THE TORSION INDEX OF A p-COMPACT GROUP

JAUME AGUADÉ

(Communicated by Brooke Shipley)

Abstract. We extend the theory of torsion indices of compact connected Lie groups to p-compact groups and compute these indices in all cases.

1. Introduction and statement of results

The torsion index of a compact connected Lie group was defined by Grothendieck in 1958 ([13]) and has been investigated by several authors ([14], [6], [15], etc.). Recently, the computation of the torsion indices of all simply connected compact Lie groups has been completed (see [16]). Since we are going to work at a single prime p, instead of the torsion index of a Lie group G, we want to consider its p-primary part $t_p(G)$. We summarize the properties of $t_p(G)$ which are relevant to the present work in the following proposition (\mathbb{Z}_p denotes the ring of p-adic integers).

Theorem 1.1. Let p be a prime and let G be a compact connected Lie group with a maximal torus T and corresponding Weyl group W. The positive integer $t_p(G)$ has the following properties:

1. **(TI1)** If A is a finite abelian p-subgroup of G, then A has a subgroup of index dividing $t_p(G)$ which is contained in a conjugate of T.

2. **(TI2)** $t_p(G)$ kills the kernel and the cokernel of the homomorphism $H^*(BG; \mathbb{Z}_p) \to H^*(BT; \mathbb{Z}_p)^W$.

3. **(TI3)** $H^*(G/T; \mathbb{Z}_p)$ is torsion free and concentrated in even degrees $\leq N = \dim(G) - \text{rank}(G)$, with $H^N(G/T; \mathbb{Z}_p) \cong \mathbb{Z}_p$. Then, $t_p(G)$ is the order of the cokernel of $H^N(BT; \mathbb{Z}_p) \to H^N(G/T; \mathbb{Z}_p)$.

4. **(TI4)** If p is not a torsion prime for G, then $t_p(G) = 1$.

Notice that the property (TI3) can be taken as a definition of the $(p$-primary) torsion index $t_p(G)$. The other properties are well known and can be found in [15], which provides proofs or references for all of them. Actually, the properties above are usually stated using $H^*(-; \mathbb{Z})$ and $t(G) = \prod_p t_p(G)$ instead of $H^*(-; \mathbb{Z}_p)$ and $t_p(G)$, but it is easy to see that both formulations are indeed equivalent. For property (TI2) one should notice that $H^*(BT; \mathbb{Z}_p)^W = H^*(BT; \mathbb{Z})^W \otimes \mathbb{Z}_p$. This follows from exactness of $- \otimes \mathbb{Z}_p$ and the fact that the elements invariant under W can be viewed as the kernel of the homomorphism $\bigoplus_{g \in W}(1 - g)$.
The purpose of this paper is to extend the theorem above to connected \(p \)-compact groups ([8]) and to compute the torsion indices in all cases. We prove:

Theorem 1.2. Let \(p \) be a prime and let \(X \) be a connected \(p \)-compact group with maximal torus \(T \) and corresponding Weyl group \(W \). There is an integer \(t_p(X) \) such that:

1. The properties (TI1), (TI2), (TI3), (TI4) in Theorem 1.1 hold after replacing \(G \) with \(X \).
2. If \(X \) is exotic, then \(t_p(X) = 1 \) for \(p \) odd and \(t_2(X) = 2 \).

Here we use the work exotic with the same meaning as in [1]: A \(p \)-compact group \(X \) is exotic if the associated pseudoreflection representation of the Weyl group of \(X \) over the \(p \)-adic field is irreducible and does not come from a reflection group over \(\mathbb{Z} \).

Section 2 deals with the (easier) odd prime case, and we show that if we define \(t_p(X) = 1 \) for any exotic \(X \), then properties (TI1), (TI2), (TI3), (TI4) hold true. The hardest part consists of computing the torsion index of the only exotic 2-compact group, which we (following [12]) denote \(G_3 \) (other authors denote it as \(DI(4) \)). We need a comprehensive review of the cohomology of \(G_3 \) and \(BG_3 \) (section 3) and some computations on the cohomology of the exotic homogeneous space \(G_3/\text{Spin}(7) \) (section 4) before we can prove that \(t_2(G_3) = 2 \). Finally, we prove Theorem 1.2 in section 6.

2. The odd prime case

The classification theorem for \(p \)-compact groups ([2]) tells us that any connected \(p \)-compact group \(X \) splits uniquely as a product \(X \cong G_p^0 \times X_1 \), where \(G \) is a compact connected Lie group and \(X_1 \) is a product of exotic \(p \)-compact groups. Notice that the splitting is as \(p \)-compact groups and not just as spaces. This splitting implies that it is enough to prove Theorem 1.2 for each exotic \(p \)-compact group, since it is already known to be true for the \((p) \)-completions of compact connected Lie groups. Let us discuss this in some more detail. If Theorem 1.2 holds for the \(p \)-compact groups \(X_1 \) and \(X_2 \), let \(X = X_1 \times X_2 \) and let us define \(t_p(X) = t_p(X_1) t_p(X_2) \). We need to check that properties (TI1) to (TI4) hold for \(X \) if they hold for \(X_1 \) and \(X_2 \).

We prove (TI1) trivial and (TI3) is straightforward. To prove (TI2) let us observe that the kernel of \(\gamma : H^*(BX; \mathbb{Z}_p) \to H^*(BT; \mathbb{Z}_p)^W \) is equal to the torsion elements in \(H^*(BX; \mathbb{Z}_p) \). If \(X \) is of Lie type, this is well known (cf. [9]). If \(X \) is exotic and \(p = 2 \) (i.e. \(X = G_3 \)), then this is assertion 4 in [12]; and if \(p \) is odd, this is proven in [4]. Then, it is clear that \(t_p(X_1) t_p(X_2) \) kills the kernel of \(\gamma \). It is obvious that \(t_p(X_1) t_p(X_2) \) kills the cokernel of \(\gamma \) as well. Finally, (TI1) follows easily since we can use the theory of kernels of homomorphisms between \(p \)-compact groups which is developed in [8], section 7.

Let us assume now that \(p \) is odd and let \(X \) be an exotic \(p \)-compact group. These objects are very well understood. In particular, they satisfy the following properties (see [1]). Let \(T \) and \(W \) denote a maximal torus of \(X \) and the corresponding Weyl group, respectively. Then:

1. \(X \) is simply connected and center free and \(H^*(X; \mathbb{Z}_p) \) is torsion free.
2. The natural map \(BT \to BX \) induces an isomorphism \(H^*(BX; \mathbb{Z}_p) \cong H^*(BT; \mathbb{Z}_p)^W \).
In particular, $H^*(BX;\mathbb{Z}_p)$ is concentrated in even degrees.

(3) $H^*(X/T;\mathbb{Z}_p)$ is a free \mathbb{Z}_p-module concentrated in even degrees. Moreover (see [13], th. 7.5.1) $H^*(X/T;\mathbb{Z}_p) \otimes \mathbb{Q}$ is a Poincaré duality algebra with fundamental class in degree $\text{dim}(X) - \text{rank}(X)$. Actually, as a W-module, $H^*(X/T;\mathbb{Z}_p) \otimes \mathbb{Q}$ coincides with the regular representation of W.

We also need another property of p-compact groups (which holds also for $p = 2$) that follows from the work in [3].

(4) If X is any p-compact group such that $H^*(BX;\mathbb{F}_p)$ is concentrated in even degrees, then any finite abelian p-subgroup of X is conjugated to a subgroup of the maximal torus of X. In particular, this holds for any product of exotic p-compact groups for p odd.

Theorem [12] for p odd follows immediately from all these properties of p-compact groups.

\[\Box \]

3. The 2-Compact Group G_3 and its Maximal Torus

In this section we recollect several properties of G_3 that we need in the forthcoming sections. We state these properties without proof because either they can be found in the papers [7], [12], [4], [11] or they follow from straightforward computations that are left to the reader.

As is well known, G_3 is an exotic connected 2-compact group of rank three whose Weyl group W is the reflection group number 24 in the Shephard-Todd list of finite complex reflection groups. Its existence was established by Dwyer and Wilkerson in [4]. We remind the reader that some authors call this 2-compact group $DI(4)$, but we follow the notation used in [12]. As an abstract group, W is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times GL_3(\mathbb{F}_2)$ and for a maximal torus T of G_3, there is a basis $\{e_1, e_2, e_3\}$ of $H^2(BT;\mathbb{Z}_2)$ such that the action of W on $H^*(BT;\mathbb{Z}_2)$ is given by the pseudoreflections

$$s_1 = \begin{pmatrix} -1 & \alpha & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad s_2 = \begin{pmatrix} 1 & 0 & 0 \\ -\alpha & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \quad s_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 1 & -1 \end{pmatrix},$$

where $\alpha, \bar{\alpha} \in \mathbb{Z}_2$ are the roots of $x^2 - x + 2$ chosen in such a way that α is odd and $\bar{\alpha}$ is even.

G_3 has $\text{Spin}(7)$ as a 2-compact subgroup of maximal rank. This means that there is a map $\phi : B\text{Spin}(7) \to BG_3$ whose homotopical fibre is \mathbb{F}_2-finite. It is natural to denote this fibre by $G_3/\text{Spin}(7)$. The restriction of ϕ to a maximal torus of $\text{Spin}(7)$ is a maximal torus of G_3.

There is a subgroup $V \subset \text{Spin}(7)$ (explicitly described in [7]) which is an elementary abelian 2-group of rank four and such that the homomorphisms

$$H^*(BG_3;\mathbb{F}_2) \xrightarrow{\phi^*} H^*(B\text{Spin}(7);\mathbb{F}_2) \xrightarrow{k^*} H^*(BV;\mathbb{F}_2) \cong \mathbb{F}_2[V^*]$$

are monomorphisms (k^* is induced by the inclusion $V \subset \text{Spin}(7)$). Moreover, the image of $(\phi k)^*$ coincides with the rank four Dickson algebra which is the algebra of invariants of $H^*(BV;\mathbb{F}_2)$ under the action of the full linear group $GL(V^*)$, and the image of k^* coincides with the algebra of invariants $H^*(BV;\mathbb{F}_2)^H$ where $H \subset GL(V^*)$ can be described, in some appropriate basis of V^*, as the set of matrices with first row equal to $(1, 0, 0, 0)$. These algebras of invariants are well
known (also as algebras over the Steenrod algebra) and we have isomorphisms (subscripts denote degrees)
\[H^*(BG; \mathbb{F}_2) \cong \mathbb{F}_2[c_8, c_{12}, c_{14}, c_{15}], \]
\[H^*(B\text{Spin}(7); \mathbb{F}_2) \cong \mathbb{F}_2[d_4, d_6, d_7, d_8], \]
where the generators \(c_i \) and \(d_i \) can be explicitly described. In particular, we can see that \(\phi^* \) is given by \(\phi^*(c_8) = d_6^2 + d_8, \phi^*(c_{12}) = d_6^2 + d_4d_8, \phi^*(c_{14}) = d_6^2 + d_6d_8, \phi^*(c_{15}) = d_7d_8 \). \(Sq^1 \) vanishes on \(d_4, d_7, d_8 \), while \(Sq^1(d_6) = d_7 \).

As was said before, a maximal torus \(T \) of \(\text{Spin}(7) \) is also a maximal torus of \(G_3 \). We have maps
\[BT_2^n \rightarrow B\text{Spin}(7)_2^n \rightarrow BG_3 \]
and we can view the Weyl group \(W_1 \) of \(\text{Spin}(7) \) as a subgroup of \(W \), namely \(W_1 = \langle s_1, s_2, s_1s_3s_2s_1s_2s_3s_1 \rangle \). It is known that the homomorphism
\[i^* : H^*(B\text{Spin}(7); \mathbb{Z}_2) \rightarrow H^*(BT; \mathbb{Z}_2)^{W_1} \]
is surjective and its kernel coincides with the ideal of torsion elements. The integral invariants of \(W_1 \) are computed in [4]. They turn out to form a polynomial algebra on generators of degrees 4, 8, 12:
\[H^*(BT; \mathbb{Z}_2)^{W_1} \cong \mathbb{Z}_2[u_4, u_8, u_{12}]. \]
Choosing an appropriate basis \(\{x_1, x_2, A\} \) of \(H^3(BT; \mathbb{Z}_2) \), these generators are
\[u_4 = (1/2)(x_1^2 + x_2^2 + x_3^2), \]
\[u_8 = (1/16)(x_1^4 + x_2^4 + x_3^4 - 2x_1^2x_2^2 - 2x_1^2x_3^2 - 2x_2^2x_3^2), \]
\[u_{12} = x_1^2x_2^2x_3^2, \]
where we have used the notation \(x_3 = 2A - x_1 - x_2 \), and one can check that in spite of the denominators, these polynomials belong to \(\mathbb{Z}_2[x_1, x_2, A] \).

The generators \(u_4, u_8 \) and \(u_{12} \) have a rather simple form as polynomials on \(x_1, x_2, A \), but this basis of \(H^2(BT; \mathbb{Z}_2) \) does not coincide with the basis \(\{\epsilon_1, \epsilon_2, \epsilon_3\} \) that we have used to describe the action of \(W \) on \(H^*(BT; \mathbb{Z}_2) \). The matrix that expresses \(\{\epsilon_1, \epsilon_2, \epsilon_3\} \) in terms of \(\{x_1, x_2, A\} \) is
\[
\begin{pmatrix}
0 & -\alpha / 2 & -(1 + \alpha) / 2 \\
1 & 0 & -(1 + \alpha) / 2 \\
\bar{\alpha} & \alpha & \bar{\alpha}
\end{pmatrix} \in GL_3(\mathbb{Z}_2).
\]
Using this matrix we can express the generators \(u_4, u_8, u_{12} \) as polynomials in \(\epsilon_1, \epsilon_2, \epsilon_3 \) and so we have an explicit description of the homomorphism
\[\mathbb{Z}_2[u_4, u_8, u_{12}] = H^*(B\text{Spin}(7); \mathbb{Z}_2)_{/\text{Torsion}} \rightarrow H^*(BT; \mathbb{Z}_2) = \mathbb{Z}_2[\epsilon_1, \epsilon_2, \epsilon_3]. \]

Finally, we want to use this to describe the homomorphism
\[\mathbb{F}_2[d_4, d_6, d_7, d_8] = H^*(B\text{Spin}(7); \mathbb{F}_2) \xrightarrow{\iota} H^*(BT; \mathbb{F}_2) = \mathbb{F}_2[\epsilon_1, \epsilon_2, \epsilon_3]. \]
In the Bockstein spectral sequence for \(B\text{Spin}(7) \) we have \(E_2 = E_\infty = \mathbb{F}_2[d_4, d_6, d_7, d_8] \), and the surjection
\[j : H^*(B\text{Spin}(7); \mathbb{Z}_2)_{/\text{Torsion}} \rightarrow E_\infty \]
is given by \(j(u_4) = \bar{d}_4, j(u_8) = \bar{d}_8, j(u_{12}) = \bar{d}_6^2 \). From this it is straightforward to perform the computations that yield

\[
\begin{align*}
 i^*(d_4) &= \epsilon_1^2 + \epsilon_1 \epsilon_2 + \epsilon_2^2, \\
 i^*(d_6) &= Sq^2 i^*(d_4) = \epsilon_1^2 \epsilon_2 + \epsilon_1 \epsilon_2^2, \\
 i^*(d_7) &= 0, \\
 i^*(d_8) &= \epsilon_1 \epsilon_2 \epsilon_3 (\epsilon_1 + \epsilon_2 + \epsilon_3) + \epsilon_2^2 (\epsilon_1 + \epsilon_2 + \epsilon_3)^2.
\end{align*}
\]

4. The Exotic Homogeneous Space \(G_3/\Spin(7) \)

In this section we want to investigate the cohomology of the exotic homogeneous space \(G_3/\Spin(7) \). The computations presented here are probably known to experts, but it may be worthwhile to work them out here in some detail.

Let us consider the fibration \(G_3/\Spin(7) \to B\Spin(7) \to BG_3 \) and let \(V \subset \Spin(7) \) denote the elementary abelian 2-group of rank 4 considered in the preceding section. To simplify the notation, let us write \(B\Spin(7) \) to denote the elementary abelian 2-group of rank 4.

We obtain the following:

\(\text{Tor} \quad \text{BG}_3(\mathbb{F}_2, H^* (\Spin(7); \mathbb{F}_2)) \Rightarrow H^* (\Spin(7); \mathbb{F}_2) \). Here the key observation is that \(H^* (\Spin(7); \mathbb{F}_2) \) is a free module over \(H^* (BG_3; \mathbb{F}_2) = S^G \) because of the following classic argument. \(S \) is an integral extension of \(S^G \); hence \(S^H \) is also an integral extension of \(S^G \) and, since \(S^H \) is a finitely generated algebra, we obtain that \(S^H \) is a finitely generated \(S^G \)-module. But both \(S^H \) and \(S^G \) are polynomial algebras, and we can apply \[, Chap. V, 5.5, or \[, 6.7.1, to conclude that \(S^H \) is \(S^G \)-free.

Hence the Eilenberg-Moore spectral sequence collapses to an isomorphism

\[
H^* (G_3/\Spin(7); \mathbb{F}_2) \cong \mathbb{F}_2 [\bar{d}_4, \bar{d}_6, \bar{d}_7]/(\bar{d}_6^2 + \bar{d}_6^3 \bar{d}_7^2 + \bar{d}_4^2 \bar{d}_6, \bar{d}_4^2 \bar{d}_7),
\]

where \(\bar{d}_4, \bar{d}_6, \bar{d}_7 \) are the images of \(d_4, d_6, d_7 \in H^* (\Spin(7); \mathbb{F}_2) \), respectively. It is rather easy to completely work out the algebra structure of \(H^* (G_3/\Spin(7); \mathbb{F}_2) \). We obtain the following:

1. The Poincaré series of \(H^* (G_3/\Spin(7); \mathbb{F}_2) \) is
 \[1 + t^4 + t^6 + t^7 + t^8 + t^{10} + t^{11} + t^{12} + t^{13} + t^{14} + t^{16} + t^{17} + t^{20} + t^{24}\]
 and the Euler characteristic is \(7 = [W:H] \).

2. An additive basis for \(H^* (G_3/\Spin(7); \mathbb{F}_2) \) is given by
 \[\{\bar{d}_i^i, i = 0, \ldots, 6, \bar{d}_6, \bar{d}_7, \bar{d}_4 \bar{d}_6, \bar{d}_4 \bar{d}_7, \bar{d}_6 \bar{d}_7, \bar{d}_4^2 \bar{d}_6, \bar{d}_4 \bar{d}_6 \bar{d}_7, \bar{d}_4^3 \bar{d}_6\}\].

3. \(H^* (G_3/\Spin(7); \mathbb{F}_2) \) is a Poincaré duality algebra with top class \(\bar{d}_4^6 \) (see \[, 6.5).

4. The Bockstein spectral sequence of \(H^* (G_3/\Spin(7); \mathbb{F}_2) \) collapses after the second term; i.e. \(H^* (G_3/\Spin(7); \mathbb{Z}_2) \) has only torsion of order 2. We have

\[
H^* (G_3/\Spin(7); \mathbb{Z}_2)/\text{Torsion} \cong \mathbb{Z}_2 [\bar{a}] / (\bar{a}^7, \bar{a}^3, \bar{a}^2 \bar{c}, 2\bar{c})
\]

and

\[
H^* (G_3/\Spin(7); \mathbb{Z}_2) \cong \mathbb{Z}_2 [\bar{a}, \bar{c}] / (\bar{a}^7, \bar{b}^3, \bar{a}^2 \bar{c}, 2\bar{c}).
\]
In particular, the top class in \(H^*(G_3/\text{Spin}(7);\mathbb{Z}_2) \) is \(\tilde{d}_4^6 \) in dimension 24, and it is in the image of
\[
\phi^* : H^*(B\text{Spin}(7);\mathbb{Z}_2) \to H^*(G_3/\text{Spin}(7);\mathbb{Z}_2).
\]

5. The torsion index of \(G_3 \)

To compute the torsion index of the 2-compact group \(G_3 \) we need a lemma on Poincaré duality in fibrations. I’m grateful to Aniceto Murillo for some helpful conversations on this subject. For this lemma we use the following notation. Let \(\mathcal{O} \) denote the ring of integers or the ring of \(p \)-adic integers. Cohomology is taken with coefficients in \(\mathcal{O} \), and we assume that all spaces are of finite type over \(\mathcal{O} \). We say that \(\eta \in H^n(X) \) is an orientation class if \(H^i(X) = 0 \) for \(i > n \), \(H^n(X) \cong \mathcal{O} \), and \(\eta \) is a generator of \(H^n(X) \).

Lemma 5.1. Let \(F \xrightarrow{j} E \xrightarrow{\pi} B \) be a fibration of 1-connected spaces and assume that \(\eta^F \in H^n(F) \) and \(\eta^B \in H^n(B) \) are orientation classes. Assume \(\alpha \in H^m(E) \) is such that \(j^*(\alpha) = \lambda \eta^F \) for some \(\lambda \neq 0 \). Then there is an orientation class \(\eta^E \) for \(E \) such that \(\alpha \cdot \pi^*(\eta^B) = \lambda \eta^E \).

Proof. This follows easily from the cohomology spectral sequence of the fibration \(F \xrightarrow{j} E \xrightarrow{\pi} B \). First of all, it is clear that \(H^i(E) = 0 \) for \(i > n + m \) while \(H^{n+m}(E) = E_{\infty}^{n,m} = E_{2}^{n,m} \cong \mathcal{O} \). Recall that the cohomology spectral sequence is multiplicative in the sense that (up to some signs which would not play any role here) the product in \(E_2 \) induced by the products in \(H^*(B) \) and \(H^*(F) \) yields a product in each \(E_r \), \(2 \leq r \leq \infty \), in such a way that the product in \(E_\infty \) is compatible with the product in \(H^*(E) \).

At the \(E_2 \) level we have that \(\eta^E := \eta^F \cdot \eta^B \) is a generator of \(E_2^{n,m} = E_{\infty}^{n,m} = H^{n+m}(E) \). The hypothesis \(j^*(\alpha) = \lambda \eta^F \), \(\lambda \neq 0 \) implies that \(\alpha \) has filtration zero in \(H^m(E) \) and its image in \(E_{\infty}^{0,m} \) is \(\lambda \eta^E \). Then, \(\lambda \eta^E = (\lambda \eta^F) \cdot \eta^B \) holds in \(E_\infty \) where \([\eta^B]\) denotes the image of \(\eta^B \) in \(E_{\infty}^{0,0} \). Since \(E_{\infty}^{n+m-n,i} = 0 \) for \(i \neq n \), we deduce \(\lambda \eta^E = \alpha \cdot \pi^*(\eta^B) \), as desired. \(\square \)

Now we can proceed to the computation of the torsion index of \(G_3 \), or, to be more precise, to the computation of the order of the cokernel of \(k^* : H^{42}(BT;\mathbb{Z}_2) \to H^{42}(G_3/T;\mathbb{Z}_2) \). We consider the diagram

\[
(\text{Spin}(7)/T)^2 \xrightarrow{j} G_3/T \xrightarrow{\pi} G_3/\text{Spin}(7) \xrightarrow{\phi} (B\text{Spin}(7))^2
\]

where \(\omega \in H^*(BT;\mathbb{Z}) \) such that \(f^*(\omega) = 2\eta \) for the natural map \(f : \text{Spin}(7)/T \to BT \).

The computations in the preceding section show that there is an orientation class \(\rho \in H^{24}(G_3/\text{Spin}(7);\mathbb{Z}_2) \) which is in the image of \(\phi^* \). Let \(\rho = \phi^*(\gamma) \). We can now apply the lemma above to the fibration \(\text{Spin}(7)/T \to G_3/T \to G_3/\text{Spin}(7) \) with \(\alpha = k^*(\omega) \) and deduce that there is an orientation class \(\theta \in H^{42}(G_3/T;\mathbb{Z}_2) \) such that \(k^*(\omega \cdot i^*(\gamma)) = 2\theta \). This implies that the torsion index of \(G_3 \) divides 2.
Next, we prove that the torsion index of G_3 cannot be equal to 1. It is enough to prove that the homomorphism $H^{42}(BT; F_2) \to H^{42}(G_3/T; F_2)$ is equal to zero. Let us consider the F_2-spectral sequence of the fibration $G_3 \to G_3/T \to BT_2^\wedge$. We have that

$$H^*(G_3; F_2) \cong F_2[x_7]/x_7^2 \otimes E(x_{11}, x_{13}),$$

$$Sq^4(x_7) = x_{11}, \quad Sq^2(x_{11}) = x_{13}, \quad Sq^1(y_{13}) = x_7^2.$$

Hence, the generators $x_7, x_{11}, x_{13}, x_7^2$ are transgressive to $c_8, c_{12}, c_{14}, 0$, respectively. Here we denote by c_8, c_{12}, c_{14} the images in $H^*(BT; F_2)$ of the generators $c_8, c_{12}, c_{14} \in H^*(BG_3; F_2)$. Recall that in section 3 we have computed these elements as explicit polynomials in some basis $\{\epsilon_1, \epsilon_2, \epsilon_3\}$ of $H^2(BT; F_2)$.

In the E_2-term of the spectral sequence of $G_3 \to G_3/T \to BT_2^\wedge$, let us consider the row containing x_7^2. All elements in this row are permanent cycles, and the only boundaries are the elements of the form x_7^2q with q in the ideal of $F_2[\epsilon_1, \epsilon_2, \epsilon_3]$ generated by c_8, c_{12}, c_{14}. If we compute the quotient algebra $F_2[\epsilon_1, \epsilon_2, \epsilon_3]/(c_8, c_{12}, c_{14})$ (using any choice of computer algebra software), we see that it is a graded algebra with Poincaré series equal to

$$1 + 3t^2 + 6t^4 + 10t^6 + 14t^8 + 18t^{10} + 21t^{12} + 22t^{14} + 21t^{16} + 18t^{18} + 14t^{20} + 10t^{22} + 6t^{24} + 3t^{26} + t^{28},$$

and so in particular there is an element $q \in H^{28}(BT; F_2)$ which does not belong to the ideal (c_8, c_{12}, c_{14}). Hence, the element x_7^2q in the E_2-term of the spectral sequence survives to a nontrivial element in $H^{42}(G_3/T; F_2)$ which cannot be in the image of $H^*(BT; F_2)$. This finishes the proof of

Theorem 5.2. The cokernel of $H^{42}(BT; Z_2) \to H^{42}(G_3/T; Z_2)$ has order two.

6. Proof of Theorem 1.2

In section 2 we saw that it is enough to prove Theorem 1.2 for each exotic p-compact group, and we also saw that Theorem 1.2 is true for all odd primes. Since it is known (2) that the only exotic 2-compact group is G_3, the only thing that remains to be proved is that G_3 satisfies the properties (TI1) to (TI4) with $t_2(G_3) = 2$.

(TI4) is void, and (TI3) is just Theorem 5.2 plus some facts about G_3/T which were proven in [2]. In [12] it is proven that the torsion elements in $H^*(BG_3; Z_2)$ are of order two and the homomorphism $H^*(BG_3; Z_2) \to H^*(BT; Z_2)^W$ is surjective. This implies immediately that (TI2) holds. Let A be a nontrivial finite abelian 2-subgroup of G_3 and let E be a subgroup of A of order 2. Then, A factors through the centralizer of E in G_3 which is $\text{Spin}(7)$. Since $\text{Spin}(7)$ has 2-torsion index equal to 2, we deduce that A has a subgroup of index at most 2 which is included in a maximal torus of G_3. So, we have (TI1), and the proof is complete.

References

Département de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
E-mail address: aguade@mat.uab.cat