU (modulo TF), with α a locally constant function, if cU = 0

then cV = 0. Then there are only two possibilities:
i) for any point y ∈ M and any neighbourhood W of y we have cW = 0 or
ii) for any point y ∈ M and any neighbourhood W of y we have cW 6= 0.

Let us prove that ii) is not possible:
In this case Y1, Y2 are not tangents to F at any point. We take a riemannian

metric and we define Y N
i as the normal component to F of Yi. Then Y N

3 is a
combination of Y N

1 and Y N
2 at each point, i.e., there are basic functions f, g such

that
(Y N

3 )p = f(p)(Y N
1 )p + g(p)(Y N

2 )p ∀p ∈ M.

In this case we obtain

Y N
2 = [Y1, Y3]N = Y1(f)Y N

1 + Y1(g)Y N
2

−Y N
1 = [Y2, Y3]N = Y2(f)Y N

1 + Y2(g)Y N
2

then Y1(g) is the constant 1 and Y2(f) is the constant −1. This is no possible
because f, g are continuous functions on a compact manifold.

Thus cW = 0 in each neighbourhood W and this means that Y3 is not tangent
to F at any point. This proves the first part of the lemma.



TRANSVERSE STRUCTURE OF LIE FOLIATIONS 9

Now we consider α = iY3π ∗ω, where π is the basic projection and ω is a volume
form on the basic manifold. We take the global basic functions

A = iY2α, B = −iY1α.

As A2 + B2 6= 0, we can consider the foliated vector field Y = aY1 + bY2 where

a =
A√

A2 + B2
, b =

B√
A2 + B2

.

Using that α(Y ) = 0 it is easy to see that Y is tangent to F̄ everywhere and not
tangent to F at any point.

It remains to prove that Y commutes (modulo TF) with every global foliated
vector field. Since Y ∈ TF it suffices to prove that [Yi, Y ] ∈ TF .

From the fact that [Yi, Y ] ∈ TF we have [Yi, Y ] = λiY + TF and we obtain the
equations

Y1(a) = λ1a Y2(a) = λ2a Y3(a) + b = λ3a
Y1(b) = λ1b Y2(b) = λ2b Y3(b)− a = λ3b

From these equations we deduce

λi = λi(a2 + b2) = aYi(a) + bYi(b) =
1
2
Yi(a2 + b2) =

1
2
Yi(1) = 0.

Hence the result. �

Proof of Proposition 2.5. By the above lemma there exists a foliated vector
field Y = aY1 + bY2 tangent to F at any point with a, b basic functions such that
a2 + b2 = 1 and Y commutes (modulo TF) with every global foliated vector field.

Let us see that X1 = Y , X2 = −bY1+aY2, X3 = Y3 give a Lie abelian parallelism.
Clearly these vector fields are transversely independent. Using now

Y3(a) + b = λ3a = 0, Y3(b)− a = λ3b = 0 and [Y , Y i] = λiY = 0

we have

[X1, X2] = [Y ,−bY1 + aY2] = −b[Y , Y1] + a[Y , Y2] = (−bλ1 + aλ2)Y = 0

[X2, X3] = [−bY1 + aY2, Y3] = −(b + Y3(a))Y2 + (Y3(b)− a)Y1 = 0

[X1, X3] = [Y , Y3] = 0.

This ends the proof. �

Corollary 2.7. Let F be a Lie Gh=0
8 -flow on a compact manifold M with basic

dimension 2, then F is also a Lie abelian flow.

Proof. It follows from the above demonstration that it suffices to show that the
commuting sheaf admits a global trivialization. In the case of flows this condition
is true if and only if the flow is isometric (cf. [MS85]).

If the basic manifold W is not orientable we take a double covering D over the
orientation covering of W . Here, by the above proposition, the commuting sheaf is
trivial and, hence, the flow on D is isometric. This implies that the initial flow is
isometric. �

Next corollary is closely related to the Haefliger’s problem.

Corollary 2.8. There is a pair of Lie groups (G, Γ), with Γ a finitely generated
subgroup of G, Γ̄ uniform, such that there are no Lie G-flows on a compact manifold
with holonomy group Γ.
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Proof. Let G be the Lie group Gh=0
8 and let Γ be the Lie subgroup

Γ = 〈(1, 0, 0), (ξ, 0, 0), (0, 1, 0), (0, 0, π)〉 ξ /∈ Q.

We have Γdiff
∼= R × Z2 because the elements of Γ are of the form (a,m, nπ) with

a ∈ R and m,n ∈ Z. Moreover Γ is an uniform not abelian subgroup of Gh=0
8 .

Assume that there is a Lie Gh=0
8 -flow F on a compact manifold with holonomy

group Γ (this implies that F has basic dimension 2). Then, by Corollary 2.7, F
would be also a Lie abelian flow and then Γ would be abelian, which is not possible.
� Note that the pair (G, Γ) is realizable, i.e., there is a lie G-foliation of acompact
manifold with the holonomy group Γ. The reason is because Gh=0

8 is solvable and
Γ is polycyclic (cf. [Mei95]).

In order to generalize this kind of results to Lie foliations of arbitrary codimension
we consider the case of Lie foliations with nilpotent transverse Lie algebra. In this
category the transverse Lie algebra is canonically associated to the foliation:

Proposition 2.9. Let F be a Lie foliation on a compact manifold transversely
modeled on two nilpotent Lie algebras G and H. Then G and H are isomorphic.

Proof. Again, this is a consequence of a result on Lie groups.
In fact, if p : M̃ −→ M is the universal covering of M and we fix points x0 ∈ M

and x̃0 ∈ M̃ with p(x̃0) = x0, the developing diagrams are given by the canonical
projection

D : M̃ −→ M̃/p−1(F)
and the holonomy morphisms

Φ1 : π1(M,x0) −→ G Φ2 : π1(M,x0) −→ H

where G and H are the connected simply connected groups corresponding to G and
H respectively. Note that as differentiable manifolds we have:

G ∼= M̃/p−1(F) ∼= H.

Since
D(γ̃(x̃)) = Φ1([γ]) ·D(x̃) = Φ2([γ]) ∗D(x̃)

the holonomy groups Γ1 = Φ1(π1(M,x0)) and Γ2 = Φ2(π1(M,x0)) are related by

Γ1 = (rH)eΓ2

where (rH)e is the right translation in H with respect to the unit element e of G.
In fact, (rH)e restricted to Γ2 is a morphism of Lie groups. This implies that the
closures Γ1 and Γ2 are isomorphic.

As they are also uniforme subgroups of the nilpotent Lie groups G and H re-
spectively, this two groups are isomorphic as Lie groups (cf. [Rag72]). �

The foliation by points of the quotien of the Heisenberg group N/Γ (cf. [GR91])
is a good example of this situation.

3. Lie flows of basic dimension one

Let F be a Lie G-flow of codimension 3 and basic dimension 1 on a compact
manifold M . There is a matrix A ∈ SL(3,Z) with an eigenvalue λ > 0 and an
eigenvector v, whose components are rationally independents, such that M is the
manifold T3 ×A R (usually called T4

A) described as the quotient of T3 ×R by the
equivalence relation (p, t) ∼ (Ap, t + 1). The flow F is the induced by the linear
flow Fv (cf. [AM86], [Car84]).

The basic fibration corresponding to this Lie flow is a T3 bundle over T1:

T3 −→ M −→ T1
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The homotopy sequence of the basic fibration gives the exact sequence of funda-
mental groups

0 −→ Z3 −→ π1(M) −→ Z −→ 0
from which we have that π1(M) ∼= Z3×A Z, i.e., π1(M) is Z3×Z with the product

(x, t)(y, s) = (x + Aty, t + s)

This implies, in particular, a certain kind of uniqueness for the matrix A: If A
and B are two elements of SL(3; Z) such that the fibre bundle T4

A is diffeomorphic
to the fibre bundle T4

B then A is conjugated to B or to B−1.
On the other hand, the only possibilities for the Lie algebra G are

G = G1, G = G5, G = Gk
7 (k /∈ Q) or G = Gh

8 .

In fact it is evident that the algebras G3, G4 are not possible because they do
not have any abelian subalgebra of dimension 2. That the algebras G2, G6 and
Gk

7 (k ∈ Q) are not realizable as transverse algebras of a Lie flow of basic dimension
1 is proved in [GR91].

When F is an unimodular Lie G-flow then the Lie algebra G is also unimodular.
Hence the only possibilities for an unimodular Lie G-flow of basic dimension 1 are
G = G1 or G = Gh=0

8 , and it follows from Proposition 2.2 and Corollary 2.4 that F
is transversely modeled on both algebras.

For a non unimodular Lie G-flow F of basic dimension one the Lie algebra G
is not unimodular (Theorem 1.4), hence the only possibilities are G = G5, G = Gk

7

or G = Gh6=0
8 . Notice that in all this cases the connected simply connected groups

associated to these algebras are diffeomorphic to R3. Moreover the matrix A used
in the construction of T4

A is not the identity matrix because the flow is unimodular
if and only if A =Id (cf. [AM86]).

The following theorem proves that the matrix A is closely related to the matrix
defining the group structure.

Theorem 3.1. Let F be a non unimodular Lie G-flow of codimension 3 and basic
dimension 1 on a compact manifold M . Then the matrix A ∈ SL(3; Z) defining M
is conjugated to:

B =

λ−1 0 0
0 1 0
0 0 λ

 for G = G5,

B =

λ 0 0
0 λk 0
0 0 λ−1−k

 for G = Gk
7 ,

and

B = c(λ)

cos(ϕ + λ) − sinλ 0
sinλ cos(ϕ− λ) 0

0 0 c(λ)−3 cos−2 ϕ

 , λ ∈ R, for G = Gh
8

Proof. Recall that π1(M) is Z3 × Z with the product

(x, t)(y, s) = (x + Aty, t + s)

Thus the holonomy representation of F is a morphism Φ : Z3×A Z −→ G, where
G is G5, Gk 6=1

7 or Gh6=0
8 and, hence, it is diffeomorphic to R3.

The image of Φ, Γ = Φ(Z3 ×A Z), is the holonomy group of F and, since the
basic manifold T1 is diffeomorphic to Γ \G, we have dim Γ = 2.

In spite of the fact that the identity component, Γe, of Γ is abelian, Γ is not
abelian because A 6=Id and Φ is injective.
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For Gk
7 and Gh

8 it is easy to prove (cf., for example, [GR91]) that for every abelian
subgroup H of the holonomy group Γ, either H is contained in R2× {0} (the only
subalgebra of dimension two is, in both cases, the subalgebra generated by e1, e2)
or there is an element α = (α1, α2, α3), α3 6= 0, such that H = {αn| n ∈ Z}.

For G5 every abelian subgroup H of Γ is contained in R2 × {0} or there is an
element α = (α1, α2, α3), α3 6= 0, such that

H ⊂
{

(C(1− et), y, t)| C =
α1

1− eα3

}
.

Using now that the subgroup Φ(0×Z) can not be contained in Φ(Z3×0) (because
Γ is not abelian) and that Φ(Z3 × 0) is an abelian normal subgroup of Γ, an easy
computation shows that in the three cases (G5, Gk 6=1

7 , Gh6=0
8 ) we have

Φ(Z3 × 0) ⊂ R2 × {0}.
Let Φ(Z3 × 0) = 〈(p1, 0), (p2, 0), (p3, 0)〉 and Φ(Z) = 〈Φ(0, 1)〉 = 〈(p, ϑ)〉, ϑ > 0.

Then the normality condition is

(p, ϑ)(pi, 0)(p, ϑ)−1 = (p, ϑ)(pi, 0)(−eΛϑp,−ϑ) ⊂ Φ(Z2 × 0)

Thus
e−Λϑpi =

∑
λj

ipj , λj
i ∈ Z (1)

Let us consider qi ∈ Z3 such that Φ((qi, 0)) = (pi, 0). Then

(p, ϑ)(pi, 0)(−eΛϑp,−ϑ) = Φ((0, 1)(qi, 0)(0, 1)−1) =

= Φ((0, 1)(qi,−1)) = Φ(A(qi), 0) = Φ((
∑

λj
i qj , 0))

i.e., the matrix (λj
i ) is the matrix A in the basis qi.

Next we consider the vectors v1 = (a1, a2, a3) and v2 = (b1, b2, b3) where p1 =
(a1, b1), p2 = (a2, b2), p3 = (a3, b3). The equation (1) can be written now as:

i) For G = G5(
eϑ 0
0 1

)(
ai

bi

)
= λ1

i

(
a1

b1

)
+ λ2

i

(
a2

b2

)
+ λ3

i

(
a3

b3

)
that is Av1 = eϑv1 and Av2 = v2.

ii) For G = Gk
7(

e−ϑ 0
0 e−kϑ

)(
ai

bi

)
= λ1

i

(
a1

b1

)
+ λ2

i

(
a2

b2

)
+ λ3

i

(
a3

b3

)
that is Av1 = e−ϑv1 and Av2 = e−kϑv2.

iii) For G = Gh6=0
8

c(ϑ)
(

cos(ϕ + ϑ) − sinϑ
sinϑ cos(ϕ− ϑ)

)(
ai

bi

)
= λ1

i

(
a1

b1

)
+ λ2

i

(
a2

b2

)
+ λ3

i

(
a3

b3

)
that is Av1 = c(ϑ)(cos(ϕ+ϑ)v1− sinϑv2) and Av2 = c(ϑ)(sinϑv1 +cos(ϕ−
ϑ)v2).

Set λ = e−ϑ. Completing v1, v2 to a basis {v1, v2, v3} the matrix A is equivalent
to

B =

λ−1 0 0
0 1 0
0 0 λ

 for G = G5

B =

λ 0 0
0 λk 0
0 0 λ−1−k

 for G = Gk
7
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and

B = c(λ)

cos(ϕ + λ) sin λ 0
− sinλ cos(ϕ− λ) 0

0 0 c(λ)−3 cos−2 ϕ

 for G = Gh
8

Hence the result. �

Corollary 3.2. Let F be a Lie G-flow of basic dimension 1. Assume that F is also
a Lie G′-flow.

i) If G = G5 then G′ = G5.
ii) If G = Gk

7 then G′ = Gk′

7 .
iii) If G = Gh

8 then G′ = Gh′

8 .

Proof. The manifold M is diffeomeorphic to T4
A by the existence of a Lie G-flow,

and is also diffeomorphic to T4
B by the existence of a G′-flow. Then A and B or B−1

are conjugated matrices of SL(3, Z). By the above theorem we have the following
3 cases:

i) The matrix A has three real eigenvalues λ, 1, λ−1. Then 1 is also an
eigenvalue of the matrix B. The only possibility is G′ = G5.

ii) The matrix A has three real eigenvalues λ, λk, λ−(k+1) with λ 6= 1. Then
the matrix B has also three real eigenvalues not equal to 1. The only
possibility is G′ = Gk′

7 .
iii) The matrix A has two complex eigenvalues. Then the matrix B has also

two complex eigenvalues. The only possibility is G′ = Gh′

8 . �

We improve this result in §5.

4. The realization problem with basic dimension one

The realization problem that we consider is the following:
Given a Lie algebra G of codimension 3 and an integer q, 0 ≤ q ≤ 3, is there a

compact manifold endowed with a Lie G-flow of basic dimension q ?
This problem has been studied in [Lla88] and [GR91], but two cases remains still

open: namely the cases corresponding to the family of Lie algebras Gh
8 , h 6= 0, for

q = 1, 2, and to the family Gk
7 for q = 1.

In this paper we solve the case q = 1. In fact we give, for q = 1, a necessary and
sufficient condition, in terms of h (rep. k), for an algebra of the Gh

8 -family (resp.
Gk

7 ) to be realizable.

Theorem 4.1. There is a compact manifold M endowed with a Lie Gh
8 -flow F ,

h 6= 0, of basic dimension 1 if and only if

h =
2 ln λ√

4ω2 + ln2 λ

where λ and ω are two real numbers, with λ > 1 and ω 6= kπ (k ∈ Z), such that

λ,
1√
λ

(cos ω ± i sinω) are the roots of a monic polynomial of degree 3 with integer

coefficients.

Observe that ±ω is determined except an additive multiple integer of 2π.
Proof. First assume that F is a Lie Gh

8 -flow, h 6= 0, on a compact manifold M
with dim W = dim M/F = 1.

Let {e1, e2, e3} be the basis of Gh
8 described in §1. Since F is a riemannian flow

its structural Lie algebra H must be abelian (cf. [Car84]) and it is a subalgebra
of Gh

8 . The only abelian subalgebra of Gh
8 is the generated by e1, e2, which is an

ideal. Then, by Lemma 1.3, we can find a transverse Lie parallelism {Y 1, Y 2, Y 3}
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associated to the basis {e1, e2, e3} such that Y1, Y2 are tangent to F at any point.
Hence Y3 is not tangent to F at any point.

Recall that there exists a matrix A ∈ SL(3,Z) with an eigenvalue λ > 0 and a
eigenvector v, whose components are rationally independents, such that M is the
manifold T4

A and the flow F is the induced by the linear flow Fv. If necessary, we
take the matrix A−1 for λ to be > 1.

It follows from Theorem 3.1 that the roots of the characteristic polynomial p(x)

of A are λ, z =
1√
λ

(cos ω + i sinω) and z̄ =
1√
λ

(cos ω − i sinω).

We can find a basis {v, u1, u2} of R3 such that Au1 = u2 and Au2 = − 1
λ

u1+αu2,

where α = 2√
λ

cos ω.
We define the vector fields of T3 ×R

X1(p,t) = (u1, 0), X2(p,t) = (u2, 0) ∈ TpT3 ⊕ TtR.

The transverse vector fields Y 1, Y 2, Y 3 are the projection of the transverse vector
fields of T3 ×R given by:

Z1(p,t) = a(t)X1(p,t) + b(t)X2(p,t)

Z2(p,t) = c(t)X1(p,t) + d(t)X2(p,t)

Z3(p,t) = (0, k ∂
∂t ) (k ∈ R, constant)

The reason is as follows.
Observe that each transverse vector field Y i is the projection of some transverse

vector field Zi of T3 ×R, and the these transverse vector fields are of the form:

Zi(p,t) = Fi(p, t)X1(p,t) + Gi(p, t)X2(p,t) + fi(p, t)
∂

∂t

The fact that Yi is a foliated vector field implies that the functions Fi, Gi, fi does
not depend on p. Since Y1, Y2 are tangent to F , the corresponding vector fields
Z1, Z2 must be tangent to T3 in T3 ×R, this means that f1 = f2 = 0.

Therefore the transverse vector fields Zi are of the form

Z1(p,t) = a(t)X1(p,t) + b(t)X2(p,t)

Z2(p,t) = c(t)X1(p,t) + d(t)X2(p,t)

Z3(p,t) = F3(t)X1(p,t) + G3(t)X2(p,t) + f(t) ∂
∂t

with f(t + 1) = f(t) (because Z3 is projectable) and f(t) 6= 0 (since Y3 is not
tangent to F at any point).

Observe that

[Zi, Z3] = [Zi, f(t)
∂

∂t
] (i = 1, 2)

Then Y 1 = π∗(Z1), Y 2 = π∗(Z2), π∗(f(t) ∂
∂t ) are also a realization of the basis

{e1, e2, e3}.
Finally, if f is not constant, we can take the reparametrization of R given by:

s(t) =

∫ t

0
1

f(x) dx

k
where k =

∫ 1

0

1
f(x)

dx

to obtain f(t)
∂

∂t
= k

∂

∂s
and s(t + 1) = s(t) + 1.

The identification (x, t) ∼ (Ax, t + 1) is equivalent to (x, s(t)) ∼ (Ax, s(t) + 1)
and the projection of the transverse vector fields Z1(p,s) = ã(s)X1(p,s)+ b̃(s)X2(p,s),

Z2(p,s) = c̃(s)X1(p,s) + d̃(s)X2(p,s) and Z3(p,s) = (0, k ∂
∂s ) give Y 1, Y 2, Y 3.

It can be shown that the constant k is always 6= 1 (cf. Remark 4.3).
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Thus we can assume that the transverse vector fields Zi are of the form:

Z1 = a(t)X1 + b(t)X2, Z2 = c(t)X1 + d(t)X2, Z3 = k
∂

∂t

The condition that the Zi are projectable is equivalent to

a(t + 1) = − 1
λ

b(t) b(t + 1) = a(t) + αb(t)

c(t + 1) = − 1
λ

d(t) d(t + 1) = c(t) + αd(t)

 (1)

On the other hand,

c(t)X1 + d(t)X2 = Z2 = [Z1, Z3] = −ka′(t)X1 − kb′(t)X2

hc(t)X1 + hd(t)X2 − a(t)X1 − b(t)X2 = hZ2 − Z1 = [Z2, Z3]

= −kc′(t)X1 − kd′(t)X2

Then a(t), c(t) and b(t), d(t) are two independent solutions of the system of
differential equations:

y(t) = −kx′(t)
hy(t)− x(t) = −ky′(t)

}
Therefore, a(t), b(t) are solutions of the differential equation

k2x′′(t) + khx′(t) + x = 0

then

(2)

a(t) = e−
h
2k t(A1 cos θt + A2 sin θt)

b(t) = e−
h
2k t(B1 cos θt + B2 sin θt)

c(t) = −ka′(t) =
h

2
a(t)− ke−

h
2k t(−θA1 sin θt + θA2 cos θt)

d(t) = −kb′(t) =
h

2
b(t)− ke−

h
2k t(−θB1 sin θt + θB2 cos θt)


where A1, A2, B1, B2 are constants, θ =

√
4− h2

2k
and A1B2 −A2B1 6= 0.

By substituing this values in (1) we obtain:

e−
h
2k (A2 cos θ −A1 sin θ) = − 1

λ
B2

e−
h
2k (A1 cos θ + A2 sin θ) = − 1

λ
B1

e−
h
2k (B1 cos θ + B2 sin θ) = A1 + B1α

e−
h
2k (B2 cos θ −B1 sin θ) = A2 + B2α


(3)

Then (A1, A2, B1, B2) is a non trivial solution of the homogeneous system equa-
tions whose matrix of coefficients is:

−e−
h
2k sin θ e−

h
2k cos θ 0

1
λ

e−
h
2k cos θ e−

h
2k sin θ

1
λ

0

1 0 α− e−
h
2k cos θ −e−

h
2k sin θ

0 1 e−
h
2k sin θ α− e−

h
2k cos θ

 (4)

The determinant of this matrix must be zero.
Therefore

e−
h
k α2 − 2e−

h
2k cos θ(e−

h
k +

1
λ

)α + (e−
h
k − 1

λ
)2 + 4

1
λ

e−
h
k cos2 θ = 0

Then α is a real root of the polynomial:

q(x) = e−
h
k x2 − 2e−

h
2k cos θ(e−

h
k +

1
λ

)x + (e−
h
k − 1

λ
)2 + 4

1
λ

e−
h
k cos2 θ
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whose discriminant is − sin2 θe−
h
k (e−

h
k − 1

λ
)2 ≤ 0.

Since sin θ 6= 0 (otherwise A1B2−A2B1 = 0), the only possibility is λ = e
h
k and,

hence, α = 2e−
h
2k cos θ.

Then we have

2e−
h
2k cos θ = α =

2√
λ

cos ω = 2e−
h
2k cos ω

hence cos ω = cos θ. Since λ = e
h
k and θ =

√
4− h2

2k
, taking the argument of the

complex roots ω = θ we have

h =
2 ln λ√

4ω2 + ln2 λ

as stated in theorem.

Finally, we prove the converse:
Let p(x) be the polynomial x3 − mx2 + nx − 1 (m,n ∈ Z) with only one real

root λ (λ > 1). Recall that p(x) has only one real root if and only if

m3 + n3

27
− m2n2

108
− nm

6
+

1
4

> 0,

and this root is 6= 1 if (m,n) 6= (0, 0), (1, 1), (2, 2).
One can consider the matrix

A =

0 0 1
1 0 −n
0 1 m


whose characteristic polynomial is p(x). A computation shows that the root λ is
irrational and the components of an eigenvector v are rationally independent.

If we define k =
h

lnλ
, θ = ω and α = 2e−

h
2k cos θ, then the determinant of the

matrix (4) is zero and the system (3) has non trivial solutions. Let A1, A2, B1, B2

be one of these solutions. Observe that A1B2 −A2B1 6= 0 (because sin θ 6= 0).
We consider the functions a(t), b(t), c(t), d(t) as in (2). Note that

a(t) · d(t)− b(t) · c(t) = −kθe−
h
2k t(A1B2 −A2B1) 6= 0.

Let {v, u1, u2} be the basis of R3 such that

Av = λv, Au1 = u2, Au2 = − 1
λ

u1 +
2√
λ

cos ωα.

The vector fields

Z1(p,t) = a(t)u1 + b(t)u2, Z2(p,t) = c(t)u1 + d(t)u2, Z3(p,t) = k
∂

∂t

are projectable by construction and their projection gives a foliated realization of
the basis {e1, e2, e3} of Gh

8 .
Observe that if we make the same construction taking θ = ω + 2kπ then the

same flow is also a Lie Gh′

8 -flow with

h′ =
2 ln λ√

4(ω + 2kπ)2 + ln2 λ
6= h. �

Corollary 4.2. Only a numerable set of algebras of Gh
8 are realizable on a compact

manifold as transverse algebras to a basic dimension 1 Lie flow.
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Remark 4.3. Let F be a Lie Gh
8 -flow, h 6= 0, of basic dimension 1. We have seen

in the proof of Theorem 4.1 that for a foliated realization Y1, Y2, Y3 of the basis

e1, e2, e3 the vector field Y3 is the projection of the vector field (0, k
∂

∂t
) of T3 ×R.

The constant k is always 6= 1.
The reason is as follows.
Assume that k = 1. Following the proof of Theorem 4.1 and using the same

notation we have that there is a basis {v, u1, u2} of R3 such that

Av = λv, Au1 = u2, Au2 = − 1
λ

u1 + αu2

with λ = eh and α = 2e−
h
2 cos θ. Therefore the characteristic polynomial of A is

equal to

p(x) = x3−(λ+α)x2+(αλ+
1
λ

)x−1 = x3−(eh+2e−
h
2 cos θ)x2+(2e

h
2 cos θ+e−h)x−1

Hence eh (h ∈ (0, 2)) is a solution of the system
m = eh + 2e−

h
2 cos

(√
4− h2

2

)

n = 2e
h
2 cos

(√
4− h2

2

)
+ e−h

m,n ∈ Z

But it can be shown, after a quite long computation, that this system has no
solutions for h ∈ [0, 2].

Theorem 4.4. There is a compact manifold M endowed with a Gk
7 -flow F of basic

dimension 1 if and only if

k =
ln b

ln a
, and k 6∈ Q

where a, b, 1
ab are positive real roots of a monic polynomial of degree 3 with integer

coefficients.

Proof.
Let F be a Lie Gk

7 -flow of dimension 1 on a compact manifold M . Then M =
T3×A R. By theorem 3.1, the matrix A ∈ SL(3, Z) has the three real roots

a = e−ϑ, b = e−ϑk, c = eϑ(k+1), ϑ > 0

and k 6∈ Q (cf. [GR91]).
Conversely:
Let x3 −mx2 + nx− 1 a polynomial with real roots a, b, c such that

k =
ln b

ln a
/∈ Q.

Let us consider the matrix

A =

0 0 1
1 0 −n
0 1 m

 ∈ SL(3, Z)

As the eigenvalues of A are not in Q, the components of the eigenvectors of A are
rationally independent.

If we define ϑ = − ln a, then we have that the roots of the polynomial p(x) are

e−ϑ, e−ϑk, eϑ(k+1).

Let {v1, v2, v3} be a basis of eigenvectors of A:

A(v1) = e−ϑv1, A(v2) = e−ϑkv2, A(v3) = eϑ(k+1)v3.
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Then F the linear flow on T3 given for the v3 vector induces a flow F on M = T4
A.

The vector fields on T3 × R
X̃1(p, t) = e−tϑ(v1, 0)
X̃2(p, t) = e−tkϑ(v2, 0)

X̃3(p, t) =
1
ϑ

∂

∂t

are projectable on M because X̃i(p, t+1) = A(X̃i(p, t)). The projections X1, X2, X3

of these vector fields are foliated vector fields transverse to the flow such that

[X1, X2](p,t) = [e−tϑ(v1, 0), e−tkϑ(v2, 0)] = 0

[X1, X3](p,t) = [e−tϑ(v1, 0),
1
ϑ

∂

∂t
] = e−tϑ(v1, 0) = X1(p,t)

[X2, X3](p,t) = [e−tkϑ(v2, 0),
1
ϑ

∂

∂t
] = kX2(p,t) �

Corollary 4.5. Only a numerable set of algebras of Gk
7 are realizable on a compact

manifold as transverse algebras to a Lie flow with basic dimension 1.

5. The change problem

The aim of this section is to prove that a Lie G-flow of codimension 3 on a
compact manifold with basic dimension 1 can be transversely modeled on one, two
or countable many Lie algebras.

Proposition 5.1. Let F be a Lie Gk
7 -flow of basic dimension 1 on a compact

manifold M transversely modeled on another Lie algebra G. Then G = Gk′

7 and k′

is one of the values

k′ = k,
1
k

;
1

−1− k
, −1− k; − k

1 + k
, −1 + k

k
.

Proof. By Corollary 3.2 the Lie algebra G is Gk′

7 . Then the matrix A ∈ SL(3; Z)
defining M has the eingenvalues a, ak, a−1−k and also b, bk′

, b−1−k′
. As they are

the same, we have 3! = 6 possibilities that imply directely the result. �

Remark 5.2. If F is a Lie Gk
7 -flow on a compact manifold M , then we also have

on M a Lie G−1−k
7 -flow and a Lie G−k/1+k

7 -flow.
To see this, let u1, u2, u3 be the eigenvectors of A with eigenvalues a, ak, a−1−k

respectively.
The vector fields on T3 × T1

X̃1 = atu1, X̃2 = aktu2, X̃3 = a−(1+k)tu3, X̃0 = − 1
ln a

d
dt

are invariant for A, so they induce vector fields on M = T3 ×A T1, that we denote
by X1, X2, X3, X0, respectively.

The foliation induced by X1 admits X2, X3,−
1

1 + k
X0 as transverse parallelism

and

[X2, X3] = 0 [X3,−
1

1 + k
X0] = X2 [X2,−

1
1 + k

X0] = − 1
1 + k

X2,

i.e., it is a Lie G−k/(1+k)
7 -flow.

The foliation induced by X2 admits X1, X3, X0 as transverse parallelism and

[X1, X3] = 0 [X1, X0] = X1 [X3, X0] = −(1 + k)X3,

i.e., it is a Lie G−1−k
7 -flow.
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The foliation induced by X3 admits X1, X2, X0 as transverse parallelism and

[X1, X2] = 0 [X1, X0] = X1 [X2, X0] = kX2,

i.e., it is a Lie Gk
7 -flow.

It follows from this remark that it is not possible to deduce from Theorem 3.1 if
a Lie Gk

7 -flow of basic dimension 1 is at the same time a Lie Gk′

7 -flow with k 6= k′.
A priori the six cases of Proposition 5.1 are possible. Nevertheless we have

Proposition 5.3. Let F be a Lie flow of basic dimension 1 on a compact manifold
M transversely modeled on two Lie algebras, Gk

7 and Gk′

7 , of the family G7. Then
Gk

7
∼= Gk′

7 .

Proof. Assume that the flow is transversely modeled on two Lie algebras, Gk
7

and Gk′

7 , of the family G7. Since the structural Lie algebra is abelian and the only
abelian subalgebra of G7 is the ideal generated by e1, e2 we have two Lie parallelisms
Y 1, Y 2, Y 3 and Z1, Z2, Z3 with products

(1) [Y 1, Y 2] = 0, [Y 1, Y 3] = Y 1, [Y 2, Y 3] = kY 2.

(2) [Z1, Z2] = 0, [Z1, Z3] = Z1, [Z2, Z3] = k′Z2

such that the foliated vector fields Y1, Y2 and Z1, Z2 are tangent to F everywhere.
The transverse vector fields Zi are

Z1 = f1
1 Y 1 + f2

1 Y 2

Z2 = f1
2 Y 1 + f2

2 Y 2

Z3 = f1
3 Y 1 + f2

3 Y 2 + f3
3 Y 3

with f j
i basic functions.

By substitution of this values in the equations (2) we have the equations:

f1
1 = f1

1 f3
3 − f3

3 Y3(f1
1 )

f2
1 = kf2

1 f3
3 − f3

3 Y3(f2
1 )

k′f1
2 = f1

2 f3
3 − f3

3 Y3(f1
2 )

k′f2
2 = kf2

2 f3
3 − f3

3 Y3(f2
2 )

(observe that as Y1, Y2 are tangent to F , then Y1(f
j
i ) = Y2(f

j
i ) = 0.)

Note that f3
3 is not zero at any point. Then all these equations are of the form

y′ = g(x)y.
By interpreting this system of differential equations on the basic manifold S1,

we have the solutions:
f1
1 = C1exe

−
R x

t0
1

f3
3

dt

f2
1 = C2ekxe

−
R x

t0
1

f3
3

dt

f1
2 = C3exe

−
R x

t0
k′
f3
3

dt

f2
2 = C4ekxe

−
R x

t0
k′
f3
3

dt

Then there exist periodic solutions with f1
1 f2

2 − f2
1 f1

2 6= 0 if and only if k = k′

or k =
1
k′

. �

Now we are in the position to prove the main result of this section.

Theorem 5.4. Let F be a Lie flow of codimension 3 on a compact manifold M
with basic dimension 1. Then only three cases are possible:
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i) F is transversely modeled exactly on one Lie algebra. This occurs if and only if
the transverse Lie algebra is G5 or Gk

7 .
ii) F is transversely modeled exactly on two Lie algebras. This occurs if and only
if these two transverse Lie algebras are G1 and Gh=0

8 .
iii) F is transversely modeled on countable many Lie algebras. This occurs if and
only if F is transversely modeled on Gh6=0

8 .
In this case

a) There exist two real numbers λ > 1 and ω such that h =
2 ln λ√

4ω2 + ln2 λ
.

b) F is also transversely modeled on Gh′

8 for each

h′ =
2 ln λ√

4(ω + 2kπ)2 + ln2 λ
(∀k ∈ Z).

c) If F is also transversely modeled on G then G = Gh′

8 for some of the above
h′.

Proof. Assume that F is a Lie G-flow of codimension 3 on the compact manifold
M with basic dimension 1. Then G is one of the following Lie algebras: G1, G5, Gk

7

or Gh
8 .
i) If G = G5 then by Corollary 3.2 F is not transversely modeled on any other

Lie algebra.
If G = Gk

7 then by Proposition 5.3, F is not transversely modeled on any
other Lie algebra.

ii) If G = G1 then by Proposition 2.2, F is also transversely modeled on G′ =
Gh=0

8 .
Conversely if G = Gh=0

8 , Corollary 2.4 proves that F is also a Lie abelian
flow.

iii) It only remains the case that G = Gh6=0
8 .

a) We have, by Theorem 4.1, that

h =
2 ln λ√

4ω2 + ln2 λ

where λ,
1√
λ

(cos ω ± i sinω), λ > 1, are the roots of a polynomial of

integer coefficients.
b) Theorem 4.1 also proves that F is also a Lie Gh′

8 -flow with

h′ =
2 ln λ√

4(ω + 2kπ)2 + ln2 λ
for any k ∈ Z.

c) If F is also a Lie G′-flow, it follows from Corollary 3.2 that G = Gh′

8 .
Again, by Theorem 4.1 we have that

h′ =
2 ln λ′√

4(ω′)2 + ln2 λ′
.

But using Theorem 3.1 is easy to see that λ′ = λ′ and ω′ = ω + 2kπ.
�
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