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Preface

General Topology has become one of the fundamental parts of athematics. Nowadays, as
a consequence of an intensive research activity, this matmeatical branch has been shown
to be very useful in modeling several problems which arise isome branches of applied
sciences as Economics, Arti cial Intelligence and ComputeScience. Due to this increasing
interaction between applied and topological problems, we hve promoted the creation of
an annual or biennial workshop to encourage the collaboratin between di erent national
and international research groups in the area of General Toplogy and its Applications.
We have named this initiative Workshop in Applied Topology (WIAT). The rst edition
of this Workshop was held in Palma de Mallorca (Spain) from Jwe 11 to June 12, 2009.
This book contains a collection of papers presented by the pécipants in the second
edition of the WIAT which took place in Ganda (Spain) from J une 16 to June 28, 2010.

All the papers of the book have been strictly refereed.

We would like to thank all participants, the plenary speakers and the regular ones, for
their excellent contributions.
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We express our gratitude to the Ministerio de Ciencia e Innoacon, Generalitat Valen-
ciana, Universidad Poliecnica de Valencia, Instituto Universitario de Matemnatica Pura y
Aplicada, Escuela Poliecnica Superior de Ganda, Fundaco Borja, Ajuntament de Ganda
and Red Espanola de Topologa, for their nancial support without which this workshop
would not have been possible.

We are also grateful to Sonia Gamund Pujadas for designingthe WIAT logo and the
cover of these proceedings.



We are certain of all participants have established fruitfu scienti ¢ relations during
the Workshop and also they have enjoyed the beauty, the cultee and the hospitality of
Ganda.

The Organizing Committee of WIAT'10
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Topologies sequentially equivalent to Kuratowski-
Painleve convergence

Gerald Beer? and Jesis Rodrguez-lopez !

a Department of Mathematics, California State University Lo s Angeles, 5151 State University Drive,
Los Angeles, California 90032, USA (gbeer@cslanet.calstatela.edu

b |nstituto Universitario de Matematica Pura y Aplicada, Un iversidad Poliecnica de Valencia, 46022
Valencia, Spain (jrlopez@mat.upv.e$

Abstract

The main purpose of this paper is to provide a characterizatbn of those up-
per miss topologies which are sequentially equivalent to th classical upper
Kuratowski-Painleve convergence K*. This leads in a natural way to study
the sequential modi cation of K* :

1. Introduction

Given a Hausdor topological spacehX; Ti we denote by C(X) the family of all closed
subsets ofX . We recall that given a nethA i , in C(X), the upper closed limit and the
lower closed limit of the net are de ned as

LsA =fx2 X :Uxy\ A 6 ? conally for every neighborhood Uy of xg;
LiA =fx2 X :Ux\ A 6 ? residually for every neighborhoodUy of xg:

Be tting their names, both are closed subsets ofX (see, e.g., [4, Proposition 5.2.2]).
The net A i » is said to be:

K* -convergent orupper Kuratowski-Painlewe convergentto A if Ls A A;

K -convergent orlower Kuratowski-Painleve convergentto A if A Li A ;
K-convergent or Kuratowski-Painleve convergent to A if it is K * -convergent and
K -convergent toA, i.e. LsA =Li A = A

Maybe, upper and lower limits were rst considered by Peano n the context of metric
spaces around 1890 (see [14]). Nevertheless, historicalligeir introduction has been at-
tributed to Painleve and to Kuratowski who gave an importan t dissemination through its
monograph [18]. It resurfaced again for Itered families ofclosed sets in the seminal article
of Choquet [8], followed by the monograph of Berge [6], and iis from this perspective
that it is often studied (see, e.g., [13, 19]).

In general, Kuratowski-Painleve convergence is not topobgical, i. e. we cannot nd a
topology on C(X) such that the convergence of nets in this topology is equiv@nt to their
Kuratowski-Painlewe convergence [8, 12, 13]. Neverthelgs, the lower Kuratowski-Painlewe
convergence is always topological and it is compatible withthe lower Vietoris topology T,,

1The second author was supported by Generalitat Valenciana under grant GV/2007/198.
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having as a subbase(X) plus all sets of the formV = fA 2 C(X): A\ V 6 ?g where
V is open. Furthermore, although neither the upper Kuratowsk-Painlewe convergence
nor the Kuratowski-Painleve convergence are topologiesthey are pseudotopologies [12].
For a Hausdor space, a necessary and su cient condition for these two convergences be
topological is local compactness of the space [8, 12, 13].

One noteworthy fact about K-convergence is its compactnessvithout restriction [4].
Furthermore, it has been applied to lower semicontinuous etended real-valued functions
as associated with their (closed) epigraphs, especially toonvex functions (see, e.g., [3, 4]).

On the other hand, the hit-and-miss topologies are the main pototypes for constructing
topologies over a family of sets. We recall that acobasefor a topological spacehX; Ti is
a family of nonempty closed sets which contains the singletons and it is closed under
nite unions. Evidently, the largest cobase is the family of all nonempty closed subsets
Co(X) and the smallest is the set of nonempty nite subsetsFo(X). Given a cobase for
hX; Ti, the hit-and-miss topology T on C(X) is the supremumT,, _ T where T, is the
lower Vietoris topology and the upper miss topologyT* has as a base all sets of the form

fF2CX):F XnDg (D2 [f?Q):

When = Kg(X), the family of all nonempty compact subsets,T* is called the co-compact
topology and T is called theFell topology which we denote byTc and Tg respectively. We
de ne the co-countably compact topologyTcc as the topology T™ when is the family of
all closed and countably compact sets. When = Cy(X), we obtain the classicalVietoris
topology Ty .

It is easy to prove [5] that the co-compact topology is the nest upper miss topology
coarser than K. Related to this, one could wonder which is the nest topolog/ coarser
than K* : This topology, denoted by K*, is known as theupper Kuratowski topology and
its closed sets are those sets which are closed undef Kimits of nets. Replacing K™ by K,
we obtain the convergence topology K : In this way, is a projector of the category of all
convergences on the category of topological convergenceshich is called the topologizer.

In [13] Dolecki, Greco and Lechicki studied the problem of wen K* = T¢ on C(X):
The spaces for which this equality is true were callecconsonants Examples of consonant
topological spaces are:Cech-complete spaces, Hausdork, -spaces, etc. (see [1, 2, 7, 19,
20]). A very related problem is that of hyperconsonancewhich consists of characterizing
which spaces verify K = Tg: Of course, K = T,, and it would be natural to guess,
assuming the topologizer distributes over join in the spacef convergences orC(X ), that

K= (K _K*')= K _ K'=T,_ K*:

But this distributivity fails: it has been proved [10, 13] th at for completely metrizable
spaces, K* = T¢; so that in this case, T,, _ K™ reduces to Fell topology, independent of
local compactness considerations (see also [10, Examplelp). The hyperconsonance was
characterized in metric spaces by Fremlin who proved that a netric spaceX is hypercon-
sonant if and only if X has at most one point that has no compact neighborhood (see
more generally [2]).

Later on, Costantini, Hok and Vitolo [9] studied the notio n of sequential consonance A
topological space is said to be sequentially consonant if K and T¢ have the same conver-
gent sequences to the same points, i. e. these convergences sequentially equivalent In
[9, 17] it is proved that every k-space orP -space is sequentially consonant so, in particular,
every locally compact space or every rst countable space sis.
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In [5] we investigate the problem of obtaining all upper misstopologies which are se-
guentially equivalent to the upper Kuratowski-Painlewe ¢ onvergence. In this paper, we will
summarize all the results obtained in [5] which completely haracterize this question (see
Theorem 12). Furthermore, we look more carefully at such upgr miss topologies when the
underlying topology of the space is rst countable. We also dtain some two-sided results,
e.g., we characterize in the context of a metric space the seentiality of the Fell topology
T and the convergence topology K. To achieve all these results, we rst study the se-
guential modi cation sK* of the convergence K which is the nest sequential topology
coarser than K. Of course, every topology which is sequentially equivalerto K * should
be sequentially coarser thansK™ .

2. Preliminaries

All topological spaces will be assumed to be Hausdor and to onsist of at least two
points. We denote the closure, set of limit points and interor of a subsetA of a Hausdor
spaceX by cl(A), A%and int(A); respectively. Let Co(X) denote the nonempty closed
subsets of X. We de ne idempotent operators , + and * on subfamilies of C(X) as
follows:

(1) ( A):= fE : E is a nite union of elements of Ag;
(2) + A:=fE : E is a closed subset of some element #&fg;
(3) * A:=fE : E is a closed superset of some element &fg:

Given a family B of closed subsets the smallest cobase containing them isE[ Fo(X)).
We call this the cobase generated ba. We call a cobasecompact (resp. countably compac)
if its members are all compact subsets (resp. countably cormgrt subsets) ofX .

We call a cobase Urysohn [4] if wheneverV is open andD 2 with D V, there
existsD; 2 suchthat D int(D1) Dj; V:

By a convergenceQ on a setX (see [12]), we mean a function that assigns to each net
hx i o in X a possibly empty subset ofX, called the Qdimits of the net. Whena 2 X
is a Q-limit of hx i » , we will write

hx i o ? a:

We will assume here that all convergences arisotone (the set of limits for a subnet of a net
includes those of the original net) and constant preservingconstant nets are convergent
to the repeated value).

We say that a convergence Q istronger or ner than another convergence P and write
Q Pif

ki, 2 a)hxi, © a

With respect to this partial order, the set of convergences o X becomes a complete lattice.
A topology T on X induces an isotone convergence in an unambiguous way, andttvithis
in mind, the symbols Q T, T Q and T = Q make sense where Q is a convergence. If
a convergence is induced by a topology, it will be called @opological convergence

Given two convergences Q and P on a seK, we will write Q s¢q P and say P is
sequentially coarserthan Q provided wheneverhx,inon is @ sequence inX and a 2 X,
then

hninzn 12 @) h Xninon &

We will write Q  seq P to mean that Q and P have the same convergent sequences to the

same limits. In this case, the convergences are deemséquentially equivalent As one or
both of the convergences may arise from a topology¥, we will freely employ formulas such
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as Q seqT Or Ty seq T2 in the sequel. For example, it is well known [4, Theorem 5.2.0],
[17, Theorem 9] that, in the context of rst-countable spaces, we may write TF  sgq K
with respect to closed subsets.

Recall that a topology T on a setX is called sequential provided A is closed whenever
A is stable under taking limits of sequences [15, 16]. Intrins to sequential spaces is the
sequential modi cation sQ of a convergence Q that yields the (sequential) topology o X
whose closed sets consist of all subsefs of X such that wheneverha,inon iS a sequence
in A which is Q-convergent tox 2 X, then x 2 A. It is obvious that Q sQ, and the
two coincide if and only if sQ Q.

3. On the sequential modification of upper Kuratowski-Painle ve
convergence

We begin providing a description of the closed sets of the segntial modi cation of the
upper Kuratowski-Painleve convergence.

Theorem 1 (cf. [13, Corollary 3.2]). Let hX; Ti be a Hausdor space. Then a family of
closed setsF is closed insK™ if and only if F veri es the following conditions:
1) F=*F;
(2) for every countable family of open setd Gngnon such that [ nonGn 2 F! there
exists a nite subsetN of N such that[ non Gn 2 FI:

Corollary 2 (cf. [13, Theorem 3.1],[20, Lemma 2.2]) Let hX; Ti be a Hausdor space.
Then a family of closed setsG is open in sK* if and only if G veries the following
conditions:
(1) G=+G
(2) for every countable family of closed set6F,gnon such that\ onFn 2 Gthere exists
a nite subset N of N such that\ nonFn 2 G

The next example shows that, in general, sk 6 K*:

Example 3. Let us consider the interval X =[0;1] endowed with the discrete topology.
Direct | = fl [0;1] :jlj] @ og by inclusion, and 81 2 | put F, := Xnl: Itis easy to
prove that Ls Fy = ? sohFji;» is K*-convergent to?: We claim G:= fA [0;1] :
X nA is not countableg is sK* -open. Clearly, G=+ G, and if f F,gn2n is a family of closed
sets such that\ ,onFn 2 Gthen X n\ 2N Fy IS not countable. It is immediate to see that
Xn\ ﬁzl Fn is not countable for somek 2 N. Consequently, we deduce from the above
corollary that Gis sK* -open. Of course,? 2 Gbut F, 62Gforall | 2 I:

The coincidence of sk and K* on C(X) was characterized by Mynard [19] (see also
[5]) proving its equivalence with hereditarily Lindelfn ess of the space. Of course, this
coincidence implies that K™ is sequential. That the hereditarily Lindelf condition i s
both necessary and su cient for K™ to be sequential was discovered by Costantini, Ho,
and Vitolo [9]. Related to this, we have characterized whenhe upper Kuratowski-Painlewe
convergence is sequentially topological.

Theorem 4. Let hX; Ti be a Hausdor space. ThenK™ is compatible with a sequential
topology if and only if X is locally compact and hereditarily Lindef.

Now, we obtain some results which connect the co-countablydpology with the sequen-
tial modi cation of the K * -convergence.

Proposition 5. Let hX; Ti be a Hausdor space. ThenTcc  sK™:

10
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De nition 6. Let hX; Ti be a topological space. We say that a subsefA of X is -
countably compactif A is the union of a countably family of countably compact close
sets.

Proposition 7. Let hX; Ti be a Hausdor space such that the family of all closed countib
compact sets is Urysohn. ThenTcc = sK™ if and only if every open set is -countably
compact.

The last theorem can fail in both directions without the Urysohn condition [5].

In the following, we obtain analogues for the convergence K fosome results for the
convergence K obtained by Costantini and Vitolo [11] in the context of a metrizable
space (see more generally [9, 19]).

Theorem 8. Let hX; Ti be a metrizable space. The following conditions are equivale

(1) X is separable;
(2) K is sequential.

Theorem 9. Let hX; Ti be a metrizable space. Thefg is sequential if and only if X is
separable andX has at most one point having no compact neighborhood.

4. Hit-and-miss topologies compatible with sequential K-convergence

It is the purpose of this section to obtain those upper miss tpologies which are sequen-
tially equivalent to the upper Kuratowski-Painlewe conve rgence. Taking the supremum of
such a topology with the lower Vietoris topology yields topdogies that are sequentially
equivalent with Kuratowski-Painleve convergence. We begn giving the largest upper miss
topology sequentially coarser than K .

Proposition 10. Let hX; Ti be a Hausdor topological space. Then the co-countably
compact topologyTcc is the nest miss topology sequentially coarser tharK™* :

Remark 11. In the same manner we can see that the co-compact topologyc is the nest
upper miss topology coarser than K.

The above result shows that if T* seq K, then the sets of the cobase must be
countably compact. SinceTcc seq K™, if is a countably compact cobase then T seq
K* ifand only if K*  ¢eqT".

Theorem 12 (cf. [9, Theorem 1.8]) Let hX; Ti be a Hausdor topological space and a
cobase. The following conditions are equivalent:
(1) K* seq T
(2) is a countably compact cobase, and whenevbh,in2n is a sequence of closed sets
with x 2 Ls Ay, every neighbourhoodG of x contains someD 2  that intersects
in nitely many Ap.

Our next goal is to show that in a rst countable Hausdor space, where the closed
countably compact subsets reduce to the sequentially compa subsets, we can construct a
lot of cobases satisfying the conditions of the last result\We rst obtain a characterization
similar to Theorem 12 in this context.

Theorem 13. Let hX; Ti be a Hausdor rst countable topological space and a cobase.
Then T is sequentially equivalent toK* if and only if  is countably compact and when-
ever hxpinan is convergent tox and x 2 G 2 T there existsF 2 with F G such that
F contains a subsequence diXpinoN.

11
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In a Hausdor topological space hX; Ti, denote by ¢4= ( fb: 2 seq(X)g), where
segX) is the set of all convergent sequences iX and b is the range of 2 seq(X) along
with its unique limit point.

De nition 14.  Let hX; Ti be a Hausdor space. By asubsequential selectofor seqX ),
we mean a functionf : seqX) ! seq() such that 8 2 seqX), f( ) is a subsequence
of

Given a subsequential selectof in a Hausdor topological space, put ' := ( ff( ):

2 seqX)g). Since the complete range of a convergent sequence is congpand constant
sequences are convergent, we see thaf is a compact cobase. Note that iff is the identity
function on seqX ), then we get f = seq,

The next result is a direct consequence of Theorem 13.

Proposition 15. Let hX; Ti be a rst countable Hausdor topological space and letf be
a subsequential selector. TheM", is sequentially equivalent toK™* :

Since Sf9is a compact cobase, we obtain the following.

Corollary 16. Let hX; Ti be a rst countable Hausdor topological space. ThenT seq; Tc;
Tcc and K™ are all sequentially equivalent.

Theorem 17. Let hX; Ti be a rst countable Hausdor topological space and suppose is
a countably compact cobase such that = [f ?29. Then T is sequentially equivalent
to K* if and only if there exists a subsequential selectdr for which T +

The following example shows that in the previous theorem, wecannot delete the as-
sumption of considering a cobase stable under closed subset

Example 18. Consider X = [0;1] [0;1], equipped with the cobase generated by
f[0;3] [0;1];[3;1] [0;1]g. Thus, a setB is in the cobase if and only ifB satis es
one of these four conditions: ()B = X; (ii) B is a nonempty nite subset of X ; (iii)
B =[0;1] [0;1][ F whereF is nite; (iv) B =[%;1] [0;1][ F whereF is nite.
Notice that is not stable under taking nonempty closed subsets of its members. Since
X 2 , wein fact have 59 + | Evidently the sequence of segments with nth term
An=f(521:y):0 y 1gis T -convergent tof (3; )g because if the singleton failed to
hit a member B of the cobase, thenB must be a nonempty nite set. On the other hand,
it is clear that the sequence is only upper Kuratowski-Painkwe convergent to supersets of

f(ziy):0 y 1g
The next result shows that in the case that X has some convergent sequence with
distinct terms, there is no minimal topology of the form Tzf :

Proposition 19. Let hX; Ti be a rst countable Hausdor topological space such thaX %is
nonempty and letf be a subsequential selector. Then there exists a subsequahselector
g such that T, 4 is strictly coarser than Tzf :

Theorem 20. Let hX; Ti be a rst countable Hausdor topological space. The followirmgy
conditions are equivalent:
(1) X% ?2;
(2) there exists an upper miss topology strictly coarser than # co-countably compact
topology sequentially equivalent t&* -convergence;

12
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(3) there is an in nite descending chain of upper miss topologie each sequentially
equivalent to K™ -convergence.

Remark 21. From the above results, we can deduce that the family of all uper miss
topologies sequentially equivalent to the upper Kuratowsk-Painleve convergence which
are determined by a cobase satisfying + = [f ?g has a minimum if and only if

X 0= ?: In this case, the minimum topology isTEO(X):

The next result characterizes when, in a metric space, the coountably compact topol-
ogy (which is equal in this case to the co-compact topology) grees with T* ,, which is
the largest topology of the form T, .

Theorem 22. Let hX;di be a metric space. The following conditions are equivalent:

(1) there exists a compact subseE of X whose set of limit pointsC%is in nite;

(2) %98 Ko(X);

() T sq 8 Tc;

(4) there exist uncountably many upper miss topologies betweél ., and Tc each
sequentially equivalent to the upper Kuratowski-Painles convergence.
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In 1883 Arzeh [2] resolved a fundamental conundrum of anafsis: what precisely must
be added to pointwise convergence of a sequence of continfunctions to preserve conti-
nuity? In his celebrated papers [2] and [3] he formulated a $ef conditions which are both
necessary and su cient for the continuity of a series of coninuous functions de ned in a
fundamental interval (compact) of the real line. In 1905, the condition for which Arzeh
introduced the term "uniform convergence by segments” was alled "quasi uniform con-
vergence" by Borel in [13]. Townsend in [39] used Moore's ten subuniform convergence.
In the same year Hobson presented Arze&'s result in a moreigorous form in [28]. In 1926
Hobson in his monumental work [29] extended Arzehl's theoem to closed and bounded
sets of the reals (using the Heine-Borel covering theorem ithis area for the rst time).
In 1948 P.S. Alexandro in [1] studied the question for a seqence of continuous functions
from a topological spaceX (not necessarily compact) to a metric spacey. We quote also
the seminal paper of Bartle [5], where Arzeh's theorem is &tended to nets of real valued
continuous functions on a topological space.

A more appropriate question to ask in this setting is the following: is there any topol-

ogy on YX ner than pointwise convergence that has as intrinsic propety to preserve

continuity? The answer to this question was given by Bouleals work in [14] and [15]

and it falls out from a general theory. He introduced the stiky topology on C(X;Y ) as

the coarsest topology preserving continuity. Its convergace is described by a criterion of
convergence which as the Cauchy criterion does not involvehie limit. In 2008 Gregoriades
and Papanastassiou introduced the notion of exhaustivenasat a point of metric space
both for sequences and nets of functions (see [26]). This nemotion is closely related to

equicontinuity and enables to consider the convergence of met of functions in terms of

properties of the whole net and not as properties of functios as single members. Ex-
haustiveness is a powerful tool to state Ascoli-type theorms and to describe the relation
between pointwise convergence for functions and continuaiconvergence. In 2009, in the
realm of metric spaces, Beer and Levi [10] found a new theoriegl approach giving another

necessary and su cient condition through the notion of strong uniform convergence on
bornologies, when this bornology reduces to the that of all nite subsets ofX .

We analyze the equivalence of Arzeh, Alexandro , Bouleau, Gregoriades-Papanastassiou
and Beer-Levi conditions. We extend exhaustiveness-typerpperties to subsets. First, we
introduce the notion of strong exhaustiveness at a subseB for sequences of functions.
Furthermore, we show that the notion of strong-weak exhausiveness at a subset is the
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proper tool to investigate when the limit of a pointwise conwergent sequence of functions
ful lls the strong uniform continuity property. As a result we get what must be added to
pointwise convergence of functions to have uniform continity of the limit.
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Abstract

There are di erent approaches in the literature to the study of (continuous)
real functions in terms of scales.

Our rst purpose with this survey-type paper is to provide motivation for the
study of scales as a kind of generalization of the notion of Diekind cut.
Secondly, we make explicit the well-known relationship betveen real functions
and scales and we show how one can deal with the algebraic anattice oper-
ations of the ring of real functions purely in terms of scales

Finally we consider two particular situations: (1) if the domain is endowed
with a topology we characterize the scales that generate upgr and lower
semicontinuous and also continuous functions and/or (2) ifthe domain is en-
riched with a partial order we characterize the scales that gnerate functions
preserving the partial order and the order embeddings.

1. Introduction

Let us denote by C(X; OX) the ring of continuous real functions on a topological spae
(X; OX)? and by F(X) the collection of all real functions on X .
We would like to start by discussing the following question:

Question. What is more general, the study of the ringsC(X; OX) or that of the rings
F(X)?

A rst obvious answer immediately comes to our mind:
For a given topological space X; OX), the family F(X) is much bigger than
C(X; OX). Hence the study of the rings of real functions is more genai than the
study of the rings of continuous real functions.

But looking at this question from a di erent perspective we could argue as follows:

1The authors are grateful for the nancial assistance of the C entre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIUQ7/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain

2if there is no need to specify the topology OX on X, we will simply write C(X), as usual.
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For each setX we have that F(X) = C(X; D(X)) (where D(X) denotes the
discrete topology onX), i.e. the real functions on X are precisely the continuous
real functions on (X; D(X)). Hence the study of all F(X) is the study of all
C(X; OX) for discrete topological spaces, a particular case of thetisdy of all
C(X; OX).
We can conclude then that the study ofall rings of the form C(X; OX) (see [8]) is
equivalent to the study of all rings of the form F(X). However, for a xed topological
space K; OX), the study of F(X) is clearly more general than that of C(X; OX).

The reason to start this introduction with the question above is that it is directly related
with the issue of dealing with real functions in terms of scats that we want to address in
this paper. Depending of the focus of the study, that ofC(X) or that of F(X), dierent
notions of scale can be found in the literature.

The origin of the notion of scale goes back to the work of P. Urgohn [17] and it is based
on his approach to the construction of acontinuous function on a topological space from
a given family of open sets.

On the other hand, it was probably M.H. Stone [16] who initiated the study of an
arbitrary (not necessarily continuous) real function by consideringwhat he called the
spectral family of the function.

Note that in both approaches the families involved can be cosidered to be either
decreasing or increasing. In this paper we will deal only wit decreasing families, but we
point out that each statement here could be also rephrased ifincreasing terms.

For people mainly interested in C(X) a scale is a family of open setdJy of a given
topological spaceX indexed by a countable and dense subsdd (e.g. the dyadic numbers
or the set Q of rationals) of a suitable part of the reals (e.g. [Q1] or the whole R) and
such that

—— S T
(1) ifd<d®thenUp Uy 3 (2)  gpUs= X and  gpUg= 2.

Then the real function de ned by f (x) = supfd 2 D j x 2 Uqg for eachx 2 X, is
continuous. Of course, arbitrary real functions appear whe the topology OX is discrete;
then any subset is open and closed and condition (1) simply @ds as: ifd < d° then
Ugp Ug.

On the other hand, when the main focus of interest isF (X ), a scale must be a family
of arbitrary subsets Sy of a setX indexed by D (as before) and such that

S T
(1)if d<d®%thenSp Sy, (2) gpSe=X and  ,pSa= 2.

Now the f given by f (x) = supfd 2 D j x 2 Sqg for eachx 2 X, is a real function
(not necessarily continuous). If the setX is endowed with a topology, then additional
conditions on the scale can be added in order to ensure upper tower semicontinuity or
even continuity. In the same vein, we may be interested in endwing X with a partial

order and characterize those functions which preserve thegrtial order. This can be also
done in a similar way, by adding some additional conditions b the corresponding scales.

In this work we will follow the latter approach, i.e. we will f ocus our attention on scales
of arbitrary subsets generating arbitrary real functions and then we will study particular
types of scales generating continuous functions. We will gealso how one can deal similarly
with order-preserving functions.

30r Us  Ugo in case one prefers to work with increasing scales.
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The paper is organized as follows. In Section 2 we provide s@mmotivation for the
study of real functions in terms of scales, based on the constction of the real numbers
in terms of Dedekind cuts. In Section 3 we make explicit the wik-known relationship
between real functions and scales. In Section 4 we show how @rcan deal with the
usual algebraic operations in terms of scales, without corructing the corresponding real
functions. In Section 5 we consider scales on a topologicapace and characterize those
generating lower and upper semicontinous real functions. ally, in Section 6 we brie y
study the representability of preorders in terms of scales.

2. Motivation for the study of real functions in terms of scales

The purpose of this work is to try to show how one can deal with he ring of real
functions without using the real numbers at all. This will be achieved by using the notion
of a scale In order to motivate its de nition we start by recalling som e well-known facts
about the construction of the real numbers via Dedekind cuts

2.1. Yet another look at Dedekind cuts. As it is well-known, the purpose of Dedekind
(see [7]) with the introduction of the notion of cut was to provide a logical foundation for
the real number system. Dedekind's motivation is the fundanental observation that a
real numberr is completely determined by the rationals strictly smaller than r and those
strictly larger than r; he originally de ned a cut (A; B) as apartition of the rationals into
two non-empty classes where every member of one of the classis smaller than every
member in the other? It is important to recall his remark in [7]:

Every rational number produces one cut or, strictly speakig, two cuts,
which, however, we shall not look as essentially di erent.

In other words, there are two cuts associated to eacly 2 Q, namely,
( ;a;Qn( ;dq and ( ;09;Qn( ;q);
where ( ;q=fp2Qjp qgand( ;g =fp2Qjp<qg
In fact, (assuming excluded middle) we may take the lower par A as the representative

of any given cut (A; B) since the upper part of the cut B is completely determined byA.°
Hence one can consider the following equivalent descriptioof the real numbers:

Dedekind's construction of the reals. A real number is a Dedekind cut i.e. a subset
r  Q such that
(D1) r is a down-set, i.e. ifp<qgin Qandq2r,thenp2r;
(D2) ? 6 r 6 Q;
(D3) r contains no greatest element, i.e. ifg 2 r, then there is somep 2 r such that
q<p.

We denote the set of real numbers byR and de ne a total ordering on the set R as
r s r s Wealsowriter <s to denote the negation ofs r,thatis r<s,, r( s.

ARy subget S R which has an upper bound inR has a least upper bound S in R
and S= fr:r 2 Sg.

4We will not recall here the precise formulation, it can be fou nd in [7].

5By doing this we may think intuitively of a real number as bein g represented by the set of all smaller
rational numbers. Of course, everything could be equivalently stated in a dual way by considering Dedekind
cuts as the upper part B if we think of a real number as being represented by the set of dl greater rational
numbers.
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A real number r is said to beirrational if Q nr contains no least element.

Condition (D3) in the de nition above just serves to elimina te subsets of the form ( ;]
for a given g 2 Q since it determines the same real number as (;q). This allows us to
embed the rational numbers into the reals by identifying the rational number q2 Q with
the subset ( ;) 2 R. In particular the restriction of the total order in R coincides with
the usual order in Q. Also, for eachq2 Q and eachr irrational real number we have that

g rinRO (39 r0 a92r 0 (:a(r0 oaqg<rink
Remark 1. Note that one can de ne the extended real numbersn a similar way by consid-
ering those subsets ofQ satisfying only conditions (D1) and (D3). Under this de nit ion
we have now two additional cuts, namely? and Q which determine the extended real
numbers usually denoted as1 and +1 , respectively®

Let us consider now the family of subsetsA  Q satisfying only conditions (D1){(D2),
and call them inde nite Dedekind cuts.” In other words, we will take into consideration
now both subsets ( ;qg) and ( ;q] for eachq?2 Q.

After identifying each subset A Q with its characteristic function A : Q! 2 into
the two-element lattice 2 = f0;1g (given by A(g)=1i g2 A) one has, equivalently:

De nition 2.  An inde nite Dedekind cut is a function S: Q! 2 such that

(D) §vis decreasing, i.evS(q) S (p) wheneverp < q,
(D2) qZQS(q) =1 and qzQS(q) =0.

Remark 3. A Dedekind cut in the previous sense is an inde nite Dedekindcut if it is right
continuous, i\% if it satis es the additional condition

(D3) S(q) = p>q S(p) for eachq2 Q.

2.2. From inde nite Dedekind cuts to scales. We can now try to extend the previous
notion by considering an arbitrary frame L instead of the twwelemwt lattice 2.

Recall that a frame is a complete lattice L in which a~ B = fa”~b:b2 Bg for
ala2 L and B L. The universal bounds are denoted by 0 and 1. The most familia
examples of frames are

(a) the two element lattice 2 (and, more generally, any complete chain),
(b) the topology OX of a topological space X; OX), and
(c) the complete Boolean algebras.

Being a Heyting algebra, each frameL has the implication ! satisfyinga” b ci
a b! c The pseudocomplemenbbfana?2 L is
a =al O=Wfb2 L:a”b=0g:
Given a;b2 L, we denote by the relation de ned by
a b i a_b=1:
In particular, when L = OX for some topological spaceX, one hasU =Int( X nU) and

U VicCluU VforeachU;V 20X. Also, in a Boolean algebra, the pseudocomple-
ment is a complement anda bi a b

6There are actually two slightly di erent notions that both g o by the name extended real number. one
in which + 1 and 1 are identi ed, and one in which they are not. We are dealing he re with the latter.
The former notion forms a quotient space of the latter.

"The name inde nite Dedekind cut is motivated from the notation used in [6].
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One arrives now to the notion of an (extended) scale on a fram&

De nition 4.  ([16, 2, 10, 3]) LetL be a frame. An extended scaleon L is a family
(sqjq2 Q)? of elements inL satisfying
(S1) sq sp wheneverp <q;
Itis a S\(ﬁle if it additi(wally satis es
(S2)  poSa=1= oSy

Now given a topological space X; OX), we can particularize the previous notion in two
di erent ways:

For L = OX, a scaleon OX (or a scale of open setgis a family (Ugj g2 Q) of open
sets such that
(S1) gl Uy Up Whenesferp <q;
(S2) " poUq= X and  ,oUq= 219

However, in this work we will deal with scales onL = D(X):

De nition 5.  Let X be a set. A family S =(Sqjq2 Q) of subsets ofX is said to be a
scaleon X ifitis a scale onD(X), i.e. if it satis es

(S1) Sa Sp wheneverp < q;

(S2)  poSg= X and ;S = 7.

We shall denote by ScaleX ) the collection of all scales overX .

Remark 6. Another extension of the notion of scale has been consideread [9] (see also [4]
and [11]) in order to deal with functions with values in a comgetely distributive lattice
with a a countable join-dense subset consisting of non-supeompact elements. Several
parts in what follows could be stated in this more general ss@ing, but we will restrict
ourselves to the real-valued case.

3. Scales and real functions

In this section we will analyze in detail the relationship beween scales and real functions
on a given set.

We would like to emphasize again that a similar analysis cou be done for scales of open
subsets. Also, note that when dealing with scales, one canwahys use either decreasing or
increasing scales.

3.1. Some binary relations in  ScaleX ). We will consider three di erent binary rela-
tions between scales de ned on a given set, which will be deted as , and
Given S; T 2 ScaleX), we write:

ST Sq Tq foreachq2 Q
ST Sq Tp foreachp<q2Q

Clearly enough we have thatS T impliesthatS T . (Indeed,letS T andp<q2 Q,
thenSy Tq Tp)

8Note that the terminology scale used here di ers from its use in [15] where it refers to maps to L from
the unit interval of Q and not all of Q. In [2] the term descending trail is used instead.
9From now on we will identify a function s: Q! L with (sq s(Q)]j ql_2 Q).

10N ote that qZQUq = UIZQInt(X nUg)= X n qZQCI Uy = Xn UIZQUq .
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It is easy to check that both relations are re exive and transitive and is additionally
antisymmetric, in other words, is a partial order while is only a preorder.

Now we can use the preorder on ScaleK) to de ne an equivalence relation on
Scale(X) such that

S TS T andT S Sq[ Tq Sp\ Tp foreachp<qg2Q:

This relation, determines a partial order on the quotient s¢ Scale(X )= (the set of all

equivalence classes of ): given [S];[T] 2 Scale)k )=
5] [T]10S T

By the construction of , this de nition is independent of the chosen representaties
and the corresponding relation is indeed well-de ned. It isalso easy to check that this
yields a partially ordered set ScaleX )= ;

3.2. The real function generated by a scale. We shallll start now by establishing the
relation between scales and real functions.

Notation 7. Givenf : X ! Randq2 Q,wewrite [f g =fx2Xjq f(x)gand
[f>q]l=fx2 X jg<f((x)g

W
Proposition 8. Let X be a set andS = (Syj g2 Q) a scale onX. Then fg(x)= fq2
Qj X 2 Sqg determines a unique functionfs : X I R such that[fs >q] Sy; [fs d
for eachq2 Q:

In view of the previous result, we can now introduce the folleving:
Denition 9. Let S=(Sqjq2 Q) be iiNscaIe inX. The function fg: X ! R de ned by

fs(x)= 192 Qjx 2 Sy
for eachx 2 X, is said to bethe real function generatedby S.

We immediately have:

Proposition 10. Let S and T be two scales onX generating real functionsfs and fr,
respectively. ThenS T if and only if fs  fr; consequently,S T if and only if
fs = fT.

3.3. Scales generating a given real function. It follows immediately from the preced-
ing proposition that di erent scales may generate the same ral function. Our intention
now is to study the set of all scales generating a given real fiction, or, equivalently, the
equivalence class of a given scale.

We start by proving the following auxiliary result:
Lemma 11. Let X be aset,S=(Sqjq2 Q) a scale onX and
. . S , T ,
Then: s™ s = qSpia2Q  and S™  SP = S5jg2Q:

(1) S™n and SM¥ gre scales onX .

(2) SMn 5§ 5 MX gpdSmn g g max

@R T S,thenS™n T S max

(4 If T S, then TMn = SMin gng Tmax = gmax,

(5) S™" = f[fs >q]jg2 Qgand S™ = f[fs ¢]jq2 Qg.
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Now we can characterize the equivalence class of a given seaks an interval in the
partially ordered set (ScaleX); ):

Proposition 12. Let X be a set andS =(Syj g2 Q) a scale onX. Then
q
[S]= Tjs™ T s m

Finally, we can characterize the scales generating a givereal function:

Proposition 13. Let X be asetandf : X ! R a real function. Then
(1) SMn = f[f>q]jg2 Qgand S"* = f[f ]jq2 Qg are scales generating .
(2) If S=(Sqja2 Q) is a scale onX that generatesf , then S™" = SMn and S =

Sfmax .
(3) S=(Sqj02 Q) is a scale onX that generatesf if and only if Sf"“” S S M.
(4) The collection of all scales onX that generatef is precisely the class S™ = S™ .

3.4. Correspondence between real functions and equivalence classes of scales.
We can now establish the desired correspondence:

Proposition 14. Let X be a set. There exists an order isomorphism between the partia
ordered sets(F(X); ) of real functions on X and (ScaleX)= ; ).

In fact, this correspondence is more than an order isomorpkim. As we will see in
what follows it can be used to express the algebraic operatits between real functions
purely in terms of scales. Furthermore, when the space is eimhed with some addi-
tional structure (e.g. a topology or a preorder) the real furctions preserving the structure
((semi)continuous functions or increasing functions, repectively) can be characterized by
mean of scales.

4. Algebraic operations on ScaleX)

In this section we will try to show how one can deal with the ustal algebraic operations
in terms of scales, without constructing the correspondingreal functions.

4.1. Constant scale and characteristic scale of a set.
Letr 2 Rand S" =(Sfjq2 Q) be de ned by
Sg=X ifg<r and S;=7? ifr q:

Clearly, S" is a scale onX and it will be called the constant scalewith value r.

In caser 2 Q, we have that [S'] = fS"i™n ; ShimaX g whereS"™" = S and g™ = X
if g randS{™ =2 otherwise. _

On the other hand, if r is irrational, then S""™Mn" = S"Ma& = g and so B"] = fS'g.

Let A X andS* =(S§jq2Q) X be dened by

S§=X ifq<0 SH=Aif0 g<1 and S{=? ifq L

Once again,SA is a scale onX and it will be called the characteristic scale of A.
In this case S” is order isomorphic to the 4 element Boolean algebra ang”™n = SA

while S¢"™ = X ifq 0,S¢™ = Aif0<q 1landS;™ =?ifq 1.
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4.2. Opposite scale. Given a scaleS on X, de ne
S =(XnS 4jq2Q):
(1) S isascale onX;
2)1fsS T then T S and hence, ifS T then T S ;
@ [S]1=fTjT 2 [S]g; _
(4) (S )mln - (SmaX) and (S )max - (Smln );
(5) S" S ' foreachr 2 R.

4.3. Finite joins and meets. Given two scalesS and T on X, we write
S_T=(Sq[ Tqjg2Q) and S"T =(S4\ Tqjq2 Q):

(1) S_T =T _S s ascale onX;

2IfSs S%ndT T %henS_T S ° TCandhence, ifS S %andT T %then
S_ T sS°T1% '

(3) (S_T)mln = Smln _T min and (S_T)max = Smax _T max;

4 sS~"T= (S)_(T ) =T~"rS isascale onX;

G)IfS S%andT T %henSAT S °T0%and hence, ifS S %and T T %then
SAT S 0TS

(6) (S /\T)min = SMin AT min 504 (S /\T)max = gmax AT max.

(7) S T ifandonlyif S_T T ifandonlyif SAT S .

4.4. Arbitrary joins and meets. As expected, given an arbitrary family of scales onX
we cannot always ensure the existence of its join and/or meein Scale(< ). More precisely,
given a famil\yvof scalesfS'gi»; on X, we de ne

T S iz!Si: Si2|Sl1jq2Q and Vi2|Si= Ti2|Sl1jq2Q1
If 20 i21S4= ?. then we have that:
(1) ", S'is gpscale onX;
@) f\VXyzl st = _ i2|f i '
@ S = 21 S .

i21 Sy = X we have that:

D\L}ally, if ® .
gg; fViZ,S' = v if2| S ' is ascale onX;
Vi2l SI__ i21 -Fi’ .
6 7S = i21 S' e,

T In garticular,—rif th§re is a scale T n X _such that S' T V(pr eachi 2 1, then
?20 iz'Sa ®q i211q =\7 and so i» S' is ascale onX zwd i'ZIS' T . Similarly,
if T S 'foreachi2l,then ,, S'isascaleonX andT i1 S'.

4.5. Product with a scalar. Givenr 2 R such thatr > 0 and a scaleS on X, we de ne
S .
rS=  pSe)02Q:

We have that:

(1) r Sis ascale onX;

2 1fsS T thenr S r T andhence,ifS T thenr S r T;
@ [r S]=fr T|T 2[S]g;

(4) (r S)Mn = (S)MN gnd (r S)M&  (S)M:
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B)1 s s;

(6) r S5= S'S for eachs 2 R;

@) r S r S ;

®r S_T rS_r T andr SA/T rs™~r T.
Further, we de ne

rS= (r)S ifr<0 and 0T=38"

4.6. Sum and di erence. Given two scalesS and T on X, we de ne

S S
We hiv;;rh;: 020Sp\ Tq pjd2Q and S T = ,55nT, qjq2Q
(1) S+ T =T+ Sisascale onX;
2 Ifs sS%ndT T %henS+T S % T%and hence, ifS S %and T T %then
S+T S% T8
(3) S°+ S S, i.e. the constant scale with value 0 is the neutral element w.t the sum;
(4) S"+ S5 S 'S for eachr;s 2 R;
B5) S+T S + T ;
®)r S+T r S+ r T foreachr 2 R;
ST T + S

4.7. Product. Given two scalesS and T on X such that S° S : T, we de ne

S T=
Then S T is a scale onX.
More generally, given a scaleS on X let

S*=sS S% and S =(S)_S°
(Noticethat S S * S .) Given two arbitrary scales S and T on X, we de ne
ST= ST (" T) (S TH+(S T ):
We have that:

(1)) S T T S isascaleonX;

2 1fS S%ndT T %hensS T SOTC

(3) S S S ,i.e. the constant scale with value 1 is the neutral element w.t the product;
(4 r S=S" Sforeachr 2 R;

B ST S T S T

S T+T9= S T+ S 719,

o<p Sp \ T%qu Q:

5. Semicontinuous real functions and scales

In what follows the spaceX will be endowed with a topology OX and we will try to
see how to deal with semicontinuous real functions in terms foscales.

Let (X; OX) be a topological space. A functionf : X ! R is lower (resp. upper)
semicontinuous if and only if [f >g]2 OX (resp. f<qg]20OX) foreachq?2 Q. The
collections of all lower (resp. upper) semicontinuous redunctions on X will be denoted by
LSC(X) (resp. USC(X)). Elements of C(X) = LSC( X )\ USC(X) are called continuous.

As mentioned in the Introduction, in this work we focus our attention on scales of
arbitrary subsets generating arbitrary real functions and then we study particular types
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of scales generating continuous (and semicontinuous) futions. We introduce now the
following terminology:

De nition 15. Let (X; OX) be a topological space. A scal& on X is said to be:
(1) lower semicontinuousif Sq  Int S, wheneverp<q 2 Q.

(2) upper semicontinuousif CI' Sq; Sy wheneverp<q 2 Q.

(3) continuous if CI' Sq  Int S, wheneverp<q 2 Q.

Remarks 16. (1) If Sq 2 OX for eachqgq 2 Q, i.e if S is a scale of open subsets oX,
then it is automatically lower semicontinuous and it is continuous if CISy S, whenever
p<q2Q.

Consequently a continuous scale of open subsets Xf is precisely a scale orDX in the
sense of De nition 4.

(2) Any scale on X is continuous whenOX is the discrete topology onX . On the other
hand, the only continuous scales whei®X is the indiscrete topology onX are the constant
ones.

Now we have the following result which motivates the notatian introduced.

Proposition 17. Let S be a scale on(X; OX) and fs the real function generated byS:
(1) S is lower semicontinuous if and only iffg 2 LSC(X);

(2) S is upper semicontinuous if and only iff g 2 USC(X);

(3) S is continuous if and only if fg 2 C(X);

Since our intention is to work purely in terms of scales, we ned still some further
characterizations:

Proposition 18. For a scale S on (X; OX) the following are equivalent:
(1) S is lower semicontinuous;
(2) There exists a scale of open subse@ such thatT S ;

(3) S™n s a scale of open subsets, i.e. 4>p S0 is open for eachp 2 Q.

Clearly enough, S is upper semicontinuous if and only if S is lower semicontinuous.
Hence we have:

Corollary 19. For a scale S on (X; OX) the following are equivalent:
(1) S is upper semicontinuous;
(2) There exists a scale of closed subse® such thatT S ;

(3) S™* is a scale of closed subsets, i.e. q<p o4 is closed for eachp 2 Q.

Corollary 20. For a scale onS on (X; OX) the following are equivalent:

(1) S is continuous;

(2) There exist a scaleT of open subsets and a scal of closed subsets satisfying
T0 S5

(3) S™n s a scale of open subsets an8™ is a scale of closed subsets.

Now we use the descriptions of the algebraic operations obtaed in the previous section
together with these characterization to obtain the following:

Proposition 21. Let S;T and S' (i 2 1) be scales on(X; OX) andr 2 R*. Then:

(1) S" is continuous;

(2) If S is lower (resp. upper) semicontinuous, thenS is upper (resp. lower) semicon-
tinuous;
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(3) If Sand T are lower (resp. upper) serwcontlnuous thensoars T and ST ;

(4) If all S' are lower semicontinuous and ,,S' is a scale, then it is S lower semlcontln-
uous; v _

(5) If all S' are upper semicontinuous and ;,, S' is a scale, then it is lower semicontin-
uous;

(6) If S is lower (resp. upper) semicontinuous, then so ig S;

(7) If Sand T are lower (resp. upper) semicontinuous, then so IS+ T;

(8) If Sand T are lower (resp. upper) semicontinuous andS® S ; T, then so isS T.

Of course, the previous results are well-known properties fien we think in terms of
real functions. But we want to stress here that the interest d this approach (in terms of
scales) is that it can be easily generalized to the pointfresetting, as it has been recently
done in [12].

6. Representability of preorders through scales

Finally, in this section the topological space (X; OX) will be additionally endowed with
a preorder R (a re exive and transitive relation on X). The pair (X; R) will be referred
to as a preordered set and the triple K; OX; R) consisting of a topological spaceX; OX)
endowed with a preorderR will be referred to as a topological preordered space. The
asymmetric part P of R is de ned for each x;y 2 X asxPy if and only if xRy and not
yRX.

In this section we will try to see how to deal with real functions de ned on a topological
preordered space X; OX; R) which preserve the preorderR as well as its asymmetric part
P, in terms of scales.

A subset A of (X; R) is said to beincreasing if xRy together with x 2 A imply y 2 A.
For a subsetA of X we write i(A) = fy 2 X j 9x 2 A such that xRyg to denote the
smallest increasing subset oX containing A.

A function f : (X;R) ! (R; ) is increasing if f (x) f (y) whenever xRy, stricly
increasing if f (x) <f (y) wheneverxPy aand it is a preorder embeddingn casef (x) f (y)
if and only if xRy. A preorder R on X is said to berepresentableif there exists a preorder
embedding (also called utility function ™) f : (X; R) ! (R; ). We introduce now the
following terminology:

De nition 22. Let (X; R) be a preordered set. A scales on X is said to be:

(1) increasing if i(Sq) Sp wheneverp<q 2 Q;

(2) strictly increasing if for each x;y 2 X with xPy there exist p < q 2 Q such that
X2 Spandy Z S,

(3) preorder embeddingin case it is both increasing and strictly increasing.

Remarks 23. (1) If Sy is increasing for eachq2 Q, i.e if S is a scale of increasing subsets
of X, then S is automatically a increasing scale.

(2) The notion of continuous preorder embedding scale is ckely related with that of linear
separable system in a preordered topological space ([13,,18]), i.e. a family F of open
decreasing subsets ok which is linearly ordered by set inclusion and such that thee exist
setsE1;E2 2 F suchthatE; E, and for all setsE1;E> 2 F such that CIE; E5 there
exists some sefez 2 F such that CIE; Ez ClIEz Eos.

The following result that justi es the notation introduced (cf. [1, Theorem 2.2]).
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Proposition 24. Let S be a scale on(X; R) and fs the real function generated byS.
Then:

(1) S is increasing if and only if fs is increasing;
(2) S is strictly increasing if and only if fg is strictly increasing;
(3) S is a preorder embedding if and only iff 5 is a utility function;

Finally we provide a sample result which shows how the concepof a scale furnishes
interesting results on the existence of (continuous) utilty representations:

Theorem 25. [1, Theorem 2.5]Let (X; OX; R) be a preordered topological space. The
following conditions are equivalent:

(1) There exists a (continuous) preorder embedding scale.
(2) There exists a (continuous) utility function u: (X; OX; R) ! (R; ).
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Abstract

In this paper we show some topics where fractal structures gpear in a natu-
ral way. These include transitive quasi-uniformities, nonarchimedean quasi-
metrics, metrization, space lling curves, topological dimension, fractal dimen-
sion and self similar sets. On the other hand, we give a theore that allows

the construction of lling curves and discuss some of its apfications to prove

classical theorems as well as applications to Computer Sciee.

1. Definitions

Let be a coveringg Recall that St(x; ) = SfA 2 : X2 Ag. Wedene U =
f(x;y)2X X:y62 fA2 : x62AQ.

Let ; and , be coverings of a seX. We denote bye 1 2 if 1 2 (thatis, 1
is arenement of ,)and foreachB 2 ,itholdsB= fA2 ::A Bg

De nition 1 ([2]). A base of directed fractal structure on a setX is a family of coverings

=f .12 lgsuchthatfor eachi;j 2 | there existsk 2 | with i and g j -
A base of directed fractal structure on a setX is said to be a directed fractal structure
if given coverings and with and 2 ,itfollowsthat 2

If is a base of directed fractal structure on a seiX then it is clear that the family of
coveringsf :there exists 22 with © g is a directed fractal structure.

If is a (base of) directed fractal structure onX, we will say that (X; ) is a directed
GF-space. If there is no confusion about , we will say that X is a directed GF-space.

De nition 2 ([1]). A countable base of directed fractal structure will be callal for brevity
a fractal structure.

Directed fractal structures are related with transitive quasi-uniformities. This relation
can be found in [2] and is brie y described now. If is a (base of) directed fractal structure
on X, the family fU : 2 gis a transitive base of quasi-uniformity.

Conversely, if B is a transitive base of quasi-uniformity, the converings g = fU %(x):
U 2 Bg, whenB 2 B, form a base of directed fractal structure.

The topology induced by a directed fractal structure on a setX is de ned as the
topology induced by the quasi-uniformity induced by

IThe author acknowledges the support of the Spanish Ministry of Science and Innovation, grant
MTM2009-12872-C02-01.
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As usual, we will say that a directed fractal structure is compatible with a topology
T if the topolgy induced by agrees withT .

A (base of) (directed) fractal structure can have some propdies. We introduce some-
ones next:

(1) is starbase iffSt(x; ): 2 gis a neighborhood base ok for all x 2 X.
(2) is nite (resp. locally nite, tiling) if is a nite (resp. | ocally nite, tiling)
covering for each 2
The directed fractal structure induced on a subspaceA of X is de ned as usual by
a=f a: 2 g where n=fB\ A:B2 g
Note that (see [2]) if is a directed fractal structure on X, then eafch covering 2 is
a hereditarily closure preserving closed covering ok and U 1(x)= fA 2 : x2 Ag.

1.1. Fractal structures vs pre-fractal structures. If (X; ) is a topological space, a
pre-fractal structure on X is a family = f , :n 2 Ng of coverings such thatfU (x) :
X 2 X gis an open neighbourhood base of for eachx 2 X.

Proposition 3 ([3, Prop. 2.4]). Let be a pre-fractal structure for (X; 4. Thenfs( )=
ffs( n):2 Ngis a fractal structure compatible with , wherefs( ) =f ; A :Aj 2
for eachi  ng. Moreover, if is starbase (respectively locally nite, nite) then so is

fs( ).

Thus, fs( ) allows us to construct fractal structures from pre-fractal ones.

2. Fractal structures arise in a natural way in different topic S.

Fractal structures appear in a natural way in di erent topics of General Topology. Next,
we will show some of them.

2.1. Directed fractal structures and transitive quasi-uniformities. A collection of
spbsetsA is said to be hereditarily interior preserving if for any subfamily B A it holds
( gogB) = p2B B . Ajfs said_to be hereditarily closure preserving if for any sukdmily
B A itholds g, B= gy B.

It is easy to see that A is hereditarily interior preserving if and only if the family
fX nA: A 2Ag is hereditarily closure preserving.

In [12, 2.6] it is show that transitive quasi-uniformities can be described in terms of a
family of hereditarily interior preserving open collections. It is done as follews:

If Cis a collection of subsets of a seK, let Uc = f(x;y)2 X X :y2 fC2C:x2
Cgo.

If A is a nonempty family of collections of subsets o, let Uy = fUc: C 2 Ag.

Theorem 4 ([12, Th. 2.6]). Let (X; ) be a topological Space an leA be a family of
hereditarily interior preserving open collections such tlat A is a subbase for . Then
Ua is a transitive quasi-uniformity compatible with

Conversely, if U is a compatible transitive quasi-uniformity, there is a colection A of
hereditarily interior preserving open covers of X such that A is a subbase for and
U= UA.

In the light of this result, it is natural to try to describe tr ansitive quasi-uniformities
by mean of a family of hereditarily closure preserving close collections of subsets oiX .
This family is (a base of) a directed fractal structure. See sction 1 for the description of
transitive quasi-uniformities by mean of directed fractal structures.
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2.2. Fractal structures and non archimedean quasi-metrics. A quasipseudometric
on a setX is a nonnegative real-valued functiond on X X such that for all x;y;z 2 X :(i)
d(x;x) =0, and (i) d(x;y) d(x;z)+ d(z;y). If in addition d satis es the condition (iii)
d(x;y) = d(y;x) =01 x =y, then dis called a quasi-metric.

A non-archimedean gquasipseudometric is a quasipseudométrthat veries d(x;y)
maxf d(x; z);d(z;y)g for all x;y;z 2 X.

If we apply the previous subsection to fractal structures weget the relation between
fractal structures and non archimedean quasi-metrics. Thsé relation can be described
directly as follows:

If is a fractal structure, it induces a non archimedean quasi-ratric which can be
dened by 2 ("D if y 2 Uy NUyns1y, by 1if y 62Ux1 and by 0 if y 2 Uy, for all n 2 N.
It holds that Uy, = B(X; Zin). Here we have used the notationUy, = Uy .

If dis a non-archimedean quasi-metric and we de ne , = fBy4 1(X; Zin) : X 2 Xg, then

=f ,:n 2 Ngis a fractal structure. Moreover Uy, = B(X; Zin).

In particular we have the following non archimedean quasi-retrization theorem:

Theorem 5 ([1]). Let X be aTp topological space. ThenX admits a compatible non
archimedean quasi-metric if and only if it admits a compatitbe fractal structure.

2.3. Fractal structures and metrization. Fractal structures appears in a natural way
in metrization theorems. As an example, we have Morita's metization Theorem

Theorem 6 ([9, 5.4.d]). A Ty topological spaceX is metrizable if and only if it has
a sequence 1; »o;::. of locally nite closed covers such thatfSt(x; ,) : n 2 Ngis a
neighbourhood base ok for eachx 2 X.

Note that if we have a sequence 1; »;::: of locally nite closed covers such that
fSt(x; n):n 2 Ngis a neighbourhood base ok for eachx 2 X,then =f ,:n2 Ng
is a locally nite starbase pre-fractal structure on X, sofs( ) is a locally nite starbase
fractal structure on X.

Using pre-fractal structures, Morita's Theorem can be staed as: AT topological space
is metrizable if and only if it has a locally nite starbase pre-fractal structure.

Hence fractal structures appear naturally when working with metrization issues. Morita's
Theorem can be generalized as follows.

Theorem 7 ([4, Cor. 3.18]). Let X be aTy topological space. The following statements
are equivalent:

(1) X is metrizable.
(2) X is regular and there exists a compatible locally nite fractal structure on X.
(3) There exists a compatible starbase fractal structure orX .

Also, we can give conditions for separable metrizability.

Theorem 8. ([4, Section 4) Let X be aTy topological space. The following statements
are equivalent:

(1) X is metrizable and separable.
(2) X is regular and there exists a compatible nite fractal strucdure on X.
(3) There exists a compatible nite starbase fractal structue on X.

In fact, the previous theorems can be related with classicainetrization theorems due to
Urysohn and Nagata-Smirnov, since there is a relation betwen countable bases and nite
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fractal structures ([4, Th. 4.3]) as well as between -locally nite bases and locally nite
fractal structures ([3, Cor. 4.6]).

For other relations of this metrization theorems with other metrizations theorems in
the literature see [3].

2.4. Fractal structures and curve lling. Since Peano ([17]) gave a plane lling curve,
a number of such curves have appeared in the literature. Perps the most famous of such
curves is the so called Hilbert space- lling curve ([13]).

Next, we present the construction of the Hilbert curve by ushg fractal structures.

We consider X = [0;1] with the fractal structure given by = f , :n 2 Ng, where
n= flh 5]k 210;:::;22"  1gg We also considerY = [0;1F with the natural
fractal structure givenby = ,:n2 Ng, where o= f[&;ktl] [k kerdyo gk, 2

f0;:::;2"  1gg.

Figure 1. Construction of the rst and second level of the Hilbert's curve.

Now, we are going to de ne a mapf : X ! Y by de ning the image of each element of
level .

In gure 1, we illustrate the de nition of f. It can be read as: the image of the interval
[0; 1] is the square [03] [O; 3], the image of the inverval [}; 2] is the square §;1] [0; 3]
and so on.

Indeed, to construct a map from X onto Y, we only have to de ne a sequence of onto
mapsfn: n! n for eachn 2 N which verify:

If A\ B 6 ; then fn(A)\ fn(B)6 ; for A;B 2 .
fA2 ,andB 2 na with B A, then foa (B)  fn(A).

Intuitively, this is a recursive construction in which we provide more information of the
map as we go into deeper Iev@. If an element é n issenttoB 2 , by f,, in the next
leveln+1, we have that A= ,,, AjandB = ,;Bj with Aj 2 41 and Bj 2 4y
By de ning f, we know that A is sent to B, but when we de ne f .1 we know that each
Aj must be sent to someB;, so with f.; we are re ning the de nition of f, providing
more information about f . In this sense,f can be considered as the limit of the maps ,,.

So fractal structures provide a natural way to de ne space lling curves recursively as
above. We explore this in section 4.
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2.5. Fractal structures and topological dimension. Directed fractal structures were
used in the literature for the study of topological dimensian (though not with this name).
First, we introduce some notation. The order of a pointx in a covering , denoted by
Ord(x; ), is de ned as the number of elements in which contains x minus one. The
order of a covering is dened as Ord(x; )= supfOrd(x; ): x 2 Xg.
If =1 ;:i2Ilgis a family of coverings, we denoteOrd( ) = supfOrd( ;):i 2 lg.
In [18], Pears and Mack studied some dimension functions thacan be described by
using directed fractal structures.

(1) 1(X) to be the least integern for which there exists a compatible (locally nite)
starbase directed fractal structure onX with order at most n, and 1(X)= 1 if
there no exists such an integer.

(2) 2(X) to be the least integer n for which there exists a compatible (locally nite)
tiling directed fractal structure on X with order at most n, and »(X) = 1 if
there no exists such an integer.

They proved the following results:

X is regular and »(X) n if and only if there exists a compatible locally nite
starbase directed fractal structure onX with order at most n.
ind(X)=0ifand only if ((X)=0ifand only if »(X)=0.
For any topological spaceX it follows that ind(X) 1(X) and if X is also a
regular space thenind (X) 1(X) 2(X).
If X is a strongly metrizable space thenind(X) = Ind(X) = dim(X) = 1(X) =
2(X).
Where ind is the small inductive dimension, Ind is the large inductive dimension and
dim is the covering dimension.
So it seems natural to use fractal structures to study dimen®n. In fact, if we use
fractal structures instead of directed fractal structures we can characterize the covering
dimension.

Theorem 9 ([6]). The following statements are equivalent:

(1) X is metrizable anddim(X) n.
(2) There exists a compatible tiling starbase fractal struatire on X of order less than

or equal ton.
(3) There exists a compatible starbase fractal structure orX of order less than or equal
to n.
2.6. Fractal structures and self similar sets. We recall the de nition of classical

self-similar set given by Hutchinson [15].

De nition 10. Let X be a complete metric space andf;gi»; be a nite family of con-
tractions from X igto itself. Then there exists a unique non-empty compact sbset K of
X such that K = ,, fi(K). K is called a self-similar set.

In a self-similar set, a fractal structure can be de ned in a ratural way. This fractal
structure were rst sketched in [8]. In fact, this is the origen of the name fractal structure.

De nition 11. Let X be a self-similar set given by the set of contractiondf; :i 2 Ig.
The natural fractal structure of the self-similar set is de ned by =f , :n 2 Ng such
that = ff(X):w2I"g, wherefy, = fy, ::: fy,, with w= wy:::iwy.

Then, the study of this fractal structure for self-similar sets can give very useful insight
to study the topology of these sets. See [7] for a detailed stly.
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2.7. Fractal structures and fractal dimension. One of the main tools that can be
used when working with fractals is the fractal dimension. Usially it is used the Hausdor
dimension and the box counting dimension. The former is \beter" from a theoretical
point of view, while the latter is \better" from an applicati on point of view.

Popularity of box counting dimension is due to the posibility of its calculation and
empirical estimation. Itis also known as Kolmogorov entrofy, entropy dimension, capacity
dimension, metric dimension, information dimension, etc. We refer the reader to [10] for
the theories of the Hausdor and box counting dimensions.

Thus, the (lower/upper) box-counting dimensions of a non enpty bounded subsetF
RY are de ned as the (lower/upper) limit:

. _ . logN (F)
(1) dimg(F) = |II!TI0 g
if this limit exists, where the quantity N (F) can be taken as the number of -cubes that
meet F. Where a -cube inRY is of the form [ky; (ky +1) ] ::: [kq; (kg+1) ], with

ki 2 Z;i 2f1;:::;dg. The limit can be discretized, for example, by taking as 2 ".

In practical appllcatlons box counting dimension is estimated as the slope of a Iog log
graph for a suitable discrete collection of scales.

The natural fractal structure on the euclidean spaceR® is de ned as the countable family
of coverings = f ,:n2 Ng, where = f[k; K] (ke katly oo (K katly oy 2
Z;i 2f1;:::;dggforall n 2 N.

SoN (F) (for =2 M)is just the number of elements of leveln of the fractal structure
which meet F.

With this in mind, it seems quite natural to de ne a notion of f ractal dimension for
any fractal structure which yields as a particular case the twx counting dimension when
the fractal structure is the natural one on an euclidean spae. This notion can allows to
use the fractal dimension in non euclidean spaces, while (the fractal structure is good
enough) it is possible an easy empirical estimation.

This construction is further developed in [11], where some pplications can also be
found.

3. Inverse limits

Fractal structures can be used to approximate a topologicakpace by means of an inverse
limit of partially ordered sets. Next, we describe how to do this (see [2]).

First, a partially ordered set (or poset) is a setG with a partial order . The order
induces a quasi-uniformity generated by the entouragd (a;b) 2 G G:a bg. Note that
a map between posets is quasi-uniformly continuous if and dw if it preserves the order.

Let =1 ;:i 2 Igbe a directed fractal structure. For eachi 2 | we dene G; =
fUS (x) : x 2 Xg, whereU® = U\ U L. SinceU | is a transitive entourage, it follows that
Gi is a partition of X. In G;j we de ne the partial order U® (x)  US(y)i y2 U (x).
Then (G;; i) is a poset.

Now, we de ne the projection mappings ; : X ! G; given by i(x) = U (x) for x 2 X,
and the bonding mappings j : G;! Gj, when ; i by i (US (X)) = USj (x). Note
that if jthenU, U, and hence j is well de ned. Finally, we de ne the map

X I limG;j given by (X) =( i(X))i2i-

Note that ;, j and are quasi-uniformly continuous with respect to the quasi-
uniformity induced by the order or with respect to the product quasi-uniformity in the
case of . Therefore is a quasi-uniform embedding ofX into the inverse limit lim G;.
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If the directed fractal structure is nite, then the posets are nite and if we work with
fractal structures instead of directed fractal structures then lim G; is the inverse limit of
a sequence of posets.

In order to get approximation of spaces by nite posets we hae to work with compact
spaces.

Theorem 12. Let X be a compact Hausdor space, then there exists a compatiblenite
directed fractal structure on X . Let be a nite directed fractal structure on X. Then

(X) is the set of closed points (it is also the Hausdor re ection) of lim G;, that is, the
space can be represented by an inverse limit of a spectra of ite posets.

Theorem 13. Let X be a compact metrizable space, then there exists a compagibhite
fractal structure on X. Let be a nite fractal structure on X. Then (X) is the set
of closed points (it is also the Hausdor re ection) of lim G,, that is, the space can be
represented by an inverse limit of a sequence of nite posets

This last theorem allows to approximate any (compact) objed¢ by a nite poset. So we
can store an approximation of any compact subset oR" as closed as desired and using
only a nite amount of data.

4. Filling curves

In this section we explore how to use fractal structures to dene functions and, in
particular, curves.

We will denote by (A) the diameter of A and if is a covering, we will denote by
()= supf (A):A2 g

A fractal structure  on X is said to be -Gantor complete if for each sequenceA)
with A, 2, and Ap+q A, it holds that  ,yAn is nonempty. Note that if is
starbase, the intersection must be exactly a point and, ifX is compact, any compatible
fractal structure is -Cantor complete.

Note that if  is a fractal structure in a complete metric spaceX such that ( p)
converges to 0, then it is -Cantor complete.

The construction of a lling curve in subsection 2.4 can be geeralized to more general
fractal structures, as we will prove in the next

Theorem 14. Let = f , : n 2 Ng be a compatible starbase fractal structure on a
metric space X and = f 5 :n 2 Ngbe a compatible -Cantor complete starbase
fractal strugture on a ryetric spaceY .
LetF: o8y n! 28 n beamap such that:
F( n) n-

If A\ B 6 ; with A;B 2 , for somen, thenF(A)\ F(B) 6 ;.
IfA BwthA2 ., andB 2 , forsomen2 N, then F(A) F(B).

Tk@n there exists a unique continuous mag : X ! Y with f(A) F(A) for each
Suppose that is -Cantor complete andF veri es in addition:

F( n) =g n

F(A)= fF(B):B2 ,+1;B AgforeachA2_,.
Then f is an onto map andf (A) = F(A) foreachA 2 .\ n.

Proof. First, we dene f : X ! Y. Forx 2 X there exists a sequenceA,) such that
An2 n,An+s1 Apforeachnandx?2 .\ An. Then F(Ap) is a decreasing sequence
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with F(An) 2 and, since is -Cantor complete and starbase, the intersection is
exactly a point, which we can de ne as the image of, that is, ff (x)g= .5 F (An).

f is well dened. Let x 2 X and sequencesAy) and (AR) with An; Al 2 o,
Ans1 TAnand A, A foreachnand x 2, An andx 2, AR, Let
fyg= ,onF(An)and fzg= oy F(AQ). If y 6 z, since is starbase, there
existsn 2 N such that F (A,)\ F(A9) = ;, butsincex 2 Ap\ A9, by the properties
of F we haveF (Ap)\ F(AQS) 6 ;, a contradiction. It follows that y = z.
f(A) F(A)foreachA2 ,y n. Thisis clear from the de nition of f.
f is continuous. Letn 2 Nand x 2 X. If y 2 St(x; ) then there existsA 2
with x;y 2 A. It follows that f (x);f(y) 2 f(A) F(A)and F(A)2 . Hence
f(y) 2 St(f (x); n).
Uniqgeness off. Let g: X ! Y be a continuous map withg(A) F(A) for each
A2 oy n Letx 2 X, then qqere exists a sequenceA,) such-that A, 2 ,
An+1 Ap foreachnandx 2 ,yAn. It follows that g(x) 2 ,,5yF(An) =
ff (x)g, sof (x) = g(x). Thereforef = g.
Suppose that is -Cantor complete and F veri es in addition:

{ F( ”):S n

{ F(A)= fF(B):B2 ,+1;B AgforeachA2 . S

Let us prove that f is an onto map andf (A) = F(A) for each A2 o -

Indeed, we only have to prove thatF(A) f(A)foreachA2 .\ n (since
this implies that f is onto). Letn2 N, A2 ,andy 2 F(A). Let B, = F(A)
and A, = A. By hypothesis there existsAp+1 2 n+1 With Aps1 Ap and such
that y 2 F(An+1) F(Ap); let Bh+1 = F(An+1). Recursively, we can construct
sequencesBy)k n and (A)k n with Ay 2 «, F(AK) = Bk 2 «,y 2 By for
k nandfA\, = A andBp = F(A). Since is -Cantor complete and starbase we
have that |, |, Ax = fxg for somex 2 X, and, by construction of the sequences,
it is clear that f (x) = y and x 2 A. Thereforey 2 f (A).

The previous theorem is the key for using fractal structuresto de ne functions (or
curves). It can be read as: we de ne the image of the rst levelof the fractal structure
as a rst approach to the de nition of the function. Then, we r e ne the de nition to the
second level, and so on. If this re ning process veri es somaatural conditions (just for
the coherence of the de nition), then there really exists a nap de ned in the space which
agrees with the aproaches in each level.

Next, we show two theoretical applications of the theorem.

The rst one is the Hahn-Mazurkiewicz Theorem (see [5] for a @tailed proof).

First, we need the following de nition: we say that a cover of X is connected, if for
all x;y 2 X, there exists a nite subfamily fA; :0 i k+1lgof with x2 Ag,y 2 Ag+1
and Aj\ A; 6 ; forallji jj 1 (wecallitachainin joining x andy). We say that a
fractal structure is connected if all the levels of are connected. Note ([5, Prop. 3.5])
that if X is connected then each compatible fractal structure is conected.

Theorem 15. Let X be a compact connected locally connected metrizable spaeds called

a Peano continuum). Then X is the image of a curve (there exists a continuous map from
[0; 1] onto X).
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Proof. We sketch the proof. First, we note that there exists a compaible nite starbase
fractal structure  on X such that A is connected for eactA 2 |, and eachn 2 N. Since
X is compact, is -Cantor complete, and sinceX is connected, is connected.

Take the rstlevel 1. Since 1 is connected, there exists a chairC= fAq;:::;Ax,0
which uses all elements of ; (maybe some elements are used more than once). If the
chain haskg+1 elements, then we divide [Q 1] in ko +1 subintervals to get the rst level of
the fractal structure on [0; 1], thatis ;= f[ko|—+1; k'0++11] :0 i kog. Then we de ne the
rst approach to the curve by sending each element of ; to the corresponding element of
the chain (in 1), that is, [ s g ] is sent to A;.

Now, take the second level ,. SinceCis a chain, there exist pointsa; 2 Aj \ Aj:1
for0 i ko 1, andtakea 1 2 Ap and ax, 2 Ay,. For eachi 2 f0;:::;Kog, since

all elements offB 2 , : B  Ajg. By construction, by joining all the chains we get

a greater chain which joinsa ; with ay,. To dene ; on [0 1], we divide each interval

[kt k'o"—+11] in ki + 1 subintervals of the same length. Then we de ne the second pproach

to the curve by sending each element of , to the corresponding element of the chain in
_ / . ~= ] .

2 thatis, [y + o ket + (korl) (ke 1S Sent Lo A .

The de nition of |, and the de nitionof F : ! n is made recursively following the
same process. Note that, from the construction, all conditbns of theorem 14 are ful lled,
and hence there exists a mapping from [(L] onto X .

Using similar arguments (see [5, 4.6]) we can prove the follcing theorem due to Alexan-
dro and Urysohn.

Theorem 16. Let X be a compact metrizable space. TheK is the continuous onto image
of the Cantor set.

On the other hand, since the proof of theorem 14 is constructie, by choosing di erent
fractal structures in a space or by choosing di erent chains in the construction, we can get
di erent lling curves. This yields a great exibility in the  construction of lling curves
that is worth in applications.

4.1. Application of space lling curve construction to Computer Science. Space
lling curves have been used in Computer Science in di erent vays. Next, we see some of
them.

In [16], space lling curves are used in image ltering to improve the usual median Iter
in two directions:

(1) to avoid the softening of edges in images,
(2) to avoid the visible e ect of the geometry of the window used.

It is done by considering neighbourhoods of the points giverty the lling curve, instead
of the usual square ones. Constructing a suitable lling cure can be very desirable in this
application, and di erent space lling curves can give di ere nt results, so the possibility
of experimenting with di erent constructions can lead to an improving of the quality of
the lter.

In [19] and [20] (see also references of [20]), a space llirayrve pseudo-inverse is used
in data compression for pattern recognition. The idea is to e the pseudo-inverse to
transform an image (or in general, mutidimensional data) irto the unit interval, and then
to use pattern recognition algorithms in one dimension. In his application, it is needed a
pseudo-inverse with some special properties. With our coriiction, the de nition of the
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psedo-inverse is clear and by choosing suitable fractal sictures and chains, we can get
the special properties, too.

In [14], a space lling curve g is used in order to optimize a functionf : [0;1]°! R. For
example, the problem of maximizingf can be transformed into the problem of maximizing
the function f g :[0;1]! R. To do this, it is used \subdividing" space lling curves,
that is, space lling curves with some properties. By using aurr method, we can construct
such kind of space lling curves. Also, in general,f g can be more easy to maximize
with respect to someg than with respect to another one, so if we can construct di erent
\subdividing" space lling curves, we have more chances to nd a suitable one. Anyway,
it is proved that if the only known fact about f is that it is a Lipschitz map, then an
optimal (in the sense of number of evaluations) strategy formaximizing f is to maximize
f g for any \subdividing" space lling curve g.

So we see that, in applications, it is interesting to have spee lling curves with some
added properties. Our method of construction of Iling curves is exible enough to allow
the construction of very di erent curves as well as make them erify the required properties,
providing us with lots of lling curves which adapt to a given speci c context.
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Abstract

Motivated by the importance of the notion of normed isometry in Func-
tional Analysis and the growing interest in the study of asymmetric normed
(semi)linear spaces, we review the manner to adapt the aformmed notion in
the case of asymmetric normed semilinear spaces.

1. Introduction

In 1994, C. Alegre, J. Ferrer and V. Gregori introduced the ndion of asymmetric norm
on a linear space ([4]), that roughly speaking is a norm whichdoes not satisfy the sym-
metric axiom and holds a weak separation one, and from this awept they proved a
Hahn-Banach theorem for asymmetric normed linear spaces§]). Since then, the interest
in this kind of asymmetric normed structures has grown signicantly and many authors
have explored asymmetric normed linear spaces intensivelyL.M. Garca-Ra, S. Ro-
maguera and E.A. Sanchez-Rerez have extended many resudt of the classical theory of
normed linear spaces to the asymmetric context. Speci call, they have studied the com-
pletion, the weak topology (including an asymmetric versio of the celebrated Alouglu
theorem) and the dual space of an asymmetric normed linear sre ([14, 16]). Moreover
Garca-Ra has obtained a version of the Heine-Borel theorem for nite dimension asym-
metric normed linear spaces ([13]), and Alegre, S. Cobzas, Ferrando, Garca-Ra and
Sanchez-Rerez have gone more deeply into the compactnesa asymmetric normed linear
spaces ([2, 9, 10]). In [1], Alegre has presented general vdts regarding continuous map-
pings between asymmetric normed linear spaces and an asymine version of the open
mapping and closed graph theorems. Some other recent advaes in this research line
have been obtained by A. Alimov, Cobzas, C. Mustata, J. Rodrguez-lopez, Romaguera
and M.P. Schellekens in [6, 7, 8, 11, 23, 24].
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The study of (asymmetric) normed linear spaces leads in a natral way to semilinear
spaces, and this sort of structure has turned out to be very usful to model some pro-
cesses in Computer Science. Speci cally, Garca-Ra , Romaguera and Sanchez-Rerez have
adapted the notion of normed isometry to the asymmetric nornmed linear context (outlin-
ing its adaptation to the context of asymmetric normed semiinear spaces) and they have
used it to establish several connections between asymmetrinormed (semi)linear spaces
and the complexity analysis of algorithms and programs ([1517, 18]). Motivated by the
fact that the notion of normed isometry plays a central role in Functional Analysis, since
it allows to develop the duality theory and to analyze whetha a normed linear space
is re exive, and by the utility of its asymmetric version in t he aforesaid applied science
we focus our attention on reviewing the manner of de ning a nemed isometry between
semilinear spaces in such way that, on one hand, the de nitia provides the reason for
working correctly the normed isometries between asymmetd normed semilinear spaces
constructed in [15] and, on the other hand, retrieves as a pdicular case the de nition of
normed isometry between (asymmetric) normed linear spaces

2. Preliminaries

This section is devoted to recall the pertinent concepts abot quasi-metric spaces and
asymmetric normed linear spaces that will be essential in oulater discussion in Section
3.

Throughout this paper the letters R* and N will denote the set of nonnegative real
numbers and the set of positive integer numbers, respective

Our main references for quasi-metric spaces are [12] and [22

Following the modern terminology a quasi-metricd on a (nonempty) setX is a function
d:X X! R* suchthatforall x;y;z2 X :

(i) d(x;y) = d(y;x)=0, x=y;
(i) d(x;z) d(x;y)+ d(y;2):

Of course a metric on a setX is a quasi-metric d on X satisfying, in addition, the
following condition for all x;y 2 X :

(iii) d(x;y) = d(y;x):

Each quasi-metricd on a setX induces a topologyT (d) on X which has as a base the
family of open d-balls fBg(x;r) : x 2 X; r> 0g; whereBgy(x;r) = fy 2 X :d(Xx;y) <rg
forall x 2 X andr> O:

Observe that if d is a quasi-metric, thenT(d) is a To topology.

A quasi-metric space is a pair K;d) such that X is a nonempty set andd is a quasi-
metric on X.

If dis a quasi-metric on a setX, then the function d® : X X ! R* dened by
dS(x;y) = max fd(x;y);d(y; x)g is a metric on X .

Recall that if (X;d1) and (Y; &) are quasi-metric spaces, then a mapping : X ! Y is
a quasi-metric isometry provided that

dz(f (x); £ (y)) = du(xy)

for all x;y 2 X: Two quasi-metric spaces are said to be isometric if there egis an onto
quasi-metric isometry between them.
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As usual a mappingf : X ! Y between linear spaces is said to be linear if it satis es
the following conditions for all x;y 2 X and 2 R:

i) fx+y)=1fx)+ f(y);

i f( x)=f (x):

Following [16], an asymmetric norm on a linear spaceX is a functionq: X ! R* such
that for all x;y 2 X and 2 R*:

() x=0, q(x)=q( x)=0;
(i) aC  x)= a(x);
(i) a(x+y) a(x)+ aly):

Clearly every norm on a linear space is an asymmetric norm s#&fying the below con-
dition forall x 2 X and 2 R:

(i%aC x)=] jax):

The pair (X; q) will be called asymmetric normed linear spaceif X is a linear space and
g is an asymmetric norm on X . As a patrticular case of this de nition one can retrieve
that of normed linear space.

Observe that an asymmetric normqg on a linear spaceX induces, in a natural way, a
norm ¢° on X de ned by g°(x) = maxfq(x);q( x)g for all x 2 X:

An easy, but very useful, example of an asymmetric normed liear space is given by the
pair (R;u) whereu : R! R"is dened by u(x) = maxfx; 0g: It is immediate to check
that u® is the Euclidean norm onR; i.e. (R;u®) is the Euclidean normed space R;j j):

An asymmetric norm g on a linear spaceX induces a quasi-metricd; on X de ned for
all x;y 2 X by

dg(x;y) = aly x):

A normed isometry from an asymmetric normed linear space X;q1) to an asymmetric
normed linear space ¥; @) is a linear mappingf : X ! Y which preserves the asymmetric
norms, that is f holds

(f (x)) = @(x)
for all x 2 X . Notice that every normed isometry is injective. Moreover,it is clear that if
f is a normed isometry between the asymmetric normed linear sgces ;1) and (Y; @),
then it is a quasi-metric isometry from (X;dg,) to (Y;dy,), since

(1) Aoy (F ()T (V) = @(f(y) f(X)= @y x)=aly x)=dgu(xy)

1

it (xy Off 1o (X)) are uniformly

forall x;y 2 X. Thisimplies that f and the restriction f
continuous.

Two asymmetric normed linear spaces X;q1) and (Y; ) are isometrically isomorphic
if there exists a normed isometryf from X onto Y.

Obviously as a result of the preceding de nition we obtain that two isometrically iso-
morphic asymmetric normed linear spaces are equivalent fra the algebraic, topological
and quasi-metric viewpoint. Observe that this equivalenceis essentially guaranteed, in

the above chain of equalities, by the fact thatgp(f (y X)) = qu(y x) forall x;y 2 X.

We will say that a nonempty subset C of a linear space X is a semilinear spacewWedge
in [20] and cone in [21]) if the following two conditions hold:

() c+C C;
(i) C Cforal 2R*":
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It is clear that every linear space is also a semilinear space

Given the semilinear spacesC; and C, of the linear spacesX and Y respectively, a
mapping f : C; ! C, is said to be linear if satis es the below conditions for allx;y 2 C;
and 2 R*:

() fx+y)="1fx)+ f(y);
() f( x)= f (x):

In accordance with [15, 16], an asymmetric normed semilingaspace is a pair C;oc)
such that C is a semilinear space of an asymmetric normed linear spac&;q) and qc is
the restriction of the asymmetric norm g to C. From now on, the restriction gc of the
asymmetric norm g, de ned on X, to C will be also denoted byq if no confusion arises.
In the same way the restriction dgjc of the quasi-metric d; on X to C will be denoted by
dg.
! Of course, every asymmetric normed linear space is an asyminie normed semilinear
space whereC = X.

3. In search of a definition for the concept of normed isometry b etween
asymmetric normed semilinear spaces

In the following we focus our research on the notion of normedsometry for the case of
asymmetric normed semilinear spaces. Speci cally our aimsi to introduce an appropriate
de nition of normed isometry when one considers asymmetricnormed semilinear spaces
instead of asymmetric normed linear spaces. One can conjegt that the notion of normed
isometry in the semilinear framework can be postulated, as aesult of a literal adaptation,
replacing asymmetric normed linear spaces by asymmetric mmed semilinear spaces in
the above de nition of normed isometry (given in Section 2). Unfortunately there exist
linear mappings de ned between asymmetric normed semiling spaces which preserve the
asymmetric norms and, nevertheless, they are not quasi-mdt isometries such as the next
example shows.

Example 1. Denotg by, the linear space formed by all in nite sequencesX,)n2n of real
numbers such that +_; jxnj < 1 and let 0,, be the neutral element inl;. De ne the
functions g : 11! R* andp: 1! R* as follows:

ps ps
q(x) = u(xp) and p(x)= maxf x,; 2Xng
n=1 n=1
whereXx = ( Xp)n2n. A straightforward computation shows that ¢ and g are asymmetric
norms onlj. P p
It is evident that o (X) loixnj<1 andgp(x) 2 1 jxpj< 1 forall x 2.
Consider the subsetsC; and C, of I; given by

Ci=f(Xn)nan2l1:x1>0andx, =0forall n> 1g[f 0,0
and
Co=f(Xn)nan 2 11 :x1  0g:

It is easily seen that C; and C, are semilinear spaces of,. So the pairs C1;q1) and
(Cy; p) are asymmetric normed semilinear spaces.
Next de ne the mapping i : C; ! Cy by i(x) = x. Clearly the mapping i is linear.
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Furthermore,

p(i(X)) = X1 = u(x)
for all x 2 C;. However the mappingi is not a quasi-metric isometry between C1;dg,) to
(Co;dg,). Indeed, let x;y 2 Cq such that x; =1 and y; = 2. Then

de (I(y);i(x)) =2 and dg(y;x) =0:

In addition to the handicap exposed in the preceding examplghere exist another dis-
advantages when we adapt literally the de nition of normed isometry between asymmet-
ric normed linear spaces to the semilinear framework. In pafcular, and contrarily to
the asymmetric normed linear case, there exist normed isontées between asymmetric
normed semilinear spaces which are not injective such as wén@w in the next example
(this fact was already pointed out in [19]).

Example 2. Consider the asymmetric normed linear spacel{ ;q; ) of all in nite se-
quences Xn)n2n Of real numbers such that sug,njXxnj < 1 with qp : 13 ! R™ given
by o1 (X) = sup,onU(Xp) With x := (Xpn)n2n (for a deeper study of this asymmetric linear
spaces we refer the reader to [15]). Let us denote by,0 the neutral element inl; . Let

Ci=f(Xn)n2an 211 :x3>0andx, Oforalln> 1g[f 0, g

and
Co=f(Xn)n2an 211 :x3>0andx, =0forall n> 1g[f O, g:
It is clear that C; and C, are semilinear spaces of; . De ne the mapping f : C1! C,
by
_ X1 fn=1
(f (X))n— O ifn> 1
for all x 2 Cy. Itis a simple matter to check that f is linear. Moreover, it is trivial that

o (f (X)) = a (x)
B . _ 1 ifn=1 _ 1 ifn=1
forall x 2 C;. But f (&) = f (@) with & = 1 ifn> 1 and g = 5 ifn> 1

Consequentlyf is not injective.

As we have seen in the preliminaries, the normed isometriesdiween asymmetric normed
spaces are continuous. The following example proves that #re are linear mappings be-
tween asymmetric normed semilinear spaces which preservdné asymmetric norm and
they are not continuous, even if one consider the respectiveopologies restricted to the
semilinear spaces.

Example 3. On the linear space R? we consider the asymmetric normsqu((x;y)) =
mafotU(X);U(y)g and c((x;y)) = u(x) + u(y):
e
Ci=f(xy)2R*:x 0Oy 0g
and
Co=f(xy)2R?:y= xg
SinceC; and C, are semilinear spaces dR?; the pairs (C1; 1) and (Cy; gp) are asymmetric
normed semilinear spaces.
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De ne the mapping f : C; ! Co by f((X;y)) =(x; x): This mapping is linear and
R(f (x;y))) = ®((x; X)) = u(x)+ u( x)= u(x)=

= maxfu(x); u(y)g = a((x;y))
for all (x;y) 2 Cy:
Now we show thatf : (Cy;T(dg)jc,) ! (C2;T(dg,)jc,) is not continuous. Indeed, let
(Xn)n2n be a sequence irCy given by x, = (l;O) for all n 2 N. It is clear that (Xn)n2N
converges tox 2 C; with x = (2;0), since

1 1
do,(ixn) = (= 20)= u(C 2)=0:
Nevertheless, { (Xn))n2n dOes not converge tof (x) because

L a0 ()= @t 22 D=u@ )
for all n 2 N.

In [15] it has been introduced the so-called duap-complexity space in order to provide
a suitable mathematical formalism, based on asymmetric naned (semi)linear spaces,
for the asymptotic complexity analysis of algorithms. In particular, the aforementioned
complexity space is the semilinear spacé€, of the linear spaceB, (1 p< 1), where

X
B,=ff :N!I R: 2 "jf (n)j P< 1g
n=1

and

G =1ff 2B,:f(n) Oforalln2Ng:

From a computational point of view, it is possible to associde each function of G, with a
computational cost in such a way that if f 2 C, then f (n) represents the running time of
performing some tasks by an algorithm (or program) employirg an input data of size n.
Because of this, the elements o€, are called complexity functions.

In many situations the running time of an algorithm is symbolized by a function which
is obtained by addition of two complexity functions or by a combination of complexity
functions multiplied by real numbers. Of course the linear pace B, is the natural frame-
work to represent complexity functions that are obtained by linear combinations of another
complexity functions. However note that if g 2 B, is an example of this kind of complexity
functions, then g denotes a running time of computing if and only ifg 2 C,:

Following the main ideas of Functional Analysis ([21]), thelinear spaceB, was endowed
with an asymmetric norm jj jj By which is de ned by

I 1
X1 P
jifiis, = 2 "u(f (n)
n=1
forall f 2 B,. The utility of the asymmetric normed linear space (B,; jj jj Bp) in complexity
analysis rests on the fact that the numerical valuejjf jj B, can be interpreted as a kind

of \degree" of complexity of an algorithm wheneverf 2 C,; since jjfjjBp denotes the
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complexity distance of f to the \optimal” complexity function O g (the neutral element
of By), i.e. djj; Bp(OBp;f)z jjfjjBp forall f 2 Cp:

Furthermore, in the same reference it was studied the compteness and compactness,
properties that are interesting from a computational viewpoint, of the asymmetric normed
(semi)linear space B;jj i Bp) ((Gosdi i Bp)). This was done with the help of a normed
isometry whose construction we recall in the sequel, since will be very useful in our
subsequent discussion.

Fix 1 p <1, andlet(lyj jj+p) be the asymmetric nqjmed linear space of all
in nite secI:LJJencesx (X = (Xn)n2n) of real numbers such that ﬁ -1 ixnj? < 1, where

jixiiep=( Loy u(xa)P)? for all x 2 Iy,
De ne a mapping : B,! I, by

p

(Cf)Hn=2 "f(n)
forall n 2 Nandf 2 B,. Itis clear that is a linear bijection from ( B;jj |j Bp) to
(Ip;Ji Ji +p)- In addition, a simple computation shows that preserves asymmetric norms,
ie.

I CHii+p = liflis,
for all f 2 B,. Hence is an onto normed isometry, and the asymmetric normed linear
spaces Bp;jj i Bp) and (lp;jj jj+p) are isometrically isomorphic. As an immediate con-
sequence of this result it could be proved that the mapping jcp G ! Ig is an onto
quasi-metric isometry (compare Proposition 5 in [15]), whee the semilinear space is
given by Ig = fx21,:x, Oforalln2 Ng.

Our main interest in the preceding construction resides in he fact that it has several
distinguished characteristics which will help us to nd inspiration in order to propose a
suitable notion of normed isometry for asymmetric normed smilinear spaces.

First of all we want to emphasize that the quasi-metric isoméry between G, and I; is the
restriction of the linear mapping de ned on the whole linea r spaceB, which preserves
asymmetric norms. Thus the restriction of to G, also preserves asymmetric norms, i.e.
il jcp(g )ii+p = i9 fjij forall f 2 C,. Moreover, satisesthat ( G) I;; (in
fact ( G) = 1p).

Thus, given f;g 2 C,, the elementg f 2 B, is in the domain of the mapping

and jj jcp(g fii+p = i fjij. From the last equality we immediately deduce
that djj;, (( f); (9) = djjjij(f;g) for all f;g 2 C,, i.e. that the quasi-metric spaces
(G: djj Bp) and (17 ; djjj; .,) are isometric. Moreover, it seems important to point out that,
in addition, the semilinear spaceG, is generating, i.e.B, = G, C ,. Of course in Example
1 the semilinear spaceX does not enjoy such a property.

Notice that in our rst attempt to de ne a normed isometry for asymmetric semilinear
spaces the mapping is de ned directly from a semilinear spaeinto another one. It is not
suggested that the linear mapping is a restriction of anothe one de ned on the whole linear
space and preserving the asymmetric norms for all elementd the linear space. So itis not
guaranteed that the elements of the formy x, that belong to the linear space but maybe
they are not in the semlinear one, are in the domain of the linar mapping. Hence the
numerical valuesp(f (y X)) and cqu(y X) can not connect, in the spirit of (1), the quasi-
metric value dg, (f (x); f (y)) with dg, (X;y). Clearly, this is just what it happens in Example
1. So it seems natural to incorporate this condition in an appopriate de nition of normed
isometry for asymmetric normed semilinear spaces, that is amormed isometry between
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asymmetric normed semilinear spaces is a restriction of a mmed isometry between the
asymmetric normed linear spaces that contain them.

Next let us to clarify whether the generating condition of the semilinear spaceg, con-
tributes to the fact the mapping jcp G ! '5 is a quasi-metric isometry.

Proposition 4. Let (X;q1), (Y; ) be two asymmetric normed linear spaces and lef,
X, Cs Y be two semilinear spaces such that; is generating. If f : X | Y is a linear
mapping such thatf (C;) C,, then the following conditions are equivalent:

(1) The mappingfjc, : C1! C; is a quasi-metric isometry.

(2) The mappingf holds gp(f (x)) = qu(x) for all x 2 X.

Proof. We only prove (1)! (2), since (2)! (1) is clear (see the chain of equalities (1) at
the end of Section 2). Letz 2 X. Then there existx;y 2 C; such that z= x y. Thus,
it follows from statement (1) that

®(f (2)) = (f (x ) R(f (x)  f(y))
dg, (F (y): T (X))
da, (Y; %)
alx y)= a2):

Notice that condition (1) in Proposition 4 always implies that g(f (X)) = qu(x) for all
x 2 Cji. Nevertheless, the next example shows that the condition tht the semilinear
spaceC; is generating can not be omitted in the statement of Proposiion 4 in order to
preserve the quasi-metric isometryf jc, : C1 ! C, the asymmetric norms as a mapping
from (X;q1) to (Y; ).

Example 5. Let (R?;g) be the asymmetric normed linear space withq((x;y)) = u(x) +
u( y) for all (x;y) 2 R2. De ne the linear mapping f : R2! R2 by f ((x;y)) = (y:X)
for all (x;y) 2 R2. Consider the semilinear spaceC; = f(x;x): x 2 R*g. It is clear that
fjc,(C1) = Cy and that f is a quasi-metric isometry from (C1;dg) into itself. However
qff (2; 1)) 6 o((2; 1)), since

qf 2 1)=a( L2)=u( D+u( 2)=0
and

a((2; 1)) = u(2)+ u(l) =3:

Clearly Proposition 4 reinforces the idea that if one consiérs a normed isometry between
asymmetric normed semilinear spaces like a restriction of lnear mapping de ned between
the normed linear spaces in which they are contained, then imust preserve the asymmetric
norms and not only its restriction to the semilinear spaces.

In the light of the preceding arguments we propose the next daition of normed isom-
etry between asymmetric normed semilinear spaces.

De nition 6.  Let (X;q1), (Y; @) be two asymmetric normed linear spaces and le€; X,
C, Y be two semilinear spaces. A linear mapping : X ! Y is said to be a SL-
normed isometry from (Cy1; 1) to (Cy; @) provided that f is a normed isometry such that
fic,(C1) Ca.
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Note that we can retrieve as a particular case of the above deition that of normed
isometry when we consider the semilinear spaces; = X and C, = Y.

As an immediate consequence of De nition 6 we obtain that evey SL-normed isometry
is an injective quasi-metric isometry as we claim.

Proposition 7. Let (X;q1), (Y; @) be two asymmetric normed linear spaces and lef,
X, Ca Y be two semilinear spaces. If there exists a SL-normed isometrdy : X ! Y
from (Cy1; 1) to (Co; ), then f is an injective quasi-metric isometry from (Cy; dg,) into
(Cz; dQ2)-

It is clear that every SL-normed isometry is uniformly continuous.
In the following we give an example of a SL-normed isometry bwveen asymmetric
normed semilinear spaces.

Example 8. Let (B;jj i Bp) and (lp;jj jj +p) the asymmetric normed linear spaces intro-

duced above. Consider the semilinear spaces; B , and C; |, given by
n o

Ci= f2B,:f(})>0andf(n)=0forall n>1 [ Os,

and

Cz=f(Xn)nan X2 > 0andx, =0forall n> 1g[ 0
Let us denote, again, by the mapping : B,! I, given by

((fPn=2 "f(n)
forall n 2 N and for all f 2 B,. As we have pointed out before is a normed isometry

( is linear and preserves the asymmetric norms). Moreover, jc,(C1) = Cy. Therefore
is @ SL-normed isometry from ( Cy;jj Jis,) to (Cz:ii i +p)-

Remark 9. Note that in Example 8 one obtains what intuitively one expeds i.e. the fact
that the mapping is a quasi-metric isometry from ( Cy; d;j Bp) to (Cz; djj . ). Of course,
the last fact is guaranteed by Proposition 7. Furthermore, we want to highlight that the

semilinear spaceC; is not generating. So Example 8 suggests us that the propose8lL-
normed isometry notion seems to be an appropriate generaligion of the normed isometry
notion because of it is valid even in the non smooth case, i.eén the non generating case.

In the next example we provide a normed isometry that is not a &-normed isometry
and, thus, we prove that both concepts are not equivalent.

Example 10. Consider the asymmetric normed linear spaces&; jj jj Bp), (IpsJi Ji +p) and
the semilinear spaceC; given in Example 8. Set
C3=f(Xn)nan X2 < 0andx, =0forall n> 1g[ 0,

Then, on one hand, we have thatCsz is a semilinear space of, and, on the other hand,

is a normed isometry from ( By;jj Jj Bp) to (lp;Jj Jj +p)- However, is not a SL-normed
isometry from (Cq;jj Jj Bp) to (Cs;jj Jj +p), since (1) 2 Cz wheref, is the element ofC,
such that f1(1) = 1. Thus, the condition f (C;) C, in De nition 6 is crucial in order to
get a SL-normed isometry from a normed isometry.
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Since the notion of normed isometry is introduced in the conéxt of (asymmetric) normed
linear spaces with the aim of establishing when two (asymmeic) normed linear spaces
are equivalent, i.e. for the purpose of de ning the notion of isometrically isomorphic
(asymmetric) normed linear spaces, we end our paper adaptmthis notion to the context
of asymmetric normed semilinear spaces.

De nition 11.  Let (X;q1), (Y; ) be two asymmetric normed linear spaces and leC,
X, Co Y be two semilinear spaces. The asymmetric normed semilineapaces Ci; 1)
and (Cy; p) are said to be isometrically isomorphic if there exists a Sknormed isometry
from (C1; 1) onto (Cy; tp).

Note that if C; and C, are isometrically isomorphic andf : X ! Y is the SL-normed
isometry from (Cq; 1) onto (Cy; @), it follows, from Proposition 7, that the restriction
fic, of f to C; and its inverse are uniformly continuous.

Of course, the De nition 11 coincides with that of isometrically isomorphic linear spaces
when we considerC; = X and C, = Y. It is clear from the previous discussion about
SL-normed isometries that two isometrically isomorphic aymmetric normed semilinear
spaces are equivalent from the algebraic, topological andugsi-metric point of view.

An example that con rm us the tness of De nition 11, because one obtains the natural
and expected results, is given by the semilinear spacé3 and I;; of the asymmetric normed
linear spaces By;jj i Bpj) and (I3 ;]j Jj+p) respectively, where the SL-normed isometry
is the mapping introduced before and given by (( f)), =2 "f(n) for all n 2 N and
f 2 B,. Note that this fact is exactly Proposition 5 stated in [15]. The same mapping

gives that the asymmetric normed semilinear spaces C1;jj Jj Bp) and (Co;jj jj+p)in
Example 8 are isometrically isomorphic.

References

[1] C. Alegre, Continuous operator on asymmetric normed linear spaces, Acta Math. Hungar. 122 (2009),
357{372.

[2] C. Alegre and I. Ferrando, Quotient subspaces of asymmetric normed linear spaces Bol. Soc. Mat.
Mexicana 13 (2007), 357{365.

[3] C. Alegre, I. Ferrando, L. M. Garca-Ra and E. A. Sanch  ez-Rerez, Compactness in asymmetric
normed linear spaces Topology Appl. 155 (2008), 527{539.

[4] C. Alegre, J. Ferrer and V. Gregori, Quasi-uniform structures in linear lattices , Rocky Mountain J.
Math. 23 (1993), 877{884.

[5] C. Alegre, J. Ferrer and V. Gregori, On Hahn-Banach theorem in certain linear quasi-uniform str uc-
tures, Acta Math. Hungar. 82 (1999), 315{320.

[6] A. Alimov, The Banach-Mazur theorem for spaces with nonsymmetric distances Uspekhi Mat. Nauk
58 (2003), 159{160.

[7] S. Cobzas,Separation of convex sets and best aproximation in spaces wi asymmetric norms, Quaest.
Math. 27 (2004), 275{296.

[8] S. Cobzas,Asymmetric locally convex spaces Int. J. Math. Math. Sci. 16 (2005), 2585{2608.

[9] S. Cobzas,Compact operators on spaces with asymmetric norm Stud. Univ. Babes-Bolyai. Math. 51
(2006), 69{87.

[10] S. Cobzas,Compact and precompact sets in asymmetric locally convex spces Topology Appl. 156
(2009), 1620{1629.

[11] S. Cobzas and C. Mustata, Extension of bounded linear functionals and best aproximaton in spaces
with asymmetric norm, Revue d'analysis numerique et teorie de I'aproximation 33 (2004), 39{50.

[12] P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.

52



A re ection on the notion of isometry

[13] L. M. Garca-Ra, Compactness and nite dimension in asymmetric normed linea r spaces Topology
Appl. 153 (2005), 844{853.

[14] L. M. Garca-Ra, S. Romaguera and E. A. Sanchez-Rer ez, The bicompletion of an asymmetric
normed liner space, Acta Math. Hungar. 97 (2002), 183{191.

[15] L. M. Garca-Ra, S. Romaguera and E. A. Sanchez-Rer ez, Sequence spaces and asymmetric norms
in the theory of computational complexity, Math. Comput. Model 36 (2002), 1{11.

[16] L. M. Garca-Ra, S. Romaguera and E. A. Sanchez-Rer ez, The dual space of an asymmetric normed
linear space, Quaest. Math. 26 (2003), 83{96.

[17] L. M. Garca-Ra, S. Romaguera, E.A. Sanchez-Rerez , The supremum asymmetric norm on sequence
spaces: a general framework to measure complexity distancg Electron. Notes Theor. Comput. Sci. 74
(2003), 39{50.

[18] L. M. Garca-Ra, S. Romaguera and E. A. Sanchez-Rer ez, Weak topologies on asymmetric normed
linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms, J. Anal.
Appl. 2 (2004), 125{138.

[19] A. Gleit, Topologies on cones J. London Math. Soc. 8 (1974), 1{7.

[20] G. J. O. Jameson, Ordered linear spaces Springer-Verlag, Berlin, 1970.

[21] J. K. Kelley, I. Namioka and co-authors, Linear topological spaces D. Van Nostrand Company, New
york, 1963.

[22] H. P. A. Kunzi, Nonsymmetric topology, in: Proc. Colloquium on topology, 1993, Szekszard, Hungary,
Collog. Math. Soc. &nos Bolyai Math. Studies, 4 (1995), 303{338.

[23] J. Rodrguez-lopez and S. Romaguera, Closedness of bounded convex sets of asymmetric normed liiae
spaces and the Hausdor quasi-metric, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), 551{562.

[24] S. Romaguera and M. Schellekens,Duality and quasi-normability for the complexity spaces, Appl.
Gen. Topol. 3 (2002), 91{112.

53






Proceedings of the Workshop in Applied
Topology WIAT'10, pp. 55 { 65

Lyapunov exponents and sensitive dependence on
initial conditions

Francisco Balibrea-Gallego®

Departamento de Matenaticas, Universidad de Murcia, 3010 0 Murcia, Spain (balibrea@um.ep

Abstract

We consider a non-autonomous system of the fornx,+1 = a,Xn where a,
is a two periodic perturbation of a constant a > 1. This system can be
used to see the stability properties of limit cycles of nonihear oscillators
modeled by second order non-linear di erential equations uder the same type
of perturbations, The di erence equation xh+1 = ax, has a simple dynamics
since all orbits are unbounded and does not exhibit sensitie dependence on
initial conditions while the non-autonomous systemXp+1 = anXn (for some
ranges of the parameters) has non trivial dynamics since inugch cases all
orbits have sensitive dependence on initial conditiongsdic). The tool to see it
is a natural extension of the notion of Lyapunov exponents fom autonomous
to non-autonomous systems. In fact, we devote a part of this gper to such
notion and to see its relationship with (sdic).

In particular, we prove that such complicated behavior can ke obtained when
all parameters are xed and is changed only the initial phaseof the pertur-
bation. It also proves that sensitive dependence on initialconditions can be
independent of the waveform of the perturbation which depemnls on the elliptic
modulus value. This case has been found relevant in the settg of di erential
equations (se€5]).

1. Introduction

It is a extended practice, especially in experimental and aplied dynamics, to associate
having a positive Lyapunov exponent with instability and negative Lyapunov exponent
with stability of orbits of a dynamical system. Stability an d instability of orbits are de ned
in topological terms while Lyapunov exponents is a numerichcharacteristic calculated
throughout the orbit. However, these facts have no rm mathematical foundation if are
not introduced some restrictions on the maps describing thesystem. To illustrate it, in
[7] are given two worthy examples, using piecewise linear nps ( gures 1 and 2), proving
that in the setting of interval maps, it is possible to construct a map having an orbit
with positive Lyapunov exponent and without sensitive dependence on initial conditions

IThis research has been partially supported by grant numbers MTM2008-03679 and CGL2008-05688-
C02-02/CLI from Ministerio de Ciencia e Innovacon (Spain ) and by grant number 08667-P1-08 Fundacon
Sneca (Regon de Murcia).
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and another map with an orbit with negative Lyapunov exponen but having sensitive
dependence on initial conditions. Both maps are not derivake in a countable number of
points.

There are also examples of maps with points having sensitivelependence on initial
conditions, but with zero Lyapunov exponents (see [16] for &ylinder example). In interval
maps it is su cient to consider a xed non-hyperbolic point ( i.e. its derivative is 1).
Therefore, sensitivity to initial conditions does not imply positive Lyapunov exponents.

2. Notations, Definitions and Preliminary Results

In discussing chaos, we are using Lyapunov exponents whicheasure the exponential
rate at which nearby orbits are moving apart.

Denition 1. Letf :R! R be aCl-map. For each pointxg the Lyapunov exponentof
Xo, (Xo)is

. 1, L Xt .
(Xo) =lim sup 5, —log((f M%x0)j) = lim sup g - log(if )i
=0
wherex; = f(xo).

Note that the right hand is an average along the orbit of xo of the logarithm of the
derivative.

Next we present three examples where we can calculate or estate the Lyapunov
exponents

Example 2. The tent map

2X for0 x

= 2x 1) forl «x

= Nl

If Xo is such that x; = tl (xg) = % for somej, then (Xg) can not be de ned since the
derivative of the map does not exist in points of its orbit. The set of points holding such
property is countable. For the rest of points in [0;1] = I, jf {x;j = 2 for all j. Therefore

(Xo) = log(2).

Example 3. Let
1
fa(x)= ax(1 x) for a> 2+52

It can be seen that then there exists inl a Cantor invariant set 5 (fa( a) = a (see
[9]). Then for xg 2 4 is log(f ¥(xj)j) ko O for someko. Thus the average on the
orbit is greater than ko and therefore is (xg) ko. Thus although we can not calculate
exactly the value, we obtain that the Lyapunov exponent is paitive.

Example 4.
fa(x)=4x(1 x)

If Xo is any preimage of%, then Iog(jff(xj )j) = Iog(jff(%)j) =log0= 1 foranyj.
Therefore (xo)= 1 for such points.

For points xo 2 (0;1) it is immediate that x; is never equal to O or 1 (and so never
equals to %). For them we use the conjugacy off 4 with the tent map throughout the
homeomorphismh(y) = sin?(%) (see [9]). It is worthy that h is of classC? in [0;1], so
there is ac > 0 such that jhYy)j < ¢ for y 2 [0;1]. Also ish{y) > 0 in (0; 1), therefore for
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any > 0 (sucient small), there is a bound ¢ > Osuchthatc < jhYy)jfory2[;1 ]
Then for the former xo we have

(0) = lim 5Up py =10 (f )txo)) =
=limsupyy Sloglh 1 h HYxo)) =
= im sup . T10g(G(h(y)9) + g (") Xyol) + logi(h %))

lim supp; %(log(c)+ nlog(2) +log(j(h *)Yxo)j) = log(2)

On the other hand, for any of thesex, we can pick a sequence of integens; going to
+1 suchthatx, 2[;1 ] Thenif we takeyo = h L(xo) and y, = t"(yo),

(o) lim sup; %Iog@(f "Y%Yxg)j) =
= lim sup, %(Iog(i(h)%ynj )i) +10g(J(t" )Ayo))) +log(i(h )xo)i)

lim sup;; %(log(C)Jr njlog(2) +log(j(h )Yxo)j) = log(2)

Therefore is (xo) = log(2) for such points. It is worthy to see that there are points
which repeatedly come near% but never hit it for which the limit of the quantity de ning
the Lyapunov exponents does not exist but only thelim sup. In particular, the Lyapunov
exponent is positive for all points whose orbit never hits 0 0 1 and therefore never hits%.

Sincet preserves the Lebesgue measure, the conjugalyinduces an invariant measure
for f , whose density functionis  [x(1 x)] 7, By the former argument itis (x) =log(2)

for -almost point. Integrating with respect to such density function, we have

Z 1 Z 1
ogGfdond )= —)
. og(f 4(x)))d (x) 0 WL

_ 21 log(2)
0o [x(1 x)2

dx =log(2)

On the other hand,
Z 1 Z 1 . 0 -
. : log(jf f(x
0gf S0opd ()= 090t 4 -
0 [x(1  x)]z
z 1

= log(itYy)j)d(y) = log(2)

The former two expression are equal as the Birkho Ergodic Theorem ([15]) says they

must be.

It is necessary to remember that topological entropy is a mesure of the complexity of
the dynamics of a map. Katok has proved in [10] that if a map preerves a non-atomic
continuous Borel probability measure for which -almost all initial conditions have non-

zero Lyapunov exponents, then the topological entropy is psitive and therefore the map
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is chaotic. Thus a good computational criterion for chaos isvhether a map has a positive
Lyapunov exponent for points in a set of positive measure.

Another observation is that in some cases, positive Lyapune exponents imply sensitive
dependence on initial conditions as in the mapd 4(x) = ax (mod 1) whena > 1 as it
is easy to prove and that if the map isC! and p is a periodic point with orbit Orbs (p),
then for any Xg such that ! ¢ (xg) = Orbs (p) is (xo) = (p), where ! ¢ (Xo) denotes the
omega-limit set of the point xo under the mapf .

Before nishing these examples it would be interesting to renark the connections be-
tween Lyapunov exponents and the space average with respetd an invariant measure.
If f has an invariant Borel measure with nite total measure and support on a bounded
interval, then the Birkho Ergodic Theorem says that the limsup in the de nition of

(Xp) can be substituted by lim for -almost point xq. In fact, since the measure is a
Borel measure and logjf x)j) is continuous and above bounded, then the map (x) is
measurable and

Z z
()d (x) = log(f T)i)d (x)
R R

When f is ergodic with respect to  ([15]), then (x) is constant in -almost everywhere
and

1 Z
(x)= = log(f Yx)j)d (x);
JJ R

-almost everywhere and wherg | is the total measure of .

In dynamical systems of dimension greater than one given byhe pair (R";F) where F
in a continuous map we have the Osedelets' result (see [12Baying that for -almost every
point ( is an invariant measure, usually of bounded support), the sm of all Lyapunov
exponents (calculated inn-directions) is

lim suppi; %Iogjdet(DF "(x)j

In what follows we will concentrate in interval continuous mapsf : 1 ! | and introduce
the well known notions of Lyapunov stability and instabilit y.

De nition 5.  The positive orbit Orbs (Xg) is said to be Lyapunov stable if for any > 0
there is > 0 such that wheneverjy xoj < isjf"(y) f"(xg)j< foralln O.

Lyapunov instability is equivalent to sensitivity to initi al conditions.

De nition 6.  Orbs (Xo) exhibits sensitive dependence on initial conditions, if here exists
> 0 such that given any > 0 there isy holding jy Xoj < and N > 0 such that

itN@y) N (xo)]

In [7] are constructed two piecewise linear maps which are cmterexamples to the
statements: an orbit of a continuous interval map is Lyapunov instable if ad only if its
Lyapunov exponent is positiveand an orbit of a continuous interval map is Lyapunov
stable if and only if its Lyapunov exponent is negative In fact they construct a map
having an orbit of positive Lyapunov exponent which is Lyapunov stable (example 4) and
another map which has an orbit with negative Lyapunov expon@t and Lyapunov instable
(example 5).
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Example 7. Letf : 1! | the map de ned
8
< X 1+ 553+ fora, <x b,
n+2
fl(X)z: M(X )+ 1+ 10%1 2n+1 forby <x apu
1 forx =1

f(x)

0.4

0.2

0.0 < -

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 2. Map f;
where n = 0;1;2:58, =1 2" 10 ™D:p, =1 2"+10 D) Then f,
has Orbs,(0) = A with positive Lyapunov exponent and without sensitivity to initial
conditions. To see it, rst f, is a piecewise linear interval map wherd 4x,) = 2 for any
xn = f1'(0) and therefore (0) =log(2) > 0. Now given > 0, choosek such that Zik <

and such that ﬁ. Then for every 0<x< andeveryn Kkis

. . 1
Jirex) 110 < ST

By other hand, fy is increasing andf "(0) = 1 (2%,). Therefore for everyn >k is

1 . . 1
1o fh00 and jf(x) 1) =<
which completes the proof.
Example88.
2 ix+ L for0 x< &ora, x by

@™ gl 2 yx+2 N 24 (™D 1) forh, x<cp,

1 2 (n+2) 24 (n+3) (x+2 " 24 D 1) forc, x<d.

fa(x) =
) 2 (n+l) 9:4 (n+2)
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<
_—

f(x)

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 3. Map f»

where n =1;2;3;:5ap =1 2" 40D -p =1 2n4+4 (D =1 20
24 "D d, =1 2 (MDD 4 (142

Then f5 is a continuous map such thatf x,) = % Thusitis (0)= log(2) < 0. But
f, depends on initial conditions at 0, since taking for example = % and for every > 0
there exists 0<x <  holding

if2(x) f3(0)j> for somem

to see it, choosen 2 N n f0g holding %nﬂ < ,setx = %nﬂ andm = n+1. Then

=

300 1 ON> 5

therefore Orbs,(0) has a negative Lyapunov exponent but it is sensitive to intial condi-
tions. It is evident that merely the continuity of maps is not a su cient condition for
an orbit having a positive Lyapunov exponent to be Lyapunov nstable or having a neg-
ative Lyapunov exponent to be Lyapunov stable. In [11] are itroduced some su cient
conditions to get them.

Theorem 9. Letf 2 C2in I. If Orbs(xg) has negative Lyapunov exponent, (xo) < O,
then it is Lyapunov stable (in fact it is exponentially stablg

Such statement says nothing concerning what happens if an bit has a positive Lya-
punov exponent. On next result are introduced additional caditions to get instability.

Theorem 10. Letf 2 C2in | and such thatf {c) = 0 for a unique ¢ in which is f %¢c) 6 0
and here arem > 0 holding f ™(c) = q whereq is xed with jf {q)j > 1. Then if Orbs (xo
is non constant and (xg) > O, the orbit is Lyapunov instable.

For example the mapf 4 ful Il such conditions.
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3. Lyapunov exponents in non-autonomous systems

In several problems on non-linear and non-autonomous di eratial equations of second
order, one interesting problem is to study the chaotical belavior of such equations when
the integrable case (if there exists) is perturbed by trigorometric and/or elliptic way. We
can obtain three type of results: reducing, increasing or sppressing the chaotic behavior.
In such cases as a criterium to decide such behavior we use tm®tion of homoclinic or
heteroclinic chaos in the Shilnikov sense, applying whatis known as Shilnikov method
or Shilnikov criterion (see [14] for a complete report). Shilnikov criterion assures that
complicated dynamics happens near homaoclinic or heteroclic orbits when an inequality
(Shilnikov inequality) holds (see [14]). In the literatu re there are methods for controlling
such chaos. For example using small-amplitude chaos-cordlling perturbations (see [13]).
For a complete treatment of such topics one can see the refaree [5] where it is presented
the state of art of the subject.

To see the appearance, disappearance or control of homodinchaos, one can use
Poincae maps specially in the neighborhood of a separatx orbits (if they exist). This
idea has been our main motivation to consider a model in the fon of a non-autonomous
di erence equation (X;f o.; ) where the state spaceX is a metric space fo1 = (fn)i,
such that all fi;i =0:1;::: are continuous maps de ned onX into itself. In our model we
take X =(0;1).

The orbit associated to the initial point x 2 X of the non-autonomous system is describe
by the sequencex(0) = x, x(1) = f1(x(0)),...,x(n) = (fn 1 ::f2 fo)(x(0)). Such systems
have been studied when the sequencé)i_, is periodicp, thatis, fn+p = fn forn=0;1:
and p a positive integer (see [2] and [3]). Further we will use the ntation

fo t=fn 1 fn 2 mf1 fo

When f, = f forall n =0;1;:::, we have an autonomous dynamical systemX;f ) well
known in the rich literature on the subject.

Further we study partially the dynamical behavior of a model depending on several
parameters and precise its dependence on their changes. HRily (not included here)
the dynamical behavior can be re-interpreted as the dynamial behavior of orbits in the
neighborhood of a separatrix (see [5]).

4. The model

We will consider the non-autonomous di erence equation
Xp+s1 =[  + "(bh + Cn)]Xn = anXn 1)

with > 1,0< < 1;b, = pisinn;cn = pﬁsn[ZK (m)(n+) = :m];"> 0and wheresn
denotes the Jacobian elliptic function of modulusm, K (m) is the complete elliptic integral
of rstkind and is a parameter describing a delay phase (0 2 ) of the elliptic part
of formula (to know more on notation, equivalences and relabns among elliptic functions
see [8]). In fact the model is a perturbation of the autonomog systemxn+1 = X , whose
dynamics is clear since any solution with initial point xg > 0 is converging tol , that is,
it is unbounded.

The perturbation taken has been suggested by the way of how ar perturbed with
trigonometric and elliptic functions some second order nodinear di erential equations.

The model is a particular case of a general non-autonomous stems Xn+1 = fn(Xn)
wheref,(Xn) = apX, are obviously continuous maps fom =0;1;:::.
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In the perturbation b, + c¢,; the elliptic function sn has been chosen to appreciate in
a simple way, the e ect of changes of the waveform of one part ofhe perturbation which
depends on changes on elliptic modulus. It is well known that when m =0, is

sn2K(m)(n+) =;m=0]=sin(n+)
In the other casem = 1, one readily obtains

2K 4% sin[(2i +1)(n +
(M sy, meg= 47 SNE@*Dn+) o
. 21 +1
i=0
which is the Fourier expansion of the square wave function operiod 2: Note that the
normalization factor 2K (m)=allows to solely change the waveform from a sine to a square
wave by varying the elliptic parameter from 0 to 1, respectiely.

sn[

The dynamical behavior of the system is contained on next radt, where we exploit
the connection between sensitivity to initial conditions and Lyapunov exponents in au-
tonomous systems. Such connection has been explored in [1Additionally in [4] it is
studied the connections between Lyapunov exponents and pidse metric entropy. It is
well known that when a point x 2 X has positive Lyapunov exponent, then its orbit and
that of a point nearby diverge at a positive exponential rate. In the setting of C1-maps
on |, if the orbit of a point holds a uniform condition on Lyapunov exponents then it is
su cient to imply that such orbit has dependence on initial ¢ onditions (see [11]). We say
that the system (X;f ¢:1 ) exhibits (sdic) onY X if there exists > 0 such that for any
x 2 Y and any "> 0, there is ay 2 Y and a natural number n such that d(x;y) <" and
d(f § 1(x);f5‘ Yy)) > (with dis denoted the metric inX). When f, = f forall n 2 N,
we have an autonomous dynamical systemX;f ).

We extend to systems ((Q1 );fo1 ) the notion of Lyapunov exponent used for dynam-
ical systems ([Q1];f) by the formula

K 1
() =lim sup g ~logi(fa 1 fa fo¥0j=imsup,y + logif (<G )i (3)
j=0
in order to have a criterion to decide if an orbit exhibits or not sensible dependence on
initial conditions which can be seen as a measure of its chaiat behavior.

As a consequence we give a notion of chaotic behavior for nautonomous systems.
We will say that a non-autonomous discrete system has &haotic behavior if in the state
space, there is a Lebesgue measurable setof positive measure such that (x) > 0 for
every X 2 L (in the extended sense). Otherwise the system iaon-chaotic.

Next result studies su cient conditions on the parameters of (1) to be chaotic in the
above sense. It is made in two cases, = 0 (there is only a trigonometric perturbation)
or 6 0 (the perturbation is a combination of trigpnometric and e lliptic).

Theorem 11.
(@) Let =0, then if

1" 2
log > 3(-)

the system has for all initial points in (0; 1 ) constant positive Lyapunov exponent.
Therefore the system is always chaotic.
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(b) Let 60, then for xed modulus m and in some range of the system has also
a constant positive Lyapunov exponent. Therefore, the systeris chaotic in such
range.

Proof. Applying (3) for an initial point x(0) = x it is immediate that fjo(x(j )) = @ and
then

K 1 K 1 K 1 "
logigj = logj +"(h+ cj)i= logi (1+ —( + c;))j
j=0 j=0 j=0
As a consequence

= (x)=limng Hog( +"(h + cj)i; (4)
for all points x 2 (0;1 ) where angle bracketsh i denote average values ovey from O to
n 1
It is straightforward to see that

hyi=hgi=0; if =1;
2 E(m)..

oL

K (1 m)
chl = my |

m le = —BWCOS
where E (m) is the complete elliptic integral of the second kind.

Then

: " .1
=log +limnpg [(—)hy + cji §0ﬁ2$+2bﬂ*'2¥]+00%i(&
Plugging (5) into (4) we get
K (L

2 55 L 2%, Em

" mK (m) m K (m)

When =0 we have that provided log I(“)?then (x)> Oforallx2 (0;1).

Now we study the sign in (7) varying only the parameter (the r est of parameters is
maintained constant) and obtain some range of values for with > 0. It con tributes to

clarify the e ect of changing only the second part of the perturbation, ¢, when the rst
part is constant. To this aim, we write (7) in the following fo rm

= log %(:)2f1+ g+ O("%); (7

n

= "( =0 %(—)2 <iy(m)[ + <z(m)cos ]+ O("%); (8)

with
‘( =0)=log ()
“m o e
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where <1(m) and <,(m) can be shown analytically that are monotonously increasig
(decreasing) functions with limiting values <;(m =0)=1;<i(m=1)=2 ( <p(m=0) =
2;<o(m =1)=1:34144:: .). We do this only through the representation of the functions
and can be appreciable in Figure 3.

e
T4

d 0.20.40.60.8 1
i

I

Ly |

e e
R R

= Lo

0 e g4 En:E 2

Figure 4. Functions R;(m), i =1;2 versusm

Figure 5. Function yreshoid ("=;m ) versus"= andm for *( =0)=0:1
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For xed modulus m and small xed 6 0, the Lyapunov exponent decreases when
+ <3(m)cos > 0 and, in some range of , may become negative (we denote by

g},atb the threshold value) . In this case is g},atb = 0. Contrarily, increases when
+ <y(m)cos < 0 so that the initial phase = ‘(?psttab yields the largest positive
Lyapunov exponent. Observe that for threshold » Where
27°( =0) 1.
threshold (—; M) [m] ;9
one has the maximum-range intervals of suitable initial phae for stabilization [ gtpatb
max; o'+  max] and strengthening [ 5P max; ot +  max] of instabil-
ities ( max = =2).

Similarly, for > reshold » We See that the respective ranges have shrunk, i.e., max <
=2 (see Figure 4).

Remark 12. It is worth mentioning that the previous discussion means that a control
mechanism for chaotic behavior can be applied which is validor any waveform represented
by m and which is e ective independently of it.
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Abstract

One important mathematical topic is the notion of metric space and, more
related to the applications, the concept of metric function. In this work we aim
to illustrate how important is to appropriately choose the metric when dealing
with a practical problem. In particular, we focus on the problem of detection
of noisy pixels in colour images. In this context, it is very mportant to
appropriately measure the distances and similarities betwen the image pixels,
which is done by means of an appropriate metric. We study the prformance
of di erent metrics, including recent fuzzy metrics and a novel fuzzy metric
speci cally designed to detect impulses, within a speci c lIter design to show
that it is indeed a critical choice to appropriately solve the task.

1. Introduction

Nowadays, the process of digital signals and images, and pagularly colour image pro-
cessing, is a problem extensively studied. A problem that apears during the acquisition
and transmission of digital images is impulsive noise, thata ects to some pixels of the
image, and the reduction of impulsive noise has been extengly studied in the last years.
Vector median-based lters [1]-[3] are widely used methodgor impulse noise reduction in
colour and multichannel images because they are based on thbeory of robust statistics
and, consequently, perform robustly. These methods applytie Itering operation over all
the pixels of the image, and they tend to blur details and edgs of the image.

To overcome this drawback, a series of switching lIters, corbining noise detection
followed by noise reduction over the noise detected, have lee studied in [4]-[9]. Also,
techniques using fuzzy logic have been studied to solve thigroblem [10]-[11], and fuzzy
metrics have shown to perform appropriately for this task [§ 7, 12, 13, 14, 15]. These
works have proved that fuzzy logic and fuzzy metrics are appopriate for image denoising
because it can deal with the nonlinear nature of digital imags and with the inherent
uncertainty in distinguishing between noise and image stratures.

In this paper, we aim to point out that, apart from the particu lar Itering method, it
is very important to appropriate choose the metric used within the lter. To do so, using
the same ltering procedure, we present a study of the perfomance of di erent metrics,
including recent fuzzy metrics and a novel fuzzy metric speccally designed to detect
impulses. The paper is structured as follows. Section 2 intsduces the metrics used the
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detection process. The proposed study and experimental re#ts are described in Section
3 with a performance comparison and discussion. Finally, soe conclusions are drawn in
Section 4.

2. Metrics to Diagnose Noise

In Mathematics, a metric or distance function is a function which de nes a distance
between elements of a set. In colour image Itering every piel of the image is an RGB
component vector with integer values between 0 and 255. Themmetrics provides a way
to assess de closeness degree between two pixels. First nogth use a great number of
metrics with the aim to nd the more accurate metric. L; and L, metrics were the rst
in the experiences, followed by angular distance between yels, and a set of combinations
with several metrics.

A theory with an important grown in recent years has been fuzy logic, due to its
important use in control systems, expert systems, sensorqiielectronic devices, etc. At
the same time, fuzzy topology and fuzzy metrics were deplogk For this reason, fuzzy
metrics penetrate in the image denoising area with very goodesults. Recent works shown
that the use of fuzzy metrics can improve the Itering method.

In this work we are going to use four metrics (two classics andwo fuzzy). The classical
metrics areL1 and L,. For the fuzzy metrics we have chosen recent fuzzy metrics.

A stationary fuzzy metric [17]-[19], M, on a setX, is a fuzzy set ofX X satisfying
the following conditions for all x;y;z 2 X:

(FM1) M(x;y) > 0

(FM2) M(x;y)=1lifandonlyif x =y
(FM3) M (x;y) = M (y;x)

(FM4) M (x;z) M(xiy) M(y;2),

where is a continuous t-norm.

M (x;y) represents the degree of nearness &fand y and, according to (FM2), M (x;y)
is close to 0 whenx is far from y.

Let (x;(1);xi(2);xi(3)) the colour image vector X; in the RGB colour space, and let
X the setf0;1;:::;255°% and xed K > 0. Then, accord to [12, 16], the functionM :
X X 1 ]0;1] given by

¥ minfxi(1);x; (g + K
maxfx;(l);xj(Ng+ K

1) M (Xi;xj) =

I=1
is a stationary fuzzy metric, for the usual product, on X in the sense of George and
Veeramani [18]. In this way, from now onM (x;;x;) will be the fuzzy distance between
the colour image vectorsx; and x;. Obviously M is F-bounded and it satis es

K 3

< -
@ 0 255+ K

M (xi;xj) 1
for all xj;x; 2 X.
We de ne the fuzzy setM1 on X3 by

3 minfxi(l);x (Ng+ K
() My (xiixj) = mr maXin(l):XJj (Ng+ K
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M1 is a (stationary) fuzzy metric in the sense of George and Veamani [18]. From the
mathematical point of view the stationary fuzzy metric M, , started in [8], can be seen as
a fuzzy version of theL; classical metric and, like we will prove, it is especially sesitive
to impulse noise.

Next lemma is well-known.

Lemma 1. Let a;b;c2 R*. Then
minfa; by minfb; minfa; cg
maxfa;by maxfb;ag maxfa;og’

Proposition 2.  Let X be the sef 0;1;:::;255 and letK > 0. Denote by(x;(1); x;(2);%;(3))
the elementx; 2 X 3. The function M1 given by

o 3 minfxi(1);x; (1)g+ K
4) Mz (xi5xj) = i maxfxi(l);XJj (Ng+ K

for all xi;x; 2 X3, is a stationary fuzzy metric on X3, where the t-norm is the usual
product in [0; 1].

Proof. Conditions (FM1), (FM2) and (FM3) are obvious by de nition o f My .

M1 (Xi;Xj)) M1 (Xj;Xk) =

%n minfx;(l);x; (Ng+ K msin minfx; (1); xk()g+ K
=1 maxfx(l);x;()g+ K =1 maxfx;(l);xk(l)g+ K

?i minfx;(1);x;(Ng+ K minfx; (1);xk(Ng+ K

=1 maxfx(l);x;(Ng+ K maxfx;(l);xk(l)g+ K
m’é? minf x;(1); xk(Ng+ K
i=1 maxfx;(l);xx()g+ K
by the previous lemma, and soM; is a stationary fuzzy metric.

= M1 (Xi;Xk)

These metrics are non-uniform in the sense that the measureiygen for two di erent
pairs of consecutive numbers (or vectors) may not be the sameln this way, increasing
the value of K reduces this non-uniformity. According to our experiences we have set
K = 1024 which is an appropriate value for RGB colour vectors [2, 13].

3. Experimental Study and Results

In recent works about image ltering, one of the most studied concerns impulse noise
detection. The key issue is to distinguish between edges, @ details and noise. One
switching method that provides good results is the Peer Grop Filter (PGF), presented
in [5]. This method provides a fast schema of noise detectioand a posterior operation of
noise replacement. In the rst phase, the algorithm makes a tdy of the neighborhood
of every pixel in a lItering window (of usual size 3 3), and if the pixel in study have at
least m pixels close to it (we have choserm = 2 as in [5]), the method detects this pixel
as noisy free and as noisy otherwise. In the second phase, ti@isy pixels are replaced
with the output of the Arithmetic Mean Filter of the colour pi xels in the neighborhood.

To show the importance of the choice of the metric used to mease the distance or
similarity between colour image pixels, we have implemente di erent versions of the PGF
using four di erent metrics. We have chosen the city-block ard Euclidean classical metrics
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and the M and M; fuzzy metrics introduced in Section 2. The images in gure 6 lave
been corrupted with impulsive noise according to the model ppposed in [2] and then
Itered with the four di erent variants of the Iter. The Mean  Absolute Error (MAE),
Peak Signal to Noise Ratio (PSNR) and Normalized Colour Di erence (NCD), de ned in
[2], have been used to assess the performance. Notice that ’dAE and NCD lower values
denote better performance, whereas PSNR is better for highrevalues.

@ (b) (© (d

Figure 6. Test images: (a) Pills, (b) detail of Pills, (c) Statue, and (d)
detail of Statue.

Tables 1-2 show the performance results of the metrics, wheas gure 9 show a graphical

analysis from NCD, that is a reference measure that denoteshie visual quality of the
Itered image.

Table 1. Experimental results for the PGF Filter in the comparison with

diverse metrics when Itering the Pills detail image corrupted with di erent
densitiesp of xed-value impulse noise.

p 0.05 0.10 0.15 0.20
Metric | MAE | PSNR | NCD | MAE | PSNR | NCD | MAE | PSNR | NCD | MAE | PSNR | NCD
10 ? 10 2 10 2 10 2
Noisy | 2:31 | 2240 | 3:52 | 499 | 1914 | 7:16 | 7:04 | 1771 | 1041 | 9:47 | 16:34 | 14:38
L1 1:48 | 3065 | 0:84 | 254 | 2852 | 144 | 3:.03 | 2767 | 244 | 566 | 2415 | 3:80
L, 0:86 | 3303 | 0:66 2:01 | 2951 1:22 321 | 2743 | 2:09 4.64 | 2540 | 317
M 1:33 | 31:17 | 081 2:27 | 29.02 | 142 3:04 | 2761 | 248 5:45 | 2429 | 373
M1 0:74 | 3382 | 0:49 1:76 | 30:22 | 1:.03 2:34 | 29.01 | 167 3:39 | 2641 | 2:83

Table 2. Experimental results for the PGF Filter in the comparison with

diverse metrics when ltering the Statue image corrupted with di erent
densitiesp of xed-value impulse noise.

p 0.05 0.10 0.15 0.20
Metric | MAE | PSNR | NCD | MAE | PSNR | NCD | MAE | PSNR | NCD | MAE | PSNR | NCD
10 2 10 2 10 2 10 2
Noisy | 1:93 | 23:37 3:41 514 | 19.03 8:99 716 | 1744 | 1252 | 9:20 | 16:35 | 1574
L1 2:76 | 2551 2:30 5:.09 | 22:85 342 6:84 | 21.94 4:56 7:80 | 2114 5.:64
Lo 2:56 | 2579 1:89 4:.07 | 2414 2:70 5:10 | 2342 3:60 6:43 | 2201 | 4:90
M 1:40 | 2848 2:11 374 | 24:68 3:20 6:47 | 2231 | 429 765 | 21:31 | 544
M1 1:70 | 27:45 1:.54 3:27 | 25.06 2:29 4:.05 | 2441 3:20 5:42 | 2299 4:29
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From the tables we may conclude that theL , metric and the M fuzzy metric exhibit a
much better performance than the rest, specially in terms ofPSNR. This happens because
in these metrics, the square operation and the min makes, are specially sensitive to the
presence of impulse noise. In particular, the best results ith M, fuzzy metric provide
improvements about 40% in MAE respect toL; and M and pretty goods respectL »,
specially when noisy intensity grows. If we analyze the behdour of M1 , we can see
that when impulse noise a ected at least one component of eiter x; or x;, it would be
associated to the lowest nearness value between their compents. In such a case, theéM 1
fuzzy metric takes the nearness value associated to the presce of the impulse and ignores
any possible similarity between the rest of the components.Moreover, as the di erence
between the components becomes larger, the value &1 drops rapidly.

(@) (b) (©

(d) (e) ()

Figure 7. Visual comparison of the lter output using the Statue image
and several metrics: (a) Original, (b) corrupted with p = 10% of impulsive
noise, (c)L1, (d) Lo, () M and (f) M1 .

4. Conclusions

In this paper we have studied the importance of choosing an gmgropriate metric to Iter
color images. To make this we have used a recent ltering schee and we have imple-
mented di erent versions of it using a series of metrics, two tassical and two fuzzy. Then,
we have ltered di erent images, corrupted with densities of impulsive noise between 5%
and 20%, assessing with objective quality measures the bewiar of each metric. Exper-
imental results obtained show that an appropriate choice ofthe metric is of paramount
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@ (b) (©

(d) (e) )

Figure 8. Visual comparison of the Iter output using the Pills image
and several metrics: (a) Original, (b) corrupted with p = 10% of impulsive
noise, (c)L1, (d) Lo, () M and (f) Mq .

(a) (b)

Figure 9. NCD performance varying metrics in: (a) Pills and (b) Statue,
for di erent percentages of impulse noise.

importance in the design of a Itering method. This choice can lead the ltering to signif-
icant performacne bene ts. In this way is interesting to keep looking for new metrics and
measures to improve the detection of noisy pixels, distingishing them from edges and ne
details contained in the images.
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Abstract

We characterize those bitopological spaces that admit an itwitionistic fuzzy
metric. A characterization of those bitopological spaceshat admit a complete
(respectively, a precompact) intuitionistic fuzzy metric is derived.

1. Introduction and preliminaries

Generalizing the notion of a fuzzy metric space in the senses Kramosil and Michalek
[7], and George and Veeramani [2], respectively, Alaca, Tuoglu and Yildiz [1], and Park
[8] introduced and discussed notions of intuitionistic fuzy metric space. Gregori, Roma-
guera and Veeramani [5], and Romaguera and Tirado [9] obseed that the main topo-
logical properties of intuitionisitic fuzzy metric spaces can be directly deduced from the
corresponding ones for fuzzy metric spaces. Since every iitionistic fuzzy metric space
actually induces two topologies, it seems interesting to decribe those bitopological spaces
that admit an intuitionistic fuzzy metric. In this note we pr esent such a description and
deduce from it characterizations of those bitopological spces that admit a complete (re-
spectively, a precompact) intuitionistic fuzzy metric.

Let us recall [12] that a continuous t-norm is a binary operaion :[0;1] [0;1]! [O;1]
which satis es the following conditions: (i) is associative and commutative; (i) is
continuous; (i) a 1= aforeverya2 [0;1]; (iv) a b ¢ dwhenevera candb d,
and a;b;c;d2 [0; 1]

By a continuous t-conorm we mean a binary operation3 : [0;1] [0;1]! [0;1] which
satis es the following conditions: (i) 3 is associative and commutative; (ii)3 is continuous;
(i) a30 = a for every a 2 [0;1]; (iv) a3b ¢3d whenevera candb d, and
a;b;c;d2 [0; 1]

It is well known that if is a continuous t-norm (respectively, a continuous t-conom),
then Cis a continuous t-conorm (respectively, a continuous t-nom), wherea °b=1
(@ & (1 Dbjforall a;b2 [0;1]:

1The second and third authors acknowledge the support of the Spanish Ministry of Science and Inno-
vation, grant MTM2009-12872-C02-01.
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It is also well known that for each continuous t-norm and each continuous t-conorm
3; the following relations hold: ~ _ 3; where as usuala” b= minfa;by; and
a_b=maxfa;hbg; for all a;b2 [0;1]:

De nition 1 ([1]). An intuitionistic fuzzy metric (brie y, an IFM) on a set X is a 4-tuple
(M;N; ;3) such that is a continuous tnorm, 3 is a continuous t-conorm, andM; N
are fuzzy sets inX X [0;1 ) satisfying the following conditions for all x;y;z 2 X :

(M1) M (x;y;0) =0;

(M2) M(x;y;t)=1forall t> 0if and only if x = vy;

(M3) M (x;y;t) = M (y;x;t) for all t> 0;

(M4) M (x;y;t) M(y;z;s) M(x;z;t+ s)forall t;s O;

(M5) M(x;y; ) :[0;1)! [O;1] is left continuous;

(N1) N(x;y; 0) = 1;

(N2) N(x;y;t) =0 forall t> 0if and only if x = vy;

(N3) N(x;y;t) = N(y;x;t) forall t> 0;

(N4) N(x;y;t)3N(y;z;8) N(x;z;t+ s)forall t;s O;

(N5) N(x;y; ) :[0;12)! [0O;1] is left continuous;

(MN) M (x;y;t)+ N(x;y;t) 1forallt> O:

De nition 2 ([1]). An intuitionistic fuzzy metric space (brie y, an IFM-space ) is a 5-tuple
(X;M;N; ;3) suchthat X isasetand M;N; ;3)is an IFM on X:

Recall that a triple ( X;M; ) such that X is a set, is a continuous t-norm andM is a
fuzzy setinX X [0;1 ) satisfying conditions (M1)-(M5) above, is a fuzzy metric pace
(in the sense of Kramosil and Michalek [7]). In this case, thepair (M; ) will be called a
fuzzy metric on X:

It is well known that every fuzzy metric space (X;M; ); in the sense of George and
Veeramani, can be considered a fuzzy metric space in the senef Kramosil and Michalek,
putting M (x;y;0) = 0 for all x;y 2 X: Similarly, every intuitionistic fuzzy metric space
(X;M;N; ;3)inthe sense of Park, can be considered an IFM-space, puttipM (X;y; 0) =
Oand N (x;y;1) =1 for all x;y 2 X: For this reason, we focus in the rest of the paper in
fuzzy metric spaces in the sense of [7] and in IFM-spaces.

Remark 3. Note that if ( X;M;N; ;3) is an IFM-space, then both (X;M; ) and (X; 1
N; 39 are fuzzy metric spaces. Conversely, if X;M; ) is a fuzzy metric space, then
(X;M; 1 M; ; 9is an IFM-space.

Remark 4. (see for instance [2, 4]) If (X;d) is a metric space, then for each continuous
t-norm ; the pair (My; ) is a fuzzy metric on X such that y, coincides with the topology
4 induced by d; where for eachx;y 2 X;
Mq(X;y; 0) =0;
and )
M . .t e -
dX YD) = ey a0y’
forall t> 0.

Remark 5. As a converse of the one given in Remark 4, it is well known fronthe theory
of probabilistic metric spaces [12] (see also [3]) that eaclfuzzy metric space K;M; )
induces a topology m on X which has as a base the family of open balls

fBy(x;nt):x2 X; 0<r< 1;t> Og;
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whereBy (x;r;t) = fy2 X : M(x;y;t)> 1 rgforall x2 X;r 2 (0;1); t> O:
Actually ( X; m) is a metrizable topological space because the countable ltection
ff(x;y)2X X :M(Xy;1=n)>1 1=ng:n 2 Ng;
is a base for a uniformity Uy on X such that its induced topology coincides with ;.

De nition 6.  We say that a topological space X; ) admits a fuzzy metric if there is a
fuzzy metric (M; ) on X such that y =

Following [2], a sequenceX)n in a fuzzy metric space K;M; ) is said to be a Cauchy
sequence if for eacl 2 (0;1) and eacht > 0 there isng 2 N such that M (Xp; Xm;t) > 1 r
for all n;m No: A fuzzy metric space X;M; ) (or a fuzzy metric (M; )) is called
complete if each Cauchy sequence is convergent with respeitt y :

The following result can be found in [3].

Proposition 7. A topological space is completely metrizable if and only iftiadmits a
complete fuzzy metric.

A fuzzy metric space X;M; ) is said to be precompact [3] if for eachr 2 (0;1) and
eacht > O there is a nite subset A of X such that X = _,, Bm (X;1;t): In this case we
say that (M; ) is a precompact fuzzy metric onX:

In [3, Theorem 3] it was proved that the topology m of a fuzzy metric space X;M; )
is separable if and only if X; ) admits a precompact fuzzy metric. From this result we
deduce the following.

Proposition 8. A topological space is separable and metrizable if and only it admits a
precompact fuzzy metric.

Proof. Let (X; ) be a separable and metrizable topological space. Hence, &mits
a precompact metric d: Then (My; ) is clearly a precompact fuzzy metric onX, with

= M (see Remark 4).

Conversely, if (X; ) admits a precompact fuzzy metric (M; ); then it is metrizable by
Remark 5, and separable by [3, Theorem 3] cited above.

2. On the two topologies induced by an IFM-space

Similarly to the fuzzy metric case, Park proved in [8] that if (X;M;N; ;3) is an IFM-
space, then the family of sets of the formfB(x;r;t) : x 2 X;r 2 (0;1); t > 0Og is a base
for a topology (u;n) on X; where

B(x;rit)=fy2 X :M((xy;t)>1 nrN(Xxy;t)<rg
forall x 2 X;r 2 (0;1) andt> O:

However, condition (MN) of De nition 1, permits us to easily deduce (see [5, 9]) that
B(x;r;t) = By (x;r;t) forall x 2 X;r 2 (0;1); t> O; whereBy (x;r;t) is the open ball
induced by the fuzzy metric space K;M; ) of Remark 3. Hence we have the following.

Proposition 9. Let (X;M;N; ;3) be an IFM-space. Then (y.n) = m where y is the
topology induced by the fuzzy metric spacéX;M; ):

Note that, given an IFM-space, we can de ne for eachx 2 X;r 2 (0;1) andt > O;
the \open ball" By (x;r;t) = fy 2 X : N(x;y;t) <rg: Then, By(x;r;t) = fy 2 X :
1 N(x;y;t)> 1 rg; so the collectionfBy (x;r;t) : x 2 X;r 2 (0;1);t> 0Ogis a base for
the topology induced by the fuzzy metric (1 N; 39 (see Remark 3).

This topology will be denoted by y : Then, by condition (MN) of De nition 1, we have
the following fact.
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Proposition 10 ([5, Remark 3]). Let (X;M;N; ;3) be an IFM-space. Then y M

The above constructions suggest the study of IFM-spaces fro a bitopological point of
view.

Let us recall [6] that a bitopological space is a triple X; 1; 2) where X is a set and i;
i =1;2; are topologies onX:

De nition 11. We say that a bitopological space K; 1; ») admits an IFM if there is an
IFM (M;N; ;3)on X suchthat y = 1and y = 2

According to Park [8], a sequenceX,)n in an IFM-space (X;M;N; ;3) is said to be
Cauchy if for eachr 2 (0;1) and eacht > 0 there isng 2 N such that M (Xp;Xm;t) >
1 rand N(Xp;Xm;t) <r whenevern;m ng. An IFM-space (X;M;N; ;3) is called
complete if every Cauchy sequence is convergent with respeid (. ):

The following result (see [9]) is an immediate but useful cosequence of Proposition 9.

Proposition 12. An IFM-space (X;M;N; ;3) is complete if and only if (X;M; ) is
complete.

Saadati and Park introduced in [11] the notion of a precompat IFM-space: An IFM-
space K;M; ) is said to be precompact if for eachr 2 (0;1) and eacht > 0 there is a
nite subset A of X such that X = _,, B(x;r;t): In this case we say that M; ) is a
precompact IFM on X:

Then, it is immediate to show the following.

Proposition 13.  An IFM-space (X;M;N; ;3) is precompact if and only if (X;M; ) is
precompact.

With the help of the above results and facts we show the followng characterizations
announced in Section 1.

Theorem 14. A bitopological space(X; 1; »2) admits an IFM if and only if (X; ;) and
(X; ») are metrizable and 1

Proof. Suppose that there is an IFM (M;N; ;3)on X suchthat y = ;and ny = 2
Then (X; 1) and (X; ») are metrizable by Remarks 3 and 5, and » 1 by Proposition
10.

Conversely, suppose that X; 1) and (X; ») are metrizable with » 1. Let d; and d»
be metrics on X such that ; = dj; i = 1;2: Then, for any continuous t-norm and any
continuous t-conorm 3 ; the 4-tuple (Mg, +4,;Ng,; ;3) is an IFM on X because for each
X;y 2 X andt> 0 we have

t L G(xy)
t+(dy+ do)(xy) t+ daXx;y)

t L _dxy) .
t+ da(x;y) t+da(xy) T

Ma,+d, (X Y1) + N, (X y;t) =

Since » 1 it follows that 1= ¢,+4,: Hence 1 = Ma,+ d, and , = N, by Remark 4.
This concludes the proof.
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Theorem 15. A bitopological space(X; 1; »2) admits a complete IFM if and only if (X; 1)
is completely metrizable,(X; ») is metrizable and ,  1:

Proof. Suppose that there is a complete IFM M;N; ;3) on X such that y» = 1 and
N = 2: Then (X; 1) and (X; ») are metrizable and » 1 by Theorem 14. Moreover
(M; ) is a complete fuzzy metric onX with y = 1; and hence K; 1) is completely
metrizable by Proposition 7.
Conversely, suppose that X; 1) is completely metrizable and (X; ») is metrizable with

2 1: Let d; be a complete metric onX and d, be a metric on X such that ; = d;;
i =1;2: Then, for any continuous t-norm and any continuous t-conorm 3 ; the 4-tuple
(Mg +d,:Ng,; 53) is an IFM on X with 1 = wm, ., and > = n,, (see the proof of
Theorem 14). Moreover the fuzzy metric My, +4,; ) IS complete because the metria; + dy
is complete. The conclusion follows from Proposition 12.

Theorem 16. A bitopological space(X; 1; ») admits a precompact IFM if and only if
(X; 1) is separable metrizable(X; ») is metrizable and » 1.

Proof. Suppose that there is a precompact IFM M;N; ;3)on X suchthat yy = 1and
N = 2: Then (X; ;) and (X; ») are metrizable and » 1 by Theorem 14. Moreover
(M; ) is a precompact fuzzy metric onX with \ = ; and hence K; 1) is separable by
Proposition 8.

Conversely, suppose that X; ;) is separable metrizable and X; ») is metrizable with
2 1: Thus it is clear that (X; ») is also separable. Letd; and d, be precompact
metrics on X such that ; = di; i = 1;2: Then, for any continuous t-norm and any
continuous t-conorm 3 ; the 4-tuple (Mg, +d,;Ng,; ;3)isanIFMon X with 1= v, .,
and , = N, (see the proof of Theorem 14). Moreover the fuzzy metricNl4,+4,; ) iS
precompact because the metrid; + d, is precompact (indeed, every sequence i has a
Cauchy sequence both inX;d1) and in (X;d>); so Cauchy in (X;d1+ d)). The conclusion
follows from Proposition 13.

3. Further work

In a further work we shall extend this study to intuitionisti ¢ fuzzy quasi-metric spaces
as de ned in [10]. The bicompletion and the xed point theory of these spaces will be also
explored.

References

[1] C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces , Chaos Solitons
Fractals 29 (2006), 1073{1078.

[2] A. George and P. Veeramani, On some results in fuzzy metric spaces Fuzzy Sets and Systems64
(1994), 395{399.

[3] V. Gregori and S. Romaguera, Some properties of fuzzy metric spaces Fuzzy Sets and Systems115
(2000), 485{489.

[4] V. Gregori and S. Romaguera, Fuzzy quasi-metric spaces Appl. Gen. Topol. 5 (2004), 129{136.

[5] V. Gregori, S. Romaguera and P. Veeramani, A note on intuitionistic fuzzy metric spaces, Chaos
Solitons Fractals 28 (2006), 902{905.

[6] J. C. Kelly, Bitopological spaces Proc. London Math. Soc. 13 (1963), 71{89.

[7] 1. Kramosil and J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika 11 (1975),
326{334.

[8] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals 22 (2004), 1039{1046.

79



F. Castro-Company, S. Romaguera and P. Tirado

[9] S. Romaguera and P. Tirado, On xed point theorems in intuitionistic fuzzy metric space s, Internat.
J. Nonlinear Sci. Numer. Simul. 8 (2007), 233{238.

[10] S. Romaguera and P. Tirado, Contraction maps on ifgm-spaces with application to recurr ence equations
of Quicksort, Electron. Notes Theor. Comput. Sci. 225 (2009), 269{279.

[11] R. Saadati and J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fractals 27
(2006), 331{344.

[12] B. Schweizer and A. Sklar, Statistical metric spaces, Paci c J. Math. 10 (1960), 314{334.

80



Proceedings of the Workshop in Applied
Topology WIAT'10, pp. 81 { 91

On mathematical fundamentals of asymptotic
complexity analysis in Computer Science

Miquel Angel Cerda-Uguet 2 and Oscar Valero®?

a8 Departamento de Ciencias Matenaticas e Informatica, Uni  versidad de las Islas Baleares, 07122
Palma, Spain (macerda2@educacio.caib.gs

b Departamento de Ciencias Matermaticas e Informatica, Uni  versidad de las Islas Baleares, 07122,
Palma, Spain (o.valero@uib.ep

Abstract

In 1995, M.P. Schellekens introduced the theory of complexy (quasi-metric)
spaces as a part of the development of a topological foundath for the as-
ymptotic complexity analysis of programs and algorithms [Hectronic Notes in
Theoret. Comput. Sci. 1 (1995), 211-232]. The applicabiliy of this theory
to the asymptotic complexity analysis of Divide and Conqueralgorithms was
also illustrated by Schellekens in the same reference. In ptcular, he gave a
new formal proof, based on the use of the Banach xed point therem, of the
well-known fact that the Mergesort algorithm has optimal asymptotic average
running time of computing. In this paper, motivated by the utility of the
qguasi-metric formalism for the complexity analysis in Computer Science, we
show that the techniques introduced by Schellekens are alsealid to analyze
the asymptotic complexity of algorithms whose running time of computing
leads to recurrence equations di erent from the Divide and Caxquer ones. We
illustrate and validate the developed theory applying our new results to pro-
vide the asymptotic complexity class of the celebrated Quiksort and Largetwo
algorithms.

1. Introduction and preliminaries

Throughout this paper the letters R*; N and ! will denote the set of nonnegative real
numbers, the set of positive integer numbers and the set of mnegative integer numbers,
respectively.

In Computer Science the complexity analysis of an algorithmis based on determining
mathematically the quantity of resources needed by the algdgthm in order to solve the
problem for which it has been designed. A typical resource, laying a central role in
complexity analysis, is the running time of computing. The d@orementioned resource is
de ned as the time taken by the algorithm to solve a problem, that is, the time elapsed
from the moment the algorithm starts to the moment it termina tes. Since there are often

1The second author acknowledges the support of the Spanish Mhistry of Science and Innovation, and
FEDER, grant MTM2009-12872-C02-01.
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many algorithms to solve the same problem, one objective oftte complexity analysis is
to assess which of them is faster when large inputs are congited. To this end, it is
required to compare their running time of computing. This is usually done by means of
the asymptotic analysis in which the running time of an algoiithm is denoted by a function
T:N! (0;1]in such a way that T(n) represents the time taken by the algorithm to
solve the problem under consideration when the input of the &orithm is of size n: Of
course the running time of an algorithm does not only depend o the input size n, but
it depends also on the particular input of the sizen (and the distribution of the data).
Thus the running time of an algorithm is di erent when the algo rithm processes certain
instances of input data of the same sizen: As a consequence, it is necessary to distinguish
three possible behaviours in the complexity analysis of algrithms. These are the so-called
best case, the worst case and the average case. The best case #he worst case for an
input of size n are de ned by the minimum and the maximum running time of computing
over all inputs of the sizen, respectively. The average case for an input of size is de ned
by the expected value or average over all inputs of the siza.

In general, to determine exactly the function which descrikes the running time of com-
puting of an algorithm is an arduous task. However, in most duations is more useful to
know the running time of computing of an algorithm in an \appr oximate" way than in
an exact one. For this reason the asymptotic complexity anajsis of algorithms is inter-
ested in obtaining the \approximate” running time of comput ing of an algorithm. The
O-notation allows one to achieve this. Indeed iff;g : N! (0;1 ] denote the running time
of computing of algorithms, then the statement g 2 O (f ) means that there existsng 2 N
and ¢ 2 R* such that g(n) cf(n) for all n 2 N with n ng ( stands for the usual
order on R*): So the function f gives an asymptotic upper bound of the running timeg
and, thus, an \approximate" information of the running time of the algorithm. The set
O(f) is called the asymptotic complexity class off: Hence, from an asymptotic complexity
analysis viewpoint, to determine the running time of an algaithm consists of obtaining its
asymptotic complexity class. For a fuller treatment of compexity analysis of algorithms
we refer the reader to [1, 2].

In 1995, M.P. Schellekens introduced a new mathematical fanalism, known as theory
of complexity spaces, as a part of the development of a topotgpcal foundation for the
asymptotic complexity analysis of algorithms ([7]). This theory is based on the notion of
quasi-metric space.

Let us recall that, following [4], a quasi-metric on a nonempy set X is a function
d:X X! R* such that for all x;y;z2 X :

(i) d(x;y)=d(y;x)=0, x=y;
(i) dix;y) d(x;z)+ d(z;y):

Of course a metric on a nonempty seX is a quasi-metricd on X satisfying, in addition,
the following condition for all x;y 2 X:

(iii ) d(x;y) = d(y;x):

A quasi-metric space is a pair ¥;d) such that X is a nonempty set andd is a quasi-
metric on X:

Each quasi-metricd on X generates aTp-topology T (d) on X which has as a base the
family of open d-balls fBy(x;") : x 2 X; "> 0g, whereBg4(x;") = fy 2 X :d(x;y) <"g
forall x 2 X and "> O:
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Given a quasi-metricd on X, the function d® dened on X X by
d®(x;y) = max (d(x;y); d(y; x))

is a metric on X .
A quasi-metric space ¥;d) is called bicomplete if the metric space K;d®) is complete.
A well-known example of a bicomplete quasi-metric space ishe pair ((0;1 J;u 1); where

u 1(x;y) = max )l, 2,0 forall x;y 2 (0;1 ]. Obviously we adopt the convention that

4 =0. The quasi-metric space ((Q1 J;u 1) plays a central role in the Schellekens theory.
Indeed, let us recall that the complexity space is the pair C, dc); where

R

C=ff :N! (0;1]: 2”i<1g
i} f(n)
n=1
and dc is the quasi-metric on C de ned by
dc(f;9) = * 2 "u 1(f (n);g(n)) = ® 2 "max L i'0
s G . on)  f(n)’

Of course it is again required that % =0:

According to [7], since every reasong,ble algorithm, from a amputability viewpoint,
must hold the \convergence condition"  %_, 2 ”ﬁ < 1, it is possible to associate
each algorithm with a function of Cin such a way that such a function represents, as a
function of the size of the input data, its running time of computing. Because of this,
the elements ofC are called complexity functions. Moreover, given two functonsf;g 2 C,
the numerical value dc(f; g) (the complexity distance from f to g) can be interpreted as
the relative progress made in lowering the complexity by refacing any program P with
complexity function f by any program Q with complexity function g. Therefore, if f 6 g;
the condition dc(f;g) = 0 can be read asf is \at least as e cient" as g on all inputs (i.e.
de(f;g)=0, f(n) g(n)forall n2 N). Thus we can encode the natural order relation
on the setC; induced by the pointwise order ; through the quasi-metric dc: In particular
the fact that dc(f;g) = 0 implies that f 2 O(Q):

Notice that the asymmetry of the complexity distance d¢ plays a central role in order
to provide information about the increase of complexity whenever a program is replaced
by another one. A metric will be able to yield information on the increase but it, however,
will not reveal which program is more e cient.

In 1922 S. Banach proved in the context of metric spaces its ¢ebrated xed point
theorem. The origins of such a theorem lies in the methods fosolving di erential equa-
tions via successive approximations. Nevertheless, sindg@anach proved the xed point
theorem, a wide range of applications has been given in veryi@rent frameworks. A
class of such applications is obtained through extensionsfdhe contraction principle to
the context of generalized metric spaces (for a detailed dtsission see, for instance, [6]). In
particular Banach's xed point theorem can be extended to the quasi-metric framework
in the following easy way:

Theorem 1. Letf be a mapping of a bicomplete quasi-metric spade; d) into itself such
that there iss2 R* with 0 s < 1; satisfying

1) d(f (x);f(y))  sd(xy);
for all x;y 2 X: Thenf has a unique xed point.
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The applicability of the theory of complexity spaces to the ssymptotic complexity anal-
ysis of algorithms was illustrated by Schellekens in [7]. Irparticular, he gave a new proof
of the well-known fact that the Mergesort, a Divide and Conquer algorithm, has optimal
asymptotic average running time of computing. To do this he htroduced a method, based
on Theorem 1, to analyze the running time of computing of the gneral class of Divide
and Conquer algorithms.

Let us recall the aforenamed method with the aim of motivating our subsequent work.

A Divide and Conquer algorithm solves a problem of sizen (n 2 N) splitting it into
a subproblems of size%; for some constantsa; b with a;b2 N and a;b > 1, and solving
them separately by the same algorithm. After obtaining the lution of the subproblems,
the algorithm combines all subproblem solutions to give a gibal solution to the original
problem: The recursive structure of a Divide and Conquer algorithm leads to a recurrence
equation for the running time of computing. In many cases therunning time of a Divide
and Conquer algorithm is the solution to a recurrence equatin of the form

C ifn=1
2) TM=" a1+ hn) ifn2ty
where! , = B¢ : k 2 Ng, c2 R* (c > 0) denotes the complexity on the base case (i.e. the
problem size is small enough and the solution takes constartime), h(n) represents the
time taken by the algorithm in order to divide the original pr oblem into a subproblems
and to combine all subproblems solutions into a unique onel{2 C with 0 <h(n) < 1 for
all n 2 N).

Notice that for Divide and Conquer algorithms, it is typical ly su cient to obtain the
complexity on inputs of sizen with n ranges over the set , ([1, 2, 7]):

The Mergesort and the Quicksort (in the best case behaviour)are typical and well-
known examples of Divide and Conquer algorithms whose runmig time of computing
satis es the recurrence equation (2) (see, for instance, [12, 3] for a fuller description).

In order to compute the running time of computing of a Divide and Conquer algorithm
satisfying the recurrence equation (2), it is necessary toleow that such a recurrence
equation has a unique solution and, later, to obtain the asynptotic complexity class of
such a solution. The method introduced by Schellekens to she that the equation (2) has
a unique solution, and to obtain the asymptotic complexity class of the solution is the
following one:

Denote by G,.c the subset of C given by

Gc=ff2C:f(1)=candf(n)=1 forall n2!,with n> 1g:

Since the quasi-metric space, dc) is bicomplete (see Theorem 3 and Remark in page
317 of [5]) and the setG, is closed in (C d}); we have that the quasi-metric space
(G dcjg,,. ) Is bicomplete.

Next we associate a functional 1 : Gy.c ! C p. with the recurrence equation (2) of a
Divide and Conquer algorithm given as follows:

8

< C ifn=1

3 r(f)n)=_ 1 fn2!yandn> 1 :
af () + h(n) otherwise
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Of course a complexity function in G, is a solution to the recurrence equation (2) if and
only if it is a xed point of the functional  t: It was proved in [7] that

(4) dejg, ( 7(f); 1(9) édch,;c(f:g)

for all f;g 2 Cy.: So, by Theorem 1, the functional T : G.c! C p has a unique xed
point and, thus, the recurrence equation (2) has a unique sation.

In order to obtain the asymptotic complexity class of the soltion to the recurrence
equation (2), Schellekens introduced a special class of fationals known as improvers.

Let C C;afunctional : C! C is called animprover with respect to a function
f 2 C provided that "*1(f) N(f)forall n2!: Of course °(f)=f.

Observe that an improver is a functional which corresponds & a transformation on
programs in such a way that the iterative applications of the transformation yield an
improved, from a complexity point of view, program at each sep of the iteration.

Note that when is monotone, to show that is an improver with respect tof 2 C,
it su ces to verify that ( f) f:

Under these conditions the following result was stated in [}

Theorem 2. A Divide and Conquer recurrence of the form (2) has a unique sation f 1
in G,.c. Moreover, if the monotone functional 1 associated to (2) is an improver with
respect to some functiong 2 Cy.; then the solution of the recurrence equation satis es that
fr 20(9).

Schellekens discussed the complexity class of the Mergesavhose pseudocode descrip-
tion is provided below, in order to illustrate the utility of Theorem 2. In the particular
case of Mergesort, the recurrence equation (2) in the averagcase is exactly

c ifn=1

®) TM=" orm+1 ifn21,

Itis clear that Theorem 2 provides that the recurrence equaton (5) has a unique solution
ft. In addition, Schellekens proved that the functional 1 induced by the recurrence
equation (5) is an improver with respect to a complexity fundion g 2 Cy.c, with k 2 R*
and gc(n) = knlog,(n) for all n 2 ! 5, if and only if % k: Therefore, by Theorem 2, we
conclude that f 2 O(g%); i.e. Theorem 2 provides a formal proof of the well-known fact

that the running time of computing of the Mergesort in the average case behaviour is in
the asymptotic complexity class ofnlog,(n):

MERGE (A[1:n]; m)
i1 m+1
for k 1to ndo
if j>n then
MERGESORT  (A;n) : BIk] Afi];i i+1
if n >m1 tgeg_zc else if i>m then
= . Bkl AL j |+1
MERGESOR'I(A[l..m]). else if A[i]<A[j] then
MERGESORTA[m + 1;n]) Bk] A[il;i i+1
MERGHA[L::n]; m) else '
Bkl A[Lj j+1
for k 1to ndo
Alk] BIK]
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In spite of it seems natural that the complexity analysis of Divide and Conquer algo-
rithms always leads up to recurrence equations of type (2),his is not the case. Sometimes
this kind of recursive algorithms yields recurrence equatns that di er from (2). A well-
known example of this type of situations is provided by the Qucksort whose pseudocode
description is the following one:

PARTITION  (A;p;r)
X Alp]
i p 1
QUICKSORT  (A;p;r) j r+1
if p<r then while TRUHlo
q PARTITION (A;p;r) repeat | j luntl A[] x
QUICKSORT(A; p; q) repeat i i+1 until Afi] X
QUICKSORT(A;q +1;n) if i<j then
exchangeAl[i] ! Al ]
else
return j

In the worst case behaviour the recurrence equation obtairak for the Quicksort is given
exactly as follows:

ifn=1

T(n= itn 2°

c
©) T 1)+ jn
wherec is the time taken by the algorithm in the base case, and 2 R™ with j > 0. Note
that the worst case bahaviour occurs when the Partition proedure of Quicksort produces
one subproblem of sizen 1 and another one of size 1 witn 2 N (n  2): Observe, also,
that in this case it is not necessary to restrict the input size of the data to the set! ,, for
someb2 N with b > 1:

Another example of algorithms, in this case a non recursivelgorithm, whose complexity
analysis leads to a recurrence equation di erent from (2) is he well-known Largetwo. This
nds the two largest entries in one-dimensional array of sien 2 N with n> 1, and its
pseudocode description is provided below (for a deeper digssion see [3]).

LARGETWO (A)
First Al1]
Sec A[2]
for i 2to ndo
if A[i]> First then
Sec First
First Alil
else if A[i] > Sec then
Sec Ali]

The running time of computing of Largetwo in the average casebehaviour can be
associated with the solution to the recurrence equation gign as follows:

()

T(n)=

c
T(n

H+2 1

n
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where c is, again, the time taken by the algorithm in the base case, e. when the input
data is a one-diemensional array with only one element or tharray does not contain input
data. Notice that Largetwo needs inputs data with size at least 2.

Of course the recurrence equations that yield the running tme of computing of the
above aforesaid algorithms can be considered as particularases of the following general
one:

_ C fn=1
®) TM=" tm 1+hm) ifn 2°

wherec2 R* with ¢> 0, andh2C suchthat0<h(n)< 1 forall n2 N.

Inspired by the exposed Schellekens work, our purpose in thipaper is to demonstrate
that the analysis techniques based on the complexity spacean be used satisfactorily
to discuss the complexity of those algorithms whose runningime of computing yields
with recurrence equations of type (8). In particular we prove that the aforesaid recurrence
equations have a unique solution and, in addition, we obtainthe complexity class of such a
solution by means of a new xed point theorem. In order, on onehand, to validate our new
results and, on the other hand, to show the potential applicaility of the developed theory
to complexity analysis in Computer Science, we end the papediscussing the running
time of the noted Quicksort and Largetwo in the worst and average case behaviours,
respectively.

2. The new results

In the following we prove the existence and uniqueness of theolution to the recurrence
equations of type (8) via xed point techniques in the spirit of Schellekens. To this end
consider the subsetC; of C given by

C=ff2C:f@)= cg.
De ne the functional 1 :CG!C ¢ by
_ c fn=1
©) M=t Denm ifn 2
for all f 2 C.: It is clear that a complexity function in G is a solution to the recurrence
equation (8) if and only if it is a xed point of the functional  1: Moreover, an easy

computation shows that the functional t is monotone.
The next result supplies us the bicompleteness of the pairQ; dgjc.).

Proposition 3.  The subsetC; is closed in(C, d3):

Proof. Let g2 stc and (fr)kon C ¢ with lim iy d3(g;fk) =0:
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First of all we prove that g 2 C. dndeed, given" > 0, there existko;ky 2 N such that
d2(g;fk) < 5 wheneverk ko and ﬁzkﬂ 2 "fi,(n) < 5 forall k  ki. Whence

P T S S
n=k+1 g(n) n=k+1 g(n) fko(n) fko(n)
R 1 1 R
"= 4 2 "fi,(n
n=k+1 g(n) fko(n) n= kel kO( )
b3
(9 fi,) + 2 "1, ()
n=k+1
< mn
forall k  ki.

Now suppose for the purpose of contradiction thatg 2C.: Then g(1) 6 c. Put0 <" =

jﬁ 1j: Then there existsko 2 N such that d3(g;fx) <" wheneverk ko: Thus

<
g(n)  fi(n)
wheneverk  kg: As a result we have that

P S TS S | 1
=j—= 2" =
o) c g(n)  fie(n)

which is a contradiction. Sog(1) = ¢
Therefore we have shown thataOIC = G

Since the metric space C, d3) is complete and, by Proposition 3, the subsetC; is closed
in (C d&) we immediately obtain the following consequence.

Corollary 4. The quasi-metric space(C; dcjc,) is bicomplete.

The next result provides a method (Theorem 6) to describe thecomplexity of those
algorithms whose running time of computing satis es the rewrrence equation (8).

Theorem 5. Let 1 : G ! C ( be the functional given by (9). Then 1 has a unique

xed point f1 in G. Moreover if there existsg 2 C. such thatdcjc.( 7(9);9) = 0; then
dejc.(fr;0) =0:
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Proof. Let f;g 2 C.: Then

dhel 1) 1@) = 2 "max - I o
’ OO}

1 1 o
gin 1)+ h(n) f(n 1)+ h(n)’

f(n 1) gn 1)
gn 1f(n 1)+ s(n)’
f(n 1) g(n 1)
gn Lf(n 1) °

1 1

= 2 "max :0
- gn 1) f(n 1)

1, .
= édclc:(f,g),

=}
1
[y

= 2 "max

=}
11
N

= 2 "max

=}
Ul
N

2 "max

=}
Ul
N

wheres(n) = h(n)(f(n 1)+ g(n 1)+ h(n)?foralln 2.

Now the existence and uniqueness of the xed poinf+ 2 C. of 1 follow from Corollary
4 and Theorem 1.

Next assume that there existsg 2 C. such that dcjc.( 7(9);9) = 0: Suppose for the
purpose of contradiction that dcjc.(f1;9) > 0: Then we have that

deje.(fr:0) dejc.(fr: 7(9)) + dojc.( 7(9);9) = dojc.(fr; T(9)
dejc.(fr; T(fr))+ daic.( 7(fr); 1(9)

= dde( 1(f) 1(9)  Sddc(irio);

From the preceding inequality we deduce that 1 % which is imposible. Sodcjc.(f1;9) =
0:

Theorem 6. A recurrence of the form (8) has a unique solutionf 1 in G.. Moreover if the
monotone functional 1 associated to (8), and given by (9), is an improver with respet
to some functiong 2 C, then f1 2 O(Q):

Proof. Sinceft 2 C; is a solution to the recurrence equation (8) if and only iff 1 is a xed
point of 1, Theorem 5 guarantees the existence and uniqueness of thelsion to (8).

Assume that 1 is an improver with respectto g 2 C.. Then we have 1(g) g.
Hence we obtain that dcjc.( 7(g);9) = 0: It immediately follows, by Theorem 5, that
dcjc. (f1;0) =0 and, thus, f1  g: Therefore we conclude thatft 2 O (g):

We end the paper validating our results. Specically we retieve as an immediate
consequence of Theorem 6 the asymptotic complexity classrf@uicksort and Largetwo in
the worst and average case behaviours, respectively.
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Corollary 7. Let d;r 2 R* with d;r > 0. Then the following assertions hold:
1) The running time of computing of the Quicksort in the worst cag behaviour is in
the the complexity classO(gk), wherek =max ¢+ L; 3 and

c ifn=1

gr(n) = m2 ifn 2 °

2) The running time of computing of the Largetwo in the average cse behaviour is
in the the complexity classO(gc), wherek = max 2%3:;1 and

(n) = c ifn=1
%= r@2(n 1) +logn+d) ifn 2

Proof. (1) It is clear that g 2 C.. Let ?W be the functional associated to recurrence

equation (6) and Ietf$w be its solution (guaranteed by Theorem 6). It is a simple matier
to check that
+ J—; 3 r

2' 5

~lO

djc.( $V(a);a)=0, max

Thus ?W is an improver with respect to gmax(5+ L.g)I Consequently, by Theorem 6, we
4 2’5
obtain f2" 20 g e, 3y

(2) Obviously gr 2 C.. Let #A be the functional associated to recurrence equation (7)
and let fTLA be its solution (guaranteed by Theorem 6). A straightforward computation
shows that
2c+3
6+2d’

deje.( %’A (9r);9)=0,

Hence #A is an improver with respect to gmax(ﬁ_l): Consequently, by Theorem 6, we
6+2 d’

in fLA
obtain f* 20 Omax (223 11)

3. Conclusion

In [7], M.P. Schellekens introduced a mathematical formalm in order to provide al-
ternative rigorous arguments, based on quasi-metric xed wint techniques, for describing
the computational complexity of Divide and Conquer algorithms. We have shown that
the original techniques introduced by Schellekens are alsappropriate to carry out the
asymptotic complexity analysis of algorithms whose runnirg time of computing can be de-
scribed by recurrence equations which di er from the Divide and Conquer ones. Finally,
the running time of computing of Quicksort (in the worst case behaviour) and Largetwo
(in the average behaviour) has been analyzed as speci ¢ exates in order to validate the
developed theory.
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Abstract

The aim of the present work is to state some topological dynarits results for a
family of lattice dynamical systems stated by K. Kaneko in [Phys. Rev. Lett.,

65, 1391-1394, 1990] which is related to the Belusov{Zhabotiskii chemical
reactions. We prove that these LDS (Lattice Dynamical Systens) systems are
chaotic in the sense of Li{Yorke, in the sense of Devaney anddve positive
topological entropy for zero coupling constant. Moreover,we present a de -
nition of distributional chaos on a sequence (DCS) for LDS sgtems and we
state two di erent su cient conditions for having DCS. These results survey
three di erent papers, two of them written jointly with M. Lam part.

1. Introduction

Classical Discrete Dynamical Systems (DDS's), i.e., a coup composed by a spac&
(usually compact and metric) and a continuous selffmap on X, have been highly con-
sidered in the literature (see e.g., [BC] or [D]) because argood examples of problems
coming from the theory of Topological Dynamics and model mag phenomena from biol-
ogy, physics, chemistry, engineering and social scienceseg for example, [Da], [KO], [Pu]
or [Po]). In most cases in the formulation of such models is a C! , an analytical or a
polynomial map.

Coming from physical/chemical engineering applications,such a digital lItering, imag-
ing and spatial vibrations of the elements which compose a gen chemical product, a
generalization of DDS's have recently appeared as an impaant subject for investigation,
we mean the so called (LDS)Lattice Dynamical Systems or 1d Spatiotemporal Discrete
Systems In the next section we provide all the de nitions. To show the importance of
these type of systems, see for instance [ChF].

To analyze when one of this type of systems have a complicatedynamics or not by
the observation of one topological dynamics property is an pen problem. The aim of
this work is, by using di erent notions of chaosand the concept of topological entropy we
characterize the dynamical complexity of a family coupled &ttice dynamical systems which

IThis work has been partially supported by M.C.l. (Ministeri o de Ciencia e Innovacon) and FEDER
(Fondo Europeo Desarrollo Regional), grant number MTM2008 {03679/MTM; by Fundacon Sneca de
la Regon de Murcia, grant number 08667/P1/08 and by Junta d e Comunidades de Castilla{La Mancha,
grant number PEII09-0220-0222.
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contains the stated one by K. Kaneko in [K] (for more details ®e for references therein)
which is related to the Belusov{Zhabotinskii's reactions type. Concretely, we prove that
these LDS systems are chaotic in the sense of Li{Yorke, in theense of Devaney and have
positive topological entropy for zero coupling constant. Moreover, we present a de nition
of distributional chaos on a sequence (DCS) for LDS systemsra we state two di erent
su cient conditions for having DCS.

We present some other problems for the future related with plysical/chemical applica-
tions.

2. Definitions and notation

Let us start introducing two of the most well{known notions of chaos for a discrete
dynamical systems generated by the iteration of a continuos self{map f de ned on a
compact metric spaceX with metric d .

De nition 1. A pair of points x;y 2 X is called aLi-Yorke pair if
(1) limsupgy d(f "(x);f"(y)) > O
(2) liminf iy d(f"(x);f"(y)) =0
AsetS X iscalled aLY-scrambled setfor f (Li-Yorke set) if # S 2 and every pair
of di erent points in S is a LY-pair where # means the cardinality.

For continuous self{maps on the interval [G 1], Li and Yorke [LY] suggested that a
map should be called \chaotic" if it admits an uncountable saambled set. This was
subsequently accepted as a formal de nition.

De nition 2. We say that a map f is Li and Yorke chaotic if it has an uncountable
LY-scrambled set.

One may consider weaker variants of chaos in the sense of Li drivorke based on the
cardinality of scrambled sets (see for instance [GL1]).
On the other hand, a mapf is:

(1) transitive if for any pair of nonempty open setsU;V X there exists ann 2 N
such that f "(U)\V & ;;

(2) locally eventually ontoif for every nonempty open setU X there exists anm 2 N
such that f ™(U) = X. Since this property can be regarded as the topological
analog of exactness de ned in ergodic theory, it is often cdéd topological exactness
We use the second name here.

“Recall that a periodic point of period n of f is a point x such that f"(x) = x and
fl(x) 6 xforO<j<n .
De nition 3. A map f is called Devaneychaotic if it satis es the following two properties:
(1) f is transitive,
(2) the set of periodic points off is dense inX.

The original de nition given by Devaney [D] contained an additional condition on f,
which re ects unpredictability of chaotic systems: sensitive dependence on initial condi-
tions. However, it was proved see, e.g., [Ba] that sensitivity is @onsequence of transitivity
and dense periodicity under the assumption thatX is an in nite set.

Let us recall the notion of Positive topological entropy which is known to topological
chaos.
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An attempt to measure the complexity of a dynamical system isbased on a computation
of how many points are necessary in order to approximate (in@me sense) with their orbits
all possible orbits of the system. A formalization of this irtuition leads to the notion of
topological entropy of the mapf , which is due to Adler, Konheim and McAndrew [AKM].
We recall here the equivalent de nition formulated by Bowen [B], and independently by
Dinaburg [Di]: the topological entropy of a mapf is a numberh(f) 2 [0; 1 ] de ned by

h(f)=Ilim limsup# E(n;f;");
“I'0 nn1

where E(n; f;" ) is a (n;f;" )}{span with minimal possible number of points, i.e., a set sih
that for any x 2 X there isy 2 E(n;f;" ) satisfying d(f! (x);f!(y)) <" forl | n.

A map f istopologically chaotic (brie y, PTE) if its topological entropy h(f) is positive.

Lattice Dynamical Systems. The state space of LDS (Lattice Dynamical System) is
the set

X = fx:x=fxig xi 2R% i22ZP; kxik< 1g ;
whered 1 is the dimension of the range space of the map of statej, D 1 is the
dimension of the lattice and the I norm kxk, = (.20 j Xi j2)¥™2 is usually taken (j X; |
is the length of the vector x;).

We deal with the following LDS family of systems which contains the system stated by K.
Kaneko in [K] (for more details see for references therein) hich is related to the Belusov{
Zhabotinskii reactions (see [KO] and for experimental stug of chemical turbulence by
this method [HGS], [HOY], [HHM]):

1) xptt =@ ) xmM+ =2 (xT ) L

where m is discrete time index, n is lattice side index with system sizeL (i.e. n =
1;2;:::L), iscoupling constant andf (x) is the unimodal map on the unite closed interval
| =[0;1],i.e. f(0)= f (1) =0 and f has uniqgue critical point c with 0 < c¢ < 1 such that
f (¢) = 1. For simplicity we will deal with so called \tent map", de ned by

_ 2 x2][0;1=2);
2) = 57 o x2p=21]

In general, one of the following periodic boundary conditims of the system (1) is as-
sumed:

(1) X7 = X,
@ b=
(3) Xnm = Xn+L ’

standardly, the rst case of the boundary conditions is used

The equation (1) was studied by many authors, mostly experinentally or semi-analytically
than analytically. The rst paper with analytic results is [ ChL], where it was proved that
this system is Li{Yorke chaotic, we give alternative and easer proof of it in this paper.

We consider, as an example the 2{element one{way coupled l@gjic lattice (see [KW])
H:121 12 written as
3) Xgi @ OHfx)+ f(x3);

X2 fO)+@ )f(x2);

wheref is the tent map.
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3. Li{Yorke, Devaney and topological chaos

The following two lemmas will be used for the proof of the mainresults. The proof of
the rst one is obvious (or, see e.g. [DK]).

Lemma 4. Letf : X! X andg:Y ! Y be maps with dense sets of periodic points.
Then the Cartesian productf g:X Y ! X Y has also dense set of periodic points.

Proposition 5 ([BC]). Let f be the tent map de ned by (2). Putly; =[(1 1)=2K;1=2]
wherel = f1;2;3;::: ;2"g and k 2 N. Then the restriction of f ¥ to I is linear homeo-
morphism onto [0; 1].

Let us note that the Cartesian product of two topologically transitive maps is not
necessarily topologically transitive (see e.g. [DK] ). Hene, for the proof of Theorem 7 we
need to prove:

Lemma 6. The system
it =@ O)f )+ =20 (< ) )l
is topologically exact for =0.

Proof. Let U be given open subset of . Then the projection of U to the m{th coordinate
contains Uy, open connected subset of, for eachm = 1;2;:::L. Then by Proposition 5
there is ky, such that fkm (Uy,) = |. If we put K = maxfkmjm = 1;2;:::Lg then the
K {th iteration of U by the system (1) equals tol -.

Theorem 7. The system
xpt= @ O)f () + =20 () )L
is chaotic in the sense of Devaney for = 0.

Proof. The assertion follows by Lemma 4 and Lemma 6.

The following Proposition is very powerful tool of symbolic dynamics® for observing
nearly all dynamical properties.

Proposition 8.  There is a subsystem of (1) which is conjugatédto ( 5; ).

Proof. Since the critical point for the tent map is equal to 1/2 we can divide the interval
| into two sets P; =[0;1=3) and P, = (2=3;1] and get a family P = fP;;P,g. Then each
point xg 2 1 can be represented as an in nite symbol sequenc€;(Xg) = = ajazaz:::
where 1 is Cantor ternary set and

a. = 0 if fn(Xo)Z P1;
n- 1 if fn(Xo)ZPQZ

Returning to (3) we can divide its range set into four setsP = fP{;P};P?; PZg (see
the gure below) where the upper index corresponds to thex; coordinate and x, to the

2Here,  is the shift operator on the space of all two element sequencs .
3We say that two dynamical systems (X;f ) and (Y;g) are topologically conjugated if there is a homeo-
morphism h: X ! Y suchthat h f = g h, such homeomorphism is called conjugacy.
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lower one. Then again each poinfp 2 , can be encrypted as an in nite symbol sequence
Cy(p)= = ajazaz::: where » i382-dimensional Cantor ternary set* and
3 0 if H"(p)2 PL;

1 if H"(p)2 P3;

=3 2 if HY(p)2PZ
" 3 if H"(p)2Ps:
1
P; P2
x2
1 0 13 273 1 p2
Py Pj
x1
Now, we denote thek-shift operator , on k symbol alphabet, dened by : ¢! «
and (ajapaz:::) = apaz::: where (=f | = ajapaz:::;anda 2f1;2:::kgg, so

the e ect of this operator is to delete the rst symbol of the sequence .

We can observe that  is invariant® subset of the range space of the system (3) and
that each its point is encoded by exactly one point from 4, for =0. So, by [F] the shift
operator 4 acts on 4 exactly as (3) on ,, for =0.

Theorem 9. The system
xprt= @ O)fF e+ =20 ) )l
is chaotic in the sense of Li{Yorke for =0.

Proof. By Proposition 8 the system (1) has a subsystem conjugated t§ 5; %) which is
Li{Yorke chaotic (see e.g. [BGKM)]).

Proposition 10 ([W]). If (X;f) and (Y;g are topologically conjugated systems then
h(f) = h(g).
For the proof of result concerning topological entropy we us the well known result:
Proposition 11 ([W]). Let ¢ be thek-shift operator. Then h( ) = klog 2.
Theorem 12. The system
xpt =@ O)f (e + =20 () )L
has positive topological entropy for = 0. Moreover, its entropy equals toL log 2

4by n-dimensional Cantor set we mean the Cantor set constructed as subset ofR"
Sa setM is invariant for the map f iff(M) M
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Proof. By the construction of the Section 2 it follows that the 2{dim ensional system (1)
contains 2-dimensional Cantor set which is conjugated (seee.g. [F]) to the shift space 4
by the conjugacy mapC,, for = 0. Then by Proposition 10 the system has topological
entropy equal to the entropy of 4. Consequently, by Proposition 11 its entropy is 2log 2.

To the end of the proof, it su ce to note, that the constructio n of the Section 2 can be
generalized to thel -dimensional systems. Such system will be conjugated to th&- -shift
by C_ conjugacy and by the same arguments, as in the paragraph abeyits entropy equals
to L log 2.

Remark 13. There are many other notions of chaos, like distributional{chaos,! {chaos or
to satisfy the speci cation property. The system (1) fulll s all this chaotic behavior by
the same arguments as in the proof of the Theorem 9 for zero cpling constant. But

obviously this system is not minimal, where minimal means ttat there is no proper subset
which is invariant, nonempty and closed.

The proof of Theorem 12 can be done in an alternative way. Forero coupling constant
it is obvious that each lattice side contains a subsystem cgungated to ( 2; »). Then
the system (1) contains subsystem conjugated to thd.-times product of ( 2; ») and by
h(I 24 ?) = Lh( ») (see, e.g. [W]) the assertion follows.

L

For non{zero coupling constants the dynamical behavior of he system (1) is more com-
plicated. The rst question is how the invariant subsets of phase space look like? Secondly,
what are the properties of! {limit sets (i.e., set of limits points of the trajectories) ? The
answer for these questions will be nontrivial. Similar sysém was studied in [BGLL] and
there was used the method of resultants to prove existence gieriodic points of higher
order. The same concept like in [BGLL] should be used.

4. Distributional chaos on a sequence for LDS

The aim of this section is, by the introduction of the notion of distributional chaos
on a sequence(DCS) for coupled lattice systems (LDS), to characterize tre dynamical
complexity of the coupled lattice family of systems (1). We gesent two di erent su cient
conditions for having DCS for this family of LDS. These resuts complete and generalize
the result surveyed in the previous sections from [GL1, GL2Jwhere Li-Yorke chaos and
topological entropy are respectively studied.

The statement of the main results in this direction are the fdlowing, see [G]:

Theorem 14. Let f be a continuous self{map de ned on a compact intervala; . If f
is Li{Yorke chaotic, then the LDS system de ned byf in the form (1) is distributionally
chaotic with respect to a sequence considerinig; bj; endowed with the metrics i, i =1;2,
respectively.

and

Theorem 15. Let f be a continuous self{map de ned on a compact intervala;b]. If f
has positive topological entropy, then the LDS system de netly f in the form (1) has an
uncountable distributionally scrambled set, composed byraost periodic points, with respect
to a sequence consideringa; bl; endowed with the metrics j, i = 1;2, respectively.
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4.1. From LDS to classical DDS. Consider the set of sequences of real numbers
Ry =f(ia 2;a 1;a0;a1;a2;:) s an 2 R;n 2 Zg:

Let X1 = (X!)m2z, X2 = (X5)m2z 2 Ry, in Ry we consider the following two non-

equivalent metrics:

(4) l(Xl; X2) = Zjnj
n=1
and
(5) o(x1;x2) =supf x} x2 :n22Zg

Note that (Ry ; i), i =1;2, is a complete metric space. We considega[b]; the subset
of Ry composed by sequences with terms in the compact intervabf bl endowed with the
restriction of ;.

Let No= N[f Ogandf :[a;b! [a;b be a continuous selffmap. Letx = fx}}, : m 2
No;n 2 Zg be a solution of the LDS system (1) with initial conditon =( = 2z
where , 2 [a;b forall n2 Z.

De ne for all m 2 No, Xm = (5 x™y;xg'; X7 :21) and consider the self-mapF; de ned
on [a; b1 in the form
(6) Fr (xm) = (ux™Lxg* 2 xP ) = xma

wherexo= and xT* =@ f (xM)+ =2[ff (xM )+ f(x7,;1)], m 2 No.
Remark 16. From the previous construction, for a given self-mapf de ned on a compact

interval [a; b], the LDS system (1) associated withf is equivalent to the classical dynamical
system (Ja; b1 ; F¢) where F; is de ned in (6).

Let us recall the de nition of distributional chaos with res pect to a sequence in the
setting of discrete dynamical systems.

Let fpigion be an increasing sequence of positive integers, lety 2 [a;lb andt 2 R.
Let

W oo = #1PX) (PR<t 0 i<ng
xy (t Fpigizn) = liminf Ot Fpigizn);
xy (6 fPigian) = lim sup Ot Fpigian)

n!

where #(A) denotes the cardinality of a setA. Using these notations distributional chaos
with respect to a sequence is de ned as follows:

De nition 17. A pair of points (x;y) 2 [a; b? is calleddistributionally chaotic with respect
to a sequencef pigion if  xy(S;fpigian) = 0 for some s > 0 and Xy(t; fpigan) =1 for all
t> 0.

A set S containing at least two points is called distributionally scrambled with respect
to fpigion if any pair of distinct points of S is distributionally chaotic with respect to
fpigizn.

A map f is distributionally chaotic with respect to f pigi2n, if it has an uncountable set
distributionally scrambled with respect to fpigizn.

99



Juan Luis Garca Guirao

De nition 18. A point x is calledalmost periodic of f , if for any " > 0 there existsN > 0
such that for any q O, there existsr;q<r g+ N, holding jf "(x) xj<". By AP(f)
we denote the set of all almost periodic points of .

The following results from Oprocha [Op] and Liao et al. [L] wil play a key role in the
proof of Theorems 14 and 15.

Lemma 19. Let f be a continuous self-map or[a;b. The map f is Li{Yorke chaotic i
there exists an increasing sequencep;gion such thatf is distributionally chaotic repect to

fpigian.

Lemma 20. Let f be a continuous self-map ora;b. If f has positive topological en-
tropy, then there exists an increasing sequencép;gi>n such thatf has an uncountable
distributionally scrambled setT with respect tof p;gion. Moreover, the setT is composed
by almost periodic points.

For details on the de nition of topological entropy see [W].

Note that the de nition of distributional chaos in a sequence fpjgi>n for a continuous
self-map f de ned on an interval [a; b is equivalent to the existence of an uncountable
subsetS [a;b such that for any x;y 2 S, x 8 vy,

there exists > 0 such that

N . .
Ilmllnf E [0; )(Jf b (X) f b (y)J) = O’
’ i=1

for everyt> 0,

i 1 X
ms —
[ upn

m o (UF P (x) TP (y)j) =1;

i=1

where A(X)=1if x 2 A and a(x) =0 otherwise.

Proof of Theorem 14. Since the mapf is Li{Yorke chaotic, by Lemma 19 there exists an
increasing sequencép;gion such that f is distributionally chaotic with repect to fpigion-
Let S [a;b be the uncountable set distributionally scrambled with respect to f p;gion
forf. Let E [a;b1 be the uncountable set such that each element of it is a consta
sequence equal to an element db. Let x = fx, = agnon and y = fy, = bgnon be two
di ernt elements of E. Then, there exists > 0 such that

X . .
liminf — o) ( 1(FP(x);FP(y))) =
' i=1
1 X Xojte@ fP (D)
liminf L )(n: ) i

):

X . N
liminf =7 o )@3jfP (@) P (b)) =0:
' i=1
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and for everyt> 0 is

. 1 X _ _
limsup— 5,y ( 2(FP(x); FP(y))) =

ni - N
imsup 1 SN LIC R LICING
mePn el g )"

1 X
imsup— o,1,BifP(a) P (b)j)=1:
ni N, [0:3)

In a similar way for the distance , we have that there exists > 0 such that

T _ _
liminf — ; )( 2(FP(x);FP(y)) =
’ i=1
T . .
Ilmlmf - . y(supjfP(a) fPi(b)j)=
i=1
T . ..
lminf ~" o (P (@ PO =0;
) i=1
and for everyt> 0 is held

. 1 X _ _
Ilmlsup - oy ( 2(FP (X); FP (y) =
nt i=1

. 1 X . .
Ilmlsupﬁ o:n(supjf P(a) fPi(b)j)=

i=1

. 1 X - .
limsup — on(fP (@ fP(bj)=1:
ni N,

Thus, F is distributionally chaotic with respect to fp;gion respectively using in p; b1
the metrics 1 and , ending the proof.

Proof of Theorem 15. Since f has positive topological entropy by Lemma 20 there ex-
ists an increasing sequencép;gi>n such that f is distributionally chaotic with repect to
fpigaon. Let S [a;b be the uncountable set distributionally scrambled with respect to
fpigan for f composed by almost periodic points. LetE  [a;b; be the uncountable
set such that each element of it is a constant sequence equab tan element ofS. The
proof of Theorem A states that E is an uncontable distributionally scrambled set for F
with respect to fpigion. Now, we shall see thatE is composed by almost periodic points
of F respectively for the metrics ; and 5. Indeed, let = fx, = X gh2n 2 E where
X 2 AP(f). Then, for any "> 0 there existsN > 0 such that for any g 0, there exists
rrg<r g+ N, holding jf"(x ) x j<". In this setting,

s
1(F"(x0); X0) =

n=1

. .
) xj_
2inj
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and
2(F'(X0);X0) =supjf "(x ) x| 5
proving that E ~ AP(F) ending the proof.
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Abstract

In this paper we revise some aspects of the completion of fuganetric spaces
and in particular of stationary fuzzy metric spaces in the seise of George and
Veeramani.

1. Introduction

The concept of fuzzy metric space due to Kramosil and Michalk [12] is an extension
to the fuzzy context of the Menger (probabilistic metric) space [13]. Later, George and
Veeramani [4] gave a new concept of fuzzy metric space by mdging the de nition of
Kramosil and Michalek. The topology deduced by fuzzy metric and some other notions
relative to the completion of fuzzy metric spaces, that we wii see in Section 3, are analogous
to the corresponding ones in Menger spaces [1, 23, 22].

Fuzzy metrics have been a useful tool in the color image Iteing process [2, 14, 15, 16].
In this paper we brie y survey the theory relative to the completion of the above mentioned
spaces and, in particular, we include our last results on stionary fuzzy metrics [11].

The structure of the paper is as follows. In Section 2 we rela the notion of Menger
space with fuzzy metric space in the sense of Kramosil and Mialek which let to conclude
that this type of fuzzy metrics are completable. In Section 3we give the preliminary
notions on fuzzy metrics in the sense of George and Veeramanwith which we deal.
Finally, in Section 4, we study some aspects related to the auopletion of strong fuzzy
metrics.

In the sequelR;R*;Q and N will denote the sets of real numbers, positive real num-
bers, rational numbers and positive integers, respectivgl Our basic reference for general
topology is [3].

2. Fuzzy metric spaces in the sense of Kramosil and Michalek

The concept of fuzziness found place in probabilistic metd spaces. The main reason
behind this was that, in some cases, uncertainty in the distace between two points was
due to fuzziness rather than randomness. With this idea, in 875, Kramosil and Michalek
[12] extended the concept of probabilistic metric space tohe fuzzy situation as follows.

1This research is supported by Universidad Poliecnica de V alencia under Grant PAID-06-08 Primeros
Proyectos de Investigacon del Vicerrectorado de Investi gacon de la UPV and the Spanish Ministery of
Science and Innovation under Grant MTM2009-12872-C02-01.
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Denition 1 ([12]). The tern (X;M; ) is a fuzzy metric space ifX is a nonempty set, is
a continuoust-norm and M is a fuzzy set onX? R satisfying for all x;y;z 2 X; t;s 2 R
the following axioms:

(KM1) M(x;y;t)=0forall t O.

(KM2) M (x;y;t)=1forall t> 0ifandonly if x = y.

(KM3) M (x;y;t) = M(y;x;t)

(KM4) M (x;y;t) M(y;z;8) M(xz;t+9)

(KM5) The function Myy : R! [0; 1] de ned by Myy (t) = M (x;y;t) forall t 2 R

is left continuous.

(KM6) tI'ilm M(xy;t)=1

If (X;M; ) is afuzzy metric space we say that i1; ) (or simply M) is a fuzzy metric
on X.

From the above axioms one can show thaMyy is an increasing function.

Any fuzzy metric space (X;M; ) is equivalent to a Menger space ([12] Corollary of
Theorem 1) if we de ne for all x;y 2 X, the (distribution) function Fyy given by Fyy (t) =
M (x;y;t) for all t 2 R. Then, by this formula, since is continuous, we can deduce from
M atopology wm in an analogous way to that in Menger spaces. Moreover, if weranslate
the concepts and results relative to completion in Menger saces we obtain, imitating the
Sherwood's proof [23], that every fuzzy metric space in theense of Kramosil and Michalek
has a completion which is unique up to an isometry [17].

Remark 2. In a modern terminology [7, 4] a fuzzy metric (in the sense of Kamosil and
Michalek) M on X is a fuzzy setonX 2 [0;1 [ satisfying axioms (KM2)-(KM5), being
a continuous t-norm and where (KM1) is replaced with

(KM1) " M (x;y; 0) = 0

Now, mainly because (KM6) has been removed, in this case a fag metric cannot be
regarded as a Menger space. Nevertheless, in the same way astihe Menger spaces
theory, a topology m deduced fromM is de ned on X, and the concepts relative to
completeness inP M spaces can be translated to this fuzzy theory. Further, if weimitate
the Sherwood's construction of the completion of a Menger sqce, based on the properties
of Levi's metric, we obtain that this fuzzy metric space admis completion and it is unique
up to an isometry. A direct proof of this conclusion using supema of subsets of [01] and
lower limits of sequences in [p1] has been recently given in [18].

Notice that in the de nition of probabilistic metric space i n [22] (and in [1], also known
as generalized Menger space) there is no any equivalence #N6) condition.

In 1994, George and Veeramani introduced the notion of fuzzynetric space by modifying
the modern concept of fuzzy metric due to Kramosil and Michaék (Remark 2) which is
given at the beginning of the following section and which we wi adopt from now on.

3. Fuzzy metric spaces in the sense of George and Veeramani

De nition 3 ([4]). A fuzzy metric space is an ordered triple K;M; ) such that X is
a (nonempty) set, is a continuoust-norm and M is a fuzzy set onX X ]0;+1 |
satisfying the following conditions, for all x;y;z 2 X; t;s> 0:

(GV1) M(x;y;t) > O;

(GV2) M(x;y;t)=1ifand only if x = y;

(GV3) M (xy;t) = M(y;x;t);

(GV4) M(x;y;t) M(y;z;s) M(x;z;t + s);
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(GV5) The function My, : R" ! ]0;1] de ned by Myy (t) = M (x;y;t) forall t> 0
is continuous.

If (X;M; ) is a fuzzy metric space, we will say that M; ), or simply M, is a fuzzy
metric on X.

The three most commonly used continuoust-norms in fuzzy logic are the minimum,
denoted by ~, the usual product, denoted by and the Lukasieviczt-norm, denoted by L
(xLy =maxf0;x + y 1g). They satisfy the following inequalities:

XLy x vy x”"y
and
Xy x"y
for each (continuous) t-norm

Recall that if (X;M; ) is a fuzzy metric space and is a continuoust-norm such that
a b a bforeacha;b2 [0;1] (briey ), then (X;M; ) is a fuzzy metric space but
the converse, in general, is false. Consequently, iiX(M; *) is a fuzzy metric space then
(X;M; ) is a fuzzy metric space for each continuous-norm

George and Veeramani proved in [4] that every fuzzy metricM on X generates a
topology m on X which has as a base the family of open sets of the forBy (x;r;t) :
X2 X; 0<r< 1;t> 0g; whereBy (x;r;t) = fy2 X : M(x;y;t) > 1 rgforall x 2 X;
r 2]0;1[ andt> O:

Proposition 4 ([4]). Let (xn) be a sequence oiX. Then (x,) converges tox if and only
if Iinm M (Xn;x;t) =1 for eacht> 0.

Denition 5  ([6]). Let (X;M; ) be a fuzzy metric space. Then

a) A sequence X,) in X is said to beM -Cauchy (or simply Cauchy) if for each" 2]0; 1]
and eacht > 0 there isng 2 N such that M (Xn;Xm;t) > 1 " for all n;m Ng, i.e.
m M (Xn;Xm;t) =1 forall t> O.

b) (X;M; ) is called completeif every Cauchy sequence irX is convergent with respect
o wm.

It has been proved that the class of topological spaces whichre fuzzy metrizable agrees
with the class of metrizable topological spaces (see [5] an@]) and then, some classical
theorems on metric completeness and metric (pre)compactrss have been adapted to the
realm of fuzzy metric spaces ([8]). Nevertheless, the thegrof fuzzy metric completion,
that we will see in the following is, in this context, very di e rent from the classical theory
of metric completion, because there are fuzzy metric spaceshich are non-completable.

De nition 6 ([9]). Let (X;M; ) and (Y;N;?) be two fuzzy metric spaces. Then
a) A mapping ' from X to Y is called anisometry if for each x;y 2 X and eacht > 0,

MOGy;t) = N(C (x);" (y);1):
b) (X;M; ) and (Y;N;?) are calledisometric if there is an isometry from X onto Y:

Recall that, as in the classical metric case, every isometrys one-to-one.

De nition 7 ([9]). Let (X;M; ) be a fuzzy metric space. A complete fuzzy metric space
(X ;M ; ) is a fuzzy metric completion of (X;M; ) if (X;M ) is isometric to a dense
subspace of X ;M ).

De nition 8. A fuzzy metric space X;M; ) is called completableif it admits a fuzzy
metric completion.
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Proposition 9  ([9]). If a fuzzy metric space has a fuzzy metric completion then it is
unique up to isometry.

Suppose K ;M ; ) is a fuzzy metric completion of (X;M; ). Attending to the last
proposition and the construction of the completion [10], wecan consider thatX X
is ,andthat M is denedon X by

M (Gy;t) =lim M (Xn;Yn;t)

forall x;y 2 X ; t> 0, where k) and (yn) are sequences irX that converge to x and
y, respectively.
In [10] a characterization of the completable fuzzy metric paces was given as follows.

Theorem 10. A fuzzy metric space(X;M; ) is completable if and only if it satis es the
two following conditions:

Given two Cauchy sequence&n)n; (Ih)n; in X then
(Cyt7! Iirr1n M (an;hn;t) is a continuous function on R* with values in]0; 1]

(C2) If Iinm M (an;bh;tg) = 1 for somety > O then Iinm M (an;bn;t) = 1 for all
t> 0.

De nition 11. A fuzzy metric M (or a fuzzy metric space K;M; )) is said to be sta-
tionary ([10]) if M does not depend ont; i.e. if for each x;y 2 X; the function M,y is
constant.

If (X;M; ) is a stationary fuzzy metric space, we will simply write M (x;y) instead of
M (X y;t).

De nition 12 ([11]). Let (X;M; ) be a fuzzy metric space. The fuzzy metricM (or the
fuzzy metric space ¥;M; )) is said to be strong if it satis es for each x;y;z 2 X and
eacht> 0

(GVv4) M(x;z;t) M((xy;t) M(y;z;t)
If (X;M; ") is strong then it is called a fuzzy ultrametric space [11].

Obviously, stationary fuzzy metrics are strong.

Let (M; ) be a non-stationary fuzzy metric. De ne the family of functionsfM; : t 2
R* g where, for eacht 2 R*, My : X2 ! ]0;1] is given by M¢(x;y) = M (x;y;t). Then
(M; ) is strong if and only if (M¢; ) is q\/\]stationary fuzzy metric on X for eacht 2 R™.
Further, if (M; ) is strong then y = f y, : t> 0g. In this case we will say that
fMy : t 2 R*g is the family of stationary fuzzy metrics associatedto M. Clearly, this
family characterizesM in the sense thatM (x;y;t) = M(x;y) for all x;y 2 X; t> 0.

Moreover, it is easy to verify that the sequence X,) in X is M -Cauchy if and only if
(xn) is M¢-Cauchy for eacht > 0. In consequence we have the following corollary.

Corollary 13 ([20]). Let (X;M; ) be a strong fuzzy metric space(X;M; ) is complete
if and only if (X;M¢; ) is complete for eacht 2 R*.
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4. Completion

In this section we give a class of stationary fuzzy metrics with are completable [11].
The rst results regards the t-norm L.

Proposition 14. Let (M; L) be a stationary fuzzy metric onX and let d be the metric
on X given byd(x;y)=1 M(x;y) for all x;y 2 X. Then

() A sequence(xp) in X is M -Cauchy if and only if (x,) is d-Cauchy.

(i) (X;M; ) is complete if and only if (X;d) is complete.
Theorem 15. Let (X;M; L) be a stationary fuzzy metric space and consider the metric
don X given byd(x;y)=1 M(x;y). Let (X ;d ) be the completion of(X;d). Then

() If (X;M; L) admits completion then(X ;M ;L) is its completion whereM is

given byM (x;y)=1 d (x;y) for eachx;y 2 X .

(i) (X;M; L) admits completion if and only if d (x;y) < 1 for all x;y 2 X .
Remark 16. Notice that Theorem 15 is also satis ed by a stationary fuzzy metric space
(X;M; ) if L.

De nition 17.  We will say that the continuous t-norm is integral if it satises a b6 0
whenevera; b6 0.

The continuous t-norms” and are integral while L is not integral.
In the non-completable stationary fuzzy metric space K;M; L) of [10], Example 1, two
Cauchy sequencesXy) and (yn) are given such that Iian (Xn;yn) = 0. This fact is not

possible when is integral as shows the next theorem.
Theorem 18. Let (X;M; ) be a strong fuzzy metric space and suppose thatis integral.

If (xn) and (y,) are Cauchy sequences iXX andt > 0 then (M (Xn;Yn;t)) converges in
10; 1].

The authors do not know any example where the continuity condtion in (C1) of The-
orem 10 fails. So, after seeing the above theorem, the follamg natural question arises.
Problem 19. In the conditions of last theorem, is the real functiont ! Iinm M (an; bn;t)
continuous?

By Theorem 10 it is obvious that a stationary fuzzy metric space (X;M; ) is com-
pletable if and only if lim, M (a,;b,) > O for each pair of Cauchy sequencesa); (k) in
X. So, by the last theorem we obtain the next corollaries.

Corollary 20. If (M; ) is a stationary fuzzy metric onX and is integral then (X;M; )
is completable.

Corollary 21. Stationary fuzzy ultrametrics are completable.

Remark 22. The completion of (X;M; ) in the conditions of Corollary 21, and Corollary
20 if L, is the one given in Theorem 15 (see Remark 16).

Example 2 of [9] (Example 1 of [10]) is an example of a stationg fuzzy metric space
which does not admit fuzzy completion.

We cannot extend Corollary 21 to fuzzy ultrametrics since Example 41 of [11] is a
non-completable fuzzy ultametric space.

Lemma 23. Suppose(X;M; ) completable. Let(X ;M ; ) be the fuzzy completion of
(X;M; ). If (M; ) is strong then(M ; ) is strong.
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Theorem 24. Let (X;M; ) be a strong fuzzy metric space. X is completable then
(X;My; ) is completable for allt > 0.

The next example shows that the converse of the above theorens false.

Example 25. Let X =]0;1],A= X\ Q,B = X r A. De ne the function M onX?2 R*
by

8 .
3 MInfXYO k2 A y2Borx2B:y2A)andt< 1
M (X y:t) = maxf x;yg
Y minfx;yg
mnrx, y9g elsewhere.
maxf x;yg

It is easy to verify that (M; ) is a fuzzy metric on X ..

Now, we see that M; ) is strong. Since for allx;y;z 2 X andt< 1, it is satis ed that

minf x; zg S minf x; zg minfx;yg minfy;zg minf Xx;yg minfy; zg

maxfx;zg maxfx;zg maxf x;yg maxfy;zg maxf x;yg maxfy;zg
then, with an easy discussion, it follows thatM (x;z;t) M (x;y;t) M(y;z;t)if t< 1.

The caset 1 is trivial, and so, (M; ) is strong.

Nevertheless, we will see that X; M; ) is non-completable. Indeed, let &) and (yn)
be two strictly increasing sequences inA and B, respectively, converging in the usual
topology of R to 1. Then Llrnr)I M (Xn; Xm;t) = Ilnrrr1n M (Yn;Ym;t) =1 for all t> 0 and hence

(xn) and (yn) are Cauchy.
We have that im M (Xn;ym:;1) = 1 but lim M (Xn:yn; ) = 3 and so condition (C2) of

Theorem 10 is not satis ed by (x,) and (y,) and then (X; M; ) does not admit completion.
On the other hand, since K;M; ) is strong then (X; M ¢; ) are stationary fuzzy metric
spaces and so completable for eadh> 0, since is integral.
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Abstract

In the pointfree topological context of locales and framesyreal functions on a
locale L are represented as localic morphismS(L) ! L(R) (i.e. frame homo-
morphismsL(R) ! S (L)) where S(L) stands for the frame of all sublocales
of L and L(R) denotes the frame of reals. This is reminiscent of dealing \th
(not necessarily continuous) real functionsX ! R as with continuous func-
tions D(X)! R whereD(X) is the discrete space on the underlying set oX .
But it is deeper: the structure of S(L) is rich enough to provide a nice com-
mon framework for the three types of continuity (lower semicontinuity, upper
semicontinuity and continuity ) as well as genera(not necessarily continuou$
real functions. The aim of this expository note is to providea short overview
of the theory of pointfree real functions and the strength ofits applications.

1. Introduction

Given a topological space X; OX), the lattice OX of open sets is complete since any

union of open sets is an open set; of course tha nite distribution law
AN TBi=  (ANB)
i21 i21 Y

holds in OX since the operations® (being a nite §1eet) and  coincide with the usual
set-theoretical operations of\ (intersection) and  (union), respectively. Moreover, if
f 1 (X;0X) ! (Y;0Y) is a continuousymap, f ! de nes a map of OY into OX that
clearly preserves the operations® and . Therefore, de ning a frame as a complete
lattice L satisfying the in nite distribution law

w
a® b= I(a" b);

i21 i2
ang de ning a,,/frame homomorphismh : L ! M as a map fromL in M such that
h( >ra&) = ,¢ h(a) for every nite F (in particular, for F = ?, h(1) = 1) and

1The authors are grateful for the nancial assistance of the C entre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIUQ7/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain.
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h(Wi2| a) = Wm h(a) for every | (in particular, for 1 = ?, h(0) = 0), we have the
category Frm of frames and frame homomorphisms and a contravariant funcir O : Top !
Frm de ned by (X; OX) 710X and (f : (X; OX)! (Y;0Y)) 7! (f 1:0Y!O X).

Because of contravariance, to keep the original geometri¢amotivation it is necessary
to introduce the dual category Frm°?, making functor O covariant. This is the genesis
of the category Loc of locales and localic maps: it is precisely the categorffrm°?. So, a
locale is the same thing as a frame, but morphisms diverge: @@lic morphisms are de ned
abstractly, as morphisms of frames acting in the opposite diection.

The category oflocalesis a category set up to behave like the familiar one of topologal
spaces. One speaks abowstublocalesand, in particular, of closed, operand dense sublocales
One speaks abouftcontinuous maps between localeand, in particular, of proper and open
maps One speaks abouttompact localesand, analogously, many other separation axioms
have their versions in locales: e.g, one speaks cbmpact Hausdor

locales regular locales normal locales etc. But there is an important new aspect: the
dual category of Loc (that is, the category Frm of frames) is an algebraic category, with
all the nice properties and tools available in any category balgebras ([15]).

This analogy between the theory of locales and the theory of dpological spaces is
not quite exact; otherwise, the two theories would be indisinguishable and locale theory
would be redundant. What exists is a translating device betveen the two theories: each
topological spaceX de nes naturally a locale O(X) (specically, its topology). And
given a localeL there exists a topological space (L) naturally associated to L. More
precisely, there is a categorical adjunction between the dagory Top of topological spaces
and continuous maps and the categoryLoc of locales, de ned by the open-sets functor
O :Top! Locand the spectrum functor : Loc! Top (see [15] or [24] for details).

Each frame L has associated with it the well-known ring C(L) = Frm(L(R);L) of its
continuous real functions ([1]). This is a commutative arcimedean (strong) f -ring with
unit. Since the spectrum ( L(R)) of the frame of reals is homeomorphic to the usual
space of reals, by the adjunction

(o]
Top DD://LOC

mentioned above there is a bijection
Q) Top(X; R) ' LoqOX; L(R)) = Frm(L(R); OX):

Thus the classical ring C(X) ([7]) is naturally isomorphic to C(OX) and the correspon-
denceL  C(L) for frames extends that for spaces.
Now, replace the spaceX in (1) by a discrete spaceD (X ). We get

RX " Top(D(X):R)) ' Frm(L(R);D(X)):

For any L in the category Frm, the role of the lattice D(X) of all subspaces ofX is
taken by the lattice S(L) of all sublocales ofL, which justi es to think of the members of
Frm(L(R); S(L)) = C(S(L)) as arbitrary not necessarily continuous real functions on the
frame L ([11]). The real functions on a frameL are thus the continuous real functions on
the sublocale lattice of L and therefore, from the results of [1], constitute a commutdive
archimedean (strong)f -ring with unit that we denote by F(L). It is partially ordered by

f g f(r;1) o) foralr2Q
. o( ;r) f( ;r) forallr2Q:
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Since anyL is isomorphic to the subframecL of S(L) of all closed sublocales, the ringC(L)
may be equivalently viewed as the subring ofF (L) of all real functionsf : L(R)!'S (L)
for which f (p; g) is a closed sublocale for everyp;q(i.e. f (L(R)) cL). So our ring F(L)
embodies the ringC(L) in a nice way. We shall refer to thesef 2 C(L) (indistinctly
regarded as elements of (L) or as elements ofFrm(L(R);L)) as the continuous real
functions on L and will use the same notationC(L) for denoting both classes.

Besides continuity, F (L) allows also to distinguish the two types of semicontinuity. f 2
F (L) is lower semicontinuousif f (p;| ) is always closed, and is upper semicontinuousif
f (] ;q) is always closed. We shall denote by.SC (L) and USC(L) the classes of lower and
upper semicontinuous functions respectively. Hence, theimg F (L) provides an appropriate
level of generality for C(L), LSC(L) and USC(L) and

lower semicontinuous + upper semicontinuous = continuous:

The rst right approach to semicontinuity in pointfree topo logy was presented in [12].
The approach here considered, succinctly described abovleas wider scope and was intro-
duced recently in [11] (see also [13]).

2. Preliminaries: the lattice of sublocales and the frame of re als

For general information on frames and locales the reader iseferred to [15], [24] or [25].

One of the fundamental di erences betweenTop and Loc relies on their lattices of
subobjects. In fact, sublocale lattices are much more compated than their topological
counterparts (complete atomic Boolean algebras): Vthey areirq/ general co-frames (i.e.,
complete lattices satisfying the distribution law S_  ,, Ti = ,5,,(S_ T;), dual to the
distribution law that characterizes frames). Even the subbcale lattice of a topology OX
can be much larger than the Boolean algebra of the subspace$§ % ; e.g.,Q considered as a
subspace oR (with the usual euclidean topology) has 2 many non-isomorphic sublocales.

Let L be a locale. Thesublocaleg : M L of L, that is, the regular monomorphisms
in Locwith codomain L (or still, the quotients or surjective frame homomorphismsL M
with domain L) can be described in several equivalent ways (cf. [25] or [P4 Here we
shall use the approach ({; [24]: a subse® of L is a sublocaleof L if:

(1) ForeachA S, A2S.
(2) Forany a2 L ands2 S,a! s28S.

Since any intersection of sublocales is a syplocale, the sef alj,sublocaleg ofL is a
gomplete lattice. This is a co-frame, in which ,, S = 5, Si, 5, Si=f AJA

i»1 Sig, 0=flgand 1 = L. It will be convenient to work with the corresponding dual
lattice, hence a frame, that we shall denotg byS(L).

Each sublocaleS is itself a frame with  and! as inL (the top of S coincides with
the one ofL but the bottom Os may di er from the one of L).

In spite of S(L) not being in general a Boolean algebra, it contains many complemented
elements. For example, for eacta 2 L, the sets

da):="a=fb2Lja by and ofa):=fa! bjb2Lg

de ne sublocales ofL, complemented to each other, i.e.(a) _o(a) =1 and c(a)” o(a) = 0.
The former are the so-calledclosed sublocalgswhile the latter are the open sublocales
Here is a list of some of the most signi cative properties ofS(L) ([24, 25]):
(S1) &b = fda) j a2 Lgis a subframe ofS(L) isomorphjg to L; thgyisomorphism
c:L! o isgiven bya 7! da). In particular, o ;,, &) = 5, o&) and
cda” b= da)” cb).
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(S2) Let oL denote the subframe ofS(L) generated byfo(a) j a 2 Lg. The map
L {yy oL dengd by a 7! o(a) is a dual lattice embedding. In particular, we have

o( ;&)= 5, 0(a)ando(a” b)= o(a)_ o(h).
(S3) da) obi an b\7v0, ando(@ dbi a_ b=1. v
(S4) The closure S := fga) j oa) Sg and the interior S = fo(a) | S

o(a)g of a sublocaleS satisfy the following properties, where () stands for the
pseudocomplementation operator:q(a) = o(a ), o(a)= oa ),(S) =S .

SinceFrm is an algebraic category, we have at our disposal the familraprocedure from
traditional algebra of presentation of objects by generators and relations([15, 1]). The
frame of reals ([1]) is the frame L (R) generated by ordered pairs p; g), with p;g2 Q, and
relations

(R1) (g (rs)y=(p_rqg”s),

(R2) (p;a) _ (ys) = (p;s) wheneverp r<q s,
(R3) Waq) = p<r<s<q (r;S)v

(R4) p;qZQ(p;q) =1

Notice that a map from the generating set ofL (R) into L de nes a frame homomorphism
L(R)! L if anqupnly if it transforms relgfjpns (R 1{(R 4) of L(R) into identities in L.

Let (p;1 ) = qZQ(p;q) and (| ;q) = Ion(p;q): With (p;| ) and (] ;q) taken as the
primitive notions, L(R) may be equivalently de ned ([21]) as the frame generated by
elements ;| ) and (| ;Qg), with p;q2 Q, and relations

(RY) (p;1 )" (1 ;) =0 wheneverp q,
(RY) (pi1 ) _ (@ =1 wheneverp<q,
(R (P11 )= \yop (1),

(R (D= scqll 59),

(RY) vaZQ(p;| )=1,

(Rg) q2Q(| ;Q) =1

3. Constructing real functions: scales

In order to de ne a real function f 2 F(L) it su ces to consider two maps from Q to
S(L) that turn the de ning relations (R 9){(R 2) above into identities in S(L).

This can be easily done with scales ([8]; trails in [1]): herdoy a scalein S(L) is meant
ayfamily (Sp)p2g,0f sublocales ofL satisfying (1) S, _ Sq = 1 wheneverp < g; and (2)

2oSp=1= oS-

The following lemma, essentially proved in [10], plays a keyole.

Lemma 1. For each scale(S;)r2q the formulas

W W
f(p;1 )= S and f(;q)= S, p;g2Q

r>p r<q

determine anf 2 F(L). Moreover, if every S; is closed(resp. open, resp. clopeh then
f 2 LSC(L) (resp. f 2 USC(L), resp. f 2 C(L)).

Let us mention two basic examples of real functions.
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Example 2 (Constant functions ). For eachr 2 Q, the family (S{)i2q denedby S{ =1
ift<r andS{ =0if t r is a scale. The corresponding function inC(L) provided by
Lemma 1 is given for eacr(p; g2 Q by (

1 ifp<r 0 ifq r

and r(l ;9=

r(pil )= 0 ifp r 1 ifg>r

Example 3 (Characteristic functions ). Let S be a complemented sublocale df with
complement: S. Then (S;)r2qg denedby S, =1if r< 0,S =:Sif0 r< 1and
S =0if r 1, is a scale. We denote the corresponding real function ik (L) by s and
refer to it as the chara8cteristic function of S. It is de ned for8each p;gq2 Q by

21 ifp<O 20 ifqg O
s(p;|)=>:s if0O p<1 and s( ;q)=>S fo0<qg 1

"0 ifp 1 1 ifg>1L

4. The algebraic structure of F(L)

For any frame L, the algebraC(L) of continuous real functions onL has as its elements
the frame homomorphismsf : L(R) ! L (or, equivalently, as already pointed out, the
frame homomorphismsf : L(R) !'S (L) for which f (p; q) is closed for anyp;gq2 Q). The
operations are determined by the operations of) as lattice-ordered ring as follows (see [1]
for more details): W

(1) For =+ ;7 (f 9)(p;gisgivenby ff(rs)?g(tu)jhrsi httui h p;dg;
whereh; i stands for open interval in Q and the inclusion on the right means that
X 'y 2hp;d wheneverx 2 hr;si andy 2 ht;ui.

@ ()pa=1( a p.

(3) Forall > 0inQ,( f)p;g=f(29).

Indeed, these stipulations de ne maps fromQ Q to L and turn the de ning relations
(R{(R 4) of L(R) into identities in L and consequently determine frame homomorphisms
L(R)! L (theresultthat C(L)is anf -ring follows then from the fact that any identity in
these operations which is satis ed byQ also holds inC(L)). In particular, F(L) = C(S(L))
is anf -ring. In the sequel we present alternative formulas for itsoperations, picked from
[13], which were obtained with the help of scales and Lemma 1.

Given f;g 2 F(L), (f(p;1 ) _ 9(p;l )p2q and (f (p;1 )~ g(p;! ))p2q are scales that
generate respe%vely thesupremumf g2 F(L) and the inmum f~ g2 F\l.). Therefore
(f_ops1 )= F(rr)_a(nr) =1 )_om1 ), (f_9)( ;a)= o F(r1)_

g1 ) =f0ap”al sa), (F A 9)pst )= f(p;1 )™ a(p;1 ) and, nally, (f 7~ g)(l ;q) =
f( ;9 _9( ;9. In summary, we have:

Proposition 4. The posetF (L) has binary joins and meets;,LSC (L), USC(L) and C(L)
are closed under these joins and meets.

N f+g _ W . A . ; f+g
ow foreachp2 Qdene S,"° =, f(r1 )" g(p 1) . The family (Sp” *)p2q

is a scale that deterrWnes thesumf + g 2 F(L) of f and g. It is not hard to see
hat (f +9)(pi1 ) = o F(n1) " glp 11 ) foreveryp2 Qand (f +9)(1 ;9 =
s20 T(159)™d(l ;g s) foreveryq2 Q. Hence we have:

Proposition 5. Let f;g 2 F(L). If f;g 2 LSC(L) (resp. USC(L), resp. C(L)) then
f+g2LSC(L) (resp. USC(L), resp. C(L)).
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Given f;g 2 F(L), with f g=f +( g) we also have:
Proposition 6. Let {Ng 2 F(L). Then:
) (f 9Pl )= \ywraof (1 )™ g0 ir p) foreveryp2 Q.
@ (f U ;D= oof(:9)"9(s a; ) foreveryq2 Q.
@iy If f 2 LSC(L) (resp. USC(L), resp. C(L)) and g2 USC(L) (resp. LSC(L), resp.
C(L)) thenf g2 LSC(L) (resp. USC(L), resp. C(L)).

Finally, with respect t%he product f g, for the casef;g 0 we have that, de ning,
for eachp 2 Q, Sp = sof(ni)” g( 1) ifp O andS 9 = 1 otherwise, then

(Sp )sz is a scale generating 98 Therefore

W o .

< f(mi)ro(rr) ifp O
(f o)p;l )= o0 .

1 ifp<O
and 8 w ; '
< f(:;s)*g(:3) ifg>0
(f 93 ;9= s0 .

-0 ifqg O

Proposition 7. Both LSC(L) and USC(L) are closed under products of non-negative
elements(and so doesC(L)).

In order to extend this result to the product of two arbitrary f and g in F(L) let
f*=f 0O0andf =( f)_O0. Noticethatf =f* f . SinceC(S(L))is an "-ring, from
general properties of -rings we have thatf g= f* g*) (f* g ) (f g")+(f g ):
In particular, if f;g O0,thenf g=f g =( f) ( g). Hence:

Proposition 8. C(L) is closed under products. Iff;g 0 and f;g 2 LSC(L) (resp.
USC(L)) thenf g2 USC(L) (resp. LSC(L)).

5. Upper and lower regularizations

A fact from the theory of real functions asserts that every rel function f : X ! Rona

topological spaceX admits the so-called lower semicontinuous regularizatiof :X ! R,
given by the lower limit of f :

. W Vv :
f(x):=I|nJI|an fy)= f f(U)jx2U20Xg:

This is the largest lower semicontinuous minorant off : f = ng 2LSAQX;R)jg fg
For eachp 2 Q we have
fpi+1D= - (f Mn+1D) =Xn | f 101 D
r>p r>p
which means that the lower regularization f takes values inR if and only if it has a
Iow_(rar semicontinuous minorant; equivalently, if and only if ;5 f qr;+1 ) = X; that

IS, r2Qf 1 5rp=7:

In the pointfree context, since we know already how to deal wth generic real functions,
the construction of the corresponding lower and upper regwdrizations can be performed
in a surprisingly easy way ([9]) which we describe in the seqgl.

Letf 2 F(L). The family f(r;| ) e is a scale so, by Lemma 1, formulas

|,V — w
f(pr)=f(1) and f (0= :f(s1)

r>p s<q
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determine anf 2 LSC(L), called the lower regularization of f . It satis es, among others,
the following properties ([9, 11]):

Propggition 9. Letf;g 2 F(L). Then f f,(frg) =f ~g andf = f . Moreover,
f = fg2LSC(L)jg fgandLSC(L)=ff 2F(L)jf ="f @

Analogously, we can de ne theupper regularization of f 2 F (L) by

W W
f ;0= s<qf(| ;s) and f (p;1 )= r>p:f(| T

Thusf = ( f) which with Proposition 9 yields the following:

Proposition 10. \}et f;g 2 F(L). Thenf 2 USC(L),f f ,(f_9g) =f _g,
f =f ,f = fg2USC(L)jf ggandUSC(L)=ff 2F(L)jf =1 g

6. Insertion-type results

Our aim now is to give evidence of the scope and usefulness dfet ring F (L) with a short
review of its main applications to insertion-type results in normal or extremally discon-
nected frames. Their classical (particular) versions abotithe existence of continuous real
functions in normal spaces or extremally disconnected sp&s rank among the fundamental
results of point-set topology and can be classi ed in three ypes: separation theorems (like
Urysohn's Lemma), extension theorems (like Tietze's Theoem), and insertion theorems
(like Kaetov-Tong Theorem). The latter are the most impor tant since they imply the
former two as corollaries.
We begin by the pointfree extension of Kaetov-Tong insertion theorem which holds for
normal frames, that is, frames in which, whenevera _ b= 1, there exists u 2 L such that
a_u=1= b_u . Itisnotdicultto show that a\;rame L is r{9rmal if and only if
for any countable A;B L satisfyinga_ B =1=b_ Aforalla2 A
and b2 B, there existsu 2 L suchthata_u=1=b_u foralla2 A
and b2 B ([23]).

Based on this characterization it is then possible to show tle Kaetov-Tong Theorem:

Theorem 11 (Insertion: Kaétov-Tong; [12]). For a frame L, the following are equiv-
alent:

() L is normal.
(i) Foreveryf 2 USC(L) andg2 LSC(L) satisfyingf g, there existsh 2 C(L) such
thatf h g

Other insertion theorems were meanwhile obtained for otherclasses of frames ([5, 8,
9, 10, 13]). The following one is, in some sense, a dual versif the previous theorem;
equivalence (i) (v) generalizes Corollary 4 of [20] and all the others extendresults of
Kubiak-de Prada Vicente ([19]). Recall that a frame L is extremally disconnectedif a _
a =\ for every ¢ L. These frames are precisely those in which the second De Mag
law (5, @) = 5, & holds (this is the reason why they are also referred to aPe
Morgan frames).

Theorem 12 (Insertion: Lane, Kubiak-de Prada Vicente; [9]). For a frame L, the
following are equivalent:

(i) L is extremally disconnected.

(i) C(L)y=ff jf 2USC(L)andf 2 LSC(L)g.

(i) C(L)=fg jg2LSC(L)andg 2 USC(L)g.
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(iv) Foreveryf 2 USC(L) andg2 LSC(L),if g f theng f.
(v) Foreveryf 2 USC(L) andg?2 LSC(L) satisfyingg f, there existsh 2 C(L) such
thatg h f.

Our next result is the monotone version of Kaetov-Tong Theorem and generalizes the
(monotone insertion) theorem of Kubiak in [18]. First note that the de nition of hormality
may be rephrased in the following way: letD, = f(a;h 2 L L ja_b=1g; aframe
L is normal if and only if there exists amap : D_ ! L satisfyinga_ ( ajb =1 =
b_ ( a;b . Equipping D with the partial order ( °P; ) inherited from L°° L, L is
called monotonically normal in case it is normal and is monotone ([8]). Let UL(L) =
f(f;g) 2 USC(L) LSC(L)|jf gg be partially ordered by the order inherited from
F(L)® F(L),ie, (fi;q) (f2;0) f2 fiandgr g2 Then:

Theorem 13 (Monotone insertion: Kubiak; [8]). For a frame L, the following are
equivalent:

() L is monotonically normal.
(i) There is a monotone map : UL(L)! C(L) such thatf ( f;g) g for every
(f;9) 2 UL(L).

Now let f;g 2 F(L) and dene (f;g) = szQ f(;p)”alp;l ) 2S(L). One writes
f <g whenever (f;g) = 1. Note that the relation < is indeed stronger than

The next insertion theorem in our list is the pointfree version of the (insertion) theorem
of Dowker ([3]) for countably paracompact spaces. More gemally, a frame L is said to be
countably paracompact([4]) if every countable non-decreasing coverg;);2j is shrinkable
(i.e., there is a cover §§)j25 such thatly _a =1forall j 2 J).

Theorem 14 (Strict insertion: Dowker; [10, 13]) For a frame L, the following are
equivalent:

() L is normal and countably paracompact.
(i) Foreveryf 2 USC(L) andg?2 LSC(L) satisfying f < g, there existsh 2 C(L) such
that f<h<g .

The last two insertion results that we list here are the pointfree extensions of respec-
tively the insertion theorem of Michael for perfectly normal spaces ([22]) and the insertion
theorem of Kubiak for completely normal spaces ([17]). We reall from [10] that a frame
L is\RprfectIy normal if, for each a 2 L, there exists a countable subseB L such that
a= Bandb a=1forevery b2 B; aframelL is completely normalif for eacha;b2 L
there existu;v2 L suchthatu”v=0,b a_uanda b_v ([5)]).

Theorem 15 (Bounded insertion: Michael; [10, 13]) For a frame L, the following
are equivalent:

() L is perfectly normal.
(i) Foreveryf 2 USC(L) andg?2 LSC(L) satisfyingf g, there existsh 2 C(L) such
that f h gand (f;h)= (h;g) = (f;9).

Theorem 16 (General insertion: Kubiak; [5]). For a frame L, the following are
equivalent:

(i) L is completely normal.
(i) For everyf;g 2 F(L) satisfying f gandf g, there existsh 2 LSC(L) such
thatf h h g.
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It is worth mentioning that all the preceding theorems, when applied to L = OX (for
the specic type of spaceX in question), yield the corresponding classical result. We
illustrate this here with Kaetov-Tong insertion: applyi ng Theorem 11 to the topology
OX of a normal spaceX , the implication \(i) ) (ii)" provides the non-trivial implication
of the classical Kattov-Tong Theorem ([16, 27]) as we destibe next.

Let f : X ! R be an upper semicontinuous function andg : X ! R a lower semicon-
tinuous one such thatf  g. The families ((f (0 1 ;dD))qo and (p (p;+1 D)p20
are scales inS(OX). Then, by Lemma 1, the formulas

B0 = df (01 ) Bpi) = oo 01 D)

CICHD og *(0p;+1 D); 80 ;0 = q0(g *dsi+1D);
establish functions® g: L(R)!'S (OX) with £2 USC(OX) and g 2 LSC(OX). The
condition f gimpliesf 1] 1 ;q) g *Q 1 ;q) foreveryq2 Q, thus € g.
Consider i 2 C(OX) provided by Theorem 11, and the corresponding continuous rap
h:X ! Rdenedby h(x)2]p;qi x2c ! B(p;g :ltisthenclearthat f h g.

For a more detailed discussion of the preceding results and ane examples of results in
this vein consult [5, 8, 11, 13].

Remark 17. For a uni ed presentation of insertion-type results regarding normal and ex-
tremally disconnected objects in the categories of topoldgal spaces, bitopological spaces,
ordered topological spaces and locales see [6].

7. Separation-type corollaries

Let L be a normal frame and considera; b2 L satisfyinga_ b= 1. By property (S 3)
of Section 2,0(a) ). Therefore, y oa)- Consequently, applying Theorem 11

we obtain a continuous® : L(R) !'S (L) such that o, o(a): Consider then the
h:L(R)! Lgivenbyh=c ! R Observingthat ; 8i h( ;0)=0andh( ;1) b
and that, on the other hand, oa) I h(0;1 ) aandh(l;| ) =0, we getimmediately
the non-trivial implication of the following:

Corollary 18 (Separation: Urysohn;  [11]). A frame L is normal if and only if, for
everya; b2 L satisfyinga_b=1, there existsh : L(R) ! L suchthath((} ;0)_(1;] ))=0,
h(O;; ) aandh( ;1) b

The statement of Corollary 18 is precisely the statement of he (separation) lemma of
Urysohn for frames (cf. [1], Prop. 5), that extends the famows Urysohn's Lemma of point-
set topology. From Theorem 12 we can arrive, in a similar way,at the frame extension
of the (separation) lemma for extremally disconnected spaes in Gillman and Jerison ([7,
1.H]):

Corollary 19 (Separation: Gillman and Jerison; [9]). A frame L is extremally
disconnected if and only if, for everya; b2 L satisfyinga” b= 0, there existsh: L(R) ! L
such thath((j ;0) _(1;; ))=0,h(©;] ) a andh( ;1) b.

If we do a similar thing with Theorem 15 we arrive to the pointfree extension of a
separation result due to Vedenisso ([28]):
Corollary 20 (Bounded separation: Vedenisso ; [10]). A frame L is perfectly normal
if and only if, for every a;b2 L satisfyinga_b=1, there existsh : L(R) ! L such that
h((1 ;0)_(1;1 ))=0, h(0;] )= aandh( ;1) = b.
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8. Extension-type corollaries

We conclude our journey through pointfree real functions wih the question: when is it
possible to extend a continuous functions from a sublocalefd. to all of L?

For any syblocaleS of L, letcs : L S denote the corresponding frame quotient, given
by cs(x)= fs2Sjx sg. Acontinuous i 2 C(L) is said to be acontinuous extension
of h 2 C(S) whenevercs ¢ B =c h ([11]).

As outlined in [23], from Theorem 11 it also follows the wellknown (extension) Theorem
of Tietze for frames:

Corollary 21 (Extension: Tietze; [21, 23]) For a frame L, the following are equivalent:

(i) L is normal.
(i) For any closed sublocalé&S of L and anyh 2 C(S), there exists a continuous extension

2 C(L) of h.
Dually, from Theorem 12 it readily follows:

Corollary 22 (Extension: Gillman and Jerison; [9]). For a frame L, the following
are equivalent:

() L is extremally disconnected.
(i) For any open sublocaleS of L and anyh 2 C(S), there exists a continuous extension

A2 C(L) of h.

A similar characterization holds for perfectly normal frames, in terms of the ringsC (L)
and C (S) of boundedfunctions (of course, anf 2 F(L) is bounded in case0 f 1):

Corollary 23 (Bounded extension; [10]). For a frame L, the following are equivalent:

() L is perfectly normal.
(i) For every closed sublocalés of L and any h 2 C (S), there exists a continuous

extensionf 2 C (L) of h such that®(0;1) S.

Remark 24. Replacing the frameL (R) of reals by the frameL R of extended realgde ned
by dropping conditions (R2) and (RQ) in Section 2) we are able to deal withrings of
extended real functions This is the object of study of the ongoing research projectZ?].
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Abstract

Monotone normality is usually de ned in the class of T, spaces. In this work
we extend well-known characterizations of these kind of spaes to the Ti-
free context and besides, we generalize such results consithg lattice-valued
maps instead of real-valued maps. Among the new ;-free characterizations
of monotonically normal spaces we provide are a Katetov-Tog-type insertion
theorem and Tietze-type extension theorem for lattice-valied functions.

1. Introduction

There has been an extensive literature devoted to monotonally normal spaces (see the
surveys [3, 5] and the references on them) since the notion wantroduced in [1, 8, 17].
With the exception of [9], monotone normality has always bea studied in the restricted
class of T1 spaces.

The inuence of computer science not only has given relevare to those spaces not
satisfying T; axiom, but also has focussed attention in functions with valies in ordered
sets rather than in the reals. Continuous lattices or domairs with their Scott topology are
an important class among the spaces which do not satisfy th&; axiom.

In concordance with those ideas, the present work explores amotone normality in
a T; free context. Also lattice-valued functions rather than real-valued functions are
considered throughout. The techniques established in [6] iV allow us to give lattice-
valued counterparts of some known characterizations of mastonically normal spaces given
in terms of real-valued functions, and all of them will be free of the T; axiom.

After some lattice theoretic preliminaries, the notion of monotone normality, free of
T, axiom, is studied. Several characterizations of monotone armality in this context
are provided and some deviation fromT;-monotonically normal spaces is exhibited. It
is well known that in the class of normal spaces (eithefT; or not), complete normality
and hereditary normality are equivalent concepts as well aghe fact that open subsets
inherit the property [16]. As to the class of T;-monotonically normal spaces is concerned,
it has been proved [2, 8, 13] that monotone normality is equialent to any one of the
following notions: complete monotone normality, hereditay monotone normality, open
subsets inherit the property. The proof of these equivalenes depends strongly on the

1This research was supported by the Ministry of Education and Science of Spain under grant MTM2006-
14925-C02-02 and by the UPV-EHU under grant GIU07/27.
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axiom T;. It relies upon a new property, also equivalent to monotone rmality, which can
be properly called monotone regularity and implies the Haudor axiom. The question as
to whether the above equivalences hold in spaces not satishg the axiom T, is answered
in negative. The answer is based on a construction of a nofi; monotonically normal
compacti cation associated to any topological space. It isimportant to notice that, when
characterizing monotone normality, the role of points will now be played by the closure of
singletons (the minimal closed sets in a nofM1-space). This idea is as simple as e ective. It
is also used to provide an extension property of lattice-valed functions for monotonically
normal spaces. This extension property is obtained as a comguence of a monotone and
lattice-valued version of the Kaktov-Tong's insertion t heorem and Urysohn's lemma that
we shall also obtain.

This presentation is a summary of the two papers [12, 7] alredy published by the
authors.

2. Preliminaries

2.1. Lattices. In the sequelL denotes a completely distributive lattice (with bounds O
and 1). For general concepts regarding lattices and complet distributivity we refer the
reader to [4]. We shall use the Raney's characterization ofamplete distributivity in terms

of an extra order C with the approximation property:

Given a complete lattice L andg;b2 L, take the following binary relation: a C bif and
only if, wheneverC L and b C; there exists ggmec 2 C with a  c: The lattice L
is said to becompletely distributiveif and only if a= fb2 L : bC agforeacha?2 L. The
previous relation has the following properties: (1)aC bimpliesa b;(2)c aCb d
implies ¢ C d; (3) aC bimpliesa C ¢ C bfor somec 2 L (Intgypolation Property).

A subsetD L is called join-dense (or a basg if a= fd2 D :d ag for each
a2 L. Anelementa?2 L is called supercompactif a C a holds. As in [6], any completely
distributive lattice which has a countable join-dense subst free of supercompact elements
will be called C-separable

2.2. Semicontinuous lattice-valued functions. Given a setX, L* denotes the col-
lection of all functions from X into L ordered pointwisely, i.e., f ginLX i f(x)
g(x) in L foreachx 2 X. Givenf 2 LX anda2 L,wewrite[f a]=fx2X :a f(x)g
and similarly for [f B a].

Let X be a topological space. A functionf 2 LX is said to be upper (resp. lower)
semicontinuousif [f  a] is closed (resp. B a] is open) for eacha 2 L (cf. [6, 11]).

The collections of all upper [lower] semicontinuous functns of L* will be denoted
by USC(X;L) [LSC(X;L)]. Elements of C(X;L) = USC(X;L)\ LSC(X;L) are called
continuous.

3. Monotone normality in a T, free context

Let X be a topological space with topologyo(X ) and let us denote by (X) the family
of closed subsets oK . We shall need the following sets (the notation comes from [Rand

[9]):
Dx = f(K;U)2 (X) oX): K Ug
Sx =f(A;B)22X 2X: A BandA IntBg;

_ T S
Sx = (A;B)22X 2X:A Int(X nfyg)and ~ fxg IntB :
y2X nB X2A
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All these sets are partially ordered considering the compoentwise order.
Note that Dx Sx S x and besidesSyx = Sx if X is Ty.

De nition 1.  [8]. A topological spaceX is called monotonically normal if there exists
and order-preserving function : Dy ! o(X) such that

K (KU) (KuU) U
for any (K;U) 2 Dx. The function is called a monotone normality operator.

Remark 2. The spaces described in the previous de nition were origindy assumed to be
T1. However, as in [9], we will not consider the axiomT; as part of the de nition of

monotone normality. A trivial example of a monotonically normal space, not satisfying
T, axiom, is provided by the reals endowed with the right-ordertopology (Kolmogorov's
line). We will show some more relevant examples after Propason 4.

Let us recall the following characterizations of monotone wrmality (under condition
T1). The rst one was originally called complete monotone nornality [17]. The second one
could be properly called monotone regularity. Many of the krown results on monotonically
normal spaces rely on these characterizations.

Proposition 3. [2, 8] Let X beT;. The following statements are equivalent:

(1) X is monotonically normal;

(2) There exists an order-preserving function : Sx ! o(X) such that
A (AB) (AB) Bforany (A;B)2Sx.

(38) There exists a function H which assigns to each ordered paifx;U) (with x 2 U
and U 2 o(X)) an open setH (x; U) such that:
(@ x2H((XU) U,
(b) f x2U V,thenH(x;U) H(x;V),
(c) If x 8 y are points of X, then H(x; X nfyg)\ H(y;X nfxg) = ;.

The proposition below gives the counterpart of Proposition3 when T; axiom is not
assumed. We would like to point out that it is the key to extend many known results to
the T,-free context.

Proposition 4. Let X be a topological space. The following are equivalent:
(1) X is monotonically normal,
(2) There exists an order preserving function b g 1 o(X) such that

A khaB) hAaB) B

for any (A;B) 2 Sy.
(3) For each point x and open setU containing fxg we can assign an open setl (x; U)
such that:
(@ fxg H(xU) U;
(b) if Visopenandfxg U V,thenH(x;U) H(x;V);
() if fxg\ fyg= ?,then H(x;X nfyg)\ H(y;X nfxg)= ?.

Remark 5. As it was said in the introduction, under the T, axiom, monotone normality

and hereditary monotone normality are equivalent axioms (®e Proposition 3 in [13], or
Lemma 2.2 in [8] or Theorem 2.4 in [2]). The proof of this resulis based on Proposition
3. However, in the absence of thé; axiom, the equivalence between monotone normality
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and hereditary monotone normality cannot be derived directy from Proposition 4. Even
more, for spaces not satisfying the axionT, this equivalence does not hold, as the following
construction shows:

Any topological space has a monotonically normal noril; compacti cation. Indeed, for
a topological space X; ), let Y be a set such thatX Y andY nX 6 ;. Dene on
Y the topology 7= [f Yg. Then, X is an open, dense subspace of the monotonically

normal non T; compact spacey.

Some other interesting examples of monotonically normal no T, spaces, come from
the eld of quasi-pseudo-metrics (where by a quasi-pseudoetric we mean a map d :
X X! [0;1) suchthat d(x;y) = d(y;x) =0i x=yandd(x;z) d(x;y)+ d(y;z)
for any x;y;z 2 X).

Example 6. LetK> OandX =( 1 ;0][ [K;+1). Denethemapd:X X! [0;1)
as follows:

8

2iX yj if x;y Oorx;y K;
dix;y) = Y X K ifx Oandy K;

"Xy ify Oandx K:

The map d de ned above is a quasi-pseudo-metric and the collectiorf B4(x;") : x 2
X; "> 0g (whereBy(x;")= fy 2 X :d(x;y) <" g) forms a base for a topology 4 on X.

Clearly the space ; ¢) is not Ty (notice that fO g = f0;0 g). Even if monotone
normality is not a property easy to manage with, condition (3) of Proposition 4 turns out
to be very e ective to prove that the previous space is monotorically normal.

4. Monotone normality and lattice-valued functions

Monotonically normal spaces will now be characterized in tems of insertion and exten-
sion of some kind of lattice-valued functions. Before doingso, we shall need some more
notation. Let us consider the following families:

UL(X;L)= f(f;g) 2 USC(X;L) LSC(X;L):f qgg;
SF(X;L)= f(f;g) 2 LX LX :f gandf gog;
dF(X;L)= (fig)2LX LX: V\Lf (y) g(x)and

y2fxg

Y,
f (x) g (y) foreachx 2 X ;
y2fxg

which are partially ordered considering the componentwiseorder.

Remark 7. (8) UL(X;L) ©F(X;L) SF(X;L) and besides, SF(X;L)= $F(X;L) if
X is T;.
(b) (A;lB) 2Sx (Sx)ifand only if (1a;1g) 2 SF(X;L) ($F(X;L)).

The proposition below is a characterization of monotonicaly normal spaces in terms of
insertion of semicontinuous lattice-valued functions. Fa the case of real-valued functions,
the equivalence (1), (2) in the T;-free context was obtained in [9].
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Proposition 8. Let X be a topological space and. be a completely distributive lattice.
The following are equivalent:

(1) X is monotonically normal;

(2) There exists an order preserving function : UL(X;L) ! LSC(X;L) such that
f(fig) (fi,g) gforany(f;g)2 UL(X;L).

(3) There exists an order preserving functionP: 8F(X;L) ! LSC(X;L) such that

f ®fg) Rfg) gforany(f;g)2 $F(X;L);

Thanks to the previous proposition, the following equivalent results hold for arbitrary
topological spaces. The rstone is a monotone and lattice-alued version of the well known
Katetov-Tong insertion theorem and generalizes a result otained by Kubiak [9] (see also
Lane and Pan [10]). The second one is a monotone lattice-vabd version of Urysohn's
lemma, which for the case of real-valued function was obtaied by Borges [1, 2].

Theorem 9. Let X be a topological space andl be a completely distributiveC-separable
lattice. The following statements are equivalent:

(1) X is monotonically normal;
(2) [Monotone Kaetov-Tong theorem] There exists an order-preserving function
UL(X;L)! C(X;L) such thatf (f;g9) gforany (f;g) 2 UL(X;L);
(3) [Monotone Urysohn's lemma] There exists an order-preserving function
Dx ! C(X;L) suchthat ( K;U)(K)= flgand ( K;U)(X U)= f0g
for each(K;U) 2Dy .

As a consequence, we have the following result, which showkdt monotonically normal
spaces satisfy the monotone extension property for latticesalued functions.

Corollary 10. Let X be a topological space antl be a completely distributiveC-separable
lattice. If X is monotonically normal, then for every closed subspacd X there exists
an order-preserving function : C(A;L)! C(X;L) such that ( f)ja = f forall f 2
C(A;L).

Remark 11. In [8] Heath, Lutzer and Zenor proved the previous extensionproperty for
L =[0;1] (under T, axiom). In the same paper they raised the question of whethethe
converse was true. It was Van Douwen [15] who proved that, foreal-valued functions, the
previous property does not characterize monotone normalit Later, in 1995, Stares [14]
pointed out that the problem for the converse not to hold seened to be that the above
property does not link continuous functions de ned in di ere nt closed subspaces. Taking
this fact into account, he gave an additional condition which solved the situation and
obtained an analogue of the Tietze-Urysohn theorem for moninically normal spaces [14,
Theorem 2.3]. The proof of Stares depends on the axiomB;. Our nal result extends to
the T;-free context and generalizes to lattice-valued functionghe extension theorem given
by Stares. We include the proof to highlight the importance d Proposition 4.

Theorem 12. Let X be a topological space andl be a completely distributiveC-separable
lattice. The following are equivalent:

(1) X is monotonically normal,

(2) For every closed subspac&d X there exists an order-preserving function a :
C(A;L)! C(X;L) suchthat a(f)ja =f forall f 2 C(A;L) and which satis es
the following two conditions:

(@ If A1 A, are closed subspaces anth 2 C(A3;L); fo 2 C(Ay; L) are such
that f2jA1 f, and fz(X) =1 for any X 2 A, nAq, then Az(f 2) Al(f 1).
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(b) If Ay A, are closed subspaces anfl; 2 C(A1;L); f2 2 C(Ay; L) are such
that foja, f1andfa(x)=0 forany x 2 Ao nAj, then a,(f2) A, (f1).

Proof. (1) ) (2): For any closedA X let A : C(A;L) ! C(X;L) be de ned by

A(f)=( hs;0), wherehs;g : X ! L are such thath = f = g on A, hy =0 and
g =1 on XnA and the monotone inserter of Theorem 9 (2). If Ay A, are closed
subspaces and; 2 C(A1;L); f2 2 C(Ag; L) are such that foja, f1 and fa(x) =1 for
any x 2 ApnAg, thenhs;,  hy, and g, o, So

A (F) = ( heson)  (heyid) = ay(f2)
and hence condition (@) is satis ed. Condition (b) is proved similarly.
(2)) (2): In order to prove monotone normality we will use (3) of Proposition 4. Let U
be open andx 2 X such that fxg U. We take the closed subspacé}, = fxg[ (X nU)
and de ne the maps
fagigay i Txgl (X nU)! L

asfax = 1xn and gay = g Then fax;0gay 2 C(A{j;L) and hence the extensions

Ay (Fax): ax(gay) belong to C(X;L). Let a2 L nfOg be such that 0C a C 1 and
de ne

HOGU)=(X n[ ax(fay) a\ [ ay(gay)Bal

Then, clearly H (x;U) is open andfxg H(x;U) U. Now, if V is open andfxg U
V, by property (a) it easy to prove that [ Ay (fay) a] [ ax(fay) a] and property
(b) yields the inclusion [ ax(gayx) B al [ ay(gay) B a]so

H(x;U) H(XxV):
Moreover, if x;y 2 X are such thatfxg\ fyg= ?, one easily checks that
H(x; X nfyg)\ H(y;X nfxg) = ;:
By Proposition 4 the space is monotonically normal.
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Abstract

We introduce here a potential new line of research concerng the study of
topologies that are induced by binary relations on sets. Fist we show that
given a binary relation (of any kind) on a given set, a topoloy is induced on the
set in a natural way. Then we consider other binary relationsthat are directly
associated to the given binary relation (e.g.: the negationof its transpose)
in order to study the topologies that they induce and comparethem to the
former topology de ned by the given binary relation. After t hat, we consider
di erent classical categories of topological spaces (e.gmetric spaces, second
countable spaces) whose topology is de ned for at least oneirary relation.
Given a topology de ned by some binary relation on a set, we ao analyze if
the binary relation could belong to some particular categoy (e.g.: ifitis a total
order, a total preorder, an interval order, etc.). We furnish some example of
a topological space whose topology cannot be induced by anyirary relation.
We extend these questions to the study of bitopological spaes, so that given a
set X endowed with two di erent topologies, we ask ourselves whethr or not
there exists a binary relation that de nes the rst topology and such that the
negation of its transpose induces the second topology. We s analyze some
of these items in the context of pointfree topology.

Learn from yesterday, live for today, hope for tomorrow. The important thing is not to
stop questioning.
Albert Einstein

1. Introduction and motivation

First of all, we want to warn the reader about the fact that this is an un nished work,
that we present here in a very informal way. Our aim is just to introduce a new potential
line of research, that in many aspects remains stillunexplored despite, as we will see
here, it could have important implications on other classi@l theories arising in General
Topology.

IThis research is supported by the research project MTM2007-62499 (Spain)
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The starting point that motivates the study that we begin her e is the recent paper
[2], on which topologies that are de ned by a total preorder ae characterized. Similar
ideas and examples appeared then in [3], where the key condegf our study, namely, the
consideration of topologies induced for binary relationsof any kind appeared for the rst
time.

Let X be a nonempty set. LetR be a binary relation de ned on X. Given an element
x2 X,letLy = fy2 X :yRxg, and Ry = fz 2 X : xRzg. Let r be the topology
de ned on X by means of the subbasidLxgx2x [f RxOx2x . By de nition, we say that

r Is the topology induced by the binary relatiorR on the setX.

A typical example of this situation appears whenR is a (strict) linear order on X, so
that the topology R is the order topology on X, a subbasis of which is de ned by the
upper and lower contour sets of the elements oK. Thus, if X is the real lineR and R is
the usual strict order <, the corresponding topology is the usual (Euclidean) one.

Once we have introduced the notion of a topology induced by aimary relation, a natural
question appears. Suppose thaX is a set endowed with a topology (i.e. (X; )is a
topological space).Is there a binary relation R on X such that and g coincide?.

Several important particular cases related to the above qu&tion have been analyzed in
the literature. For instance, the topologies de ned by linear orders, namely the orderable
topologies were characterized in [6]. (See also [4]). Also, the topoipes induced by total
preorders, known as thepreorderable topologieshave recently been characterized in [2].
Moreover, in [3] there appear some examples of topologicapace (X; ) whose topology

cannot be induced by any binary relation R de ned on the set X .

The question of analyzing in a systematic way which familiesof topologies on a setX
can be induced by binary relations was also launched in [3].

2. Preliminaries

Let X be an arbitrary nonempty set. A binary relation R on X is a subset of the
cartesian productX X . Given two elementsx;y 2 X, we will use the standard notation
XRYy to express that the pair (X;y) belongs toR.

Associated to a binary relation R on a setX, we consider itsnegation or complement
(respectively, its transpose or dual) as the binary relation R (respectively, R') on X given
by (x;y) 2R° | (x;y) 2R for every x;y 2 X (respectively, given by x;y) 2R?' ()
(y;x) 2R xy 2 X).

A binary relation R de ned on a set X is said to be

i) re exive if XRx holds for everyx 2 X,
ii) symmetric if R and R! coincide,
jii) antisymmetric if R\R ! = f(x;x):x2Xug,
iv) asymmetric if R\R '=;,
v) transitive if xRy yRz) xRz for every x;y;z 2 X.

In the particular case of ordered or preordered structures (i.e.: honempty sets endowed
with a binary relation that is either a linear order or a total preorder), the standard
notation is di erent. We include it here for sake of completeness.

Thus, a preorder - on an arbitrary nonempty set X is a binary relation on X which is
reflexive and transitive.

An antisymmetric preorder is said to be anorder. A total preorder - on a setX is a
preorder such that if x;y 2 X then [x - y]or [y - X]. A total order is also called alinear
order, and a totally ordered set (X; - ) is also said to be achain.
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If - is a preorder onX, then as usual we denote the associatedsymmetric relation
by and the associatedequivalencerelation by  and these are de ned, respectively, by
X vy X- yY)™: (y- xX)]and[x vy ( (x- y)™(y- x)]. Also, the associated
dual preorder- gyisdenedby[x -4V ( y - X].

3. Topologies and binary relations: a wealth of problems

In this section we provide a list of problems most of them still open, that appear in a
natural way after introducing the notion of a topology induced by a binary relation on a
set.

Let us comment rst some questions related to therelationship between the binary
relation and its induced topology To this respect we may observe that the topology is
de ned by the binary relation, but the converse is not true. That is, given a topology
on a setX, it may happen that there exist two binary relations, of a totally disparate
nature, R and S on X, such that , r and s coincide.

Consider the following easyexamples

Example 1. Let R be the real line, and take on it the binary relation R given by the
usual strict Euclidean order (<), and the binary relation Sdenedby xSy () ] Xx yj<
1;x;y 2 R. It is clear that both relations R and S de ne on the real line R the same
topology, namely the usual Euclidean one.

Example 2. Let R be the real line, and take on it the binary relation R given by aRb ()
a b; a;b2 R, and the binary relation S de ned by aSb () 0O b a<1lab2R. It
is straightforward to see that both relations R and S de ne on the real line R the discrete

topology.

The following questions are in order now:
1. How can we describe the set of all the binary relations (if here is at least one)
that de ne a ( xed) given topology on a set X ?
2. How can we characterize the topologies (if any) on a seX that cannot be induced
by any binary relation R?
3. How can we describe the category of topological spaces wdetopology is induced
by a binary relation? Which particular categories does it include?

Concerning the second question, we may observe the follongneasy facts.

Proposition 3. Let X be a nonempty set and letg be a binary relation on X. Let g
be the topology thatR induces onX . The following properties hold:

i) If X is nite, then g has a nite basis,
i) If X is innite, then g has a basis whose cardinality is not greater than the
cardinality of X.

Proof. It is a direct consequence of the de nition of g. Notice that a basis is obtained
through nite intersections of the elements of a subbasis.

Corollary 4. (see also[3]) Let X be a countable set and letr be a binary relation on
X . Then, the topology r that R induces onX is second countable.

Remark 5. Corollary 4 immediately furnishes the idea to get anexample of a topological
space(X; ) whose topology is not induced by any binary relation

A suitable exampleis the following one:
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Example 6. Consider the Arens-Fort topology on the setX = N Nnf(0;0)g, whereN
stands for the set of natural numbers. DespiteX is countable, the Arens-Fort topology
fails to be rst countable. (See e.g. [3] and [5], pp. 54 and . br details).

Proposition 7. Let (X; ) be a topological space. The topology is induced by a binary
relation R if and only if it has a subbasisf Uy; Vyx : X 2 X g such thaty 2 Vi () X 2 Uy
for every x;y 2 X.

Proof. See Proposition 2 in [3].

Remark 8. The converse of Corollary 4 is not true. In [3] there is a new example of a
topological space K; ) whose topology is not de ned by a binary relation. Unlike the
aforementioned example of the Arens-Fort topology (Exampé 6), in this one the setX is
nite, so that is a fortiori second countable.

We furnish here a third examplein the same direction. First we introduce the following
helpful lemma.

Lemma 9. Let (X; ) be a topological space. Suppose thathas a subbasig Uy; Vy : X 2
X g such thaty 2 Vy ( x 2 Uy for every x;y 2 X. Let a;b2 X and assume that
a20 =) b2OforeveryO2 . Thenitholds that Uy UpandVy V.

Proof. See Proposition 3 in [3].

Example 10. On the set N of natural numbers, let us consider the topology = fNn
f0;1;2;:::;kg: k2 Ng[;[ N. Obviously this topology is second countable because
it consists of a countable family of -open subsets. Assume, by way of contradiction,
that is induced by a binary relation R. With respect to this binary relation R, let

by R does not contain the subsefm+1;m+2;:::;g (nor any subsetfp;p+1;p+2;:::;9
with p > m). Therefore g cannot coincide with , which contradicts our hypothesis.

Remark 11. Notice that the Example 10 furnishes an alternative counteexample to the
converse of Corollary 4.

Related to question 3 above, and in some sense, related also the analysis of the
validity of the converse of Corollary 4 on some particular s@ces, we announce here that
we can prove the following results (that we state herewithout proof ). These results provide
some su cient conditions for a topology to be induced by a binary relation.

Theorem 12. A su cient condition for a topology =~ on a nonempty setX to be induced
by a binary relation is the existence of a subbasisB : 2 Ag of jointly with a family

fO : 2 Ag of pairwise disjoint nonempty members of (i.e.. each O is a -open
subset). HereA stands for an arbitrary set of indexes.

Theorem 13. Let X be a nonempty set, and a topology onX . If is second countable,
T, and T3, then it is induced by a binary relation.

Theorem 14. On every metric space, the (metric) topology is induced by aibary relation.

Remark 15. After a glance to the statement of Theorem 12, we point out thefollowing
key fact: The su cient condition that appears in the stateme nt does not depend on the
points of the setX . In other words, is a condition that comes from the so-calledpointfree
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topology" (see e.g. [1]). In pointfree topology, the features and mairproperties of a
topology on a set should be described and characterized in s that do not make use of
points (e.g.: in terms, directly, of the subsets of suitablebases and subbases).

This remark immediately gives raise to the following new imgortant questions:

4. Let R be a binary relation de ned on a nonempty setX. Can we describe the
topology R that R induces onX in terms (only) of pointfree topology (i.e.: with-
out any reference to the points ofX)?

5. Can we describe the category of topological spaces whosepblogy is induced by
a binary relation in terms of pointfree topology?

Another result in terms of pointfree topology concerning tagologies induced by binary
relations appears when we consider nested topologies.

De nition 16. Let X be a nonempty set. A topology de ned on X is said to benested
if is linearly order by set inclusion, that is, given any U;V 2 it must happen that
eitherU V orV U holds.

The following pointfree result, that we state here without proof , is in order now:

Theorem 17. Let X be a nonempty set endowed with a nested topology such that
there exist two collections of -open subsets,fU : 2 AgandfV : 2 Ag (i.e.

both collections have the same cardinalityA stands here for an arbitrary set of indexes)
satisfying the following three conditions:

i) The family fV : 2 Agis a subbasis for the topology ,
i) forevery ; 2 A it holds thgt U u ( ViV,
iii) E)revery 2A,eitherUn g UB;0(y yUnNU)6;)"(V =
v v V) holds.

Then the topology is induced by a binary relation.

Another set of questions and open problems related to topolgies induced by binary
relations appears as follows:

Suppose that we know that a topology on a setX is indeed induced by some binary
relation. Is it possible to say \more" on the binary relation that induces ?

Is it possible to nd a binary relation that induces and belongs to some particular
category?

In this direction, to state some new questions we introduce rst some necessary de ni-
tions.

De nition 18. Let R a binary relation on a nonempty setX. R is said to be:

a) An interval order if it is re exive and ( xPy) and (zPt) =) (xPt) or (zPy) for
every x;y;z;t 2 X:

b) A semiorder if it is an interval order and (xPy) and (yPz) =) (xPt) or (tP2)
for every x;y;z;t 2 X:

iin (Xk 15Xk) 2 R implies that (xx;x1) 2R

Once we know which topologies are induced by binary relatios, new questions appear:
6. Which topologies de ned by a binary relation are orderabke?
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7. Which topologies de ned by a binary relation are preordeable?
8. Which topologies are de ned through a binary relation that is an interval order?
9. Which topologies are de ned through a binary relation that is a semiorder?

10. Which topologies are de ned by an acyclic binary relation?

In this line, let us point out again that orderable and preorderable topologies have
already been characterized (see [5] and [2]). With respectot the question relative to
interval orders, some partial result appears in [3].

A new set of questions and open problems appears when we cahsi on a given
nonempty set X, binary relations R and S that are associated in some sense (e.g.:
S = (RY°). Which is the relationship (if any) between the induced topologies g and
s? Can we guess the structure of one of those two topologies ifeaknow the other one?

A trivial fact related to the above question is the following result, that comes directly
from the de nition of a topology induced by a binary relation .

Proposition 19. Let X be a nonempty set andR a binary relation de ned on X. The
transposeR' of R induces onX the same topology afR, that is r and g« coincide.

Another easy fact in this direction is the following one:

Proposition 20. Let X be a nonempty set andR a binary relation de ned on X . Suppose
that R is a linear order on X, such that for everyx 2 X the setsLy and Ry relative to R
are both nonempty (in other words, the linear orderR has neither maximal nor minimal
elements). LetS = (RY)C. Then the topology s, that S induces onX, is the discrete one.

Proof. SinceR is a linear order, we have that with respect toR it holds that Ly, fxg and
Ry are nonempty and pairwise disjoint for everyx 2 X. Moreover yRx () y 2 Ly.
Therefore,xSy () : (YRXx) ( y2Lx ( y2fxg[ Rx (X;y 2 X): In the same
way, it holds that zSx ) z2fxg[ Lx (Xx;z 2 X): Thus, for every x 2 X we have that
fz2 X :zSxg\f y 2 X : xSyg is the singleton f xg and belongs to the topology s that
S induces onX . Hence s is the discrete topology onX .

Remark 21 It is plain that given a binary relation R de ned on a nonempty set X, we
can describe immediately a suitable subbasis for the topolyy induced by (R!)¢. This fact
leads to the following question.

First we introduce a de nition.

De nition 22. A bitopological spaceis a triple (X; 1; »2) where X is a nonempty setX
and 1, » are two topologies (not necessarily di erent) de ned on X .

And now we introduce a new question, with which we conclude tle present note.
11. Let (X; 1; ») be a bitopological space. Which additional conditions do imply that
there is a binary relation R de ned on X such that r = 1 and (geye = 27

Remark 23. Obviously, some condition is necessary because, as seendrefin Example 6
and Example 10, there exist topological spaces whose topa@py is not induced by a binary
relation. Hence, there exist bitopological spacesX; 1; »2) for which there is no binary
relation R dened on X suchthat g = jand (g = o2
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Abstract

Over the years many dierent kinds of lIter pairs on quasi-uni form spaces
have been studied by Dek, Doitchinov, Fletcher, Kopperman, Lindgren, Ro-
maguera and many others. In our talk we survey and complemensome of this
work. In particular our presentation owes much to investigaions due to Deak.
While lter pairs have been used successfully to construct everal completions
of quasi-uniform spaces, they are also useful to describe nraus interesting
classes of quasi-uniform spaces. Indeed in our talk we shathainly concen-
trate on this second aspect of the theory and refer the readeto the literature
for a more thorough discussion of completions of quasi-uréfm spaces based
on (Cauchy) lter pairs.

1. Introduction

In this talk we shall discuss various types of (Cauchy) lIter pairs on quasi-uniform
spaces. While such lIter pairs have been studied by many matematicians (for instance
by Deak, Doitchinov, Fletcher, Kopperman, Lindgren and Romaguera, to mention just a
few), the presentation given in the following is mainly base on work due to Deak (see
[1, 2, 3, 4, 5, 6, 7]). For the convenience of the reader we havacluded several proofs
in order to illustrate some of the techniques used in this thery. For a more detailed
discussion of our topic we refer the reader to our related mut longer article [20], where
investigations about Iter pairs were also motivated in connection with the construction
of completions of quasi-uniform spaces.

For basic facts about quasi-uniform spaces the reader shadilconsult [15, 17]. In partic-
ular for a quasi-uniform space ¥; U), US will denote the uniformity U _U * whereU 1!
is the conjugate of the quasi-uniformity U: Furthermore for each x 2 X; U(x) will denote
the (U)-neighborhood Iter at x: Moreover (X; U) is called a To-quasi-uniform spaceif
and only if \U )\ (\U) 1is equal to the diagonal ofX: Given a subbaseS for a Iter on
a set X; that Iter will be denoted by | S:

2. Preliminaries

Let (X; U) be a quasi-uniform space. A lter pair hF;Gi on X is called a Cauchy Iter
pair (or more precisely, aU-Cauchy lter pair) provided that for each U 2 U there are

1The authors were partially supported by the South African Na tional Research Foundation.
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F2F and G2 Gsuchthat F G U (compare for instance [12]). Obviously, this
concept generalizes the notion of a Cauchy lter, as it is wdlknown for uniform spaces.
On the set of all Cauchy lIter pairs a partial order is de ned b y \ hF; Gi is coarser than
hF® GY" provided that F F %and G G°©
A Cauchy lter pair hF; Gi on a quasi-uniform space X; U) is called constant (see e.g.
[20]) provided that F = G. The following simple observation is often useful when workig
with Cauchy lter pairs on quasi-uniform spaces.

Lemma 1 ([20, Lemma 5]). Let hF;Gi be a Cauchy Iter pair on a quasi-uniform space
(X; U): Thenforany F 2 F ; G 2 G we have thatr G; where denotes the quasi-proximity
induced byU on X:

Proof. For any U 2 U there areFy 2 F and Gy 2 G such that Fy Gy  U: Consider
any F 2F ;G 2 G: Therefore F\ Fy) (G\ Gy) U whereF\ Fy 6 ;6 G\ Gy and
hence ¢ G)\ U6 ;: Thus F G:

Dek investigated various methods to construct a quasi-uriformity on an appropriate
set X of Cauchy lter pairs of a quasi-uniform space (X; U) [3, p. 76]. In our context the
following techniqgue seems most appropriate:

For eachU 2 U we let ® = f(hF;Gi;hF®%GY) 2 ¥ X : There areF 2F and G°2 G°
suchthatF  G° Ug:

Clearly each 8 contains the diagonal of ¥; since ¥ consists of Cauchy Iter pairs on
(X; U): However in general the lter 8 on X X generated by the base€ 8 : U 2 Ug will
not be a quasi-uniformity. We next discuss a concept due to [k that is useful when
investigating the question under which conditions8 is a quasi-uniformity.

3. Weakly concentrated Cauchy filter pairs

A Cauchy lter pair hF; Gion a quasi-uniform space X; U) is called weakly concentrated
(compare [3, Lemma 7.7]) provided that for eachU 2 U there isV 2 U such that for any
X;y2X;V(x)2GandV (y)2F imply that ( x;y) 2 U:

In this case we say thatV is quiet with respect toU on the Cauchy Iter pair hF;Gi:
We next mention an auxiliary result that helps to better understand this de nition.

Lemma 2 ([3, Lemma 7.7 and De nition 7.6]). A Cauchy lter pair hF;Gi on a quasi-
uniform space (X; U) is weakly concentrated if and only if the following condition ( ) is
satis ed: For each U 2 U there isV 2 U such that for all F1;F, 2 F; G1; G, 2 G with
Fi. G1 VandF, G; V we have thatF; G» U:

Proof. A proof can be found for instance in [20, Lemma 1].

Intuitively the condition of weak concentration should be interpreted as follows: If
hF; Gi is a point of an extension (®; B) of (X; U) and hF;Gi 2 ¥(x) and hF;Gi 2 ¥ 1(y)
with x;y 2 X; then (x;y) 2 92\ (X X) B\ (X X)= U;whereB resp. ¥ are the
extensions of appropriate entouraged) resp. V from X X to NI

Note that any Cauchy lter pair coarser than a weakly concentrated Cauchy lIter pair
on a quasi-uniform space is weakly concentrated.

As usual, we shall say that a Cauchy lIter pair hF; Gi on a quasi-uniform space X; U)
converges tox 2 X provided that U (x) F and U(x) G ;thatis, the Cauchy Iter
pair hU (x); U(x)i is coarser thanhF; Gi:

Recall that a Iter pair hF;Gi on a quasi-uniform space X; U) is called linked [3,
De nition 7.1] provided that F\ G 6 ; wheneverF 2F and G 2 G:
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We also recall that if hF; Gi is a Cauchy Iter pair on a quasi-uniform space (X; U); then
the lter pair hU 1(F);U(G)i is called the envelope[3, De nition 7.12] of hF;Gi, where
U X(F)isthe Iter I fU X(F): F 2 F;U 2 Ugand U(G) is the Iter | fU(G): G 2
G U 2UgonX:

On any quasi-uniform space K; U), hU (x); U(x)i wheneverx 2 X is a minimal
Cauchy lIter pair. This is a consequence of the following obsrvation due to Deak.

Lemma 3. [3, Lemma 7.9a)](a) Each linked Cauchy lter pair hF; Gi on a quasi-uniform
space(X; U) is weakly concentrated.

[3, Lemma 7.9b)]b) The envelopehU %(F);U(G)i of a linked Cauchy lter pair hF;Gi
on a quasi-uniform space(X; U) is a minimal Cauchy lter pair that is weakly concentrated.

Proof. (a) Indeed for eachU 2 U any V 2 U such that V2 U will clearly satisfy the
condition of weak concentration for hF; Gi; since hF; Gi is linked.

(b) Assume that hF%GY is a Cauchy lter pair on X such that F® U 1(F) and
G U (G:LetU2U and G 2 G: There existF92 F %and G°2 GPsuch that FO G° U;
sincehF% GY is a Cauchy lter pair on ( X; U): By assumption there isx 2 G\ G°\ F¢@
Then G°  U(x) U(G) 2 U(Q): Therefore U(G) G & Similarly we can show that
U Y(F) F © Hence we conclude thathU (F); U(G)i is a minimal Cauchy lter pair on
(X; U); which is weakly concentrated by part (a).

A lter G on a quasi-uniform space X; U) is called U-stable [6, x 5.1] provided that

cac U(G) 2 G wheneverU 2 U:

Clearly each Us-Cauchy lter is both U !-stable and U-stable.

A Cauchy lter pair hF;Gi on a quasi-uniform space X; U) is called stable [6, x5.1]
provided that Gis U-stable andF is U !-stable.

A Cauchy lter pair hF;Gi is called costableif F is U-stable andGis U 1-stable.

It is known that each Cauchy Iter pair on a totally bounded qu asi-uniform space is
both stable and costable, since any lter on a totally bounded quasi-uniform space K; U)
is US-stable (compare [17, Proposition 2.4.7]) as the intersean of US-Cauchy ultra Iters
(see [15, Proposition 3.14] and [6, Lemma 5.4]).

Lemma 4 ([3, Lemma 7.17]) Any linked Cauchy Iter pair on a quasi-uniform space
(X; U) is stable.

Proof. Let U 2 U: There areFy 2F and Gy 2 G suchthat Fy Gy  U: Consider any
G 2 G. Then thereisxg 2 Fy\ G: Thus Gy U(Xxg) U(G): HenceG is U-stable.
Similarly one shows thatF is U l-stable.

Lemma 5. Let (X; U) be aTp-quasi-uniform space. Then the limit of a weakly concen-
trated Cauchy lter pair is unique if it exists.

Proof. Assume that hF;Gi is a weakly concentrated Cauchy lter pair on (X; U) and
suppose thathF; Gi converges tox as well asy in X: Then for eachU 2 U thereisV 2 U
such that for eacha;b2 X with V(a) 2 GandV (b 2 F we have that (a;b) 2 U: By
our assumption on convergence we conclude tha(y) 2 U as well as §; x) 2 U whenever
U 2 U: Thus x = y; since (X; U) is a Tg-quasi-uniform space.

Lemma 5 can be generalized as follows (see Corollary 7 belawach weakly concen-
trated Cauchy lter pair hF; Gion a quasi-uniform space X; U) contains a coarsest Cauchy
Iter pair [3, Lemma 7.11] (that | of course | is weakly concen trated).

A weakly concentrated Cauchy lter pair that is minimal Cauc hy is called concentrated
[3, Lemma 7.13].
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Dek has given several equivalent methods to construct weldy concentrated minimal
Cauchy lIter pairs ([4, p. 351],[3, Lemma 7.11]). The following results are essentially due
to him (see [6,X5]).

Proposition 6. Let hF; Gi be a Cauchy Iter pair on a quasi-uniform space(X; U):

For eachU 2 U setUg=fx2 X :U(X)2Ggandr(U )= fx2 X :U (x) 2Fg:

Let Fg= IfUg:U2UgandG= Ifg(U 1):U2Ugon X:

(@) Then Fg F andgG G:

(b) If hF%Gi is a Cauchy lter pair on (X; U), then Fg F ©

Similarly if hF;GY is a Cauchy lter pair on (X; U), thenG G©

(c) The lter pair hFg; g Giis Cauchy on(X; U) if and only if hF; Gi is weakly concen-
trated on (X; U):

(d) (compare [6, Lemma 5.2) If G is U-stable, thenhFg; Gi is a Cauchy lIter pair on
(X; U):

Similarly if F is U l-stable, thenhF;z Giis a Cauchy lter pair on (X; U):

(e) [6, Lemma 5.6]Each stable, minimal Cauchy Iter pair hF; Gi on a quasi-uniform
space(X; U) is (weakly) concentrated.

(f) (compare [6, Corollary 5.6]) Suppose that(X; U) is a totally bounded quasi-uniform
space. Then the Cauchy lter pairshFg; ) Gi and hF_ ;¢ Gi are stable, minimal Cauchy
Iter pairs. (Hence these Cauchy lIter pairs are weakly concentrated by (e).)

Proof. (a) BecausehF;Gi is a Cauchy lter pair on ( X; U); we have Fg F ; indeed
U2U,F2F,G2GandF G U implythat F Ug: AnalogouslyrG G:

(b) The proof is similar to the one in part (a): Let U2 U; F°2 F and G 2 G such that
FO G U:ThenF? Ug: Thus Fg F © The second statement is proved analogously.

(c) The statement follows directly from the de nition of wea k concentration: Consider
\for each U 2 U there isV 2 U such that Vg ¢(V 1) U The latter part of this
statement exactly means thatV(x) 2 G and V (y) 2 F with x;y 2 X imply that
(xy) 2 Ut T

(d) Let U 2 U: Since G is U-stable, we know that 5,5 U(G) 2 G: If (x;y) 2 Ug

626 U(G); then y 2 U?(x); since U(x) 2 G; and thus (x;y) 2 U?2: Therefore hFg; Gi
is a Cauchy lter pair on ( X; U): Similarly, U !-stability of F implies that hF;r Giis a
Cauchy Iter pair on ( X; U):

(e) SincehF;Gi is a minimal Cauchy lter pair, by (b) and (d) we have Fg = F and
g G = G Hence we conclude thathFg;r Gi is a Cauchy Iter pair. So hF;Gi is weakly
concentrated by (c).

(f) As noted in the discussion above, by total boundedness &lCauchy lIter pairs on
(X; U) are stable. So by (a) and (d) hF; Gi, hFg; Gi and hFg;r) Gi is a decreasing
sequence of Cauchy lter pairs on K; U): Let hF® G} be a Cauchy lter pair coarser than
hFg;.) Gi: HenceF? F g and G ()G SincehF%Gi is a Cauchy lter pair, then
by (b) Fg = F% and sincehFg; GY and thus hFg; Gi are Cauchy lter pairs, then by (b)
(Fe)G= ;> HencehFg; ) Gi is a minimal Cauchy Iter pair. Similarly hF, );r Giis a
minimal Cauchy Iter pair on ( X; U): They are weakly concentrated by (e), because they
are stable.

Corollary 7 ([3, Lemma 7.11]) Let hF;Gi be a Cauchy lter pair that is weakly concen-

trated on a quasi-uniform space(X; U): Then hFg;r Gi is the coarsest Cauchy lter pair
on (X; U) coarser than hF; Gi:
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Proof. By Proposition 6(c), hFg;r Giis a Cauchy lter pair coarser than hF; Gi: If hF% G}
is coarser thanhF; Gi, then hF% Gi is a Cauchy lter pair on ( X; U): So by Proposition
6(a) Fg F © Similarly by Proposition 6(a) eG G © SohFg;r Gi is coarser thanhF% GY:
Thus hFg;r Gi is the coarsest Cauchy lter pair coarser thanhF; Gi:

Corollary 8 ([6, p. 412]). A Cauchy lter pair hF;Gi on a quasi-uniform space(X; U)
is concentrated if and only if F = Fg and G= G 2

Remark 9. Let us note that if hF; Gii and hF; Gi are weakly concentrated Cauchy Iter
pairs on a quasi-uniform space X; U); then e G = & and Fg, = Fg,:

Proof. By Corollary 7 we have hFg,;r Gii = hFg)\c,);F (G \G2)i = hFg,;r Gi; because
obviously hF; G, \ G ;i is a (weakly concentrated) Cauchy Iter pair coarser than hF; Gi
and hF; Gi:

Corollary 10 ([6, Corollary 5.6]). Let (X; U) be a totally bounded quasi-uniform space.
Then each Cauchy lter pair on (X; U) contains a weakly concentrated minimal Cauchy
Iter pair.

Proof. The assertion is a consequence of Proposition 6(f).

A quasi-uniform space ; U) is called Cauchy [9, p. 318] provided that whenever the
Iter pairs hFq; Gii and hi; Gi are Cauchy andF; _F, and G _ G, are well-de ned Iters
on (X; U) (thatis, F1[F > and G, [G , are subbases for lters), thenhFi\F 2;G\G i is
a Cauchy lter pair on ( X; U):

Lemma 11 ([20, Lemma 6]). (a) If a Cauchy lIter pair hF; Gi on a Cauchy quasi-uniform
space(X; U) contains a minimal Cauchy lIter pair, then this is the coarses Cauchy lter
pair coarser than hF; Gi:

(b) Let (X; U) be a CauchyTp-quasi-uniform space. Then the limit of a convergent
Cauchy Iter pair on (X; U) is unique.

Proof. (a) Let hF% GY be a minimal Cauchy lter pair coarser than hF;Gi and let hH; Li
be any Cauchy lter pair coarser than hF; Gi: Then by Cauchyness of K; U) we see that
hH\F %L\G § is a Cauchy lter pair equal to hF®% GY; since the latter Cauchy lter pair
is minimal. Hence hF% G4 is the coarsest Cauchy lter pair coarser thanhF; Gi:

(b) Suppose that hF; Gi converges tox and y: HencehU %(x);U(x)i and hU (y); U(y)i
are coarser thanhF; Gi; and both are minimal according to Lemma 3(b). So they must be
equal according to part (a). Thus x = y, because the quasi-uniform spaceX; U) satis es
the Tg-axiom.

Lemma 12 ([20, Lemma 7]). Each stable Cauchy lter pair on a Cauchy quasi-uniform
space is weakly concentrated.

Proof. Let hF; Gi be a stable Cauchy Iter pair on a Cauchy quasi-uniform space(X; U):
According to Proposition 6(d) hFg; Gi and hF; g Gi are Cauchy lter pairs coarser than
hF; Gi: Hence by Cauchyness obl, we have thathFg\F ;G\ g Gi = hFg; g Giis a Cauchy
Iter pair on ( X; U): Thus according to Proposition 6(c) hF; Gi is weakly concentrated.

Unfortunately in general the entourageV used in the de nition of a weakly concentrated

Cauchy Iter pair depends on the Cauchy Iter pair so that we c annot prove that 8 is a
quasi-uniformity on the collection of all weakly concentraed Cauchy lIter pairs.
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That is why Deak called a family of Cauchy lter pairs of a qu asi-uniform space ¥; U)
uniformly weakly concentrated[3, Lemma 7.15] provided that each member of satis es
the condition of weak concentration with V not depending on the considered Cauchy lter
pair, but only on the family

If is a uniformly weakly concentrated family of Cauchy lIte r pairs on a quasi-uniform
space ¥; U), then , = fhFg;rGi:hF;Gi2 gis uniformly weakly concentrated, too.

On a given guasi-uniform space X; U) the union of nitely many collections of uniformly
weakly concentrated Cauchy Iter pairs yields another uniformly weakly concentrated
collection of Cauchy Iter pairs on (X; U).

It immediately follows from the de nitions that for any quas i-uniform space (X; U) the
collection | of all linked Cauchy lIter pairs is uniformly weakly concentrated (see [3,
Lemma 7.16])).

In particular for any quasi-uniform space (X; U) the collection fhU 1(x);U(x)i : x 2 X g
is uniformly weakly concentrated.

The following result can essentially be found in Deak's wok (compare [3, Theorem
8.13)).

Proposition 13. Let be a collection of Cauchy lter pairs of a quasi-uniform space
(X; U) containing all neighborhood lIter pairs hU 1(x); U(x)i wherex 2 X:

(@) Then is uniformly weakly concentrated if and only if 8j( ) is a quasi-
uniformity on  : (In order not to overload the notation we may write 8 instead of
8j( ) for restrictions like this in the following.)

(b) If is a uniformly weakly concentrated family, then the map x : (X; U)! ( ;8)
de ned by x 7! hU 1(x);U(x)i yields a quasi-uniform embedding for theTo-quasi-uniform
space(X; U):

Proof. (a) Let be a collection of Cauchy lIter pairs on ( X; U) such that 8j( )isa

quasi-uniformity. Let U 2 U: There isV 2 U such that 2 8: ChooseW 2 U such that
W2  V:ConsiderhF;Gi 2 :Letx;y 2 X be suchthatW(x) 2 G and W (y) 2 F:
Then there is G 2 G such that fxg G W: Thus W 1(x) G V and therefore

(hU 1(x); U(x)i;hF;Gi) 2 ©: Similarly (hF;Gi;hU 1(y);U(y)i) 2 ¥ : By assumption then
(hU *(x); U(x)i; hu *(y); U(y)i) 2 8
and therefore (x;y) 2 U: We conclude that is uniformly weakly concentrated.

On the other hand we note that for any uniformly weakly concenrated collection of
Cauchy lter pairs of a quasi-uniform space (X; U) the set of all relations 8 with U 2 U
de nes a base of a quasi-uniformity 8j( ):Let U 2U: ThereisV 2 U such that
for any hF;Gi 2 ;V(x) 2G andV (y) 2 F with x;y 2 X we have &;y) 2 U: We
show that (%)2 © : Let (hF;Gi;:hF% GY) 2 ¢ and (hF® GY;hFP9G?) 2 ¢ : Then there
areF 2F: G2 G%such that F  G° V and there areF°%2 F ¢ G%2 G%sych that
FO G% V:Thusf 2 F and g°%2 G%imply that V(f) 2 G%andV 1(g%§ 2 F & Therefore

F  G% U by assumption and we conclude that bF; Gi; hF°G’?) 2 8: Hence8j( )
is a quasi-uniformity.
(byLet U2U be (U D (U)-open. Then (x;y) 2 U if and only if

(hU 1(x); U(X)i;hU *(y); U(y)i) 2 8:

SincefU2U :Uisa (U 1) (U)-openg is a base forU (see [15, Corollary 1.17]), the
assertion follows.
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We next discuss connections between several properties deed with the help of Cauchy
Iter pairs. By de nition on a quiet[12, 13] quasi-uniform space the set of all Cauchy Iter
pairs is uniformly weakly concentrated: In fact we recall that a quasi-uniform space K; U)
is called quiet provided that for each U 2 U there isV 2 U such that for each Cauchy lter
pair hF;Gion (X; U); V(x) 2G and V 1(y) 2 F with x;y 2 X imply that ( x;y) 2 U:

Let us call a Cauchy lter pair hF;Gi on a quasi-uniform space X; U) symmetric pro-
vided that hGFi is a Cauchy Iter pair on ( X; U); too. A quasi-uniform space ; U) is
called Iter symmetric [9, De nition 5.1] provided that each Cauchy Iter pair on ( X; U)
is symmetric.

Proposition 14 ([10, Proposition 5.1]). Each lter symmetric quasi-uniform space (X; U)
is quiet.

Proof. Let U2 U andV 2 U be such thatV3 U: Suppose thathF;Gi is a Cauchy lter
pair on (X; U) and V(x) 2G and V 1(y) 2 F with x;y 2 X: By Iter symmetry hGFi is
a Cauchy lter pair on ( X; U): According to Lemma 1, G F wheneverF 2 F and G 2 G;
where is the quasi-proximity induced by U on X: It follows that V(x) V 1(y) and thus
(x;y) 2 V2  U: Hence the set of all Cauchy lter pairs on (X; U) is uniformly weakly
concentrated.

A quasi-uniform space ; U) is called locally quiet [8] provided that each Cauchy lter
pair is weakly concentrated and it is calledcostable[10] provided that wheneverhF; Gi is a
Cauchy lter pair on ( X; U); then the lter F is U-stable. A quasi-uniform space K; U) is
doubly costable(compare [10]) provided that for each Cauchy lter pair hF; Gi on (X; U)
the lter F is U-stable and the Iter Gis U !-stable, that is, the U-Cauchy lter pair
hF; Gi is costable on ; U):

Proposition 15 ([9, Proposition 2.1]). Each locally quiet quasi-uniform space(X; U) is
Cauchy.

Proof. Let hFy; Gi and hF,; Gi be Cauchy lter pairs on (X; U) such that F; _F» and
G._ Gy are well-de ned lIters. By local quietness the Cauchy Iter pair hFy_F ;G Goi is
weakly concentrated and thus contains a coarsest Cauchy kr pair by Corollary 7, which is
necessarily coarser than botthF;; Gii and hF;; Gi; that is, is coarser thanhF\F »; G\G 5i:
In particular the latter Iter pair is Cauchy. Hence ( X; U) is Cauchy.

Our next proposition is closely related to Deak's result that a quasi-uniform space is
Iter symmetric if and only if it is quiet and doubly costable [9, Proposition 5.1].

Proposition 16. A quasi-uniform space (X; U) is Iter symmetric if and only if it is
Cauchy and each Cauchy lIter pair on (X; U) is stable and costable.

Proof. For the rather complex proof we refer the reader to [20, Propsition 3].

A quasi-uniform space ; U) is called proximally symmetric (compare [9, p. 325])
provided that the quasi-proximity induced by U on X is a proximity.

Proposition 17  ([9, Proposition 5.2]). Each proximally symmetric quasi-uniform space
(X; U) is Iter symmetric.

Proof. A proof of this result can be found in [20, Proposition 4].

Another interesting result about Cauchyness of quasi-unibrmities due to Deak general-
izes the well-known fact rst proved by Fletcher and Hunsake that totally bounded quiet
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quasi-uniformities are uniformities (see [14]). We inclu@ the instructive proof of Deak's
version of this result.

Proposition 18 ([9, Theorem 1.3]). Each totally bounded Cauchy quasi-uniform space
(X; U) is symmetric, that is, U is a uniformity.

Proof. Let U be a totally bounded Cauchy quasi-uniformity on a setX and let be
the quasi-proximity induced by U on X: Since trivially any totally bounded proximally
symmetric quasi-uniformity is a uniformity, we only have to show that is a proximity.
We suppose that is not a proximity and choose A;B X such that AB; but B A:
For the proof we recall that U is generated by the subbasic entouragesX( X)n(E F)
whereE;F X and E F [15, Theorem 1.33].

In the following we use some ideas developed in [16]. SinéeB; we have that A 6 ;
andB 6 ;: Let M = fhFq;F5i : Fq;F, are lters on X suchthat A2 F.;B 2 F, and
suchthat C 2 F ;D 2 F, imply that C D g partially ordered by the usual coarser relation
between lter pairs, that is, hF;F,i hG 1;Gi if F; G 1 and F, G ,: Since the union
of a chain of lters is a Iter, we see that we can apply Zorn's Lemma. We conclude that
M has a maximal elementhH;; H2i: We next note that H, and H, are ultra lters on X :
Suppose thatH1 is not an ultralter on X: Then there isanE X such that E 62 H
and X nE 62 H: Let K1 be the lter generated by H1[f Egon X and let K, be the Iter
generated byH 1 [f X nEg on X: SincehH;;H»i is maximal in (M ; )and K, and K, are
strictly ner than Hg; there areH;H? 2 H; and Hp;H92 H, such that Hy\ E H , and
HO\ (X nE) H 2: It follows that H;\ H?\ E H,\ HYand H;\ HY\ (X nE) H,\ HS:
Thus H1\ HYH >\ H2 |a contradiction. Hence Hj is an ultralter on X: Similarly, one
proves that H» is an ultra Iter on X:

Next we show that hHy; H»i is a Cauchy Iter pair on ( X; U): Assume the contrary.
Then it is clear that by total boundedness of U there areC;D X such that C D; but
(Hy H2\ (C D)6 ; wheneverH; 2H;andHy 2 H,: HenceC 2H,; and D 2 H ,
becauseH; and H, are ultra lters |contradicting the fact that hHy;H,i 2 M : Thus
hHy; H.i is a Cauchy lIter pair on ( X; U):

Then hHy;H4i and hHy; Hoi are Cauchy Iter pairs, since by total boundedness each
ultra lter is US-Cauchy [15, Proposition 3.14]. Consequently obviouslyhHy;H1 \ H i
and hHy \ H ,;H,i are Cauchy lter pairs on (X; U): Therefore by Cauchyness ofU;
hHy\H 2;H1\H 2i is a Cauchy lIter pair on ( X; U): HencehHy;H1i is a Cauchy lter
pair on (X; U); which implies by Lemma 1 that B A , sinceB 2H, and A 2 H ;: We have
reached a contradiction and conclude that is a proximity.

4. An approach to completions

As we noted above (see Proposition 13), in order to single ouhose Cauchy Iter pairs
on a quasi-uniform space X; U) that are suitable for the construction of our completion,
some xed connection between the entourage¥ and U that appear in the de nition of
\weakly concentrated" is required.

Example 19 ([20, Example 2]). Given a baseB of a quasi-uniformity U on a setX with

afunction M : B! B suchthat M (B)2 B wheneverB 2 B we can consider all Cauchy
Iter pairs on ( X; U) such that on these Iter pairs, M (B) is quiet for B: Obviously in

this way we obtain a uniformly weakly concentrated family of Cauchy lter pairs of ( X; U)

which in general depends orB and the chosen functionM: The family also contains all

linked Cauchy lter pairs on ( X; U):
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Remark 20 ([20, Remark 2]) Similarly, given a quasi-uniform space ¥; U); we can con-
sider the collection of all Cauchy Iter pairs on ( X; U) such that for any V;U 2 U with
V2 U we have that V is quiet for U on these lter pairs.

Evidently in this way we obtain a uniformly weakly concentrated family of Cauchy lter
pairs on (X; U) which contains all linked Cauchy Iter pairs on ( X; U):

In the following we shall consider an approach which is motiated by Doitchinov's work
dealing with balanced Tg-quasi-metrics and more generally by our recent work on balaced
Cauchy lter pairs on Tp-quasi-metric spaces [18, 19].

We recall some notation introduced in [18]. Let (X; d) be a quasi-pseudometric space and
let A;B be nonempty subsets ofX: We de ne the 2-diameter from A to B by 4(A;B) =
supfd(a;b : a2 A;b2 Bg: Of course,1 is a possible value of a 2-diameter. For singleton
fxg we write 4(x;A) and ¢(B;x) instead of 4(fxg;A) and (B; fxqg); respectively.

Let (X;d) be a quasi-pseudometric space and lebF;Gi and hF%GY be two Cauchy
Iter pairs on X: Then the following formula de nes a distance

d* (hF; Gi;hF® &) := Fzgn;]ccs%eo 4(F: G9Y

from hF;Gi to hF® G3: It is readily checked that if (X;d) is a quasi-pseudometric space,
then the lters Uz and Ud are equal on the set® of all Cauchy lter pairs of ( X; Uy):
Hence one can consider the constructiod* for a quasi-pseudometricd as a variant of the
construction 8 for a quasi-uniformity U: It is known that the distance d* attains only
values in [0 1 [ [18, Lemma 2] and is indeed a quasi-pseudometric on the sef balanced
(see De nition 21 below) Cauchy lter pairs of ( X;d) [18, Theorem 1].

De nition 21  (compare [1]) Let C be a chosen real constant larger than or equal to:1
Let hF; Gi be aUy-Cauchy Iter pair on a quasi-pseudometric space K;d). We shall call
hF; Gi C-balanced provided that for each x;y 2 X we have

d(x;y) C(gy:3 ol(x;G)+iFr\2fF d(F;y)):

(Note that this condition becomes weaker ifC gets larger.) We shall say that a quasi-
pseudometric space X; d) is C-balancedprovided that each Cauchy lIter pair on ( X;d) is
C-balanced.

Of course 1-balancedness is exactly Doitchinov's conceptf dalancedness (see [18,
Proposition 3], compare [20, De nition 1]). Our next result is motivated by remarks
due to Deak in [1] and describes a connection betweel -balancedness and uniform weak
concentration of a set of Cauchy lIter pairs of a quasi-unifam space.

Proposition 22  ([20, Proposition 9]). A collection  of Cauchy lter pairs on a quasi-
uniform space (X; U) is uniformly weakly concentrated if and only if there\,{p a norempty
subbasic familyD on X of quasi-pseudometrics for(X; U) (that is, U =  ;,5 Ug) such
that each Cauchy lter pair of is 2-balanced in any quasi-pseudometric spacgx; d) with
d2D:

Proof. A proof is given in [20, Proposition 9].

Example 23 ([20, Lemma 9]) Each symmetric Cauchy Iter pair hF;Gi on a quasi-
pseudometric space X;d) is balanced.

Proof. Let a;b2 X: In order to reach a contradiction suppose that there areF 2F , G2 G
and > Osuchthatd(a;b > 4(a;G)+ g(F;b)+ : Since by our assumptionhGFi is a
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Cauchy lter pair on ( X;d); there are F°2 F and G°2 G such that F® F; G° G and
d(G%F9 < :
Let f°2 FPand g°2 G® Then d(a;b) d(a;¢®) + d(g®f9 + d(f ¢ b) d(a;GY+ +
4(F%b) d(@ )+ + 4(F;b) <d(a;h: We have reached a contradiction and conclude
that d(a;b infgos d(@;G) +inf For  4(F;b): HencehF; Gi is balanced on ¥;d).

Since any collection of uniformly weakly concentrated Cauby lIter pairs on a quasi-
uniform space (X; U) remains uniformly weakly concentrated after adding one wakly
concentrated Cauchy lter pair to it, only quasi-uniform sp aces in which the set of all
weakly concentrated Iter pairs that are minimal Cauchy are uniformly weakly concen-
trated possess a canonical maximal ground set for our methodf completion. Example
24 below describes a quasi-pseudometrizable quasi-uniforspace due to Deak for which
that condition is not satis ed. It follows from this example (see [20]) that Doitchinov's
completion theory cannot be extended from quiet to arbitrary To-quasi-uniform spaces.
On the other hand we recall that Doitchinov's completion for balanced Tp-quasi-metric
spaces (see [11]) has been generalized to a (quasi-metrionpletion theory for arbitrary
To-quasi-metric spaces (see [18, 19]) with the help of the afementioned concept of a
balanced Cauchy lIter pair.

Example 24 (see [3, Example 7.15]) Let X = (Rnf0g) N and considerUy; where the
To-quasi-metric d on X is de ned as follows: d((s;n); (t;k)) = min f1;(t s)"gif n = k
and s < 0 < t: Furthermore set d equal to 0 on the diagonal ofX and d = 1 otherwise.
One readily veri es that d is a To-quasi-metric on X:

For eachn 2 !; let F, be the Iter generated on X by the basef] ;O[f ng: > Og
and let G, be the Iter on X generated by the basd]0; [f ng: > 0g:Set = fhF,;Gi :
n 2 ! g: One checks that for eachn 2 !; hF,; G,i is a minimal Cauchy Iter pair on ( X; Uy)
(compare Proposition 6).

Furthermore for eachn 2 I; hF,;G,i is 2"-balanced: Sinced 1; it suces to con-
sider the case thatx;y 2 X such that infgag, d(X;G) < 1 and infeor, 4(F;y) < L
Then there areu;v 2 R rltbeg such that x = (u;n) andy = (v;n) with u < 0 < v:
Consequently ¢ u)" fo n (wkvn « 2"(maxfv; ug)"” 2"(( u)"+ v") =
2"(infgae, d(X;G)+inf por, 4(F;y)): SohFy; Gii is indeed 2'-balanced on ;d):

Let = %: Consider any > 0: Then for any n 2 N with 2" 1 > 1. we have that

1

Vo, (( (3)7:m)) 2 Gy and Vy (3)7;m) 2 Fo, but d(( (3)7:n)i((x)7;n) =1 > &
Hence is not uniformly weakly concentrated.

Therefore Uy is not a quasi-uniformity on according to Proposition 13, b ut for any
n 2 N itis certainly a quasi-uniformity restrictedto , ,where , = fhF;Gi:k2 N
and k ng; because , is a (nite) collection of Cauchy Iter pairs, which are all 2 "-
balanced. So there does not exist a largest ground set for owquasi-uniform completion
of the quasi-uniform space K; Uy): 2
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Abstract

We present some examples for which well-known xed point therems in fuzzy
(quasi-)metric spaces cannot be applied, and neverthelessur results work on
such examples.

1. Introduction and preliminaries

Following the modern terminology, by a quasi-metric on a norempty set X we mean a
nonnegative real valued functiond on X X such that for all x;y;z 2 X :

() x = yif and only if d(x;y) = d(y;x) =0;

(i) d(x;z) d(x;y)+ d(y;2):

If d satis es condition (i) above and

(ir) d(x;z) maxfd(x;y);d(y;2)g
then, d is called a non-Archimedean quasi-metric onX:

If d satis es the conditions (i), (i) and

(i") d(x;y) = d(y;x)
then, d is called a metric on X:

The notion of a non-Archimedean metric is de ned in the obvious manner.

A (non-Archimedean) quasi-metric space is a pair X;d) such that X is a nonempty set
and d is a (non-Archimedean) quasi-metric onX:

Each quasi-metric d on X generates aTy topology 4 onX which has as a base the
family of open ballsfBgy(x;r): x 2 X; r> 0g; whereBqy(x;r)= fy 2 X :d(x;y) <r g for
alx2 X andr> 0

Given a (non-Archimedean) quasi-metricd on X; then the function d ! de ned on
X X byd x;y) = d(y;x); is also a (non-Archimedean) quasi-metric onX; called the
conjugate ofd; and the function d® de ned on X X by dS(x;y) = max fd(x;y):d 1(x;y)g
is a (non-Archimedean) metric on X:

IThe author thanks the support of the Spanish Ministry of Scie nce and Innovation, grant MTM2009-
12872-C02-01.
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A quasi-metric space K;d) is said to be bicomplete if (X;d®) is a complete metric
space. In this case, we say thatl is a bicomplete quasi-metric onX:

By a contraction map on a (quasi-)metric space K;d) we mean a self-mag on X such
that d(fx;fy )  kd(x;y)for all x;y 2 X; wherek is a constant with 0 < k < 1. The
number k is called a contraction constant for f:

It is clear that if f is a contraction map on a quasi-metric space X;d) with contrac-
tion constant k; then f is a contraction map on the metric space X;d®) with contraction
constant k:

According to [10], a binary operation :[0;1] [0;1]! [0;1]is a continuous t-norm if

satis es the following conditions: (i) is associative and commutative; (i) is contin-
uous; (i) a 1= aforeverya2 [0;1]; (iv) a b c¢ dwhenevera candb d, with
a;b;c;d2 [0;1].

Paradigmatic examples of continuous t-norm are Min, Prod, aad T, (the Lukasiewicz
t-norm).

In the following Min will be denoted by »; Prod by and T, by : Thus we have
a”™ b=minfa;bg, aProd= aibanda | b=maxfa+ b 1;0g for all a;b 2 [0;1]: The
following relations hold:

N> > |:lInfact, ~ > for any continuous t-norm

An example of a class of continuous t-norm ([1]), that cover he full ranges of these
operations, are de ned for all a;b2 [0; 1] by:

a b=1 mnfL[l a¥ +@ b¥F]g

where is a parameter whose range is (A ). A particular continuous t-norm is obtained
for each value of the parameter . These operations are often referred to in the literature
as the Yager continuous t-norm.

Itis easy to see thata ,b a ,bwhenever ; 2, with a;b2 [0; 1]. In particular
an,b a n,bwhenevern; ny, with ni;n2 2 Nanda;b2 [0;1] ( N will denote the set
of positive integer numbers).

A subclass of Yager continuous t-norm isf g »n. In particular we have that 1 is the
Lukasiewicz t-norm a. We will call these subclasses as thH-Yager continuous t-norm.

Denition 1  [4]. A KM-fuzzy quasi-metric on a set X is a pair (M; ) such that is a
continuous t-norm and M is a fuzzy setinX X [0;1 ) such that for all x;y;z 2 X :
(KM1) M (x;y;0) =0;
(KM2) x =y ifand only if M(x;y;t)= M(y;x;t)=1 for all t> O;
(KM3) M(x;z;t+s) M(x;y;t) M(y;z;s) forall t;s > 0;
(KM4) M (x;y; ) :[0;12)! [0;1]is left continuous.
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A KM-fuzzy quasi-metric (M; ) satisfying for all x;y 2 X andt > 0 the symmetry
axiom M (x;y;t) = M (y;x;t); is a fuzzy metric in the sense of Kramosil and Michalek [6].

De nition 2 [4]. A KM-fuzzy quasi-metric space is a triple (X;M; ) such that X is a
(nonempty) set and (M; ) is a KM-fuzzy quasi-metric on X .

If (M; ) is a fuzzy metric in the sense of Kramosil and Michalek then X;M; ) is a
fuzzy metric space in the sense of Kramosil and Michalek [12]

In the following, KM-fuzzy quasi-metrics and fuzzy metricsin the sense of Kramosil and
Michalek will be simply called fuzzy quasi-metrics and fuzy metrics respectively, and KM-
fuzzy quasi-metric spaces and fuzzy metric spaces in the s&m of Kramosil and Michalek
will be simply called fuzzy quasi-metric spaces and fuzzy midc spaces, respectively.

If (M; ) is a fuzzy quasi-metric onX; then (M 1; ) is also a fuzzy quasi-metric on
X: whereM 1is the fuzzy setinX X [0;1)dened by M 1(x;y;t) = M(y;x;t):
Moreover, if we denote byM' the fuzzy set in X X  [0;1) given by Mi(x;y;t) =
minfM (x;y;t);M 1(x;y;t)g, then (M'; ) is a fuzzy metric on X [4].

Given a fuzzy quasi-metric space X;M; ) we de ne the open ball By (x;r;t), for
X2 X; 0<r< 1 andt> 0; as the setBy (x;r;t) = fy 2 X : M(x;y;t) > 1 rg.
Obviously, x 2 By (x;1;1).

Foreachx 2 X,0<r; ro<landO<t; ty,wehaveBy(X;ri;t1) Bwm(X;rz;to).
Consequently, we may de ne a topology y on X as

m=FfA X :x2Athereisr 2 (0;1);t> 0, with By (x;r;t) Ag

Moreover, for eachx 2 X the collection of open ballsf By (x; 1=n;1=n) : n = 2; 3::.q,
is a local base atx with respect to . It is clear, that for any fuzzy quasi-metric space
(X;M; ), wm is aTy topology.

The topology u is called the topology generated by the fuzzy quasi-metric gace
(X;M; ). It is clear that each open ball By (x;r;t) is an open set for the topology
M -

A sequencef X, g, in a fuzzy (quasi-)metric space K;M; ) converges to a pointx 2 X
with respect to \ if and only if lim , M (x;x;t) =1, for all t> O.

In order to introduce a Hausdor topology on the fuzzy metric space, in [2] George and
Veeramani gave an appropriate modi cation of the concept offuzzy metric space from
Kramosil and Michalek that we will know as GV-fuzzy metric space.

By using the notion of a fuzzy metric space in the sense of Krawsil and Michalek [6],
Grabiec proved in [3] a fuzzy version of the celebrated Bandic xed point theorem. To
this end, Grabiec introduced the following notions: A sequece fx,g, in a fuzzy metric
space K;M; ) is called G-Cauchy if for each" 2 (0;1);p 2 N, t > 0 there existsng 2 N
such that M (Xn; Xn+p;t) > 1 " for all n > ng. A fuzzy metric space (X;M; ) is called
G-complete provided that every G-Cauchy sequence inX is convergent. In this case,
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(M; ) is called a G-complete fuzzy metric onX .

Theorem 1 [3].Let (X;M; ) be a G-complete fuzzy metric space such théim;; M (x;y;t) =
lforall x;y2 X. Letf :X ! X be a self-map satisfying:

M(fx;fy;kt ) M(xy;t)
forall x;y 2 X,and t> 0O, with k 2 (0;1). Then f has a unique xed point.

George and Veeramani presented in [2] an example which showlsat Grabiec s notion
of completeness is very strong; indeed, the fuzzy metric ingced by the Euclidean metric
is not complete in the sense of Grabiec. Due to this fact, theynodi ed the de nitions of
Cauchy sequence and completeness due to Grabiec as followssequencef x, g, in a fuzzy
metric space K;M; ) is called a Cauchy sequence if for each 2 (0;1); t > 0 there exists
No 2 N such that M (Xpn;Xm;t) > 1 " for all n;m > ng. A fuzzy metric space X;M; )
is called complete provided that every Cauchy sequence iX is convergent. In this case,
(M; ) is called a complete fuzzy metric onX . Nevertheless the notion of G-completeness
is very interesting in the case of non-Archimedean fuzzy meic spaces because (see [8,
Theorme 3]) each complete non-Archimedean fuzzy metric s is G-complete.

In [8], Romaguera, Sapena and Tirado generalized the previs theorem to the fuzzy
quasi-metric setting. To this end they gave the following ndions: A sequencefXx,g, in
a fuzzy quasi-metric space X; M; ) is called G-Cauchy iffx,g, is a G-Cauchy sequence
in (X;M"; ). A fuzzy quasi-metric space X;M; ) is called G-bicomplete if (X;M '; )
is a G-complete fuzzy metric space. In this case,M; ) is called a G-bicomplete fuzzy
quasi-metric on X . So the notions of Cauchy sequence and bicomplete fuzzy quasetric
space can be given in a natural way as follows: A sequenée, g, in a fuzzy quasi-metric
space &;M; ) is called Cauchy if fx,g, is a Cauchy sequence inX;M '; ). A fuzzy
quasi-metric space X;M; ) is called bicomplete if (X;M '; ) is a complete fuzzy metric
space. In this case, |; ) is called a bicomplete fuzzy quasi-metric onX .

Theorem 2 [8]. Let (X;M; ) be a G-bicomplete fuzzy quasi-metric space such that
limyy M(xy;t)=1 forall x;y2 X. Let f : X ! X be a self-map satisfying:
M (fx;fy;kt ) M (X y;t)
forall x;y 2 X,and t> 0, with k 2 (0;1). Then f has a unique xed point.
2. The results

Next we present several contraction principles on fuzzy qusi-metric spaces and we also
present several examples for which well-known xed point treorems cannot be applied and
our result work to such examples.

Theorem 3 [12] Let (X;M; ) be a G-complete fuzzy metric space. Iff is a self-map
on X such that there isk 2 (0;1) satisfying:

M (fx;fy;t ) > 1 k+ kKM (x;y;t)
forall x;y 2 X and t> 0, then f has a unique xed point.
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Theorem 4 [12] Let (X;M; ) be a complete fuzzy metric space such that> , for
some 2 N. If f is a self-map onX such that there isk 2 (0;1) satisfying:

M (fx;fy;t ) > 1 k+ kM (x;y;t)
for all x;y 2 X and t> 0, then f has a unique xed point.

The previous theorems can be extended to fuzzy quasi-metrispaces as follows:

Theorem 5 [12] Let (X;M; ) be a G-bicomplete fuzzy quasi-metric space. If is a
self-map on X such that there isk 2 (0; 1) satisfying

M (fx;fy;t ) > 1 k+ kM (x;y;t)
for all x;y 2 X and t> 0, then f has a unique xed point.

Theorem 6 [12] Let (X;M; ) be a bicomplete fuzzy quasi-metric space such that> |,
forsome 2 N. If f is a self-map onX such that there isk 2 (0; 1) satisfying

M(fx;fy;t )>1 k+ kM (x;y;t)
forall x;y 2 X and t> 0, then f has a unique xed point.

The notion of a non-Archimedean fuzzy metric space was intrduced by Sapena [9]. A
natural generalization of this concept to the quasi-metricsetting can be found in [8] as fol-
lows: A fuzzy quasi-metric spaceX;M; )suchthatM (x;y;t) minfM (x;z;t);M (z;y;t)g
forall x;y;z;2 X;t> 0;is called a non-Archimedean fuzzy quasi-metric space, and{; )
is called a non-Archimedean fuzzy quasi-metric.

In [8, Theorem 3] it is shown that each bicomplete non-Archimedean fuzzy quasi-metric
space is G-bicomplete. So from previous theorem we have:

Theorem 7 [12] Let (X;M; ) be a bicomplete non-Archimedean fuzzy quasi-metric
space. If f is a self-map on X such that there isk 2 (0; 1) satisfying

M(fx;fy;t )>1 k+ kM (x;y;t)
forall x;y 2 X and t> 0, then f has a unique xed point.

Next we present an example where the quasi-metric version oBrabiec's xed point
theorem cannot be applied (Theorem 2).

Example 1. Let (X;d) be the metric space whereX = fOg[f 1=n:n 2 Ng and d de ned
on X X byd(x;y) =maxf(y x);0g. Let | be the Lukasiewicz continuous t-norm.
We de ne a fuzzy setM in X X [0;+1 ) given in the following way:

M(x;y;0) = 0,
M(x;y;t) = 1 d(xy),if 0<t 6 1,
M(x;y;t) = 1,if t> 1.

It is clear that (X;M; ) is a G-bicomplete fuzzy quasi-metric space.
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Let f : X I X be given byfx = x=2 for all x 2 X (obviously f has a unique xed
point x =0). Nevertheless the conditions of Theorem 2 are not satis ed.Indeed, suppose
that there exists a contraction constantk 2 (0; 1) such that:

M (fx;fy;kt ) M (X y;t)
forall x;y 2 X,and t> O, with k 2 (0;1). Fix t =1=k, then we have:

M(fx;fy; 1)=1 d(x;y) M(xy;1=k) =1

which is a contradiction. Therefore the conditions of the quai-metric version of Grabiec's
xed point theorem are not satis ed.

Nevertheless, the following example shows that Theorem 5 cabe applied to deduce
the existence of xed point for the contraction map f .

Indeed, for all x;y 2 X, we have that:

M(fyit) =1 difxfy )=1 Sdocy)=1 3+ ZMyit)

for all t> 0.
Therefore f is a contraction on (X;M; ) with contraction constant 1/2 : So, by The-
orem 5, f has a unigue xed point which is, obviouslyx =0:

In [5], V. Gregori and A. Sapena gave xed point theorems for omplete GV-fuzzy met-
ric spaces. To this end they introduced the notion of fuzzy catractive map and fuzzy
contractive sequence, respectively. Later on, Mihet adapd (see [7]) the previous notions
to fuzzy metric spaces in the sense of Kramosil and Michaleksafollows:

De nition 3. Let (X;M; ) be a fuzzy metric space. We will say the map : X ! X is
fuzzy contractive if there existsk 2 (0;1) such that

M (x;y;t)
MEGy;t) + k(1 M(Xy;t))
forall x;y 2 X and t> 0. (k is called the contractive constant off ).

M (fx;fy;t )

De nition 4.  Let (X;M; ) be a fuzzy metric space. We will say that the sequenés, g,
in X is fuzzy contractive if there existsk 2 (0;1) such that

M (Xn; Xp+1;t)
M (Xn; Xn+1:t) + K(1 M (Xn; Xn+1:1))

M (Xn+1; Xn+2;t)

forall t> Oand n2 N.

The next theorem was proved by Gregori and Sapena in [5] for GMuzzy metric spaces.
However the proof remains valid for fuzzy metric spaces in te sense of Kramosil and
Michalek.

Theorem 8 [5]. Let (X;M; ) be a complete fuzzy metric space in which fuzzy contractive
sequences are Cauchy. Lef : X ! X be a fuzzy contractive map beink the contractive
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constant. Then f has a unique xed point.

Gregori and Sapena showed in [5] that each fuzzy contractiveequence is G-Cauchy and
asked if a fuzzy contractive sequence is Cauchy. Mihet gaveni[7] the following example
which shows that the answer is negative in the case of fuzzy nic spaces in the sense of
Kramosil and Michalek.

Example 2 [7]. Let X =[0;1 ) and d(x;y) = jx yj. Then (X;d) is a complete metric
space. In[11] it is shown that (X;M; ) is a complete fuzzy metric space, where is any
continuous t-norm and M is the fuzzy set inX X [0;1 ) given in the following way:
M(x;y;t) =1, if d(x;y) <t
M(x;y;t) =0, if d(x;y) t.
Since
M (x;y;t)

M(xy;t)+ k(1  M(xy;t))
the contraction condition can be written as:

M (fx;fy;t ) M(xy;t);

= M(xy;t);

for all x;y 2 X and t> 0, or equivalently,

d(fx;fy ) d(x;y);

forall x;y 2 X. Thus, the mapf : X ! X, f(x)= x+1 is a fuzzy contractive map and
so every sequencéXxngn, Xp = f"(X) is a contractive sequence.

On the other hand, sincef is a xed point free mapping on (X;M; ) it follows from
previous theorem thatf x,g, is not a Cauchy sequence.

Next we present an example for which Theorem 8 cannot be apmd, and nevertheless,
Theorem 4 works to such an example.

Example 3. Let (X;M; ) be a fuzzy metric space, where is any continuous t-norm
satisfying > ,forsome 2 N, X =[0;1) and M s the fuzzy setinX X [0;1)
given in the following way:

M(xy;t)=1,if d(xy) <t

M(x;y;t)=0,if d(xy) t

Let f : X I X be the function given byf (x) = 0 for all x 2 X. It is obvious that
f has a unique xed point which isx = 0. Example 2 shows that Theorem 8 cannot be
applied to deduce the existence of the unique xed point of . On the other hand we have
that:
M (fx;fy;t ) > 1 k+ kKM (x;y;t);
for all x;y 2 X and t> 0, because
M (fx;fy;t )= M(0;0;t) =1 >1 k+ kM (x;y;t);

forall x;y 2 X and t> 0. Since (X;M; ) is a complete fuzzy metric space and >
for some 2 N, we can applied Theorem 4 to deduce the existence of the uniqued
point of f, x =0.
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Remark 1. Note that if it is satis ed the contraction in the sense of Theaem 4, i.e

M (fx;fy;t ) > 1 k+ kKM (x;y;t);
forall x;y 2 X and t> 0, then it is satis ed the contraction in the sense of De nition 3,
i.e
M (x;y;t)
M(x;y;t) + k(1 M(x;y;t))

M (fx;fy;t )
forall x;y 2 X and t> 0.

Indeed, if
M (fx;fy;t ) > 1 k+ kM (x;y;t);
then
k(1 M(@xy:t)) 1 M(fx;fy;t );
therefore
k(L M((xy:t)) 1 M(fxfy;t),
M (x;y;t) M (fx;fy;t )
and so
1 1
k(—— 1 _— 1
WMocyn P M) "
i.e.
My t) M (fx;fy;t )

M(xy;t)+ k(1 M(x;y;t))

Gregori and Sapena established in [5] the following theorentvalid for fuzzy metric
spaces in the sense of Kramosil and Michalek):

Theorem 9. Let (X;M; ) be a G-complete fuzzy metric space and let : X ! X be a
fuzzy contractive map. Thenf has a unique xed point.

Remark 2. Note that Theorem 3 can be also deduced from Theorem 9.
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