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Preface

General Topology has become one of the fundamental parts of mathematics. Nowadays, as
a consequence of an intensive research activity, this mathematical branch has been shown
to be very useful in modeling several problems which arise insome branches of applied
sciences as Economics, Arti�cial Intelligence and Computer Science. Due to this increasing
interaction between applied and topological problems, we have promoted the creation of
an annual or biennial workshop to encourage the collaboration between di�erent national
and international research groups in the area of General Topology and its Applications.
We have named this initiative Workshop in Applied Topology (WiAT). The �rst edition
of this Workshop was held in Palma de Mallorca (Spain) from June 11 to June 12, 2009.

This book contains a collection of papers presented by the participants in the second
edition of the WiAT which took place in Gand��a (Spain) from J une 16 to June 28, 2010.

All the papers of the book have been strictly refereed.

We would like to thank all participants, the plenary speakers and the regular ones, for
their excellent contributions.

Main Speakers

Giuseppe Di Maio(Seconda Universit�a degli Studi di Napoli, Italy)

Javier Guti�errez Garc��a(Universidad del Pa��s Vasco, Spain)

Jes�us Rodr��guez-L�opez(Universidad Polit�ecnica de Valencia, Spain)

Miguel �Angel S�anchez-Granero(Universidad de Almer��a, Spain)

Regular Speakers

Carmen Alegre(Universidad Polit�ecnica de Valencia, Spain)

Francisco Balibrea(Universidad de Murcia, Spain)

Joan Gerard Camarena(Universidad Polit�ecnica de Valencia, Spain)
Salvador Garc��a-Ferreira(Universidad Nacional Aut�onoma de M�exico, Mexico)

Juan Luis Garc��a Guirao(Universidad Polit�ecnica de Cartagena, Spain)

Valent��n Gregori (Universidad Polit�ecnica de Valencia, Spain)

Hans-Peter A. K•unzi(University of Cape Town, South Africa)

Esteban Indur�ain(Universidad P�ublica de Navarra, Spain)

Iraide Mardones-P�erez(Universidad del Pa��s Vasco, Spain)

Jorge Picado(Universidade de Coimbra, Portugal)

Salvador Romaguera(Universidad Polit�ecnica de Valencia, Spain)

Manuel Sanchis(Universidad Jaume I, Spain)

Pedro Tirado(Universidad Polit�ecnica de Valencia, Spain)
�Oscar Valero(Universitat de les Illes Balears, Spain)

We express our gratitude to the Ministerio de Ciencia e Innovaci�on, Generalitat Valen-
ciana, Universidad Polit�ecnica de Valencia, Instituto Un iversitario de Matem�atica Pura y
Aplicada, Escuela Polit�ecnica Superior de Gand��a, Fundaci�o Borja, Ajuntament de Gand��a
and Red Espa~nola de Topolog��a, for their �nancial support without which this workshop
would not have been possible.

We are also grateful to Sonia Gamund�� Pujadas for designingthe WiAT logo and the
cover of these proceedings.
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We are certain of all participants have established fruitful scienti�c relations during
the Workshop and also they have enjoyed the beauty, the culture and the hospitality of
Gand��a.

The Organizing Committee of WiAT'10
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Topologies sequentially equivalent to Kuratowski-
Painlev�e convergence

Gerald Beer a and Jes�us Rodr��guez-L�opez b;1

a Department of Mathematics, California State University Lo s Angeles, 5151 State University Drive,

Los Angeles, California 90032, USA (gbeer@cslanet.calstatela.edu)
b Instituto Universitario de Matem�atica Pura y Aplicada, Un iversidad Polit�ecnica de Valencia, 46022

Valencia, Spain (jrlopez@mat.upv.es)

Abstract

The main purpose of this paper is to provide a characterization of those up-
per miss topologies which are sequentially equivalent to the classical upper
Kuratowski-Painlev�e convergence K+ . This leads in a natural way to study
the sequential modi�cation of K+ :

1. Introduction

Given a Hausdor� topological spacehX; Ti we denote byC(X ) the family of all closed
subsets ofX . We recall that given a net hA � i � 2 � in C(X ), the upper closed limit and the
lower closed limit of the net are de�ned as

Ls A � = f x 2 X : Ux \ A � 6= ? co�nally for every neighborhood Ux of xg;

Li A � = f x 2 X : Ux \ A � 6= ? residually for every neighborhoodUx of xg:

Be�tting their names, both are closed subsets ofX (see, e.g., [4, Proposition 5.2.2]).
The net hA � i � 2 � is said to be:

� K+ -convergent orupper Kuratowski-Painlev�e convergent to A if Ls A � � A;
� K � -convergent or lower Kuratowski-Painlev�e convergent to A if A � Li A � ;
� K-convergent or Kuratowski-Painlev�e convergent to A if it is K + -convergent and

K � -convergent to A, i.e. Ls A � = Li A � = A:
Maybe, upper and lower limits were �rst considered by Peano in the context of metric

spaces around 1890 (see [14]). Nevertheless, historicallytheir introduction has been at-
tributed to Painlev�e and to Kuratowski who gave an importan t dissemination through its
monograph [18]. It resurfaced again for �ltered families ofclosed sets in the seminal article
of Choquet [8], followed by the monograph of Berge [6], and itis from this perspective
that it is often studied (see, e.g., [13, 19]).

In general, Kuratowski-Painlev�e convergence is not topological, i. e. we cannot �nd a
topology on C(X ) such that the convergence of nets in this topology is equivalent to their
Kuratowski-Painlev�e convergence [8, 12, 13]. Nevertheless, the lower Kuratowski-Painlev�e
convergence is always topological and it is compatible withthe lower Vietoris topology T�

V

1The second author was supported by Generalitat Valenciana under grant GV/2007/198.



G. Beer and J. Rodr��guez-L�opez

having as a subbaseC(X ) plus all sets of the form V � = f A 2 C(X ) : A \ V 6= ? g where
V is open. Furthermore, although neither the upper Kuratowski-Painlev�e convergence
nor the Kuratowski-Painlev�e convergence are topologies,they are pseudotopologies [12].
For a Hausdor� space, a necessary and su�cient condition for these two convergences be
topological is local compactness of the space [8, 12, 13].

One noteworthy fact about K-convergence is its compactnesswithout restriction [4].
Furthermore, it has been applied to lower semicontinuous extended real-valued functions
as associated with their (closed) epigraphs, especially toconvex functions (see, e.g., [3, 4]).

On the other hand, the hit-and-miss topologies are the main prototypes for constructing
topologies over a family of sets. We recall that acobasefor a topological spacehX; Ti is
a family of nonempty closed sets � which contains the singletons and it is closed under
�nite unions. Evidently, the largest cobase is the family of all nonempty closed subsets
C0(X ) and the smallest is the set of nonempty �nite subsetsF0(X ). Given a cobase � for
hX; Ti , the hit-and-miss topology T� on C(X ) is the supremum T�

V _ T+
� where T�

V is the
lower Vietoris topology and the upper miss topologyT+

� has as a base all sets of the form

f F 2 C(X ) : F � X nDg (D 2 � [ f ? g):

When � = K 0(X ), the family of all nonempty compact subsets,T+
� is called theco-compact

topology and T� is called theFell topology which we denote byTC and TF respectively. We
de�ne the co-countably compact topologyTCC as the topologyT+

� when � is the family of
all closed and countably compact sets. When � = C0(X ), we obtain the classicalVietoris
topology TV .

It is easy to prove [5] that the co-compact topology is the �nest upper miss topology
coarser than K+ . Related to this, one could wonder which is the �nest topology coarser
than K + : This topology, denoted by � K+ , is known as theupper Kuratowski topologyand
its closed sets are those sets which are closed under K+ -limits of nets. Replacing K+ by K,
we obtain the convergence topology� K : In this way, � is a projector of the category of all
convergences on the category of topological convergences,which is called the topologizer.

In [13] Dolecki, Greco and Lechicki studied the problem of when � K+ = TC on C(X ):
The spaces for which this equality is true were calledconsonants. Examples of consonant
topological spaces are:�Cech-complete spaces, Hausdor�k! -spaces, etc. (see [1, 2, 7, 19,
20]). A very related problem is that of hyperconsonancewhich consists of characterizing
which spaces verify� K = TF : Of course, � K � = T�

V and it would be natural to guess,
assuming the topologizer distributes over join in the spaceof convergences onC(X ), that

� K = � (K � _ K+ ) = � K � _ � K+ = T�
V _ � K+ :

But this distributivity fails: it has been proved [10, 13] th at for completely metrizable
spaces,� K+ = TC ; so that in this case,T�

V _ � K+ reduces to Fell topology, independent of
local compactness considerations (see also [10, Example 4.4]). The hyperconsonance was
characterized in metric spaces by Fremlin who proved that a metric spaceX is hypercon-
sonant if and only if X has at most one point that has no compact neighborhood (see
more generally [2]).

Later on, Costantini, Hol�a and Vitolo [9] studied the notio n of sequential consonance. A
topological space is said to be sequentially consonant if K+ and TC have the same conver-
gent sequences to the same points, i. e. these convergences are sequentially equivalent. In
[9, 17] it is proved that every k-space orP-space is sequentially consonant so, in particular,
every locally compact space or every �rst countable space sois.
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Topologies sequentially equivalent to Kuratowski-Painlev�e convergence

In [5] we investigate the problem of obtaining all upper misstopologies which are se-
quentially equivalent to the upper Kuratowski-Painlev�e c onvergence. In this paper, we will
summarize all the results obtained in [5] which completely characterize this question (see
Theorem 12). Furthermore, we look more carefully at such upper miss topologies when the
underlying topology of the space is �rst countable. We also obtain some two-sided results,
e.g., we characterize in the context of a metric space the sequentiality of the Fell topology
TF and the convergence topology� K. To achieve all these results, we �rst study the se-
quential modi�cation sK+ of the convergence K+ which is the �nest sequential topology
coarser than K+ . Of course, every topology which is sequentially equivalent to K + should
be sequentially coarser thansK+ .

2. Preliminaries

All topological spaces will be assumed to be Hausdor� and to consist of at least two
points. We denote the closure, set of limit points and interior of a subsetA of a Hausdor�
spaceX by cl(A), A0 and int( A); respectively. Let C0(X ) denote the nonempty closed
subsets ofX . We de�ne idempotent operators �, + and * on subfamilies of C(X ) as
follows:

(1) �( A) := f E : E is a �nite union of elements of Ag;
(2) + A := f E : E is a closed subset of some element ofAg;
(3) * A := f E : E is a closed superset of some element ofAg:

Given a family B of closed subsets the smallest cobase containing them is �(B [ F0(X )).
We call this the cobase generated byB. We call a cobasecompact (resp. countably compact)
if its members are all compact subsets (resp. countably compact subsets) ofX .

We call a cobase � Urysohn [4] if wheneverV is open andD 2 � with D � V , there
exists D1 2 � such that D � int( D1) � D1 � V:

By a convergenceQ on a setX (see [12]), we mean a function that assigns to each net
hx � i � 2 � in X a possibly empty subset ofX , called the Q-limits of the net. When a 2 X
is a Q-limit of hx � i � 2 � , we will write

hx � i � 2 �
Q
! a:

We will assume here that all convergences areisotone (the set of limits for a subnet of a net
includes those of the original net) and constant preserving(constant nets are convergent
to the repeated value).

We say that a convergence Q isstronger or �ner than another convergence P and write
Q � P if

hx � i � 2 �
Q
! a ) h x � i � 2 �

P! a:
With respect to this partial order, the set of convergences on X becomes a complete lattice.
A topology T on X induces an isotone convergence in an unambiguous way, and with this
in mind, the symbols Q � T, T � Q and T = Q make sense where Q is a convergence. If
a convergence is induced by a topology, it will be called atopological convergence.

Given two convergences Q and P on a setX , we will write Q � seq P and say P is
sequentially coarser than Q provided wheneverhxn i n2 N is a sequence inX and a 2 X ,
then

hxn i n2 N
Q
! a ) h xn i n2 N

P! a:
We will write Q � seq P to mean that Q and P have the same convergent sequences to the
same limits. In this case, the convergences are deemedsequentially equivalent. As one or
both of the convergences may arise from a topologyT, we will freely employ formulas such

9



G. Beer and J. Rodr��guez-L�opez

as Q� seq T or T1 � seq T2 in the sequel. For example, it is well known [4, Theorem 5.2.10],
[17, Theorem 9] that, in the context of �rst-countable spaces, we may write TF � seq K
with respect to closed subsets.

Recall that a topology T on a setX is called sequential provided A is closed whenever
A is stable under taking limits of sequences [15, 16]. Intrinsic to sequential spaces is the
sequential modi�cation sQ of a convergence Q that yields the (sequential) topology on X
whose closed sets consist of all subsetsA of X such that wheneverhan i n2 N is a sequence
in A which is Q-convergent to x 2 X , then x 2 A. It is obvious that � Q � sQ, and the
two coincide if and only if sQ � Q.

3. On the sequential modification of upper Kuratowski-Painle v �e
convergence

We begin providing a description of the closed sets of the sequential modi�cation of the
upper Kuratowski-Painlev�e convergence.

Theorem 1 (cf. [13, Corollary 3.2]). Let hX; Ti be a Hausdor� space. Then a family of
closed setsF is closed in sK+ if and only if F veri�es the following conditions:

(1) F = * F;
(2) for every countable family of open setsf Gn gn2 N such that [ n2 NGn 2 F] there

exists a �nite subset N of N such that [ n2 N Gn 2 F] :

Corollary 2 (cf. [13, Theorem 3.1],[20, Lemma 2.2]). Let hX; Ti be a Hausdor� space.
Then a family of closed setsG is open in sK+ if and only if G veri�es the following
conditions:

(1) G= + G;
(2) for every countable family of closed setsf Fngn2 N such that \ n2 NFn 2 Gthere exists

a �nite subset N of N such that \ n2 N Fn 2 G:

The next example shows that, in general, sK+ 6= � K+ :

Example 3. Let us consider the interval X = [0 ; 1] endowed with the discrete topology.
Direct I := f I � [0; 1] : jI j � @ 0g by inclusion, and 8I 2 I put FI := X nI: It is easy to
prove that Ls FI = ? so hFI i I 2 I is � K+ -convergent to ? : We claim G := f A � [0; 1] :
X nA is not countableg is sK+ -open. Clearly, G= + G, and if f Fn gn2 N is a family of closed
sets such that \ n2 NFn 2 G then X n \ n2 N Fn is not countable. It is immediate to see that
X n \ k

n=1 Fn is not countable for somek 2 N. Consequently, we deduce from the above
corollary that G is sK+ -open. Of course,? 2 G but FI 62G for all I 2 I :

The coincidence of sK+ and � K+ on C(X ) was characterized by Mynard [19] (see also
[5]) proving its equivalence with hereditarily Lindel•ofn ess of the space. Of course, this
coincidence implies that � K+ is sequential. That the hereditarily Lindel•of condition i s
both necessary and su�cient for � K+ to be sequential was discovered by Costantini, Hol�a,
and Vitolo [9]. Related to this, we have characterized when the upper Kuratowski-Painlev�e
convergence is sequentially topological.

Theorem 4. Let hX; Ti be a Hausdor� space. ThenK+ is compatible with a sequential
topology if and only if X is locally compact and hereditarily Lindel•of.

Now, we obtain some results which connect the co-countably topology with the sequen-
tial modi�cation of the K + -convergence.

Proposition 5. Let hX; Ti be a Hausdor� space. ThenTCC � sK+ :

10



Topologies sequentially equivalent to Kuratowski-Painlev�e convergence

De�nition 6. Let hX; Ti be a topological space. We say that a subsetA of X is � -
countably compact if A is the union of a countably family of countably compact closed
sets.

Proposition 7. Let hX; Ti be a Hausdor� space such that the family of all closed countably
compact sets is Urysohn. ThenTCC = sK + if and only if every open set is� -countably
compact.

The last theorem can fail in both directions without the Urysohn condition [5].

In the following, we obtain analogues for the convergence K of some results for the
convergence K+ obtained by Costantini and Vitolo [11] in the context of a metrizable
space (see more generally [9, 19]).

Theorem 8. Let hX; Ti be a metrizable space. The following conditions are equivalent:
(1) X is separable;
(2) � K is sequential.

Theorem 9. Let hX; Ti be a metrizable space. ThenTF is sequential if and only if X is
separable andX has at most one point having no compact neighborhood.

4. Hit-and-miss topologies compatible with sequential K-convergence

It is the purpose of this section to obtain those upper miss topologies which are sequen-
tially equivalent to the upper Kuratowski-Painlev�e conve rgence. Taking the supremum of
such a topology with the lower Vietoris topology yields topologies that are sequentially
equivalent with Kuratowski-Painlev�e convergence. We begin giving the largest upper miss
topology sequentially coarser than K+ .

Proposition 10. Let hX; Ti be a Hausdor� topological space. Then the co-countably
compact topologyTCC is the �nest miss topology sequentially coarser thanK+ :

Remark 11. In the same manner we can see that the co-compact topologyTC is the �nest
upper miss topology coarser than� K.

The above result shows that if T+
� � seq K+ , then the sets of the cobase � must be

countably compact. SinceTCC � seq K+ , if � is a countably compact cobase then T+
� � seq

K+ if and only if K + � seq T+
� .

Theorem 12 (cf. [9, Theorem 1.8]). Let hX; Ti be a Hausdor� topological space and� a
cobase. The following conditions are equivalent:

(1) K + � seq T+
� ;

(2) � is a countably compact cobase, and wheneverhAn i n2 N is a sequence of closed sets
with x 2 Ls An , every neighbourhoodG of x contains someD 2 � that intersects
in�nitely many An .

Our next goal is to show that in a �rst countable Hausdor� spac e, where the closed
countably compact subsets reduce to the sequentially compact subsets, we can construct a
lot of cobases satisfying the conditions of the last result.We �rst obtain a characterization
similar to Theorem 12 in this context.

Theorem 13. Let hX; Ti be a Hausdor� �rst countable topological space and� a cobase.
Then T+

� is sequentially equivalent toK+ if and only if � is countably compact and when-
ever hxn i n2 N is convergent tox and x 2 G 2 T there existsF 2 � with F � G such that
F contains a subsequence ofhxn i n2 N.

11
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In a Hausdor� topological space hX; Ti , denote by � seq = �( f b� : � 2 seq(X )g), where
seq(X ) is the set of all convergent sequences inX and b� is the range of� 2 seq(X ) along
with its unique limit point.

De�nition 14. Let hX; Ti be a Hausdor� space. By asubsequential selectorfor seq(X ),
we mean a functionf : seq(X ) ! seq(X ) such that 8� 2 seq(X ), f (� ) is a subsequence
of � .

Given a subsequential selectorf in a Hausdor� topological space, put � f := �( f [f (� ) :
� 2 seq(X )g). Since the complete range of a convergent sequence is compact and constant
sequences are convergent, we see that �f is a compact cobase. Note that iff is the identity
function on seq(X ), then we get � f = � seq.

The next result is a direct consequence of Theorem 13.

Proposition 15. Let hX; Ti be a �rst countable Hausdor� topological space and letf be
a subsequential selector. ThenT+

� f is sequentially equivalent toK+ :

Since � seq is a compact cobase, we obtain the following.

Corollary 16. Let hX; Ti be a �rst countable Hausdor� topological space. ThenT� seq ; TC ;
TCC and K+ are all sequentially equivalent.

Theorem 17. Let hX; Ti be a �rst countable Hausdor� topological space and suppose� is
a countably compact cobase such that+ � = � [ f ? g. Then T+

� is sequentially equivalent
to K+ if and only if there exists a subsequential selectorf for which � f �+ � .

The following example shows that in the previous theorem, wecannot delete the as-
sumption of considering a cobase stable under closed subsets.

Example 18. Consider X = [0 ; 1] � [0; 1], equipped with the cobase � generated by
f [0; 1

2 ] � [0; 1]; [1
2 ; 1] � [0; 1]g. Thus, a set B is in the cobase if and only if B satis�es

one of these four conditions: (i) B = X ; (ii) B is a nonempty �nite subset of X ; (iii)
B = [0 ; 1

2 ] � [0; 1] [ F where F is �nite; (iv) B = [ 1
2 ; 1] � [0; 1] [ F where F is �nite.

Notice that � is not stable under taking nonempty closed subsets of its members. Since
X 2 �, we in fact have � seq �+ �. Evidently the sequence of segments with nth term
An = f ( n

2n+1 ; y) : 0 � y � 1g is T+
� -convergent to f ( 1

2 ; 1
2)g because if the singleton failed to

hit a member B of the cobase, thenB must be a nonempty �nite set. On the other hand,
it is clear that the sequence is only upper Kuratowski-Painlev�e convergent to supersets of
f ( 1

2 ; y) : 0 � y � 1g:

The next result shows that in the case that X has some convergent sequence with
distinct terms, there is no minimal topology of the form T+

4 f .

Proposition 19. Let hX; Ti be a �rst countable Hausdor� topological space such thatX 0 is
nonempty and let f be a subsequential selector. Then there exists a subsequential selector
g such that T+

4 g is strictly coarser than T+
4 f :

Theorem 20. Let hX; Ti be a �rst countable Hausdor� topological space. The following
conditions are equivalent:

(1) X 0 6= ? ;
(2) there exists an upper miss topology strictly coarser than the co-countably compact

topology sequentially equivalent toK+ -convergence;

12
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(3) there is an in�nite descending chain of upper miss topologies each sequentially
equivalent to K+ -convergence.

Remark 21. From the above results, we can deduce that the family of all upper miss
topologies sequentially equivalent to the upper Kuratowski-Painlev�e convergence which
are determined by a cobase � satisfying + � = � [ f ? g has a minimum if and only if
X 0 = ? : In this case, the minimum topology is T+

F0 (X ) :

The next result characterizes when, in a metric space, the co-countably compact topol-
ogy (which is equal in this case to the co-compact topology) agrees with T+

� seq , which is
the largest topology of the form T+

� f .

Theorem 22. Let hX; d i be a metric space. The following conditions are equivalent:
(1) there exists a compact subsetC of X whose set of limit pointsC0 is in�nite;
(2) � seq 6= K 0(X );
(3) T+

� seq 6= TC ;
(4) there exist uncountably many upper miss topologies betweenT+

� seq and TC each
sequentially equivalent to the upper Kuratowski-Painlev�e convergence.
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In 1883 Arzel�a [2] resolved a fundamental conundrum of analysis: what precisely must
be added to pointwise convergence of a sequence of continuous functions to preserve conti-
nuity? In his celebrated papers [2] and [3] he formulated a set of conditions which are both
necessary and su�cient for the continuity of a series of continuous functions de�ned in a
fundamental interval (compact) of the real line. In 1905, the condition for which Arzel�a
introduced the term "uniform convergence by segments" was called "quasi uniform con-
vergence" by Borel in [13]. Townsend in [39] used Moore's term subuniform convergence.
In the same year Hobson presented Arzel�a's result in a more rigorous form in [28]. In 1926
Hobson in his monumental work [29] extended Arzel�a's theorem to closed and bounded
sets of the reals (using the Heine-Borel covering theorem inthis area for the �rst time).
In 1948 P.S. Alexandro� in [1] studied the question for a sequence of continuous functions
from a topological spaceX (not necessarily compact) to a metric spaceY . We quote also
the seminal paper of Bartle [5], where Arzel�a's theorem is extended to nets of real valued
continuous functions on a topological space.
A more appropriate question to ask in this setting is the following: is there any topol-
ogy on Y X �ner than pointwise convergence that has as intrinsic property to preserve
continuity? The answer to this question was given by Bouleau's work in [14] and [15]
and it falls out from a general theory. He introduced the sticky topology on C(X; Y ) as
the coarsest topology preserving continuity. Its convergence is described by a criterion of
convergence which as the Cauchy criterion does not involve the limit. In 2008 Gregoriades
and Papanastassiou introduced the notion of exhaustiveness at a point of metric space
both for sequences and nets of functions (see [26]). This newnotion is closely related to
equicontinuity and enables to consider the convergence of anet of functions in terms of
properties of the whole net and not as properties of functions as single members. Ex-
haustiveness is a powerful tool to state Ascoli-type theorems and to describe the relation
between pointwise convergence for functions and continuous convergence. In 2009, in the
realm of metric spaces, Beer and Levi [10] found a new theoretical approach giving another
necessary and su�cient condition through the notion of strong uniform convergence on
bornologies, when this bornology reduces to the that of all �nite subsets ofX .

We analyze the equivalence of Arzel�a, Alexandro�, Bouleau,Gregoriades-Papanastassiou
and Beer-Levi conditions. We extend exhaustiveness-type properties to subsets. First, we
introduce the notion of strong exhaustiveness at a subsetB for sequences of functions.
Furthermore, we show that the notion of strong-weak exhaustiveness at a subset is the
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proper tool to investigate when the limit of a pointwise convergent sequence of functions
ful�lls the strong uniform continuity property. As a result we get what must be added to
pointwise convergence of functions to have uniform continuity of the limit.
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Gauthie-Villars, Paris , 1905.
[14] N. Bouleau, Une structure uniforme sur un espace F (E; F ), Cahiers Topologie G�eom. Di�. vol XI,

no. 2 (1969), 207{214.
[15] N. Bouleau, On the coarsest topology preserving continuity, arXiv.org/abs/math/061037 (2006).
[16] Z. Bukovsk�a, L. Bukovsk�y and J. Ewert, Quasi-uniform convergence and L-spaces, Real Anal. Ex-

change 18 (1992/93), 321{329.
[17] A. Caserta, G. Di Maio and L. Hola, Arzela's Theorem and strong uniform convergence on bornologies,

J. Math. Anal. Appl., to appear.
[18] A. Caserta, G. Di Maio and L. Hola, Strong)weak exhaustiveness and (strong uniform) continuity,

Filomat, to appear.
[19] A. Caserta, G. Di Maio, E. Meccariello and Lj. D. R. Ko� cinac, Applications of K -covers II , Topology

Appl. 153 (2006), 3277{3293.
[20] A. Di Concilio and S. Naimpally, Proximal convergence, Monatsh. Math. 103 (1987), 93{102.
[21] G. Di Maio and Lj. D. R. Ko� cinac, Boundedness in topological spaces, Mat. Vesnik 60 (2008), 137{148.
[22] G. Di Maio, E. Meccariello and Lj.D.R. Ko� cinac, Applications of K -covers, Acta Math. Sin. (Engl.

Ser.) 22 (2006), 1151{1160.
[23] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[24] J. Ewert and J. Jedrzjewski, Between Arzel�a and Whitney convergence, Real Anal. Exchange 29, no.

1 (2003/04), 257{264.
[25] J. Ewert, On strong form of Arzel �a convergence, Intern. J. Math. and Math. Sci. 20 (1997), 417{422.
[26] V. Gregoriades and N. Papanastassiou,The notion of exhaustiveness and Ascoli-type theorems, Topol-

ogy Appl. 155 (2008), 1111{1128.
[27] G. Gruenhage, Generalized Metric Spaces. In K. Kunen and J. Vaughan editors, Handbook of Set-

Theoretic Topology, 423-501, North-Holland, Amsterdam, 1984.
[28] E. W. Hobson, On mode of convergence on an in�nite series of functions of a real variable, Proc.

Lond. Math. Soc. 2 (1904), 373{387.
[29] E. W. Hobson, The theory of functions of a real variable a nd the theory of Fourier series, II edition,

Vol 1 and 2, Cambridge University Press, 1926.
[30] H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam, 1977.

16



When the pointwise limit of continuous functions is continuous?

[31] L. Hol�a and T. �Sal�at, Graph convergence, uniform, quasi-uniform and continuous convergence and
some characterizations of compactness, Acta Math. Univ. Comenian. 54-55 (1988), 121{132.

[32] S. T. Hu, Boundedness in a topological space, J. Math. Pures Appl. 228 (1949), 287{320.
[33] A. Lechicki, S. Levi and A. Spakowski, Bornological convergences, J. Math. Anal. Appl. 297 (2004),

751{770.
[34] R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes

in Mathematics, 1315, Springer-Verlag 1988.
[35] S. Naimpally, Proximity Approach to Problems in Topology and Analysis , Oldenbourg Verlag

M•unchen, 2009.
[36] H. Poppe, Compactness in function spaces with a generalized uniform structure II , Bull. Acc. Polon.

Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 567{573.
[37] M. Predoi, Sur la convergence quasi-uniforme, Period. Math. Hungar. 10 (1979), 31{40.
[38] M. Predoi, Sur la convergence quasi-uniforme topologique, An. Univ. Craiova Ser. Mat. Inform 11

(1983), 15{20.
[39] E. J. Townsend, Arzel�a's condition for the continuity of a function de�ned by a ser ies of continuous

functions, Bull. Amer. Math. Soc. 12, no. 1, (1905), 7{21.
[40] G. Vidossich, Topological characterization of pseudo-@-compact spaces, Proc. Amer. Math. Soc. 27

(1971), 195{198.
[41] S. Willard, General Topology, Addison-Wesley Publishing Company, Reading Mass. 1970.

17





Proceedings of the Workshop in Applied
Topology WiAT'10, pp. 19 { 30

How to deal with the ring of (continuous)
real functions in terms of scales

Javier Guti�errez Garc��a a;1 and Jorge Picadob;1

a Departamento de Matem�aticas, Universidad del Pa��s Vasco -Euskal Herriko Unibertsitatea,

Apdo. 644, 48080, Bilbao, Spain (javier.gutierrezgarcia@lg.ehu.es)
b CMUC, Department of Mathematics, University of Coimbra,

Apdo. 3008, 3001-454 Coimbra, Portugal, (picado@mat.uc.pt)

Abstract

There are di�erent approaches in the literature to the study of (continuous)
real functions in terms of scales.
Our �rst purpose with this survey-type paper is to provide mo tivation for the
study of scales as a kind of generalization of the notion of Dedekind cut.
Secondly, we make explicit the well-known relationship between real functions
and scales and we show how one can deal with the algebraic and lattice oper-
ations of the ring of real functions purely in terms of scales.
Finally we consider two particular situations: (1) if the domain is endowed
with a topology we characterize the scales that generate upper and lower
semicontinuous and also continuous functions and/or (2) ifthe domain is en-
riched with a partial order we characterize the scales that generate functions
preserving the partial order and the order embeddings.

1. Introduction

Let us denote byC(X; OX ) the ring of continuous real functions on a topological space
(X; OX )2 and by F (X ) the collection of all real functions on X .

We would like to start by discussing the following question:

Question. What is more general, the study of the ringsC(X; OX ) or that of the rings
F (X )?

A �rst obvious answer immediately comes to our mind:
� For a given topological space (X; OX ), the family F (X ) is much bigger than

C(X; OX ). Hence the study of the rings of real functions is more general than the
study of the rings of continuous real functions.

But looking at this question from a di�erent perspective we could argue as follows:

1The authors are grateful for the �nancial assistance of the C entre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIU07/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain

2If there is no need to specify the topology OX on X , we will simply write C(X ), as usual.
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� For each set X we have that F (X ) = C(X; D(X )) (where D(X ) denotes the
discrete topology onX ), i.e. the real functions on X are precisely the continuous
real functions on (X; D(X )). Hence the study of all F (X ) is the study of all
C(X; OX ) for discrete topological spaces, a particular case of the study of all
C(X; OX ).

We can conclude then that the study of all rings of the form C(X; OX ) (see [8]) is
equivalent to the study of all rings of the form F (X ). However, for a �xed topological
space (X; OX ), the study of F (X ) is clearly more general than that of C(X; OX ).

The reason to start this introduction with the question above is that it is directly related
with the issue of dealing with real functions in terms of scales that we want to address in
this paper. Depending of the focus of the study, that ofC(X ) or that of F (X ), di�erent
notions of scale can be found in the literature.

The origin of the notion of scale goes back to the work of P. Urysohn [17] and it is based
on his approach to the construction of acontinuous function on a topological space from
a given family of open sets.

On the other hand, it was probably M.H. Stone [16] who initiated the study of an
arbitrary (not necessarily continuous) real function by consideringwhat he called the
spectral family of the function.

Note that in both approaches the families involved can be considered to be either
decreasing or increasing. In this paper we will deal only with decreasing families, but we
point out that each statement here could be also rephrased inincreasing terms.

For people mainly interested in C(X ) a scale is a family of open setsUd of a given
topological spaceX indexed by a countable and dense subsetD (e.g. the dyadic numbers
or the set Q of rationals) of a suitable part of the reals (e.g. [0; 1] or the whole R) and
such that

(1) if d < d0, then Ud0 � Ud, 3 (2)
S

d2 D Ud = X and
T

d2 D Ud = ? .

Then the real function de�ned by f (x) = sup f d 2 D j x 2 Udg for each x 2 X , is
continuous. Of course, arbitrary real functions appear when the topology OX is discrete;
then any subset is open and closed and condition (1) simply reads as: if d < d0, then
Ud0 � Ud.

On the other hand, when the main focus of interest isF (X ), a scale must be a family
of arbitrary subsets Sd of a set X indexed by D (as before) and such that

(1) if d < d0, then Sd0 � Sd, (2)
S

d2 D Sd = X and
T

d2 D Sd = ? .

Now the f given by f (x) = sup f d 2 D j x 2 Sdg for each x 2 X , is a real function
(not necessarily continuous). If the setX is endowed with a topology, then additional
conditions on the scale can be added in order to ensure upper or lower semicontinuity or
even continuity. In the same vein, we may be interested in endowing X with a partial
order and characterize those functions which preserve the partial order. This can be also
done in a similar way, by adding some additional conditions to the corresponding scales.

In this work we will follow the latter approach, i.e. we will f ocus our attention on scales
of arbitrary subsets generating arbitrary real functions and then we will study particular
types of scales generating continuous functions. We will see also how one can deal similarly
with order-preserving functions.

3Or Ud � Ud0 in case one prefers to work with increasing scales.
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The paper is organized as follows. In Section 2 we provide some motivation for the
study of real functions in terms of scales, based on the construction of the real numbers
in terms of Dedekind cuts. In Section 3 we make explicit the well-known relationship
between real functions and scales. In Section 4 we show how one can deal with the
usual algebraic operations in terms of scales, without constructing the corresponding real
functions. In Section 5 we consider scales on a topological space and characterize those
generating lower and upper semicontinous real functions. Finally, in Section 6 we brie
y
study the representability of preorders in terms of scales.

2. Motivation for the study of real functions in terms of scales

The purpose of this work is to try to show how one can deal with the ring of real
functions without using the real numbers at all. This will be achieved by using the notion
of a scale. In order to motivate its de�nition we start by recalling som e well-known facts
about the construction of the real numbers via Dedekind cuts.

2.1. Yet another look at Dedekind cuts. As it is well-known, the purpose of Dedekind
(see [7]) with the introduction of the notion of cut was to provide a logical foundation for
the real number system. Dedekind's motivation is the fundamental observation that a
real number r is completely determined by the rationals strictly smaller than r and those
strictly larger than r ; he originally de�ned a cut ( A; B ) as a partition of the rationals into
two non-empty classes where every member of one of the classes is smaller than every
member in the other.4 It is important to recall his remark in [7]:

Every rational number produces one cut or, strictly speaking, two cuts,
which, however, we shall not look as essentially di�erent.

In other words, there are two cuts associated to eachq 2 Q, namely,
�
( ; q]; Q n ( ; q]

�
and

�
( ; q); Q n ( ; q)) ;

where ( ; q] = f p 2 Q j p � qg and ( ; q) = f p 2 Q j p < qg.

In fact, (assuming excluded middle) we may take the lower part A as the representative
of any given cut (A; B ) since the upper part of the cut B is completely determined byA.5

Hence one can consider the following equivalent description of the real numbers:

Dedekind's construction of the reals. A real number is a Dedekind cut, i.e. a subset
r � Q such that

(D1) r is a down-set, i.e. ifp < q in Q and q 2 r , then p 2 r ;
(D2) ? 6= r 6= Q;
(D3) r contains no greatest element, i.e. ifq 2 r , then there is somep 2 r such that

q < p.

We denote the set of real numbers byR and de�ne a total ordering on the set R as
r � s � r � s. We also write r < s to denote the negation ofs � r , that is r < s � r ( s.

Any subset S � R which has an upper bound inR has a least upper bound
W

S in R
and

W
S =

S
f r : r 2 Sg.

4We will not recall here the precise formulation, it can be fou nd in [7].
5By doing this we may think intuitively of a real number as bein g represented by the set of all smaller

rational numbers. Of course, everything could be equivalently stated in a dual way by considering Dedekind
cuts as the upper part B if we think of a real number as being represented by the set of all greater rational
numbers.
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A real number r is said to beirrational if Q n r contains no least element.

Condition (D3) in the de�nition above just serves to elimina te subsets of the form ( ; q]
for a given q 2 Q since it determines the same real number as ( ; q). This allows us to
embed the rational numbers into the reals by identifying the rational number q 2 Q with
the subset ( ; q) 2 R. In particular the restriction of the total order in R coincides with
the usual order in Q. Also, for eachq 2 Q and eachr irrational real number we have that

q � r in R () ( ; q) � r () q 2 r () ( ; q) ( r () q < r in R:

Remark 1. Note that one can de�ne the extended real numbersin a similar way by consid-
ering those subsets ofQ satisfying only conditions (D1) and (D3). Under this de�nit ion
we have now two additional cuts, namely ? and Q which determine the extended real
numbers usually denoted as�1 and +1 , respectively.6

Let us consider now the family of subsetsA � Q satisfying only conditions (D1){(D2),
and call them inde�nite Dedekind cuts.7 In other words, we will take into consideration
now both subsets ( ; q) and ( ; q] for each q 2 Q.

After identifying each subset A � Q with its characteristic function � A : Q ! 2 into
the two-element lattice 2 = f 0; 1g (given by � A (q) = 1 i� q 2 A) one has, equivalently:

De�nition 2. An inde�nite Dedekind cut is a function S : Q ! 2 such that
(D1) S is decreasing, i.e.S(q) � S (p) wheneverp < q,
(D2)

W
q2 QS(q) = 1 and

V
q2 QS(q) = 0.

Remark 3. A Dedekind cut in the previous sense is an inde�nite Dedekindcut if it is right
continuous, i.e. if it satis�es the additional condition
(D3) S(q) =

W
p>q S(p) for each q 2 Q.

2.2. From inde�nite Dedekind cuts to scales. We can now try to extend the previous
notion by considering an arbitrary frame L instead of the two element lattice 2.

Recall that a frame is a complete lattice L in which a ^
W

B =
W

f a ^ b : b 2 B g for
all a 2 L and B � L . The universal bounds are denoted by 0 and 1. The most familiar
examples of frames are
(a) the two element lattice 2 (and, more generally, any complete chain),
(b) the topology OX of a topological space (X; OX ), and
(c) the complete Boolean algebras.

Being a Heyting algebra, each frameL has the implication ! satisfying a ^ b � c i�
a � b ! c. The pseudocomplementof an a 2 L is

a� = a ! 0 =
W

f b 2 L : a ^ b = 0g:

Given a; b2 L , we denote by� the relation de�ned by

a � b i� a� _ b = 1 :

In particular, when L = OX for some topological spaceX , one hasU � = Int ( X n U) and
U � V i� Cl U � V for each U; V 2 O X . Also, in a Boolean algebra, the pseudocomple-
ment is a complement anda � b i� a � b.

6There are actually two slightly di�erent notions that both g o by the name extended real number: one
in which + 1 and �1 are identi�ed, and one in which they are not. We are dealing he re with the latter.
The former notion forms a quotient space of the latter.

7The name inde�nite Dedekind cut is motivated from the notation used in [6].
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One arrives now to the notion of an (extended) scale on a frame:8

De�nition 4. ([16, 2, 10, 3]) Let L be a frame. An extended scaleon L is a family
(sq j q 2 Q)9 of elements inL satisfying
(S1) sq � sp wheneverp < q;
It is a scale if it additionally satis�es

(S2)
W

q2 Qsq = 1 =
W

q2 Qs�
q.

Now given a topological space (X; OX ), we can particularize the previous notion in two
di�erent ways:

For L = OX , a scale on OX (or a scale of open sets) is a family (Uq j q 2 Q) of open
sets such that
(S1) Cl Uq � Up wheneverp < q;
(S2)

S
q2 QUq = X and

T
q2 QUq = ? .10

However, in this work we will deal with scales onL = D(X ):

De�nition 5. Let X be a set. A family S = ( Sq j q 2 Q) of subsets ofX is said to be a
scale on X if it is a scale on D(X ), i.e. if it satis�es
(S1) Sq � Sp wheneverp < q;
(S2)

S
q2 QSq = X and

T
q2 QSp = ? .

We shall denote by Scale(X ) the collection of all scales overX .

Remark 6. Another extension of the notion of scale has been consideredin [9] (see also [4]
and [11]) in order to deal with functions with values in a completely distributive lattice
with a a countable join-dense subset consisting of non-supercompact elements. Several
parts in what follows could be stated in this more general ssetting, but we will restrict
ourselves to the real-valued case.

3. Scales and real functions

In this section we will analyze in detail the relationship between scales and real functions
on a given set.

We would like to emphasize again that a similar analysis could be done for scales of open
subsets. Also, note that when dealing with scales, one can always use either decreasing or
increasing scales.

3.1. Some binary relations in Scale(X ). We will consider three di�erent binary rela-
tions between scales de�ned on a given set, which will be denoted as � , � and � :

Given S; T 2 Scale(X ), we write:

S � T () Sq � Tq for each q 2 Q
S � T () Sq � Tp for each p < q 2 Q

Clearly enough we have thatS � T implies that S � T . (Indeed, let S � T and p < q 2 Q,
then Sq � Tq � Tp.)

8Note that the terminology scale used here di�ers from its use in [15] where it refers to maps to L from
the unit interval of Q and not all of Q. In [2] the term descending trail is used instead.

9From now on we will identify a function s : Q ! L with ( sq � s(q) j q 2 Q).
10Note that

W
q2 QU �

q =
S

q2 QInt ( X n Uq) = X n
� T

q2 QCl Uq

�
= X n

� T
q2 QUq

�
.
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It is easy to check that both relations are re
exive and transitive and � is additionally
antisymmetric, in other words, � is a partial order while � is only a preorder.

Now we can use the preorder� on Scale(X ) to de�ne an equivalence relation � on
Scale(X ) such that

S � T () S � T and T � S () Sq [ Tq � Sp \ Tp for each p < q 2 Q:

This relation, determines a partial order on the quotient set Scale(X )= � (the set of all
equivalence classes of� ): given [S]; [T ] 2 Scale(X )= � ,

[S] � [T ] () S � T :

By the construction of � , this de�nition is independent of the chosen representatives
and the corresponding relation is indeed well-de�ned. It isalso easy to check that this
yields a partially ordered set

�
Scale(X )= � ; �

�
.

3.2. The real function generated by a scale. We shallll start now by establishing the
relation between scales and real functions.

Notation 7. Given f : X ! R and q 2 Q, we write [f � q] = f x 2 X j q � f (x)g and
[f > q ] = f x 2 X j q < f (x)g.

Proposition 8. Let X be a set andS = ( Sq j q 2 Q) a scale onX . Then f S(x) =
W

f q 2
Q j x 2 Sqg determines a unique functionf S : X ! R such that [f S > q] � Sq � [f S � q]
for each q 2 Q:

In view of the previous result, we can now introduce the following:

De�nition 9. Let S = ( Sq j q 2 Q) be a scale inX . The function f S : X ! R de�ned by

f S(x) =
W

f q 2 Q j x 2 Sqg

for each x 2 X , is said to bethe real function generatedby S.

We immediately have:

Proposition 10. Let S and T be two scales onX generating real functions f S and f T ,
respectively. Then S � T if and only if f S � f T ; consequently,S � T if and only if
f S = f T .

3.3. Scales generating a given real function. It follows immediately from the preced-
ing proposition that di�erent scales may generate the same real function. Our intention
now is to study the set of all scales generating a given real function, or, equivalently, the
equivalence class of a given scale.

We start by proving the following auxiliary result:

Lemma 11. Let X be a set,S = ( Sq j q 2 Q) a scale onX and

Smin �
�
Smin

q =
S

p>q Sp j q 2 Q
�

and Smax �
�
Smax

q =
T

p<q Sp j q 2 Q
�
:

Then:
(1) Smin and Smax are scales onX .
(2) Smin � S � S max. and Smin � S � S max.
(3) If T � S , then Smin � T � S max.
(4) If T � S , then T min = Smin and T max = Smax.
(5) Smin = f [f S > q] j q 2 Qg and Smax = f [f S � q] j q 2 Qg.
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Now we can characterize the equivalence class of a given scale as an interval in the
partially ordered set (Scale(X ); � ):

Proposition 12. Let X be a set andS = ( Sq j q 2 Q) a scale onX . Then

[S] =
�

T j Smin � T � S max	
:

Finally, we can characterize the scales generating a given real function:

Proposition 13. Let X be a set andf : X ! R a real function. Then

(1) Smin
f = f [f > q ] j q 2 Qg and Smax

f = f [f � q] j q 2 Qg are scales generatingf .
(2) If S = ( Sq j q 2 Q) is a scale onX that generatesf , then Smin = Smin

f and Smax =
Smax

f .
(3) S = ( Sq j q 2 Q) is a scale onX that generatesf if and only if Smin

f � S � S max
f .

(4) The collection of all scales onX that generatef is precisely the class
�
Smin

f

�
=

�
Smax

f

�
.

3.4. Correspondence between real functions and equivalence classes of scales.
We can now establish the desired correspondence:

Proposition 14. Let X be a set. There exists an order isomorphism between the partially
ordered sets(F(X ); � ) of real functions on X and (Scale(X )= � ; � ).

In fact, this correspondence is more than an order isomorphism. As we will see in
what follows it can be used to express the algebraic operations between real functions
purely in terms of scales. Furthermore, when the space is enriched with some addi-
tional structure (e.g. a topology or a preorder) the real functions preserving the structure
((semi)continuous functions or increasing functions, respectively) can be characterized by
mean of scales.

4. Algebraic operations on Scale(X )

In this section we will try to show how one can deal with the usual algebraic operations
in terms of scales, without constructing the correspondingreal functions.

4.1. Constant scale and characteristic scale of a set.

� Let r 2 R and Sr = ( Sr
q j q 2 Q) be de�ned by

Sr
q = X if q < r and Sr

q = ? if r � q:

Clearly, Sr is a scale onX and it will be called the constant scalewith value r .
In caser 2 Q, we have that [Sr ] = fS r ;min ; Sr ;max g, whereSr ;min = Sr and Sr ;max

q = X
if q � r and Sr ;max

t = ? otherwise.
On the other hand, if r is irrational, then Sr ;min = Sr ;max = Sr and so [Sr ] = fS r g.

� Let A � X and SA = ( SA
q j q 2 Q) � X be de�ned by

SA
q = X if q < 0; SA

q = A if 0 � q < 1 and SA
q = ? if q � 1:

Once again,SA is a scale onX and it will be called the characteristic scale of A.
In this case

�
SA

�
is order isomorphic to the 4 element Boolean algebra andSA;min = SA

while SA;max
q = X if q � 0, SA;max

q = A if 0 < q � 1 and SA;max
q = ? if q � 1.
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4.2. Opposite scale. Given a scaleS on X , de�ne

�S = ( X n S� q j q 2 Q):

(1) �S is a scale onX ;
(2) If S � T then �T � �S and hence, ifS � T then �T � �S ;
(3) [�S ] = f�T j T 2 [S]g;
(4) ( �S )min = � (Smax ) and (�S )max = � (Smin );
(5) �S r � S � r for each r 2 R.

4.3. Finite joins and meets. Given two scalesS and T on X , we write

S _ T = ( Sq [ Tq j q 2 Q) and S ^ T = ( Sq \ Tq j q 2 Q):

(1) S _ T = T _ S is a scale onX ;
(2) If S � S 0 and T � T 0 then S _ T � S 0_ T 0 and hence, ifS � S 0 and T � T 0 then

S _ T � S 0_ T 0;
(3) (S _ T )min = Smin _ T min and (S _ T )max = Smax _ T max ;
(4) S ^ T = �

�
(�S ) _ (�T )

�
= T ^ S is a scale onX ;

(5) If S � S 0 and T � T 0 then S ^ T � S 0^ T 0 and hence, ifS � S 0 and T � T 0 then
S ^ T � S 0^ T 0;

(6) (S ^ T )min = Smin ^ T min and (S ^ T )max = Smax ^ T max ;
(7) S � T if and only if S _ T � T if and only if S ^ T � S .

4.4. Arbitrary joins and meets. As expected, given an arbitrary family of scales onX
we cannot always ensure the existence of its join and/or meetin Scale(X ). More precisely,
given a family of scalesfS i gi 2 I on X , we de�ne

W
i 2 I Si =

� S
i 2 I Si

q j q 2 Q
�

and
V

i 2 I Si =
� T

i 2 I Si
q j q 2 Q

�
:

If
T

q2 Q
S

i 2 I Si
q = ? , then we have that:

(1)
W

i 2 I Si is a scale onX ;
(2) f W

i 2 I S i =
W

i 2 I f S i ;

(3)
� W

i 2 I Si
� min =

S
i 2 I

�
Si

� min .

Dually, if
S

q2 Q
T

i 2 I Si
q = X we have that:

(4)
V

i 2 I Si = �
� W

i 2 I � S i
�

is a scale onX ;
(5) f V

i 2 I S i =
V

i 2 I f S i ;

(6)
� V

i 2 I Si
� max =

T
i 2 I

�
Si

� max .

In particular, if there is a scale T on X such that Si � T for each i 2 I , thenT
q2 Q

S
i 2 I Si

q �
T

q2 Q
S

i 2 I Tq = ? and so
W

i 2 I Si is a scale onX and
W

i 2 I Si � T . Similarly,
if T � S i for each i 2 I , then

V
i 2 I Si is a scale onX and T �

V
i 2 I Si .

4.5. Product with a scalar. Given r 2 R such that r > 0 and a scaleS on X , we de�ne

r � S =
� S

p<r Sq
p

j q 2 Q
�

:

We have that:
(1) r � S is a scale onX ;
(2) If S � T then r � S � r � T and hence, ifS � T then r � S � r � T ;
(3) [r � S] = f r � T j T 2 [S]g;
(4) ( r � S)min = r � (S)min and (r � S)max � r � (S)max ;
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(5) 1 � S � S ;
(6) r � Ss = Srs for each s 2 R;
(7) �

�
r � S

�
� r �

�
�S

�
;

(8) r �
�
S _ T

�
�

�
r � S

�
_

�
r � T

�
and r �

�
S ^ T

�
�

�
r � S

�
^

�
r � T

�
.

Further, we de�ne

r � S = �
�
(� r ) � S

�
if r < 0 and 0� T = S0 :

4.6. Sum and di�erence. Given two scalesS and T on X , we de�ne

S + T =
� S

p2 QSp \ Tq� p j q 2 Q
�

and S � T =
� S

p2 QSp n Tp� q j q 2 Q
�

:
We have that:
(1) S + T = T + S is a scale onX ;
(2) If S � S 0 and T � T 0 then S + T � S 0+ T 0 and hence, ifS � S 0 and T � T 0 then

S + T � S 0+ T 0;
(3) S0 + S � S , i.e. the constant scale with value 0 is the neutral element w.r.t the sum;
(4) Sr + Ss � S r + s for each r; s 2 R;
(5) �

�
S + T

�
�

�
�S

�
+

�
�T

�
;

(6) r �
�
S + T

�
�

�
r � S

�
+

�
r � T

�
for each r 2 R;

(7) S � T � T +
�
�S

�
.

4.7. Product. Given two scalesS and T on X such that S0 � S ; T , we de�ne

S � T =
� S

0<p Sp \ T q
p

j q 2 Q
�

:
Then S � T is a scale onX .

More generally, given a scaleS on X let

S+ = S _ S0 and S� = ( �S ) _ S 0

(Notice that S � S + � S � .) Given two arbitrary scales S and T on X , we de�ne

S � T =
��

S+ � T + ) � (S+ � T � )
�

�
�
(S� � T + ) + ( S� � T � )

�
:

We have that:
(1) S � T � T � S is a scale onX ;
(2) If S � S 0 and T � T 0 then S � T � S 0� T 0;
(3) S1 �S � S , i.e. the constant scale with value 1 is the neutral element w.r.t the product;
(4) r � S = Sr � S for each r 2 R;
(5) �

�
S � T

�
�

�
�S

�
� T � S �

�
�T

�
;

(6) S �
�
T + T 0

�
=

�
S � T

�
+

�
S � T 0

�
.

5. Semicontinuous real functions and scales

In what follows the spaceX will be endowed with a topology OX and we will try to
see how to deal with semicontinuous real functions in terms of scales.

Let (X; OX ) be a topological space. A functionf : X ! R is lower (resp. upper)
semicontinuous if and only if [ f > q ] 2 O X (resp. [f < q ] 2 O X ) for each q 2 Q. The
collections of all lower (resp. upper) semicontinuous realfunctions on X will be denoted by
LSC(X ) (resp. USC(X )). Elements of C(X ) = LSC( X ) \ USC(X ) are called continuous.

As mentioned in the Introduction, in this work we focus our attention on scales of
arbitrary subsets generating arbitrary real functions and then we study particular types
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of scales generating continuous (and semicontinuous) functions. We introduce now the
following terminology:

De�nition 15. Let (X; OX ) be a topological space. A scaleS on X is said to be:
(1) lower semicontinuous if Sq � Int Sp wheneverp < q 2 Q.
(2) upper semicontinuousif Cl Sq � Sp wheneverp < q 2 Q.
(3) continuous if Cl Sq � Int Sp wheneverp < q 2 Q.

Remarks 16. (1) If Sq 2 O X for each q 2 Q, i.e if S is a scale of open subsets ofX ,
then it is automatically lower semicontinuous and it is continuous if Cl Sq � Sp whenever
p < q 2 Q.

Consequently a continuous scale of open subsets ofX is precisely a scale onOX in the
sense of De�nition 4.

(2) Any scale on X is continuous whenOX is the discrete topology onX . On the other
hand, the only continuous scales whenOX is the indiscrete topology onX are the constant
ones.

Now we have the following result which motivates the notation introduced.

Proposition 17. Let S be a scale on(X; OX ) and f S the real function generated byS:
(1) S is lower semicontinuous if and only if f S 2 LSC(X );
(2) S is upper semicontinuous if and only if f S 2 USC(X );
(3) S is continuous if and only if f S 2 C(X );

Since our intention is to work purely in terms of scales, we need still some further
characterizations:

Proposition 18. For a scale S on (X; OX ) the following are equivalent:
(1) S is lower semicontinuous;
(2) There exists a scale of open subsetsT such that T � S ;
(3) Smin is a scale of open subsets, i.e.

S
q>p Sq is open for eachp 2 Q.

Clearly enough, S is upper semicontinuous if and only if �S is lower semicontinuous.
Hence we have:

Corollary 19. For a scale S on (X; OX ) the following are equivalent:
(1) S is upper semicontinuous;
(2) There exists a scale of closed subsetsT such that T � S ;
(3) Smax is a scale of closed subsets, i.e.

T
q<p Sq is closed for eachp 2 Q.

Corollary 20. For a scale onS on (X; OX ) the following are equivalent:
(1) S is continuous;
(2) There exist a scaleT of open subsets and a scaleT 0 of closed subsets satisfyingT �

T 0 � S ;
(3) Smin is a scale of open subsets andSmax is a scale of closed subsets.

Now we use the descriptions of the algebraic operations obtained in the previous section
together with these characterization to obtain the following:

Proposition 21. Let S; T and Si (i 2 I ) be scales on(X; OX ) and r 2 R+ . Then:
(1) Sr is continuous;
(2) If S is lower (resp. upper) semicontinuous, then�S is upper (resp. lower) semicon-

tinuous;
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(3) If S and T are lower (resp. upper) semicontinuous, then so areS _ T and S ^ T ;
(4) If all Si are lower semicontinuous and

W
i 2 I Si is a scale, then it is lower semicontin-

uous;
(5) If all Si are upper semicontinuous and

V
i 2 I Si is a scale, then it is lower semicontin-

uous;
(6) If S is lower (resp. upper) semicontinuous, then so isr � S;
(7) If S and T are lower (resp. upper) semicontinuous, then so isS + T ;
(8) If S and T are lower (resp. upper) semicontinuous andS0 � S ; T , then so is S � T .

Of course, the previous results are well-known properties when we think in terms of
real functions. But we want to stress here that the interest of this approach (in terms of
scales) is that it can be easily generalized to the pointfreesetting, as it has been recently
done in [12].

6. Representability of preorders through scales

Finally, in this section the topological space (X; OX ) will be additionally endowed with
a preorder R (a re
exive and transitive relation on X ). The pair ( X; R) will be referred
to as a preordered set and the triple (X; OX; R) consisting of a topological space (X; OX )
endowed with a preorder R will be referred to as a topological preordered space. The
asymmetric part P of R is de�ned for each x; y 2 X as xPy if and only if xRy and not
yRx.

In this section we will try to see how to deal with real functions de�ned on a topological
preordered space (X; OX; R) which preserve the preorderR as well as its asymmetric part
P, in terms of scales.

A subset A of (X; R) is said to be increasing if xRy together with x 2 A imply y 2 A.
For a subset A of X we write i (A) = f y 2 X j 9x 2 A such that xRyg to denote the
smallest increasing subset ofX containing A.

A function f : (X; R) ! (R; � ) is increasing if f (x) � f (y) whenever xRy, stricly
increasing if f (x) < f (y) wheneverxPy aand it is a preorder embeddingin casef (x) � f (y)
if and only if xRy. A preorder R on X is said to berepresentableif there exists a preorder
embedding (also called \utility function ") f : (X; R) ! (R; � ). We introduce now the
following terminology:

De�nition 22. Let (X; R) be a preordered set. A scaleS on X is said to be:

(1) increasing if i (Sq) � Sp wheneverp < q 2 Q;
(2) strictly increasing if for each x; y 2 X with xPy there exist p < q 2 Q such that

x 2 Sp and y =2 Sq;
(3) preorder embeddingin case it is both increasing and strictly increasing.

Remarks 23. (1) If Sq is increasing for eachq 2 Q, i.e if S is a scale of increasing subsets
of X , then S is automatically a increasing scale.

(2) The notion of continuous preorder embedding scale is closely related with that of linear
separable system in a preordered topological space ([13, 14, 5]), i.e. a family F of open
decreasing subsets ofX which is linearly ordered by set inclusion and such that there exist
setsE1; E2 2 F such that E1 � E2 and for all setsE1; E2 2 F such that Cl E1 � E2 there
exists some setE3 2 F such that Cl E1 � E3 � Cl E3 � E2.

The following result that justi�es the notation introduced (cf. [1, Theorem 2.2]).
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Proposition 24. Let S be a scale on(X; R) and f S the real function generated byS.
Then:
(1) S is increasing if and only if f S is increasing;
(2) S is strictly increasing if and only if f S is strictly increasing;
(3) S is a preorder embedding if and only iff S is a utility function;

Finally we provide a sample result which shows how the concept of a scale furnishes
interesting results on the existence of (continuous) utility representations:

Theorem 25. [1, Theorem 2.5] Let (X; OX; R) be a preordered topological space. The
following conditions are equivalent:
(1) There exists a (continuous) preorder embedding scale.
(2) There exists a (continuous) utility function u : (X; OX; R) ! (R; � ).
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Abstract

In this paper we show some topics where fractal structures appear in a natu-
ral way. These include transitive quasi-uniformities, non archimedean quasi-
metrics, metrization, space �lling curves, topological dimension, fractal dimen-
sion and self similar sets. On the other hand, we give a theorem that allows
the construction of �lling curves and discuss some of its applications to prove
classical theorems as well as applications to Computer Science.

1. Definitions

Let � be a covering. Recall that St( x; �) =
S

f A 2 � : x 2 Ag. We de�ne U� =
f (x; y) 2 X � X : y 62

S
f A 2 � : x 62Ag.

Let � 1 and � 2 be coverings of a setX . We denote by � 1 �� � 2 if � 1 � � 2 (that is, � 1
is a re�nement of � 2) and for each B 2 � 2 it holds B =

S
f A 2 � 1 : A � B g.

De�nition 1 ([2]). A base of directed fractal structure on a setX is a family of coverings
� = f � i : i 2 I g such that for eachi; j 2 I there existsk 2 I with � k �� � i and � k �� � j .

A base of directed fractal structure on a setX is said to be a directed fractal structure
if given coverings � and � with � �� � and � 2 � , it follows that � 2 � .

If � is a base of directed fractal structure on a setX then it is clear that the family of
coveringsf � : there exists � 0 2 � with � 0 �� � g is a directed fractal structure.

If � is a (base of) directed fractal structure onX , we will say that (X; � ) is a directed
GF-space. If there is no confusion about� , we will say that X is a directed GF-space.

De�nition 2 ([1]). A countable base of directed fractal structure will be called for brevity
a fractal structure.

Directed fractal structures are related with transitive quasi-uniformities. This relation
can be found in [2] and is brie
y described now. If� is a (base of) directed fractal structure
on X , the family f U� : � 2 � g is a transitive base of quasi-uniformity.

Conversely, if B is a transitive base of quasi-uniformity, the converings �B = f U � 1(x) :
U 2 Bg, when B 2 B , form a base of directed fractal structure.

The topology induced by a directed fractal structure � on a set X is de�ned as the
topology induced by the quasi-uniformity induced by � .

1The author acknowledges the support of the Spanish Ministry of Science and Innovation, grant
MTM2009-12872-C02-01.
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As usual, we will say that a directed fractal structure � is compatible with a topology
T if the topolgy induced by � agrees withT .

A (base of) (directed) fractal structure can have some properties. We introduce some-
ones next:

(1) � is starbase if f St(x; �) : � 2 � g is a neighborhood base ofx for all x 2 X .
(2) � is �nite (resp. locally �nite, tiling) if � is a �nite (resp. l ocally �nite, tiling)

covering for each � 2 � .
The directed fractal structure induced on a subspaceA of X is de�ned as usual by

� A = f � A : � 2 � g, where � A = f B \ A : B 2 � g.
Note that (see [2]) if � is a directed fractal structure on X , then each covering � 2 � is

a hereditarily closure preserving closed covering ofX and U � 1
� (x) =

T
f A 2 � : x 2 Ag.

1.1. Fractal structures vs pre-fractal structures. If ( X; � ) is a topological space, a
pre-fractal structure on X is a family � = f � n : n 2 Ng of coverings such thatf U� (x) :
x 2 X g is an open neighbourhood base ofx for each x 2 X .

Proposition 3 ([3, Prop. 2.4]). Let � be a pre-fractal structure for (X; � ). Then fs (� ) =
f fs (� n) :2 Ng is a fractal structure compatible with � , where fs (� n) = f

T
i � n A i : A i 2 � i

for each i � ng. Moreover, if � is starbase (respectively locally �nite, �nite) then so is
fs (� ).

Thus, fs (� ) allows us to construct fractal structures from pre-fractal ones.

2. Fractal structures arise in a natural way in different topic s.

Fractal structures appear in a natural way in di�erent topics of General Topology. Next,
we will show some of them.

2.1. Directed fractal structures and transitive quasi-uniformities. A collection of
subsetsA is said to be hereditarily interior preserving if for any subfamily B � A it holds
(
T

B 2B B )� =
T

B 2B B � . A is said to be hereditarily closure preserving if for any subfamily
B � A it holds

T
B 2B B =

T
B 2B B .

It is easy to see that A is hereditarily interior preserving if and only if the famil y
f X n A : A 2 Ag is hereditarily closure preserving.

In [12, 2.6] it is show that transitive quasi-uniformities can be described in terms of a
family of hereditarily interior preserving open collections. It is done as follows:

If C is a collection of subsets of a setX , let UC = f (x; y) 2 X � X : y 2
T

f C 2 C : x 2
Cgg.

If A is a nonempty family of collections of subsets ofX , let UA = f UC : C 2 Ag.

Theorem 4 ([12, Th. 2.6]). Let (X; � ) be a topological space an letA be a family of
hereditarily interior preserving open collections such that

S
A is a subbase for� . Then

UA is a transitive quasi-uniformity compatible with � .
Conversely, if U is a compatible transitive quasi-uniformity, there is a collection A of

hereditarily interior preserving open covers of X such that
S

A is a subbase for� and
U = UA .

In the light of this result, it is natural to try to describe tr ansitive quasi-uniformities
by mean of a family of hereditarily closure preserving closed collections of subsets ofX .
This family is (a base of) a directed fractal structure. See section 1 for the description of
transitive quasi-uniformities by mean of directed fractal structures.
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2.2. Fractal structures and non archimedean quasi-metrics. A quasipseudometric
on a setX is a nonnegative real-valued functiond on X � X such that for all x; y; z 2 X :(i)
d(x; x ) = 0, and (ii) d(x; y) � d(x; z) + d(z; y). If in addition d satis�es the condition (iii)
d(x; y) = d(y; x) = 0 i� x = y, then d is called a quasi-metric.

A non-archimedean quasipseudometric is a quasipseudometric that veri�es d(x; y) �
maxf d(x; z); d(z; y)g for all x; y; z 2 X .

If we apply the previous subsection to fractal structures weget the relation between
fractal structures and non archimedean quasi-metrics. This relation can be described
directly as follows:

If � is a fractal structure, it induces a non archimedean quasi-metric which can be
de�ned by 2� (n+1) if y 2 Uxn n Ux(n+1) , by 1 if y 62Ux1 and by 0 if y 2 Uxn for all n 2 N.
It holds that Uxn = B (x; 1

2n ). Here we have used the notationUxn = Ux� n .
If d is a non-archimedean quasi-metric and we de�ne �n = f Bd� 1 (x; 1

2n ) : x 2 X g, then
� = f � n : n 2 Ng is a fractal structure. Moreover Uxn = B (x; 1

2n ).
In particular we have the following non archimedean quasi-metrization theorem:

Theorem 5 ([1]). Let X be a T0 topological space. ThenX admits a compatible non
archimedean quasi-metric if and only if it admits a compatible fractal structure.

2.3. Fractal structures and metrization. Fractal structures appears in a natural way
in metrization theorems. As an example, we have Morita's metrization Theorem

Theorem 6 ([9, 5.4.d]). A T0 topological spaceX is metrizable if and only if it has
a sequence� 1; � 2; : : : of locally �nite closed covers such thatf St(x; � n ) : n 2 Ng is a
neighbourhood base ofx for each x 2 X .

Note that if we have a sequence �1; � 2; : : : of locally �nite closed covers such that
f St(x; � n ) : n 2 Ng is a neighbourhood base ofx for each x 2 X , then � = f � n : n 2 Ng
is a locally �nite starbase pre-fractal structure on X , so fs (� ) is a locally �nite starbase
fractal structure on X .

Using pre-fractal structures, Morita's Theorem can be stated as: AT0 topological space
is metrizable if and only if it has a locally �nite starbase pr e-fractal structure.

Hence fractal structures appear naturally when working with metrization issues. Morita's
Theorem can be generalized as follows.

Theorem 7 ([4, Cor. 3.18]). Let X be a T0 topological space. The following statements
are equivalent:

(1) X is metrizable.
(2) X is regular and there exists a compatible locally �nite fractal structure on X .
(3) There exists a compatible starbase fractal structure onX .

Also, we can give conditions for separable metrizability.

Theorem 8. ([4, Section 4]) Let X be a T0 topological space. The following statements
are equivalent:

(1) X is metrizable and separable.
(2) X is regular and there exists a compatible �nite fractal structure on X .
(3) There exists a compatible �nite starbase fractal structure on X .

In fact, the previous theorems can be related with classicalmetrization theorems due to
Urysohn and Nagata-Smirnov, since there is a relation between countable bases and �nite
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fractal structures ([4, Th. 4.3]) as well as between� -locally �nite bases and locally �nite
fractal structures ([3, Cor. 4.6]).

For other relations of this metrization theorems with other metrizations theorems in
the literature see [3].

2.4. Fractal structures and curve �lling. Since Peano ([17]) gave a plane �lling curve,
a number of such curves have appeared in the literature. Perhaps the most famous of such
curves is the so called Hilbert space-�lling curve ([13]).

Next, we present the construction of the Hilbert curve by using fractal structures.
We consider X = [0 ; 1] with the fractal structure given by � = f � n : n 2 Ng, where

� n = f [ k
22n ; k+1

22n ] : k 2 f 0; : : : ; 22n � 1gg. We also considerY = [0 ; 1]2 with the natural
fractal structure given by � = f � n : n 2 Ng, where � n = f [ k1

2n ; k1+1
2n ] � [ k2

2n ; k2+1
2n ] : k1; k2 2

f 0; : : : ; 2n � 1gg.

Figure 1. Construction of the �rst and second level of the Hilbert's curve.

Now, we are going to de�ne a mapf : X ! Y by de�ning the image of each element of
level � n .

In �gure 1, we illustrate the de�nition of f . It can be read as: the image of the interval
[0; 1

4 ] is the square [0; 1
2 ] � [0; 1

2 ], the image of the inverval [14 ; 2
4 ] is the square [12 ; 1] � [0; 1

2 ]
and so on.

Indeed, to construct a map from X onto Y , we only have to de�ne a sequence of onto
maps f n : � n ! � n for each n 2 N which verify:

� If A \ B 6= ; then f n (A) \ f n(B ) 6= ; for A; B 2 � n .
� If A 2 � n and B 2 � n+1 with B � A, then f n+1 (B ) � f n (A).

Intuitively, this is a recursive construction in which we pr ovide more information of the
map as we go into deeper levels. If an elementA 2 � n is sent to B 2 � n by f n , in the next
level n + 1, we have that A =

S
i 2 I A i and B =

S
i 2 J B j with A i 2 � n+1 and B j 2 � n+1 .

By de�ning f n we know that A is sent to B , but when we de�ne f n+1 we know that each
A i must be sent to someB j , so with f n+1 we are re�ning the de�nition of f n , providing
more information about f . In this sense,f can be considered as the limit of the mapsf n .

So fractal structures provide a natural way to de�ne space �lling curves recursively as
above. We explore this in section 4.
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2.5. Fractal structures and topological dimension. Directed fractal structures were
used in the literature for the study of topological dimension (though not with this name).

First, we introduce some notation. The order of a point x in a covering �, denoted by
Ord(x; �), is de�ned as the number of elements in � which contains x minus one. The
order of a covering � is de�ned as Ord(x; �) = supf Ord(x; �) : x 2 X g.

If � = f � i : i 2 I g is a family of coverings, we denoteOrd(� ) = supf Ord(� i ) : i 2 I g.
In [18], Pears and Mack studied some dimension functions that can be described by

using directed fractal structures.
(1) � 1(X ) to be the least integer n for which there exists a compatible (locally �nite)

starbase directed fractal structure onX with order at most n, and � 1(X ) = 1 if
there no exists such an integer.

(2) � 2(X ) to be the least integer n for which there exists a compatible (locally �nite)
tiling directed fractal structure on X with order at most n, and � 2(X ) = 1 if
there no exists such an integer.

They proved the following results:
� X is regular and � 2(X ) � n if and only if there exists a compatible locally �nite

starbase directed fractal structure onX with order at most n.
� ind (X ) = 0 if and only if � 1(X ) = 0 if and only if � 2(X ) = 0.
� For any topological spaceX it follows that ind (X ) � � 1(X ) and if X is also a

regular space thenind (X ) � � 1(X ) � � 2(X ).
� If X is a strongly metrizable space thenind (X ) = Ind (X ) = dim(X ) = � 1(X ) =

� 2(X ).
Where ind is the small inductive dimension, Ind is the large inductive dimension and

dim is the covering dimension.
So it seems natural to use fractal structures to study dimension. In fact, if we use

fractal structures instead of directed fractal structures we can characterize the covering
dimension.

Theorem 9 ([6]). The following statements are equivalent:
(1) X is metrizable anddim(X ) � n.
(2) There exists a compatible tiling starbase fractal structure on X of order less than

or equal to n.
(3) There exists a compatible starbase fractal structure onX of order less than or equal

to n.

2.6. Fractal structures and self similar sets. We recall the de�nition of classical
self-similar set given by Hutchinson [15].

De�nition 10. Let X be a complete metric space andf f i gi 2 I be a �nite family of con-
tractions from X into itself. Then there exists a unique non-empty compact subset K of
X such that K =

S
i 2 I f i (K ). K is called a self-similar set.

In a self-similar set, a fractal structure can be de�ned in a natural way. This fractal
structure were �rst sketched in [8]. In fact, this is the origen of the name fractal structure.

De�nition 11. Let X be a self-similar set given by the set of contractionsf f i : i 2 I g.
The natural fractal structure of the self-similar set is de� ned by � = f � n : n 2 Ng such
that � n = f f n

w(X ) : w 2 I n g, where f n
w = f w1 � : : : � f wn , with w = w1 : : : wn .

Then, the study of this fractal structure for self-similar sets can give very useful insight
to study the topology of these sets. See [7] for a detailed study.
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2.7. Fractal structures and fractal dimension. One of the main tools that can be
used when working with fractals is the fractal dimension. Usually it is used the Hausdor�
dimension and the box counting dimension. The former is \better" from a theoretical
point of view, while the latter is \better" from an applicati on point of view.

Popularity of box counting dimension is due to the posibility of its calculation and
empirical estimation. It is also known as Kolmogorov entropy, entropy dimension, capacity
dimension, metric dimension, information dimension, etc. We refer the reader to [10] for
the theories of the Hausdor� and box counting dimensions.

Thus, the (lower/upper) box-counting dimensions of a non empty bounded subsetF �
Rd are de�ned as the (lower/upper) limit:

(1) dimB (F ) = lim
� ! 0

logN � (F )
� log �

if this limit exists, where the quantity N � (F ) can be taken as the number of� -cubes that
meet F . Where a � -cube in Rd is of the form [k1�; (k1 + 1) � ] � : : : � [kd�; (kd + 1) � ], with
ki 2 Z; i 2 f 1; : : : ; dg. The limit can be discretized, for example, by taking � as 2� n .

In practical applications, box counting dimension is estimated as the slope of a log� log
graph for a suitable discrete collection of scales� .

The natural fractal structure on the euclidean spaceRd is de�ned as the countable family
of coverings� = f � n : n 2 Ng, where � n = f [ k1

2n ; k1+1
2n ] � [ k2

2n ; k2+1
2n ] � : : : � [ kd

2n ; kd +1
2n ] : ki 2

Z; i 2 f 1; : : : ; dgg for all n 2 N.
SoN � (F ) (for � = 2 � n ) is just the number of elements of leveln of the fractal structure

which meet F .
With this in mind, it seems quite natural to de�ne a notion of f ractal dimension for

any fractal structure which yields as a particular case the box counting dimension when
the fractal structure is the natural one on an euclidean space. This notion can allows to
use the fractal dimension in non euclidean spaces, while (ifthe fractal structure is good
enough) it is possible an easy empirical estimation.

This construction is further developed in [11], where some applications can also be
found.

3. Inverse limits

Fractal structures can be used to approximate a topologicalspace by means of an inverse
limit of partially ordered sets. Next, we describe how to do this (see [2]).

First, a partially ordered set (or poset) is a set G with a partial order � . The order
induces a quasi-uniformity generated by the entouragef (a; b) 2 G � G : a � bg. Note that
a map between posets is quasi-uniformly continuous if and only if it preserves the order.

Let � = f � i : i 2 I g be a directed fractal structure. For each i 2 I we de�ne Gi =
f Us

� i
(x) : x 2 X g, whereUs = U \ U � 1. SinceU� i is a transitive entourage, it follows that

Gi is a partition of X . In Gi we de�ne the partial order Us
� i

(x) � i Us
� i

(y) i� y 2 U� i (x).
Then (Gi ; � i ) is a poset.

Now, we de�ne the projection mappings� i : X ! Gi given by � i (x) = Us
� i

(x) for x 2 X ,
and the bonding mappings� ij : Gi ! Gj , when � i �� � j , by � ij (Us

� i
(x)) = Us

� j
(x). Note

that if � i �� � j then U� i � U� j and hence� ij is well de�ned. Finally, we de�ne the map
� : X ! lim � Gi given by � (x) = ( � i (x)) i 2 I .

Note that � i , � ij and � are quasi-uniformly continuous with respect to the quasi-
uniformity induced by the order or with respect to the product quasi-uniformity in the
case of� . Therefore � is a quasi-uniform embedding ofX into the inverse limit lim � Gi .
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If the directed fractal structure is �nite, then the posets a re �nite and if we work with
fractal structures instead of directed fractal structures then lim � Gi is the inverse limit of
a sequence of posets.

In order to get approximation of spaces by �nite posets we have to work with compact
spaces.

Theorem 12. Let X be a compact Hausdor� space, then there exists a compatible �nite
directed fractal structure on X . Let � be a �nite directed fractal structure on X . Then
� (X ) is the set of closed points (it is also the Hausdor� re
ection) of lim � Gi , that is, the
space can be represented by an inverse limit of a spectra of �nite posets.

Theorem 13. Let X be a compact metrizable space, then there exists a compatible �nite
fractal structure on X . Let � be a �nite fractal structure on X . Then � (X ) is the set
of closed points (it is also the Hausdor� re
ection) of lim � Gn , that is, the space can be
represented by an inverse limit of a sequence of �nite posets.

This last theorem allows to approximate any (compact) object by a �nite poset. So we
can store an approximation of any compact subset ofRn as closed as desired and using
only a �nite amount of data.

4. Filling curves

In this section we explore how to use fractal structures to de�ne functions and, in
particular, curves.

We will denote by � (A) the diameter of A and if � is a covering, we will denote by
� (�) = supf � (A) : A 2 � g.

A fractal structure � on X is said to be � -Cantor complete if for each sequence (An )
with An 2 � n and An+1 � An it holds that

T
n2 N An is nonempty. Note that if � is

starbase, the intersection must be exactly a point and, ifX is compact, any compatible
fractal structure � is � -Cantor complete.

Note that if � is a fractal structure in a complete metric spaceX such that � (� n )
converges to 0, then it is� -Cantor complete.

The construction of a �lling curve in subsection 2.4 can be generalized to more general
fractal structures, as we will prove in the next

Theorem 14. Let � = f � n : n 2 Ng be a compatible starbase fractal structure on a
metric space X and � = f � n : n 2 Ng be a compatible� -Cantor complete starbase
fractal structure on a metric spaceY .

Let F :
S

n2 N � n !
S

n2 N � n be a map such that:
� F (� n ) � � n .
� If A \ B 6= ; with A; B 2 � n for some n, then F (A) \ F (B ) 6= ; .
� If A � B with A 2 � n+1 and B 2 � n for some n 2 N, then F (A) � F (B ).

Then there exists a unique continuous mapf : X ! Y with f (A) � F (A) for each
A 2

S
n2 N � n .

Suppose that� is � -Cantor complete andF veri�es in addition:
� F (� n ) = � n
� F (A) =

S
f F (B ) : B 2 � n+1 ; B � Ag for each A 2 � n .

Then f is an onto map andf (A) = F (A) for each A 2
S

n2 N � n .

Proof. First, we de�ne f : X ! Y . For x 2 X there exists a sequence (An ) such that
An 2 � n , An+1 � An for each n and x 2

T
n2 N An . Then F (An ) is a decreasing sequence
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with F (An ) 2 � n and, since � is � -Cantor complete and starbase, the intersection is
exactly a point, which we can de�ne as the image ofx, that is, f f (x)g =

T
n2 N F (An ).

� f is well de�ned. Let x 2 X and sequences (An ) and (A0
n ) with An ; A0

n 2 � n ,
An+1 � An and A0

n+1 � A0
n for each n and x 2

T
n2 N An and x 2

T
n2 N A0

n . Let
f yg =

T
n2 N F (An ) and f zg =

T
n2 N F (A0

n ). If y 6= z, since � is starbase, there
existsn 2 N such that F (An ) \ F (A0

n ) = ; , but since x 2 An \ A0
n , by the properties

of F we haveF (An ) \ F (A0
n ) 6= ; , a contradiction. It follows that y = z.

� f (A) � F (A) for each A 2
S

n2 N � n . This is clear from the de�nition of f .
� f is continuous. Let n 2 N and x 2 X . If y 2 St(x; � n ) then there exists A 2 � n

with x; y 2 A. It follows that f (x); f (y) 2 f (A) � F (A) and F (A) 2 � n . Hence
f (y) 2 St(f (x); � n ).

� Uniqueness off . Let g : X ! Y be a continuous map with g(A) � F (A) for each
A 2

S
n2 N � n . Let x 2 X , then there exists a sequence (An ) such that An 2 � n ,

An+1 � An for each n and x 2
T

n2 N An . It follows that g(x) 2
T

n2 N F (An ) =
f f (x)g, so f (x) = g(x). Therefore f = g.

� Suppose that � is � -Cantor complete and F veri�es in addition:
{ F (� n ) = � n
{ F (A) =

S
f F (B ) : B 2 � n+1 ; B � Ag for each A 2 � n .

Let us prove that f is an onto map andf (A) = F (A) for each A 2
S

n2 N � n .
Indeed, we only have to prove thatF (A) � f (A) for each A 2

S
n2 N � n (since

this implies that f is onto). Let n 2 N, A 2 � n and y 2 F (A). Let Bn = F (A)
and An = A. By hypothesis there existsAn+1 2 � n+1 with An+1 � An and such
that y 2 F (An+1 ) � F (An ); let Bn+1 = F (An+1 ). Recursively, we can construct
sequences (Bk )k� n and (Ak )k� n with Ak 2 � k , F (Ak ) = Bk 2 � k , y 2 Bk for
k � n and An = A and Bn = F (A). Since� is � -Cantor complete and starbase we
have that

T
k� n Ak = f xg for somex 2 X , and, by construction of the sequences,

it is clear that f (x) = y and x 2 A. Therefore y 2 f (A).

�

The previous theorem is the key for using fractal structuresto de�ne functions (or
curves). It can be read as: we de�ne the image of the �rst levelof the fractal structure
as a �rst approach to the de�nition of the function. Then, we r e�ne the de�nition to the
second level, and so on. If this re�ning process veri�es somenatural conditions (just for
the coherence of the de�nition), then there really exists a map de�ned in the space which
agrees with the aproaches in each level.

Next, we show two theoretical applications of the theorem.
The �rst one is the Hahn-Mazurkiewicz Theorem (see [5] for a detailed proof).
First, we need the following de�nition: we say that a cover � o f X is connected, if for

all x; y 2 X , there exists a �nite subfamily f A i : 0 � i � k +1g of � with x 2 A0, y 2 Ak+1
and A i \ A j 6= ; for all ji � j j � 1 (we call it a chain in � joining x and y). We say that a
fractal structure � is connected if all the levels of� are connected. Note ([5, Prop. 3.5])
that if X is connected then each compatible fractal structure is connected.

Theorem 15. Let X be a compact connected locally connected metrizable space (also called
a Peano continuum). Then X is the image of a curve (there exists a continuous map from
[0; 1] onto X ).
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Proof. We sketch the proof. First, we note that there exists a compatible �nite starbase
fractal structure � on X such that A is connected for eachA 2 � n and eachn 2 N. Since
X is compact, � is � -Cantor complete, and sinceX is connected,� is connected.

Take the �rst level � 1. Since � 1 is connected, there exists a chainC = f A0; : : : ; Ak0 g
which uses all elements of �1 (maybe some elements are used more than once). If the
chain hask0 +1 elements, then we divide [0; 1] in k0 +1 subintervals to get the �rst level of
the fractal structure on [0; 1], that is � 1 = f [ i

k0+1 ; i +1
k0+1 ] : 0 � i � k0g. Then we de�ne the

�rst approach to the curve by sending each element of �1 to the corresponding element of
the chain (in � 1), that is, [ i

k0+1 ; i +1
k0+1 ] is sent to A i .

Now, take the second level �2. Since C is a chain, there exist points ai 2 A i \ A i +1
for 0 � i � k0 � 1, and take a� 1 2 A0 and ak0 2 Ak0 . For each i 2 f 0; : : : ; k0g, since
A i is connected, there exists a chainCi = f A i 0; : : : ; A ik i g joining ai � 1 with ai and using
all elements of f B 2 � 2 : B � A i g. By construction, by joining all the chains we get
a greater chain which joinsa� 1 with ak0 . To de�ne � 2 on [0; 1], we divide each interval
[ i
k0+1 ; i +1

k0+1 ] in ki + 1 subintervals of the same length. Then we de�ne the second approach
to the curve by sending each element of �2 to the corresponding element of the chain in
� 2, that is, [ i

k0+1 + j
(k0+1)( k i +1) ; i

k0+1 + j +1
(k0+1)( k i +1) ] is sent to A ij .

The de�nition of � n and the de�nition of F : � n ! � n is made recursively following the
same process. Note that, from the construction, all conditions of theorem 14 are ful�lled,
and hence there exists a mapping from [0; 1] onto X . �

Using similar arguments (see [5, 4.6]) we can prove the following theorem due to Alexan-
dro� and Urysohn.

Theorem 16. Let X be a compact metrizable space. ThenX is the continuous onto image
of the Cantor set.

On the other hand, since the proof of theorem 14 is constructive, by choosing di�erent
fractal structures in a space or by choosing di�erent chains in the construction, we can get
di�erent �lling curves. This yields a great 
exibility in the construction of �lling curves
that is worth in applications.

4.1. Application of space �lling curve construction to Computer Science. Space
�lling curves have been used in Computer Science in di�erent ways. Next, we see some of
them.

In [16], space �lling curves are used in image �ltering to improve the usual median �lter
in two directions:

(1) to avoid the softening of edges in images,
(2) to avoid the visible e�ect of the geometry of the window used.

It is done by considering neighbourhoods of the points givenby the �lling curve, instead
of the usual square ones. Constructing a suitable �lling curve can be very desirable in this
application, and di�erent space �lling curves can give di�ere nt results, so the possibility
of experimenting with di�erent constructions can lead to an improving of the quality of
the �lter.

In [19] and [20] (see also references of [20]), a space �llingcurve pseudo-inverse is used
in data compression for pattern recognition. The idea is to use the pseudo-inverse to
transform an image (or in general, mutidimensional data) into the unit interval, and then
to use pattern recognition algorithms in one dimension. In this application, it is needed a
pseudo-inverse with some special properties. With our construction, the de�nition of the
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psedo-inverse is clear and by choosing suitable fractal structures and chains, we can get
the special properties, too.

In [14], a space �lling curve g is used in order to optimize a functionf : [0; 1]d ! R. For
example, the problem of maximizingf can be transformed into the problem of maximizing
the function f � g : [0; 1] ! R. To do this, it is used \subdividing" space �lling curves,
that is, space �lling curves with some properties. By using our method, we can construct
such kind of space �lling curves. Also, in general,f � g can be more easy to maximize
with respect to someg than with respect to another one, so if we can construct di�erent
\subdividing" space �lling curves, we have more chances to �nd a suitable one. Anyway,
it is proved that if the only known fact about f is that it is a Lipschitz map, then an
optimal (in the sense of number of evaluations) strategy formaximizing f is to maximize
f � g for any \subdividing" space �lling curve g.

So we see that, in applications, it is interesting to have space �lling curves with some
added properties. Our method of construction of �lling curves is 
exible enough to allow
the construction of very di�erent curves as well as make them verify the required properties,
providing us with lots of �lling curves which adapt to a given speci�c context.
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Abstract

Motivated by the importance of the notion of normed isometry in Func-
tional Analysis and the growing interest in the study of asymmetric normed
(semi)linear spaces, we review the manner to adapt the aforenamed notion in
the case of asymmetric normed semilinear spaces.

1. Introduction

In 1994, C. Alegre, J. Ferrer and V. Gregori introduced the notion of asymmetric norm
on a linear space ([4]), that roughly speaking is a norm whichdoes not satisfy the sym-
metric axiom and holds a weak separation one, and from this concept they proved a
Hahn-Banach theorem for asymmetric normed linear spaces ([5]). Since then, the interest
in this kind of asymmetric normed structures has grown signi�cantly and many authors
have explored asymmetric normed linear spaces intensively. L.M. Garc��a-Ra�, S. Ro-
maguera and E.A. S�anchez-P�erez have extended many results of the classical theory of
normed linear spaces to the asymmetric context. Speci�cally, they have studied the com-
pletion, the weak topology (including an asymmetric version of the celebrated Alouglu
theorem) and the dual space of an asymmetric normed linear space ([14, 16]). Moreover
Garc��a-Ra� has obtained a version of the Heine-Borel theorem for �nite dimension asym-
metric normed linear spaces ([13]), and Alegre, S. Cobzas, I. Ferrando, Garc��a-Ra� and
S�anchez-P�erez have gone more deeply into the compactnessin asymmetric normed linear
spaces ([2, 9, 10]). In [1], Alegre has presented general results regarding continuous map-
pings between asymmetric normed linear spaces and an asymmetric version of the open
mapping and closed graph theorems. Some other recent advances in this research line
have been obtained by A. Alimov, Cobzas, C. Mustata, J. Rodr��guez-L�opez, Romaguera
and M.P. Schellekens in [6, 7, 8, 11, 23, 24].

1The author acknowledges the support of the Spanish Ministry of Education and Science and FEDER
Grants MTM2009-12872-C02-01 and MTM2009-14483-C02-02.

2The author acknowledges the support of the Spanish Ministry of Education and Science and FEDER
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The study of (asymmetric) normed linear spaces leads in a natural way to semilinear
spaces, and this sort of structure has turned out to be very useful to model some pro-
cesses in Computer Science. Speci�cally, Garc��a-Ra�, Romaguera and S�anchez-P�erez have
adapted the notion of normed isometry to the asymmetric normed linear context (outlin-
ing its adaptation to the context of asymmetric normed semilinear spaces) and they have
used it to establish several connections between asymmetric normed (semi)linear spaces
and the complexity analysis of algorithms and programs ([15, 17, 18]). Motivated by the
fact that the notion of normed isometry plays a central role in Functional Analysis, since
it allows to develop the duality theory and to analyze whether a normed linear space
is re
exive, and by the utility of its asymmetric version in t he aforesaid applied science
we focus our attention on reviewing the manner of de�ning a normed isometry between
semilinear spaces in such way that, on one hand, the de�nition provides the reason for
working correctly the normed isometries between asymmetric normed semilinear spaces
constructed in [15] and, on the other hand, retrieves as a particular case the de�nition of
normed isometry between (asymmetric) normed linear spaces.

2. Preliminaries

This section is devoted to recall the pertinent concepts about quasi-metric spaces and
asymmetric normed linear spaces that will be essential in our later discussion in Section
3.

Throughout this paper the letters R+ and N will denote the set of nonnegative real
numbers and the set of positive integer numbers, respectively.

Our main references for quasi-metric spaces are [12] and [22].
Following the modern terminology a quasi-metricd on a (nonempty) setX is a function

d : X � X ! R+ such that for all x; y; z 2 X :

(i) d(x; y) = d(y; x) = 0 , x = y;
(ii) d(x; z) � d(x; y) + d(y; z):

Of course a metric on a setX is a quasi-metric d on X satisfying, in addition, the
following condition for all x; y 2 X :

(iii) d(x; y) = d(y; x):

Each quasi-metric d on a setX induces a topologyT(d) on X which has as a base the
family of open d-balls f Bd(x; r ) : x 2 X; r > 0g; where Bd(x; r ) = f y 2 X : d(x; y) < r g
for all x 2 X and r > 0:

Observe that if d is a quasi-metric, then T(d) is a T0 topology.
A quasi-metric space is a pair (X; d) such that X is a nonempty set andd is a quasi-

metric on X .
If d is a quasi-metric on a setX , then the function ds : X � X ! R+ de�ned by

ds(x; y) = max f d(x; y); d(y; x)g is a metric on X .
Recall that if ( X; d 1) and (Y; d2) are quasi-metric spaces, then a mappingf : X ! Y is

a quasi-metric isometry provided that

d2(f (x); f (y)) = d1(x; y)

for all x; y 2 X: Two quasi-metric spaces are said to be isometric if there exists an onto
quasi-metric isometry between them.
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As usual a mappingf : X ! Y between linear spaces is said to be linear if it satis�es
the following conditions for all x; y 2 X and � 2 R:

(i) f (x + y) = f (x) + f (y);
(ii) f (� � x) = �f (x):

Following [16], an asymmetric norm on a linear spaceX is a function q : X ! R+ such
that for all x; y 2 X and � 2 R+ :

(i) x = 0 , q(x) = q(� x) = 0;
(ii) q(� � x) = �q (x);
(iii) q(x + y) � q(x) + q(y):

Clearly every norm on a linear space is an asymmetric norm satisfying the below con-
dition for all x 2 X and � 2 R:

(ii 0) q(� � x) = j� jq(x):

The pair (X; q) will be called asymmetric normed linear spaceif X is a linear space and
q is an asymmetric norm on X . As a particular case of this de�nition one can retrieve
that of normed linear space.

Observe that an asymmetric norm q on a linear spaceX induces, in a natural way, a
norm qs on X de�ned by qs(x) = max f q(x); q(� x)g for all x 2 X:

An easy, but very useful, example of an asymmetric normed linear space is given by the
pair (R; u) where u : R ! R+ is de�ned by u(x) = max f x; 0g: It is immediate to check
that us is the Euclidean norm onR; i.e. (R; us) is the Euclidean normed space (R; j � j ):

An asymmetric norm q on a linear spaceX induces a quasi-metricdq on X de�ned for
all x; y 2 X by

dq(x; y) = q(y � x):
A normed isometry from an asymmetric normed linear space (X; q1) to an asymmetric

normed linear space (Y; q2) is a linear mapping f : X ! Y which preserves the asymmetric
norms, that is f holds

q2(f (x)) = q1(x)
for all x 2 X . Notice that every normed isometry is injective. Moreover, it is clear that if
f is a normed isometry between the asymmetric normed linear spaces (X; q1) and (Y; q2),
then it is a quasi-metric isometry from (X; d q1 ) to ( Y; dq2 ), since

(1) dq1 (f (x); f (y)) = q2(f (y) � f (x)) = q2(f (y � x)) = q1(y � x) = dq1 (x; y)

for all x; y 2 X . This implies that f and the restriction f � 1
jf (X ) of f � 1 to f (X ) are uniformly

continuous.
Two asymmetric normed linear spaces (X; q1) and (Y; q2) are isometrically isomorphic

if there exists a normed isometryf from X onto Y .
Obviously as a result of the preceding de�nition we obtain that two isometrically iso-

morphic asymmetric normed linear spaces are equivalent from the algebraic, topological
and quasi-metric viewpoint. Observe that this equivalenceis essentially guaranteed, in
the above chain of equalities, by the fact thatq2(f (y � x)) = q1(y � x) for all x; y 2 X .

We will say that a nonempty subset C of a linear spaceX is a semilinear space (wedge
in [20] and cone in [21]) if the following two conditions hold:

(i) C + C � C;
(ii) � � C � C for all � 2 R+ :
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It is clear that every linear space is also a semilinear space.
Given the semilinear spacesC1 and C2 of the linear spacesX and Y respectively, a

mapping f : C1 ! C2 is said to be linear if satis�es the below conditions for allx; y 2 C1
and � 2 R+ :

(i) f (x + y) = f (x) + f (y);
(ii) f (� � x) = �f (x):

In accordance with [15, 16], an asymmetric normed semilinear space is a pair (C; qC )
such that C is a semilinear space of an asymmetric normed linear space (X; q) and qC is
the restriction of the asymmetric norm q to C. From now on, the restriction qC of the
asymmetric norm q, de�ned on X , to C will be also denoted byq if no confusion arises.
In the same way the restriction dqjC of the quasi-metric dq on X to C will be denoted by
dq.

Of course, every asymmetric normed linear space is an asymmetric normed semilinear
space whereC = X .

3. In search of a definition for the concept of normed isometry b etween
asymmetric normed semilinear spaces

In the following we focus our research on the notion of normedisometry for the case of
asymmetric normed semilinear spaces. Speci�cally our aim is to introduce an appropriate
de�nition of normed isometry when one considers asymmetricnormed semilinear spaces
instead of asymmetric normed linear spaces. One can conjecture that the notion of normed
isometry in the semilinear framework can be postulated, as aresult of a literal adaptation,
replacing asymmetric normed linear spaces by asymmetric normed semilinear spaces in
the above de�nition of normed isometry (given in Section 2). Unfortunately there exist
linear mappings de�ned between asymmetric normed semilinear spaces which preserve the
asymmetric norms and, nevertheless, they are not quasi-metric isometries such as the next
example shows.

Example 1. Denote by l1 the linear space formed by all in�nite sequences (xn )n2 N of real
numbers such that

P 1
n=1 jxn j < 1 and let 0l1 be the neutral element in l1. De�ne the

functions q1 : l1 ! R+ and q2 : l1 ! R+ as follows:

q1(x) =
1X

n=1

u(xn ) and q2(x) =
1X

n=1

maxf xn ; � 2xng

wherex := ( xn )n2 N. A straightforward computation shows that q1 and q2 are asymmetric
norms on l1.

It is evident that q1(x) �
P 1

n=1 jxn j < 1 and q2(x) � 2 �
P 1

n=1 jxn j < 1 for all x 2 l1.
Consider the subsetsC1 and C2 of l1 given by

C1 = f (xn )n2 N 2 l1 : x1 > 0 and xn = 0 for all n > 1g [ f 0l1 g

and
C2 = f (xn )n2 N 2 l1 : x1 � 0g :

It is easily seen that C1 and C2 are semilinear spaces ofl1. So the pairs (C1; q1) and
(C2; q2) are asymmetric normed semilinear spaces.

Next de�ne the mapping i : C1 ! C2 by i (x) = x. Clearly the mapping i is linear.
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Furthermore,

q2(i (x)) = x1 = q1(x)
for all x 2 C1. However the mappingi is not a quasi-metric isometry between (C1; dq1 ) to
(C2; dq2 ). Indeed, let x; y 2 C1 such that x1 = 1 and y1 = 2. Then

dq2 (i (y); i (x)) = 2 and dq1 (y; x) = 0 :

�

In addition to the handicap exposed in the preceding examplethere exist another dis-
advantages when we adapt literally the de�nition of normed isometry between asymmet-
ric normed linear spaces to the semilinear framework. In particular, and contrarily to
the asymmetric normed linear case, there exist normed isometries between asymmetric
normed semilinear spaces which are not injective such as we show in the next example
(this fact was already pointed out in [19]).

Example 2. Consider the asymmetric normed linear space (l1 ; q1 ) of all in�nite se-
quences (xn )n2 N of real numbers such that supn2 N jxn j < 1 with q1 : l1 ! R+ given
by q1 (x) = sup n2 N u(xn ) with x := ( xn )n2 N (for a deeper study of this asymmetric linear
spaces we refer the reader to [15]). Let us denote by 0l1 the neutral element in l1 . Let

C1 = f (xn )n2 N 2 l1 : x1 > 0 and xn � 0 for all n > 1g [ f 0l1 g

and
C2 = f (xn )n2 N 2 l1 : x1 > 0 and xn = 0 for all n > 1g [ f 0l1 g:

It is clear that C1 and C2 are semilinear spaces ofl1 . De�ne the mapping f : C1 ! C2
by

(f (x))n =
�

x1 if n = 1
0 if n > 1

for all x 2 C1. It is a simple matter to check that f is linear. Moreover, it is trivial that

q1 (f (x)) = q1 (x)

for all x 2 C1. But f (ex) = f (ey) with ex =
�

1 if n = 1
� 1 if n > 1 and ey =

�
1 if n = 1

� 2 if n > 1 .

Consequently f is not injective.

�

As we have seen in the preliminaries, the normed isometries between asymmetric normed
spaces are continuous. The following example proves that there are linear mappings be-
tween asymmetric normed semilinear spaces which preserve the asymmetric norm and
they are not continuous, even if one consider the respectivetopologies restricted to the
semilinear spaces.

Example 3. On the linear space R2 we consider the asymmetric normsq1((x; y)) =
maxf u(x); u(y)g and q2((x; y)) = u(x) + u(y):

Let
C1 = f (x; y) 2 R2 : x � 0; y � 0g

and
C2 = f (x; y) 2 R2 : y = � xg:

SinceC1 and C2 are semilinear spaces ofR2; the pairs (C1; q1) and (C2; q2) are asymmetric
normed semilinear spaces.
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De�ne the mapping f : C1 ! C2 by f ((x; y)) = ( x; � x): This mapping is linear and

q2(f ((x; y))) = q2((x; � x)) = u(x) + u(� x) = u(x) =

= maxf u(x); u(y)g = q1((x; y))

for all ( x; y) 2 C1:
Now we show that f : (C1; T(dq1 ) jC1 ) ! (C2; T(dq2 ) jC2 ) is not continuous. Indeed, let

(xn )n2 N be a sequence inC1 given by xn = ( 1
n ; 0) for all n 2 N. It is clear that ( xn )n2 N

converges tox 2 C1 with x = (2 ; 0), since

dq1 (x; x n ) = q1((
1
n

� 2; 0)) = u(
1
n

� 2) = 0 :

Nevertheless, (f (xn ))n2 N does not converge tof (x) because

1 � dq2 (f (x); f (xn )) = q2(
1
n

� 2; 2 �
1
n

) = u(2 �
1
n

)

for all n 2 N.

�

In [15] it has been introduced the so-called dualp-complexity space in order to provide
a suitable mathematical formalism, based on asymmetric normed (semi)linear spaces,
for the asymptotic complexity analysis of algorithms. In particular, the aforementioned
complexity space is the semilinear spaceC�

p of the linear spaceB�
p (1 � p < 1 ), where

B�
p = f f : N ! R :

1X

n=1

�
2� n jf (n)j

� p < 1g

and

C�
p = f f 2 B �

p : f (n) � 0 for all n 2 Ng:

From a computational point of view, it is possible to associate each function of C�
p with a

computational cost in such a way that if f 2 C�
p then f (n) represents the running time of

performing some tasks by an algorithm (or program) employing an input data of size n.
Because of this, the elements ofC�

p are called complexity functions.
In many situations the running time of an algorithm is symbolized by a function which

is obtained by addition of two complexity functions or by a combination of complexity
functions multiplied by real numbers. Of course the linear spaceB�

p is the natural frame-
work to represent complexity functions that are obtained by linear combinations of another
complexity functions. However note that if g 2 B �

p is an example of this kind of complexity
functions, then g denotes a running time of computing if and only if g 2 C�

p :
Following the main ideas of Functional Analysis ([21]), thelinear spaceB�

p was endowed
with an asymmetric norm jj � jj B�

p
which is de�ned by

jj f jjB�
p

=

 
+ 1X

n=1

�
2� nu(f (n)

� p

! 1
p

for all f 2 B �
p. The utility of the asymmetric normed linear space (B�

p; jj�jj B�
p
) in complexity

analysis rests on the fact that the numerical valuejj f jjB�
p

can be interpreted as a kind
of \degree" of complexity of an algorithm whenever f 2 C�

p; since jj f jjB�
p

denotes the
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complexity distance of f to the \optimal" complexity function 0 B�
p

(the neutral element
of B�

p), i.e. djj�jj B �
p
(0B�

p
; f ) = jj f jjB�

p
for all f 2 C�

p :

Furthermore, in the same reference it was studied the completeness and compactness,
properties that are interesting from a computational viewpoint, of the asymmetric normed
(semi)linear space (B�

p; jj � jj B�
p
) (( C�

p ; jj � jj B�
p
)). This was done with the help of a normed

isometry whose construction we recall in the sequel, since it will be very useful in our
subsequent discussion.

Fix 1 � p < 1 , and let (lp; jj � jj + p) be the asymmetric normed linear space of all
in�nite sequences x (x = ( xn )n2 N) of real numbers such that

P 1
n=1 jxn jp < 1 , where

jjxjj+ p = (
P 1

n=1 u(xn )p)
1
p for all x 2 lp.

De�ne a mapping � : B�
p ! lp by

(�( f ))n = 2 � n f (n)

for all n 2 N and f 2 B �
p. It is clear that � is a linear bijection from ( B�

p; jj � jj B�
p
) to

(lp; jj � jj + p). In addition, a simple computation shows that � preserves asymmetric norms,
i.e.

jj �( f )jj+ p = jj f jjB�
p

for all f 2 B �
p. Hence � is an onto normed isometry, and the asymmetric normed linear

spaces (B�
p; jj � jj B�

p
) and (lp; jj � jj + p) are isometrically isomorphic. As an immediate con-

sequence of this result it could be proved that the mapping �jC�
p

: C�
p ! l+p is an onto

quasi-metric isometry (compare Proposition 5 in [15]), where the semilinear spacel+p is
given by l+p = f x 2 lp : xn � 0 for all n 2 Ng.

Our main interest in the preceding construction resides in the fact that it has several
distinguished characteristics which will help us to �nd inspiration in order to propose a
suitable notion of normed isometry for asymmetric normed semilinear spaces.

First of all we want to emphasize that the quasi-metric isometry between C�
p and l+p is the

restriction of the linear mapping � de�ned on the whole linea r spaceB�
p which preserves

asymmetric norms. Thus the restriction of � to C�
p also preserves asymmetric norms, i.e.

jj � jC�
p
(g � f )jj+ p = jjg � f jjB�

p
for all f 2 C�

p . Moreover, � satis�es that �( C�
p) � l+p (in

fact �( C�
p) = l+p ).

Thus, given f; g 2 C�
p , the element g � f 2 B �

p is in the domain of the mapping
� and jj � jC�

p
(g � f )jj+ p = jjg � f jjB�

p
. From the last equality we immediately deduce

that djj�jj + p (�( f ); �( g)) = djj�jj B �
p
(f; g ) for all f; g 2 C�

p , i.e. that the quasi-metric spaces

(C�
p ; djj�jj B �

p
) and (l+p ; djj�jj + p ) are isometric. Moreover, it seems important to point out that,

in addition, the semilinear spaceC�
p is generating, i.e. B�

p = C�
p �C �

p. Of course in Example
1 the semilinear spaceX does not enjoy such a property.

Notice that in our �rst attempt to de�ne a normed isometry for asymmetric semilinear
spaces the mapping is de�ned directly from a semilinear space into another one. It is not
suggested that the linear mapping is a restriction of another one de�ned on the whole linear
space and preserving the asymmetric norms for all elements of the linear space. So it is not
guaranteed that the elements of the formy � x, that belong to the linear space but maybe
they are not in the semlinear one, are in the domain of the linear mapping. Hence the
numerical valuesq2(f (y � x)) and q1(y � x) can not connect, in the spirit of (1), the quasi-
metric value dq2 (f (x); f (y)) with dq1 (x; y). Clearly, this is just what it happens in Example
1. So it seems natural to incorporate this condition in an appropriate de�nition of normed
isometry for asymmetric normed semilinear spaces, that is anormed isometry between
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asymmetric normed semilinear spaces is a restriction of a normed isometry between the
asymmetric normed linear spaces that contain them.

Next let us to clarify whether the generating condition of the semilinear spaceC�
p con-

tributes to the fact the mapping � jC�
p

: C�
p ! l+p is a quasi-metric isometry.

Proposition 4. Let (X; q1), (Y; q2) be two asymmetric normed linear spaces and letC1 �
X , C2 � Y be two semilinear spaces such thatC1 is generating. If f : X ! Y is a linear
mapping such thatf (C1) � C2, then the following conditions are equivalent:

(1) The mapping f jC1 : C1 ! C2 is a quasi-metric isometry.
(2) The mapping f holds q2(f (x)) = q1(x) for all x 2 X .

Proof. We only prove (1) ! (2), since (2) ! (1) is clear (see the chain of equalities (1) at
the end of Section 2). Letz 2 X . Then there exist x; y 2 C1 such that z = x � y. Thus,
it follows from statement (1) that

q2(f (z)) = q2(f (x � y)) = q2(f (x) � f (y))
= dq2 (f (y); f (x))
= dq1 (y; x)
= q1(x � y) = q1(z):

�

Notice that condition (1) in Proposition 4 always implies th at q2(f (x)) = q1(x) for all
x 2 C1. Nevertheless, the next example shows that the condition that the semilinear
spaceC1 is generating can not be omitted in the statement of Proposition 4 in order to
preserve the quasi-metric isometryf jC1 : C1 ! C2 the asymmetric norms as a mapping
from (X; q1) to ( Y; q2).

Example 5. Let (R2; q) be the asymmetric normed linear space withq((x; y)) = u(x) +
u(� y) for all ( x; y) 2 R2. De�ne the linear mapping f : R2 ! R2 by f ((x; y)) = ( y; x)
for all ( x; y) 2 R2. Consider the semilinear spaceC1 = f (x; x ) : x 2 R+ g. It is clear that
f jC1 (C1) = C1 and that f is a quasi-metric isometry from (C1; dq) into itself. However
q(f (2; � 1)) 6= q((2; � 1)), since

q(f (2; � 1)) = q(( � 1; 2)) = u(� 1) + u(� 2) = 0

and

q((2; � 1)) = u(2) + u(1) = 3 :

�

Clearly Proposition 4 reinforces the idea that if one considers a normed isometry between
asymmetric normed semilinear spaces like a restriction of alinear mapping de�ned between
the normed linear spaces in which they are contained, then itmust preserve the asymmetric
norms and not only its restriction to the semilinear spaces.

In the light of the preceding arguments we propose the next de�nition of normed isom-
etry between asymmetric normed semilinear spaces.

De�nition 6. Let (X; q1), (Y; q2) be two asymmetric normed linear spaces and letC1 � X ,
C2 � Y be two semilinear spaces. A linear mappingf : X ! Y is said to be a SL-
normed isometry from (C1; q1) to ( C2; q2) provided that f is a normed isometry such that
f jC1 (C1) � C2.
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Note that we can retrieve as a particular case of the above de�nition that of normed
isometry when we consider the semilinear spacesC1 = X and C2 = Y .

As an immediate consequence of De�nition 6 we obtain that every SL-normed isometry
is an injective quasi-metric isometry as we claim.

Proposition 7. Let (X; q1), (Y; q2) be two asymmetric normed linear spaces and letC1 �
X , C2 � Y be two semilinear spaces. If there exists a SL-normed isometryf : X ! Y
from (C1; q1) to (C2; q2), then f is an injective quasi-metric isometry from (C1; dq1 ) into
(C2; dq2 ).

It is clear that every SL-normed isometry is uniformly continuous.
In the following we give an example of a SL-normed isometry between asymmetric

normed semilinear spaces.

Example 8. Let (B�
p; jj � jj B�

p
) and (lp; jj � jj + p) the asymmetric normed linear spaces intro-

duced above. Consider the semilinear spacesC1 � B �
p and C2 � lp given by

C1 =
�

f 2 B �
p : f (1) > 0 and f (n) = 0 for all n > 1

	
[

n
0B�

p

o

and

C2 = f (xn )n2 N : x1 > 0 and xn = 0 for all n > 1g [
�

0lp

	
:

Let us denote, again, by � the mapping � : B�
p ! lp given by

(�( f ))n = 2 � n f (n)

for all n 2 N and for all f 2 B �
p. As we have pointed out before � is a normed isometry

(� is linear and preserves the asymmetric norms). Moreover, � jC1 (C1) = C2. Therefore
� is a SL-normed isometry from ( C1; jj � jj B�

p
) to ( C2; jj � jj + p).

�

Remark 9. Note that in Example 8 one obtains what intuitively one expects i.e. the fact
that the mapping � is a quasi-metric isometry from ( C1; djj�jj B �

p
) to ( C2; djj�jj + p ). Of course,

the last fact is guaranteed by Proposition 7. Furthermore, we want to highlight that the
semilinear spaceC1 is not generating. So Example 8 suggests us that the proposedSL-
normed isometry notion seems to be an appropriate generalization of the normed isometry
notion because of it is valid even in the non smooth case, i.e.in the non generating case.

�

In the next example we provide a normed isometry that is not a SL-normed isometry
and, thus, we prove that both concepts are not equivalent.

Example 10. Consider the asymmetric normed linear spaces (B�
p; jj � jj B�

p
), ( lp; jj � jj + p) and

the semilinear spaceC1 given in Example 8. Set

C3 = f (xn )n2 N : x1 < 0 and xn = 0 for all n > 1g [
�

0lp

	
:

Then, on one hand, we have thatC3 is a semilinear space oflp and, on the other hand,
� is a normed isometry from ( B�

p; jj � jj B�
p
) to ( lp; jj � jj + p). However, � is not a SL-normed

isometry from (C1; jj � jj B�
p
) to ( C3; jj � jj + p), since �( f 1) =2 C3 where f 1 is the element ofC1

such that f 1(1) = 1. Thus, the condition f (C1) � C2 in De�nition 6 is crucial in order to
get a SL-normed isometry from a normed isometry.
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�

Since the notion of normed isometry is introduced in the context of (asymmetric) normed
linear spaces with the aim of establishing when two (asymmetric) normed linear spaces
are equivalent, i.e. for the purpose of de�ning the notion of isometrically isomorphic
(asymmetric) normed linear spaces, we end our paper adapting this notion to the context
of asymmetric normed semilinear spaces.

De�nition 11. Let (X; q1), (Y; q2) be two asymmetric normed linear spaces and letC1 �
X , C2 � Y be two semilinear spaces. The asymmetric normed semilinearspaces (C1; q1)
and (C2; q2) are said to be isometrically isomorphic if there exists a SL-normed isometry
from (C1; q1) onto (C2; q2).

Note that if C1 and C2 are isometrically isomorphic andf : X ! Y is the SL-normed
isometry from (C1; q1) onto (C2; q2), it follows, from Proposition 7, that the restriction
f jC1 of f to C1 and its inverse are uniformly continuous.

Of course, the De�nition 11 coincides with that of isometrically isomorphic linear spaces
when we considerC1 = X and C2 = Y . It is clear from the previous discussion about
SL-normed isometries that two isometrically isomorphic asymmetric normed semilinear
spaces are equivalent from the algebraic, topological and quasi-metric point of view.

An example that con�rm us the �tness of De�nition 11, because one obtains the natural
and expected results, is given by the semilinear spacesC�

p and l+p of the asymmetric normed
linear spaces (B�

p; jj � jj B�
p
j) and (l+p ; jj � jj + p) respectively, where the SL-normed isometry

is the mapping � introduced before and given by (�( f ))n = 2 � n f (n) for all n 2 N and
f 2 B �

p. Note that this fact is exactly Proposition 5 stated in [15]. The same mapping
� gives that the asymmetric normed semilinear spaces (C1; jj � jj B�

p
) and (C2; jj � jj + p) in

Example 8 are isometrically isomorphic.
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Abstract

We consider a non-autonomous system of the formxn+1 = anxn where an
is a two periodic perturbation of a constant a > 1. This system can be
used to see the stability properties of limit cycles of non-linear oscillators
modeled by second order non-linear di�erential equations under the same type
of perturbations, The di�erence equation xn+1 = axn has a simple dynamics
since all orbits are unbounded and does not exhibit sensitive dependence on
initial conditions while the non-autonomous system xn+1 = anxn (for some
ranges of the parameters) has non trivial dynamics since in such cases all
orbits have sensitive dependence on initial conditions(sdic). The tool to see it
is a natural extension of the notion of Lyapunov exponents from autonomous
to non-autonomous systems. In fact, we devote a part of this paper to such
notion and to see its relationship with (sdic).
In particular, we prove that such complicated behavior can be obtained when
all parameters are �xed and is changed only the initial phaseof the pertur-
bation. It also proves that sensitive dependence on initialconditions can be
independent of the waveform of the perturbation which depends on the elliptic
modulus value. This case has been found relevant in the setting of di�erential
equations (see[5]).

1. Introduction

It is a extended practice, especially in experimental and applied dynamics, to associate
having a positive Lyapunov exponent with instability and negative Lyapunov exponent
with stability of orbits of a dynamical system. Stability an d instability of orbits are de�ned
in topological terms while Lyapunov exponents is a numerical characteristic calculated
throughout the orbit. However, these facts have no �rm mathematical foundation if are
not introduced some restrictions on the maps describing thesystem. To illustrate it, in
[7] are given two worthy examples, using piecewise linear maps (�gures 1 and 2), proving
that in the setting of interval maps, it is possible to construct a map having an orbit
with positive Lyapunov exponent and without sensitive dependence on initial conditions

1This research has been partially supported by grant numbers MTM2008-03679 and CGL2008-05688-
C02-02/CLI from Ministerio de Ciencia e Innovaci�on (Spain ) and by grant number 08667-PI-08 Fundaci�on
S�eneca (Regi�on de Murcia).
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and another map with an orbit with negative Lyapunov exponent but having sensitive
dependence on initial conditions. Both maps are not derivable in a countable number of
points.

There are also examples of maps with points having sensitivedependence on initial
conditions, but with zero Lyapunov exponents (see [16] for acylinder example). In interval
maps it is su�cient to consider a �xed non-hyperbolic point ( i.e. its derivative is � 1).
Therefore, sensitivity to initial conditions does not imply positive Lyapunov exponents.

2. Notations, Definitions and Preliminary Results

In discussing chaos, we are using Lyapunov exponents which measure the exponential
rate at which nearby orbits are moving apart.

De�nition 1. Let f : R ! R be a C1-map. For each point x0 the Lyapunov exponentof
x0, � (x0) is

� (x0) = lim sup n!1
1
n

log(j(f n )0(x0)j) = lim sup n!1
1
n

n� 1X

j =0

log(jf 0(x j )j)

where x j = f j (x0).

Note that the right hand is an average along the orbit of x0 of the logarithm of the
derivative.

Next we present three examples where we can calculate or estimate the Lyapunov
exponents

Example 2. The tent map

t(x) =
�

2x for 0 � x � 1
2

2(x � 1) for 1
2 � x � 1

If x0 is such that x j = t j (x0) = 1
2 for some j , then � (x0) can not be de�ned since the

derivative of the map does not exist in points of its orbit. The set of points holding such
property is countable. For the rest of points in [0; 1] = I , jf 0(x j j = 2 for all j . Therefore
� (x0) = log(2).

Example 3. Let
f a(x) = ax(1 � x) for a > 2 + 5

1
2

It can be seen that then there exists inI a Cantor invariant set � a (f a(� a) = � a (see
[9]). Then for x0 2 � a is log(jf 0

a(x j )j) � k0 � 0 for somek0. Thus the average on the
orbit is greater than k0 and therefore is � (x0) � k0. Thus although we can not calculate
exactly the value, we obtain that the Lyapunov exponent is positive.

Example 4.
f 4(x) = 4 x(1 � x)

If x0 is any preimage of 1
2 , then log(jf 0

4(x j )j) = log( jf 0
4( 1

2)j) = log 0 = �1 for any j .
Therefore � (x0) = �1 for such points.

For points x0 2 (0; 1) it is immediate that x j is never equal to 0 or 1 (and so never
equals to 1

2). For them we use the conjugacy off 4 with the tent map throughout the
homeomorphismh(y) = sin 2( �y

2 ) (see [9]). It is worthy that h is of classC1 in [0; 1], so
there is a c > 0 such that jh0(y)j < c for y 2 [0; 1]. Also is h0(y) > 0 in (0; 1), therefore for
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any � > 0 (su�cient small), there is a bound c� > 0 such that c� < jh0(y)j for y 2 [�; 1� � ].
Then for the former x0 we have

� (x0) = lim sup n!1
1
n

log(j(f n
4 )0(x0)j) =

= lim sup n!1
1
n

log(j(h � tn � h� 1)0(x0)j) =

= lim sup n!1
1
n

log(j(h(yn )0j) + log( j(tn )0(y0)j) + log( j(h� 1)0(x0)j) �

� lim supn!1
1
n

(log(c) + nlog(2) + log( j(h� 1)0(x0)j) = log(2)

On the other hand, for any of thesex0 we can pick a sequence of integersn j going to
+ 1 such that xn j 2 [�; 1 � � ]. Then if we take y0 = h� 1(x0) and yn = tn (y0),

� (x0) � lim supj !1
1
n j

log(j(f n j
4 )0(x0)j) =

= lim sup j !1
1
n j

(log(j(h)0(yn j )j) + log( j(tn j )0(y0)j) + log( j(h� 1)0(x0)j) �

� lim supj !1
1
n j

(log(c� ) + n j log(2) + log( j(h� 1)0(x0)j) = log(2)

Therefore is � (x0) = log(2) for such points. It is worthy to see that there are points
which repeatedly come near12 but never hit it for which the limit of the quantity de�ning
the Lyapunov exponents does not exist but only thelim sup. In particular, the Lyapunov
exponent is positive for all points whose orbit never hits 0 or 1 and therefore never hits 1

2 .
Sincet preserves the Lebesgue measure, the conjugacyh induces an invariant measure�

for f 4 whose density function is� � 1[x(1� x)]� 1
2 . By the former argument it is � (x) = log(2)

for � -almost point. Integrating with respect to such density function, we have

Z 1

0
log(jf 0

4(x)j)d� (x) =
Z 1

0

� (x)

� [x(1 � x)]
1
2

dx =

=
Z 1

0

log(2)

� [x(1 � x)]
1
2

dx = log(2)

On the other hand,

Z 1

0
log(jf 0

4(x)j)d� (x) =
Z 1

0

log(jf 0
4(x)j)

� [x(1 � x)]
1
2

dx =

=
Z 1

0
log(jt0(y)j)d(y) = log(2)

The former two expression are equal as the Birkho� Ergodic Theorem ([15]) says they
must be.

It is necessary to remember that topological entropy is a measure of the complexity of
the dynamics of a map. Katok has proved in [10] that if a map preserves a non-atomic
continuous Borel probability measure� for which � -almost all initial conditions have non-
zero Lyapunov exponents, then the topological entropy is positive and therefore the map
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is chaotic. Thus a good computational criterion for chaos iswhether a map has a positive
Lyapunov exponent for points in a set of positive measure.

Another observation is that in some cases, positive Lyapunov exponents imply sensitive
dependence on initial conditions as in the mapsf a(x) = ax (mod 1) when a > 1 as it
is easy to prove and that if the map isC1 and p is a periodic point with orbit Orbf (p),
then for any x0 such that ! f (x0) = Orbf (p) is � (x0) = � (p), where ! f (x0) denotes the
omega-limit set of the point x0 under the map f .

Before �nishing these examples it would be interesting to remark the connections be-
tween Lyapunov exponents and the space average with respectto an invariant measure.
If f has an invariant Borel measure� with �nite total measure and support on a bounded
interval, then the Birkho� Ergodic Theorem says that the limsup in the de�nition of
� (x0) can be substituted by lim for � -almost point x0. In fact, since the measure is a
Borel measure and log(jf 0(x)j) is continuous and above bounded, then the map� (x) is
measurable and

Z

R
� (x)d� (x) =

Z

R
log(jf 0(x)j)d� (x)

When f is ergodic with respect to � ([15]), then � (x) is constant in � -almost everywhere
and

� (x) =
1

j� j

Z

R
log(jf 0(x)j)d� (x);

� -almost everywhere and wherej� j is the total measure of� .
In dynamical systems of dimension greater than one given by the pair (Rn ; F ) where F

in a continuous map we have the Osedelets' result (see [12]),saying that for � -almost every
point ( � is an invariant measure, usually of bounded support), the sum of all Lyapunov
exponents (calculated inn-directions) is

lim supn!1
1
n

logjdet(DF n (x)j

In what follows we will concentrate in interval continuous mapsf : I ! I and introduce
the well known notions of Lyapunov stability and instabilit y.

De�nition 5. The positive orbit Orbf (x0) is said to be Lyapunov stable if for any � > 0
there is � > 0 such that wheneverjy � x0j < � is jf n(y) � f n(x0)j < � for all n � 0.

Lyapunov instability is equivalent to sensitivity to initi al conditions.

De�nition 6. Orbf (x0) exhibits sensitive dependence on initial conditions, if there exists
� > 0 such that given any � > 0 there is y holding jy � x0j < � and N > 0 such that
jf N (y) � f N (x0)j � �:

In [7] are constructed two piecewise linear maps which are counterexamples to the
statements: an orbit of a continuous interval map is Lyapunov instable if and only if its
Lyapunov exponent is positiveand an orbit of a continuous interval map is Lyapunov
stable if and only if its Lyapunov exponent is negative. In fact they construct a map
having an orbit of positive Lyapunov exponent which is Lyapunov stable (example 4) and
another map which has an orbit with negative Lyapunov exponent and Lyapunov instable
(example 5).
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Example 7. Let f : I ! I the map de�ned

f 1(x) =

8
<

:

2x � 1 + 3
2n +1 for an < x � bn

5n +2 � 22
2:5n +2 � 11(x � bn ) + 1 + 2

10n +1 � 1
2n +1 for bn < x � an+1

1 for x = 1

Figure 2. Map f 1

where (n = 0 ; 1; 2:::; an = 1 � 2� n � 10� (n+1) ; bn = 1 � 2� n + 10 � (n+1) ). Then f 1
has Orbf 1 (0) = A with positive Lyapunov exponent and without sensitivity to initial
conditions. To see it, �rst f 1 is a piecewise linear interval map wheref 0(xn ) = 2 for any
xn = f n

1 (0) and therefore � (0) = log(2) > 0. Now given � > 0, choosek such that 1
2k < �

and � such that � � 1
2k 10k . Then for every 0< x < � and every n � k is

jf n
1 (x) � f n

1 (0)j <
1

2k� n10k < �

By other hand, f x is increasing andf n(0) = 1 � ( 1
2n ). Therefore for every n > k is

1 �
1
2n � f n(x) and jf n

1 (x) � f n
1 (0)j �

1
2n < �

which completes the proof.

Example 8.

f 2(x) =

8
><

>:

1
2x + 1

2 ; for 0 � x < 7
16 or an � x � bn ;

(2n+1 � 4n+1 � 2� 1)(x + 2 � n � 2:4� (n+1) � 1) for bn � x < c n ,
1� 2� ( n +2) � 2:4� ( n +3)

2� ( n +1) � 9:4� ( n +2) (x + 2 � n � 2:4� (n+1) � 1); for cn � x < d n .
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Figure 3. Map f 2

where (n = 1 ; 2; 3; :::; an = 1 � 2� n � 4� (n+1) ; bn = 1 � 2� n + 4 � (n+1) ; cn = 1 � 2� n �
2:4� (n+1) ; dn = 1 � 2� (n+1) � 4� (n+2) )

Then f 2 is a continuous map such thatf 0(xn ) = 1
2 . Thus it is � (0) = � log(2) < 0. But

f 2 depends on initial conditions at 0, since taking for example� = 1
2 and for every � > 0

there exists 0< x < � holding

jf n
2 (x) � f n

2 (0)j > � for somem

to see it, choosen 2 N n f 0g holding 1
2

n+1
< � , set x = 1

2
n+1

and m = n + 1. Then

jf n+1
2 (x) � f n+1

2 (0)j >
1
2

therefore Orbf 2 (0) has a negative Lyapunov exponent but it is sensitive to initial condi-
tions. It is evident that merely the continuity of maps is not a su�cient condition for
an orbit having a positive Lyapunov exponent to be Lyapunov instable or having a neg-
ative Lyapunov exponent to be Lyapunov stable. In [11] are introduced some su�cient
conditions to get them.

Theorem 9. Let f 2 C2 in I . If Orbf (x0) has negative Lyapunov exponent,� (x0) < 0,
then it is Lyapunov stable (in fact it is exponentially stable)

Such statement says nothing concerning what happens if an orbit has a positive Lya-
punov exponent. On next result are introduced additional conditions to get instability.

Theorem 10. Let f 2 C2 in I and such thatf 0(c) = 0 for a unique c in which is f 00(c) 6= 0
and here arem > 0 holding f m (c) = q where q is �xed with jf 0(q)j > 1. Then if Orbf (x0
is non constant and � (x0) > 0, the orbit is Lyapunov instable.

For example the mapf 4 ful�ll such conditions.
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3. Lyapunov exponents in non-autonomous systems

In several problems on non-linear and non-autonomous di�erential equations of second
order, one interesting problem is to study the chaotical behavior of such equations when
the integrable case (if there exists) is perturbed by trigonometric and/or elliptic way. We
can obtain three type of results: reducing, increasing or suppressing the chaotic behavior.
In such cases as a criterium to decide such behavior we use thenotion of homoclinic or
heteroclinic chaos in the Shil��nikov sense, applying whatis known as Shil��nikov method
or Shil��nikov criterion (see [14] for a complete report). Shil��nikov criterion assures that
complicated dynamics happens near homoclinic or heteroclinic orbits when an inequality
(Shil��nikov inequality) holds (see [14]). In the literatu re there are methods for controlling
such chaos. For example using small-amplitude chaos-controlling perturbations (see [13]).
For a complete treatment of such topics one can see the reference [5] where it is presented
the state of art of the subject.

To see the appearance, disappearance or control of homoclinic chaos, one can use
Poincar�e maps specially in the neighborhood of a separatrix orbits (if they exist). This
idea has been our main motivation to consider a model in the form of a non-autonomous
di�erence equation (X; f 0;1 ) where the state spaceX is a metric space, f 0;1 = ( f n )1

n=0
such that all f i ; i = 0 :1; ::: are continuous maps de�ned onX into itself. In our model we
take X = (0 ; 1 ).

The orbit associated to the initial point x 2 X of the non-autonomous system is describe
by the sequencex(0) = x, x(1) = f 1(x(0)),...,x(n) = ( f n� 1 � :::f 2 � f 0)(x(0)). Such systems
have been studied when the sequence (f n )1

n=0 is periodic p, that is, f n+ p = f n for n = 0 ; 1::
and p a positive integer (see [2] and [3]). Further we will use the notation

f n� 1
0 = f n� 1 � f n� 2 � :::f 1 � f 0

When f n = f for all n = 0 ; 1; :::, we have an autonomous dynamical system (X; f ) well
known in the rich literature on the subject.

Further we study partially the dynamical behavior of a model depending on several
parameters and precise its dependence on their changes. Finally (not included here)
the dynamical behavior can be re-interpreted as the dynamical behavior of orbits in the
neighborhood of a separatrix (see [5]).

4. The model

We will consider the non-autonomous di�erence equation

xn+1 = [ � + "(bn + �c n )]xn = anxn (1)

with � > 1; 0 < � < 1; bn =
p

2 sinn; cn =
p

2 sn[2K (m)(n + �) =� ; m]; " > 0 and wheresn
denotes the Jacobian elliptic function of modulusm, K (m) is the complete elliptic integral
of �rst kind and � is a parameter describing a delay phase (0 � � � 2� ) of the elliptic part
of formula (to know more on notation, equivalences and relations among elliptic functions
see [8]). In fact the model is a perturbation of the autonomous systemxn+1 = �x n whose
dynamics is clear since any solution with initial point x0 > 0 is converging to1 , that is,
it is unbounded.

The perturbation taken has been suggested by the way of how are perturbed with
trigonometric and elliptic functions some second order non-linear di�erential equations.

The model is a particular case of a general non-autonomous systems xn+1 = f n (xn )
where f n (xn ) = anxn are obviously continuous maps forn = 0 ; 1; :::.
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In the perturbation bn + �c n ; the elliptic function sn has been chosen to appreciate in
a simple way, the e�ect of changes of the waveform of one part ofthe perturbation which
depends on changes on elliptic modulusm. It is well known that when m = 0, is

sn[2K (m)(n + �) =� ; m = 0] = sin( n + �)

In the other casem = 1, one readily obtains

sn[
2K (m)

�
(n + �); m = 1] =

4
�

1X

i =0

sin[(2i + 1)( n + �)]
2i + 1

; (2)

which is the Fourier expansion of the square wave function ofperiod 2�: Note that the
normalization factor 2K (m)=� allows to solely change the waveform from a sine to a square
wave by varying the elliptic parameter from 0 to 1, respectively.

The dynamical behavior of the system is contained on next result, where we exploit
the connection between sensitivity to initial conditions and Lyapunov exponents in au-
tonomous systems. Such connection has been explored in [1].Additionally in [4] it is
studied the connections between Lyapunov exponents and positive metric entropy. It is
well known that when a point x 2 X has positive Lyapunov exponent, then its orbit and
that of a point nearby diverge at a positive exponential rate. In the setting of C1-maps
on I , if the orbit of a point holds a uniform condition on Lyapunov exponents then it is
su�cient to imply that such orbit has dependence on initial c onditions (see [11]). We say
that the system (X; f 0;1 ) exhibits (sdic) on Y � X if there exists � > 0 such that for any
x 2 Y and any " > 0, there is ay 2 Y and a natural number n such that d(x; y) < " and
d(f n� 1

0 (x); f n� 1
0 (y)) > � (with d is denoted the metric in X ). When f n = f for all n 2 N,

we have an autonomous dynamical system (X; f ).
We extend to systems ((0; 1 ); f 0;1 ) the notion of Lyapunov exponent used for dynam-

ical systems ([0; 1]; f ) by the formula

� (x) = lim sup n!1
1
n

logj(f n� 1 � :::f 2 � f 0)0(x)j = lim sup n!1
1
n

n� 1X

j =0

logjf
0

j (x(j )) j (3)

in order to have a criterion to decide if an orbit exhibits or not sensible dependence on
initial conditions which can be seen as a measure of its chaotic behavior.

As a consequence we give a notion of chaotic behavior for non-autonomous systems.
We will say that a non-autonomous discrete system has achaotic behavior if in the state
space, there is a Lebesgue measurable setL of positive measure such that� (x) > 0 for
every x 2 L (in the extended sense). Otherwise the system isnon-chaotic.

Next result studies su�cient conditions on the parameters of (1) to be chaotic in the
above sense. It is made in two cases,� = 0 (there is only a trigonometric perturbation)
or � 6= 0 (the perturbation is a combination of trigonometric and e lliptic).

Theorem 11.

(a) Let � = 0 , then if

log � >
1
2

(
"
�

)2

the system has for all initial points in (0; 1 ) constant positive Lyapunov exponent.
Therefore the system is always chaotic.
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(b) Let � 6= 0 , then for �xed modulus m and in some range of� the system has also
a constant positive Lyapunov exponent. Therefore, the systemis chaotic in such
range.

Proof. Applying (3) for an initial point x(0) = x it is immediate that f 0
j (x(j )) = aj and

then

n� 1X

j =0

logjaj j =
n� 1X

j =0

logj� + "(bj + �c j )j =
n� 1X

j =0

logj� (1 +
"
�

(bj + �c j )) j

As a consequence

� = � (x) = lim n!1 hlog(� + "(bj + �c j )i ; (4)
for all points x 2 (0; 1 ) where angle bracketsh�i denote average values overj from 0 to
n � 1.

It is straightforward to see that

hbj i = hcj i = 0 ;


b2

j

�
= 1 ;



c2

j

�
=

2
m

[1 �
E(m)
K (m)

];

hbj cj i =
� ch[�K (1� m)

2K (m) ]
p

mK (m)
cos�

where E(m) is the complete elliptic integral of the second kind.
Then

� = log � + lim n!1 [(
"
�

) hbj + �c j i �
1
2

(
"
�

)2 

b2

j + 2 �b j cj + � 2c2
j

�
] + O("3); (5)

Plugging (5) into (4) we get

� = log � �
1
2

(
"
�

)2f 1 +
2�� ch[�K (1� m)

2K (m) ]
p

mK (m)
cos� +

2� 2

m
[1 �

E(m)
K (m)

]g + O("3); (7)

When � = 0 we have that provided log � � 1
2( "

� )2 then � (x) > 0 for all x 2 (0; 1 ).
Now we study the sign in (7) varying only the parameter � (the r est of parameters is

maintained constant) and obtain some range of values for which � > 0. It con tributes to
clarify the e�ect of changing only the second part of the perturbation, cn when the �rst
part is constant. To this aim, we write (7) in the following fo rm

� = � + (� = 0) �
1
2

(
"
�

)2� < 1(m)[� + < 2(m) cos �] + O("3); (8)

with

� + (� = 0) = log � �
1
2

(
"
�

)2;

< 1(m) �
2
m

[1 �
E(m)
K (m)

];

< 2(m) �
�

p
mch[�K (1� m)

2K (m) ]

K (m) � E(m)
(9):
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where < 1(m) and < 2(m) can be shown analytically that are monotonously increasing
(decreasing) functions with limiting values < 1(m = 0) = 1 ; < 1(m = 1) = 2 ( < 2(m = 0) =
2; < 2(m = 1) = 1 :34144::: .). We do this only through the representation of the functions
and can be appreciable in Figure 3.

Figure 4. Functions R i (m), i = 1 ; 2 versusm

Figure 5. Function � threshold ("=�; m ) versus "=� and m for � + (� = 0) = 0 :1
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For �xed modulus m and small �xed � 6= 0, the Lyapunov exponent � decreases when
� + < 2(m) cos � > 0 and, in some range of �, may become negative (we denote by
� stab

opt the threshold value) . In this case is � stab
opt = 0. Contrarily, � increases when

� + < 2(m) cos � < 0 so that the initial phase � = � instab
opt � � yields the largest positive

Lyapunov exponent. Observe that for � � � threshold , where

� threshold (
"
�

; m) � [
2� + (� = 0)

("=� )2< 1(m)
]1=2; (9)

one has the maximum-range intervals of suitable initial phase for stabilization [� stab
opt �

�� max ; � stab
opt + �� max ] and strengthening [� instab

opt � �� max ; � instab
opt + �� max ] of instabil-

ities (�� max = �= 2).
Similarly, for � > � threshold , we see that the respective ranges have shrunk, i.e., ��max <

�= 2 (see Figure 4). �

Remark 12. It is worth mentioning that the previous discussion means that a control
mechanism for chaotic behavior can be applied which is validfor any waveform represented
by m and which is e�ective independently of it.
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Abstract

One important mathematical topic is the notion of metric space and, more
related to the applications, the concept of metric function. In this work we aim
to illustrate how important is to appropriately choose the metric when dealing
with a practical problem. In particular, we focus on the problem of detection
of noisy pixels in colour images. In this context, it is very important to
appropriately measure the distances and similarities between the image pixels,
which is done by means of an appropriate metric. We study the performance
of di�erent metrics, including recent fuzzy metrics and a novel fuzzy metric
speci�cally designed to detect impulses, within a speci�c �lter design to show
that it is indeed a critical choice to appropriately solve the task.

1. Introduction

Nowadays, the process of digital signals and images, and particularly colour image pro-
cessing, is a problem extensively studied. A problem that appears during the acquisition
and transmission of digital images is impulsive noise, thata�ects to some pixels of the
image, and the reduction of impulsive noise has been extensively studied in the last years.
Vector median-based �lters [1]-[3] are widely used methodsfor impulse noise reduction in
colour and multichannel images because they are based on thetheory of robust statistics
and, consequently, perform robustly. These methods apply the �ltering operation over all
the pixels of the image, and they tend to blur details and edges of the image.

To overcome this drawback, a series of switching �lters, combining noise detection
followed by noise reduction over the noise detected, have been studied in [4]-[9]. Also,
techniques using fuzzy logic have been studied to solve thisproblem [10]-[11], and fuzzy
metrics have shown to perform appropriately for this task [6, 7, 12, 13, 14, 15]. These
works have proved that fuzzy logic and fuzzy metrics are appropriate for image denoising
because it can deal with the nonlinear nature of digital images and with the inherent
uncertainty in distinguishing between noise and image structures.

In this paper, we aim to point out that, apart from the particu lar �ltering method, it
is very important to appropriate choose the metric used within the �lter. To do so, using
the same �ltering procedure, we present a study of the performance of di�erent metrics,
including recent fuzzy metrics and a novel fuzzy metric speci�cally designed to detect
impulses. The paper is structured as follows. Section 2 introduces the metrics used the
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detection process. The proposed study and experimental results are described in Section
3 with a performance comparison and discussion. Finally, some conclusions are drawn in
Section 4.

2. Metrics to Diagnose Noise

In Mathematics, a metric or distance function is a function which de�nes a distance
between elements of a set. In colour image �ltering every pixel of the image is an RGB
component vector with integer values between 0 and 255. Then, metrics provides a way
to assess de closeness degree between two pixels. First methods use a great number of
metrics with the aim to �nd the more accurate metric. L 1 and L 2 metrics were the �rst
in the experiences, followed by angular distance between pixels, and a set of combinations
with several metrics.

A theory with an important grown in recent years has been fuzzy logic, due to its
important use in control systems, expert systems, sensors in electronic devices, etc. At
the same time, fuzzy topology and fuzzy metrics were deployed. For this reason, fuzzy
metrics penetrate in the image denoising area with very goodresults. Recent works shown
that the use of fuzzy metrics can improve the �ltering method.

In this work we are going to use four metrics (two classics andtwo fuzzy). The classical
metrics are L 1 and L 2. For the fuzzy metrics we have chosen recent fuzzy metrics.

A stationary fuzzy metric [17]-[19], M , on a set X , is a fuzzy set ofX � X satisfying
the following conditions for all x; y; z 2 X :

(FM1) M (x; y) > 0
(FM2) M (x; y) = 1 if and only if x = y
(FM3) M (x; y) = M (y; x)
(FM4) M (x; z) � M (x; y) � M (y; z),

where � is a continuous t-norm.
M (x; y) represents the degree of nearness ofx and y and, according to (FM2), M (x; y)

is close to 0 whenx is far from y.
Let (x i (1); x i (2); x i (3)) the colour image vector x i in the RGB colour space, and let

X the set f 0; 1; : : : ; 255g3 and �xed K > 0. Then, accord to [12, 16], the functionM :
X � X ! ]0; 1] given by

(1) M � (x i ; x j ) =
3Y

l=1

min f x i (l ); x j (l )g + K
maxf x i (l ); x j (l )g + K

is a stationary fuzzy metric, for the usual product, on X in the sense of George and
Veeramani [18]. In this way, from now on M � (x i ; x j ) will be the fuzzy distance between
the colour image vectorsx i and x j . Obviously M � is F -bounded and it satis�es

(2) 0 <
�

K
255 + K

� 3

� M � (x i ; x j ) � 1

for all x i ; x j 2 X .
We de�ne the fuzzy set M 1 on X 3 by

(3) M 1 (x i ; x j ) =
3

min
l=1

minf x i (l ); x j (l )g + K
maxf x i (l ); x j (l )g + K
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M 1 is a (stationary) fuzzy metric in the sense of George and Veeramani [18]. From the
mathematical point of view the stationary fuzzy metric M 1 , started in [8], can be seen as
a fuzzy version of theL 1 classical metric and, like we will prove, it is especially sensitive
to impulse noise.

Next lemma is well-known.

Lemma 1. Let a; b; c2 R+ . Then

minf a; bg
maxf a; bg

�
minf b; cg
maxf b; cg

�
minf a; cg
maxf a; cg

:

Proposition 2. Let X be the setf 0; 1; : : : ; 255g and let K > 0. Denote by(x i (1); x i (2); x i (3))
the elementx i 2 X 3. The function M 1 given by

(4) M 1 (x i ; x j ) =
3

min
l=1

minf x i (l ); x j (l )g + K
maxf x i (l ); x j (l )g + K

for all x i ; x j 2 X 3, is a stationary fuzzy metric on X 3, where the t-norm � is the usual
product in [0; 1].

Proof. Conditions (FM1), (FM2) and (FM3) are obvious by de�nition o f M 1 .
To prove condition (FM4), let x i ; x j ; xk 2 f 0; : : : ; 255g. Then

M 1 (x i ; x j ) � M 1 (x j ; xk ) =

=
3

min
l=1

�
minf x i (l ); x j (l )g + K
maxf x i (l ); x j (l )g + K

�
�

3
min
l=1

�
minf x j (l ); xk (l )g + K
maxf x j (l ); xk (l )g + K

�
�

�
3

min
l=1

�
minf x i (l ); x j (l )g + K
maxf x i (l ); x j (l )g + K

�
minf x j (l ); xk (l )g + K
maxf x j (l ); xk (l )g + K

�
�

�
3

min
i =1

�
minf x i (l ); xk (l )g + K
maxf x i (l ); xk (l )g + K

�
= M 1 (x i ; xk )

by the previous lemma, and soM 1 is a stationary fuzzy metric. �

These metrics are non-uniform in the sense that the measure given for two di�erent
pairs of consecutive numbers (or vectors) may not be the same. In this way, increasing
the value of K reduces this non-uniformity. According to our experiences, we have set
K = 1024 which is an appropriate value for RGB colour vectors [12, 13].

3. Experimental Study and Results

In recent works about image �ltering, one of the most studied concerns impulse noise
detection. The key issue is to distinguish between edges, �ne details and noise. One
switching method that provides good results is the Peer Group Filter (PGF), presented
in [5]. This method provides a fast schema of noise detectionand a posterior operation of
noise replacement. In the �rst phase, the algorithm makes a study of the neighborhood
of every pixel in a �ltering window (of usual size 3 � 3), and if the pixel in study have at
least m pixels close to it (we have chosenm = 2 as in [5]), the method detects this pixel
as noisy free and as noisy otherwise. In the second phase, thenoisy pixels are replaced
with the output of the Arithmetic Mean Filter of the colour pi xels in the neighborhood.

To show the importance of the choice of the metric used to measure the distance or
similarity between colour image pixels, we have implemented di�erent versions of the PGF
using four di�erent metrics. We have chosen the city-block and Euclidean classical metrics
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and the M � and M 1 fuzzy metrics introduced in Section 2. The images in �gure 6 have
been corrupted with impulsive noise according to the model proposed in [2] and then
�ltered with the four di�erent variants of the �lter. The Mean Absolute Error (MAE),
Peak Signal to Noise Ratio (PSNR) and Normalized Colour Di�erence (NCD), de�ned in
[2], have been used to assess the performance. Notice that for MAE and NCD lower values
denote better performance, whereas PSNR is better for higher values.

(a) (b) (c) (d)

Figure 6. Test images: (a) Pills, (b) detail of Pills, (c) Statue, and (d)
detail of Statue.

Tables 1-2 show the performance results of the metrics, whereas �gure 9 show a graphical
analysis from NCD, that is a reference measure that denotes the visual quality of the
�ltered image.

Table 1. Experimental results for the PGF Filter in the comparison wi th
diverse metrics when �ltering the Pills detail image corrupted with di�erent
densitiesp of �xed-value impulse noise.

p 0.05 0.10 0.15 0.20
Metric MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

� 10� 2 � 10� 2 � 10� 2 � 10� 2

Noisy 2:31 22:40 3:52 4:99 19:14 7:16 7:04 17:71 10:41 9:47 16:34 14:38
L 1 1:48 30:65 0:84 2:54 28:52 1:44 3:03 27:67 2:44 5:66 24:15 3:80
L 2 0:86 33:03 0:66 2:01 29:51 1:22 3:21 27:43 2:09 4:64 25:40 3:17
M � 1:33 31:17 0:81 2:27 29:02 1:42 3:04 27:61 2:48 5:45 24:29 3:73
M 1 0:74 33:82 0:49 1:76 30:22 1:03 2:34 29:01 1:67 3:39 26:41 2:83

Table 2. Experimental results for the PGF Filter in the comparison wi th
diverse metrics when �ltering the Statue image corrupted with di�erent
densitiesp of �xed-value impulse noise.

p 0.05 0.10 0.15 0.20
Metric MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD MAE PSNR NCD

� 10� 2 � 10� 2 � 10� 2 � 10� 2

Noisy 1:93 23:37 3:41 5:14 19:03 8:99 7:16 17:44 12:52 9:20 16:35 15:74
L 1 2:76 25:51 2:30 5:09 22:85 3:42 6:84 21:94 4:56 7:80 21:14 5:64
L 2 2:56 25:79 1:89 4:07 24:14 2:70 5:10 23:42 3:60 6:43 22:01 4:90
M � 1:40 28:48 2:11 3:74 24:68 3:20 6:47 22:31 4:29 7:65 21:31 5:44
M 1 1:70 27:45 1:54 3:27 25:06 2:29 4:05 24:41 3:20 5:42 22:99 4:29
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From the tables we may conclude that theL 2 metric and the M 1 fuzzy metric exhibit a
much better performance than the rest, specially in terms ofPSNR. This happens because
in these metrics, the square operation and the min makes, are specially sensitive to the
presence of impulse noise. In particular, the best results with M 1 fuzzy metric provide
improvements about 40% in MAE respect to L 1 and M � and pretty goods respectL 2,
specially when noisy intensity grows. If we analyze the behaviour of M 1 , we can see
that when impulse noise a�ected at least one component of either x i or x j , it would be
associated to the lowest nearness value between their components. In such a case, theM 1
fuzzy metric takes the nearness value associated to the presence of the impulse and ignores
any possible similarity between the rest of the components.Moreover, as the di�erence
between the components becomes larger, the value ofM 1 drops rapidly.

(a) (b) (c)

(d) (e) (f)

Figure 7. Visual comparison of the �lter output using the Statue image
and several metrics: (a) Original, (b) corrupted with p = 10% of impulsive
noise, (c) L 1, (d) L 2, (e) M � and (f) M 1 .

4. Conclusions

In this paper we have studied the importance of choosing an appropriate metric to �lter
color images. To make this we have used a recent �ltering scheme and we have imple-
mented di�erent versions of it using a series of metrics, two classical and two fuzzy. Then,
we have �ltered di�erent images, corrupted with densities of impulsive noise between 5%
and 20%, assessing with objective quality measures the behavior of each metric. Exper-
imental results obtained show that an appropriate choice ofthe metric is of paramount
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(a) (b) (c)

(d) (e) (f)

Figure 8. Visual comparison of the �lter output using the Pills image
and several metrics: (a) Original, (b) corrupted with p = 10% of impulsive
noise, (c) L 1, (d) L 2, (e) M � and (f) M 1 .

(a) (b)

Figure 9. NCD performance varying metrics in: (a) Pills and (b) Statue,
for di�erent percentages of impulse noise.

importance in the design of a �ltering method. This choice can lead the �ltering to signif-
icant performacne bene�ts. In this way is interesting to keep looking for new metrics and
measures to improve the detection of noisy pixels, distinguishing them from edges and �ne
details contained in the images.
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Abstract

We characterize those bitopological spaces that admit an intuitionistic fuzzy
metric. A characterization of those bitopological spaces that admit a complete
(respectively, a precompact) intuitionistic fuzzy metric is derived.

1. Introduction and preliminaries

Generalizing the notion of a fuzzy metric space in the sensesof Kramosil and Michalek
[7], and George and Veeramani [2], respectively, Alaca, Turkoglu and Yildiz [1], and Park
[8] introduced and discussed notions of intuitionistic fuzzy metric space. Gregori, Roma-
guera and Veeramani [5], and Romaguera and Tirado [9] observed that the main topo-
logical properties of intuitionisitic fuzzy metric spaces can be directly deduced from the
corresponding ones for fuzzy metric spaces. Since every intuitionistic fuzzy metric space
actually induces two topologies, it seems interesting to describe those bitopological spaces
that admit an intuitionistic fuzzy metric. In this note we pr esent such a description and
deduce from it characterizations of those bitopological spaces that admit a complete (re-
spectively, a precompact) intuitionistic fuzzy metric.

Let us recall [12] that a continuous t-norm is a binary operation � : [0; 1]� [0; 1] ! [0; 1]
which satis�es the following conditions: (i) � is associative and commutative; (ii) � is
continuous; (iii) a � 1 = a for every a 2 [0; 1]; (iv) a � b � c � d whenevera � c and b � d,
and a; b; c; d2 [0; 1]:

By a continuous t-conorm we mean a binary operation3 : [0; 1] � [0; 1] ! [0; 1] which
satis�es the following conditions: (i) 3 is associative and commutative; (ii)3 is continuous;
(iii) a3 0 = a for every a 2 [0; 1]; (iv) a3 b � c3 d whenever a � c and b � d, and
a; b; c; d2 [0; 1]:

It is well known that if � is a continuous t-norm (respectively, a continuous t-conorm),
then � 0 is a continuous t-conorm (respectively, a continuous t-norm), where a � 0b = 1 �
[(1 � a) � (1 � b)] for all a; b2 [0; 1]:

1The second and third authors acknowledge the support of the Spanish Ministry of Science and Inno-
vation, grant MTM2009-12872-C02-01.
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It is also well known that for each continuous t-norm � and each continuous t-conorm
3 ; the following relations hold: � � ^ � _ � 3 ; where as usuala ^ b = min f a; bg; and
a _ b = max f a; bg; for all a; b2 [0; 1]:

De�nition 1 ([1]). An intuitionistic fuzzy metric (brie
y, an IFM) on a set X is a 4-tuple
(M; N; � ; 3 ) such that � is a continuous t-norm, 3 is a continuous t-conorm, andM; N
are fuzzy sets inX � X � [0; 1 ) satisfying the following conditions for all x; y; z 2 X :

(M1) M (x; y; 0) = 0;
(M2) M (x; y; t ) = 1 for all t > 0 if and only if x = y;
(M3) M (x; y; t ) = M (y; x; t ) for all t > 0;
(M4) M (x; y; t ) � M (y; z; s) � M (x; z; t + s) for all t; s � 0;
(M5) M (x; y; ) : [0; 1 ) ! [0; 1] is left continuous;
(N1) N (x; y; 0) = 1;
(N2) N (x; y; t ) = 0 for all t > 0 if and only if x = y;
(N3) N (x; y; t ) = N (y; x; t ) for all t > 0;
(N4) N (x; y; t )3 N (y; z; s) � N (x; z; t + s) for all t; s � 0;
(N5) N (x; y; ) : [0; 1 ) ! [0; 1] is left continuous;
(MN) M (x; y; t ) + N (x; y; t ) � 1 for all t > 0:

De�nition 2 ([1]). An intuitionistic fuzzy metric space (brie
y, an IFM-space ) is a 5-tuple
(X; M; N; � ; 3 ) such that X is a set and (M; N; � ; 3 ) is an IFM on X:

Recall that a triple ( X; M; � ) such that X is a set, � is a continuous t-norm and M is a
fuzzy set in X � X � [0; 1 ) satisfying conditions (M1)-(M5) above, is a fuzzy metric space
(in the sense of Kramosil and Michalek [7]). In this case, thepair (M; � ) will be called a
fuzzy metric on X:

It is well known that every fuzzy metric space (X; M; � ); in the sense of George and
Veeramani, can be considered a fuzzy metric space in the sense of Kramosil and Michalek,
putting M (x; y; 0) = 0 for all x; y 2 X: Similarly, every intuitionistic fuzzy metric space
(X; M; N; � ; 3 ) in the sense of Park, can be considered an IFM-space, putting M (x; y; 0) =
0 and N (x; y; 1) = 1 for all x; y 2 X: For this reason, we focus in the rest of the paper in
fuzzy metric spaces in the sense of [7] and in IFM-spaces.

Remark 3. Note that if ( X; M; N; � ; 3 ) is an IFM-space, then both (X; M; � ) and (X; 1 �
N; 3 0) are fuzzy metric spaces. Conversely, if (X; M; � ) is a fuzzy metric space, then
(X; M; 1 � M; � ; � 0) is an IFM-space.

Remark 4. (see for instance [2, 4]). If ( X; d ) is a metric space, then for each continuous
t-norm � ; the pair (M d; � ) is a fuzzy metric on X such that � M d coincides with the topology
� d induced by d; where for eachx; y 2 X;

M d(x; y; 0) = 0 ;

and

M d(x; y; t ) =
t

t + d(x; y)
;

for all t > 0.

Remark 5. As a converse of the one given in Remark 4, it is well known fromthe theory
of probabilistic metric spaces [12] (see also [3]) that eachfuzzy metric space (X; M; � )
induces a topology� M on X which has as a base the family of open balls

f BM (x; r; t ) : x 2 X; 0 < r < 1; t > 0g;
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where BM (x; r; t ) = f y 2 X : M (x; y; t ) > 1 � r g for all x 2 X; r 2 (0; 1); t > 0:
Actually ( X; � M ) is a metrizable topological space because the countable collection

ff (x; y) 2 X � X : M (x; y; 1=n) > 1 � 1=ng : n 2 Ng;
is a base for a uniformity UM on X such that its induced topology coincides with � M .

De�nition 6. We say that a topological space (X; � ) admits a fuzzy metric if there is a
fuzzy metric (M; � ) on X such that � M = �:

Following [2], a sequence (xn )n in a fuzzy metric space (X; M; � ) is said to be a Cauchy
sequence if for eachr 2 (0; 1) and eacht > 0 there isn0 2 N such that M (xn ; xm ; t) > 1� r
for all n; m � n0: A fuzzy metric space (X; M; � ) (or a fuzzy metric (M; � )) is called
complete if each Cauchy sequence is convergent with respectto � M :

The following result can be found in [3].

Proposition 7. A topological space is completely metrizable if and only if it admits a
complete fuzzy metric.

A fuzzy metric space (X; M; � ) is said to be precompact [3] if for eachr 2 (0; 1) and
eacht > 0 there is a �nite subset A of X such that X =

S
a2 A BM (x; r; t ): In this case we

say that (M; � ) is a precompact fuzzy metric onX:
In [3, Theorem 3] it was proved that the topology � M of a fuzzy metric space (X; M; � )

is separable if and only if (X; � M ) admits a precompact fuzzy metric. From this result we
deduce the following.

Proposition 8. A topological space is separable and metrizable if and only if it admits a
precompact fuzzy metric.

Proof. Let (X; � ) be a separable and metrizable topological space. Hence, itadmits
a precompact metric d: Then (M d; � ) is clearly a precompact fuzzy metric onX , with
� = � M (see Remark 4).

Conversely, if (X; � ) admits a precompact fuzzy metric (M; � ); then it is metrizable by
Remark 5, and separable by [3, Theorem 3] cited above.

2. On the two topologies induced by an IFM-space

Similarly to the fuzzy metric case, Park proved in [8] that if (X; M; N; � ; 3 ) is an IFM-
space, then the family of sets of the formf B (x; r; t ) : x 2 X; r 2 (0; 1); t > 0g is a base
for a topology � (M;N ) on X; where

B (x; r; t ) = f y 2 X : M (x; y; t ) > 1 � r; N (x; y; t ) < r g

for all x 2 X; r 2 (0; 1) and t > 0:
However, condition (MN) of De�nition 1, permits us to easily deduce (see [5, 9]) that

B (x; r; t ) = BM (x; r; t ) for all x 2 X; r 2 (0; 1); t > 0; where BM (x; r; t ) is the open ball
induced by the fuzzy metric space (X; M; � ) of Remark 3. Hence we have the following.

Proposition 9. Let (X; M; N; � ; 3 ) be an IFM-space. Then� (M;N ) = � M where � M is the
topology induced by the fuzzy metric space(X; M; � ):

Note that, given an IFM-space, we can de�ne for eachx 2 X; r 2 (0; 1) and t > 0;
the \open ball" BN (x; r; t ) = f y 2 X : N (x; y; t ) < r g: Then, BN (x; r; t ) = f y 2 X :
1 � N (x; y; t ) > 1 � r g; so the collectionf BN (x; r; t ) : x 2 X; r 2 (0; 1); t > 0g is a base for
the topology induced by the fuzzy metric (1� N; 3 0) (see Remark 3).

This topology will be denoted by � N : Then, by condition (MN) of De�nition 1, we have
the following fact.
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Proposition 10 ([5, Remark 3]). Let (X; M; N; � ; 3 ) be an IFM-space. Then� N � � M :

The above constructions suggest the study of IFM-spaces from a bitopological point of
view.

Let us recall [6] that a bitopological space is a triple (X; � 1; � 2) where X is a set and� i ;
i = 1 ; 2; are topologies onX:

De�nition 11. We say that a bitopological space (X; � 1; � 2) admits an IFM if there is an
IFM ( M; N; � ; 3 ) on X such that � M = � 1 and � N = � 2:

According to Park [8], a sequence (xn )n in an IFM-space (X; M; N; � ; 3 ) is said to be
Cauchy if for each r 2 (0; 1) and each t > 0 there is n0 2 N such that M (xn ; xm ; t) >
1 � r and N (xn ; xm ; t) < r whenevern; m � n0. An IFM-space (X; M; N; � ; 3 ) is called
complete if every Cauchy sequence is convergent with respect to � (M;N ) :

The following result (see [9]) is an immediate but useful consequence of Proposition 9.

Proposition 12. An IFM-space (X; M; N; � ; 3 ) is complete if and only if (X; M; � ) is
complete.

Saadati and Park introduced in [11] the notion of a precompact IFM-space: An IFM-
space (X; M; � ) is said to be precompact if for eachr 2 (0; 1) and eacht > 0 there is a
�nite subset A of X such that X =

S
a2 A B (x; r; t ): In this case we say that (M; � ) is a

precompact IFM on X:
Then, it is immediate to show the following.

Proposition 13. An IFM-space (X; M; N; � ; 3 ) is precompact if and only if (X; M; � ) is
precompact.

With the help of the above results and facts we show the following characterizations
announced in Section 1.

Theorem 14. A bitopological space(X; � 1; � 2) admits an IFM if and only if (X; � 1) and
(X; � 2) are metrizable and� 2 � � 1:

Proof. Suppose that there is an IFM (M; N; � ; 3 ) on X such that � M = � 1 and � N = � 2:
Then (X; � 1) and (X; � 2) are metrizable by Remarks 3 and 5, and� 2 � � 1 by Proposition
10.

Conversely, suppose that (X; � 1) and (X; � 2) are metrizable with � 2 � � 1: Let d1 and d2
be metrics on X such that � i = di ; i = 1 ; 2: Then, for any continuous t-norm � and any
continuous t-conorm 3 ; the 4-tuple (M d1 + d2 ; Nd2 ; � ; 3 ) is an IFM on X because for each
x; y 2 X and t > 0 we have

M d1+ d2 (x; y; t ) + Nd2 (x; y; t ) =
t

t + ( d1 + d2)(x; y)
+

d2(x; y)
t + d2(x; y)

�
t

t + d2(x; y)
+

d2(x; y)
t + d2(x; y)

= 1 :

Since� 2 � � 1 it follows that � 1 = � d1+ d2 : Hence� 1 = � M d1+ d2
and � 2 = � Nd2

by Remark 4.
This concludes the proof. �
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Theorem 15. A bitopological space(X; � 1; � 2) admits a complete IFM if and only if (X; � 1)
is completely metrizable,(X; � 2) is metrizable and� 2 � � 1:

Proof. Suppose that there is a complete IFM (M; N; � ; 3 ) on X such that � M = � 1 and
� N = � 2: Then (X; � 1) and (X; � 2) are metrizable and � 2 � � 1 by Theorem 14. Moreover
(M; � ) is a complete fuzzy metric onX with � M = � 1; and hence (X; � 1) is completely
metrizable by Proposition 7.

Conversely, suppose that (X; � 1) is completely metrizable and (X; � 2) is metrizable with
� 2 � � 1: Let d1 be a complete metric onX and d2 be a metric on X such that � i = di ;
i = 1 ; 2: Then, for any continuous t-norm � and any continuous t-conorm 3 ; the 4-tuple
(M d1 + d2 ; Nd2 ; � ; 3 ) is an IFM on X with � 1 = � M d1+ d2

and � 2 = � Nd2
(see the proof of

Theorem 14). Moreover the fuzzy metric (M d1+ d2 ; � ) is complete because the metricd1+ d2
is complete. The conclusion follows from Proposition 12. �

Theorem 16. A bitopological space(X; � 1; � 2) admits a precompact IFM if and only if
(X; � 1) is separable metrizable,(X; � 2) is metrizable and� 2 � � 1:

Proof. Suppose that there is a precompact IFM (M; N; � ; 3 ) on X such that � M = � 1 and
� N = � 2: Then (X; � 1) and (X; � 2) are metrizable and � 2 � � 1 by Theorem 14. Moreover
(M; � ) is a precompact fuzzy metric onX with � M = � 1 and hence (X; � 1) is separable by
Proposition 8.

Conversely, suppose that (X; � 1) is separable metrizable and (X; � 2) is metrizable with
� 2 � � 1: Thus it is clear that ( X; � 2) is also separable. Letd1 and d2 be precompact
metrics on X such that � i = di ; i = 1 ; 2: Then, for any continuous t-norm � and any
continuous t-conorm 3 ; the 4-tuple (M d1+ d2 ; Nd2 ; � ; 3 ) is an IFM on X with � 1 = � M d1+ d2

and � 2 = � Nd2
(see the proof of Theorem 14). Moreover the fuzzy metric (M d1 + d2 ; � ) is

precompact because the metricd1 + d2 is precompact (indeed, every sequence inX has a
Cauchy sequence both in (X; d 1) and in (X; d 2); so Cauchy in (X; d 1+ d2)). The conclusion
follows from Proposition 13.

3. Further work

In a further work we shall extend this study to intuitionisti c fuzzy quasi-metric spaces
as de�ned in [10]. The bicompletion and the �xed point theory of these spaces will be also
explored.
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Abstract

In 1995, M.P. Schellekens introduced the theory of complexity (quasi-metric)
spaces as a part of the development of a topological foundation for the as-
ymptotic complexity analysis of programs and algorithms [Electronic Notes in
Theoret. Comput. Sci. 1 (1995), 211-232]. The applicability of this theory
to the asymptotic complexity analysis of Divide and Conqueralgorithms was
also illustrated by Schellekens in the same reference. In particular, he gave a
new formal proof, based on the use of the Banach �xed point theorem, of the
well-known fact that the Mergesort algorithm has optimal asymptotic average
running time of computing. In this paper, motivated by the ut ility of the
quasi-metric formalism for the complexity analysis in Computer Science, we
show that the techniques introduced by Schellekens are alsovalid to analyze
the asymptotic complexity of algorithms whose running time of computing
leads to recurrence equations di�erent from the Divide and Conquer ones. We
illustrate and validate the developed theory applying our new results to pro-
vide the asymptotic complexity class of the celebrated Quicksort and Largetwo
algorithms.

1. Introduction and preliminaries

Throughout this paper the letters R+ ; N and ! will denote the set of nonnegative real
numbers, the set of positive integer numbers and the set of nonnegative integer numbers,
respectively.

In Computer Science the complexity analysis of an algorithmis based on determining
mathematically the quantity of resources needed by the algorithm in order to solve the
problem for which it has been designed. A typical resource, playing a central role in
complexity analysis, is the running time of computing. The aforementioned resource is
de�ned as the time taken by the algorithm to solve a problem, that is, the time elapsed
from the moment the algorithm starts to the moment it termina tes. Since there are often
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many algorithms to solve the same problem, one objective of the complexity analysis is
to assess which of them is faster when large inputs are considered. To this end, it is
required to compare their running time of computing. This is usually done by means of
the asymptotic analysis in which the running time of an algorithm is denoted by a function
T : N ! (0; 1 ] in such a way that T(n) represents the time taken by the algorithm to
solve the problem under consideration when the input of the algorithm is of size n: Of
course the running time of an algorithm does not only depend on the input size n, but
it depends also on the particular input of the sizen (and the distribution of the data).
Thus the running time of an algorithm is di�erent when the algo rithm processes certain
instances of input data of the same sizen: As a consequence, it is necessary to distinguish
three possible behaviours in the complexity analysis of algorithms. These are the so-called
best case, the worst case and the average case. The best case and the worst case for an
input of size n are de�ned by the minimum and the maximum running time of computing
over all inputs of the sizen, respectively. The average case for an input of sizen is de�ned
by the expected value or average over all inputs of the sizen.

In general, to determine exactly the function which describes the running time of com-
puting of an algorithm is an arduous task. However, in most situations is more useful to
know the running time of computing of an algorithm in an \appr oximate" way than in
an exact one. For this reason the asymptotic complexity analysis of algorithms is inter-
ested in obtaining the \approximate" running time of comput ing of an algorithm. The
O-notation allows one to achieve this. Indeed iff; g : N ! (0; 1 ] denote the running time
of computing of algorithms, then the statement g 2 O (f ) means that there existsn0 2 N
and c 2 R+ such that g(n) � cf (n) for all n 2 N with n � n0 (� stands for the usual
order on R+ ): So the function f gives an asymptotic upper bound of the running timeg
and, thus, an \approximate" information of the running time of the algorithm. The set
O(f ) is called the asymptotic complexity class off: Hence, from an asymptotic complexity
analysis viewpoint, to determine the running time of an algorithm consists of obtaining its
asymptotic complexity class. For a fuller treatment of complexity analysis of algorithms
we refer the reader to [1, 2].

In 1995, M.P. Schellekens introduced a new mathematical formalism, known as theory
of complexity spaces, as a part of the development of a topological foundation for the
asymptotic complexity analysis of algorithms ([7]). This theory is based on the notion of
quasi-metric space.

Let us recall that, following [4], a quasi-metric on a nonempty set X is a function
d : X � X ! R+ such that for all x; y; z 2 X :

(i ) d(x; y) = d(y; x) = 0 , x = y;
(ii ) d(x; y) � d(x; z) + d(z; y):

Of course a metric on a nonempty setX is a quasi-metricd on X satisfying, in addition,
the following condition for all x; y 2 X :

(iii ) d(x; y) = d(y; x):

A quasi-metric space is a pair (X; d) such that X is a nonempty set andd is a quasi-
metric on X:

Each quasi-metric d on X generates aT0-topology T (d) on X which has as a base the
family of open d-balls f Bd(x; " ) : x 2 X; " > 0g, where Bd(x; " ) = f y 2 X : d(x; y) < " g
for all x 2 X and " > 0:
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Given a quasi-metric d on X , the function ds de�ned on X � X by

ds(x; y) = max ( d(x; y); d(y; x))

is a metric on X .
A quasi-metric space (X; d) is called bicomplete if the metric space (X; d s) is complete.
A well-known example of a bicomplete quasi-metric space is the pair ((0; 1 ]; u� 1); where

u� 1(x; y) = max
�

1
y � 1

x ; 0
�

for all x; y 2 (0; 1 ]. Obviously we adopt the convention that
1
1 = 0. The quasi-metric space ((0; 1 ]; u� 1) plays a central role in the Schellekens theory.
Indeed, let us recall that the complexity space is the pair (C; dC); where

C= f f : N ! (0; 1 ] :
1X

n=1

2� n 1
f (n)

< 1g

and dC is the quasi-metric on C de�ned by

dC(f; g ) =
1X

n=1

2� nu� 1(f (n); g(n)) =
1X

n=1

2� n max
�

1
g(n)

�
1

f (n)
; 0

�
:

Of course it is again required that 1
1 = 0 :

According to [7], since every reasonable algorithm, from a computability viewpoint,
must hold the \convergence condition"

P 1
n=1 2� n 1

f (n) < 1 , it is possible to associate
each algorithm with a function of C in such a way that such a function represents, as a
function of the size of the input data, its running time of computing. Because of this,
the elements ofC are called complexity functions. Moreover, given two functions f; g 2 C,
the numerical value dC(f; g ) (the complexity distance from f to g) can be interpreted as
the relative progress made in lowering the complexity by replacing any program P with
complexity function f by any program Q with complexity function g. Therefore, if f 6= g;
the condition dC(f; g ) = 0 can be read asf is \at least as e�cient" as g on all inputs (i.e.
dC(f; g ) = 0 , f (n) � g(n) for all n 2 N). Thus we can encode the natural order relation
on the setC; induced by the pointwise order� ; through the quasi-metric dC: In particular
the fact that dC(f; g ) = 0 implies that f 2 O (g):

Notice that the asymmetry of the complexity distance dC plays a central role in order
to provide information about the increase of complexity whenever a program is replaced
by another one. A metric will be able to yield information on the increase but it, however,
will not reveal which program is more e�cient.

In 1922 S. Banach proved in the context of metric spaces its celebrated �xed point
theorem. The origins of such a theorem lies in the methods forsolving di�erential equa-
tions via successive approximations. Nevertheless, sinceBanach proved the �xed point
theorem, a wide range of applications has been given in very di�erent frameworks. A
class of such applications is obtained through extensions of the contraction principle to
the context of generalized metric spaces (for a detailed discussion see, for instance, [6]). In
particular Banach's �xed point theorem can be extended to the quasi-metric framework
in the following easy way:

Theorem 1. Let f be a mapping of a bicomplete quasi-metric space(X; d) into itself such
that there is s 2 R+ with 0 � s < 1; satisfying

(1) d(f (x); f (y)) � sd(x; y);

for all x; y 2 X: Then f has a unique �xed point.
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The applicability of the theory of complexity spaces to the asymptotic complexity anal-
ysis of algorithms was illustrated by Schellekens in [7]. Inparticular, he gave a new proof
of the well-known fact that the Mergesort, a Divide and Conquer algorithm, has optimal
asymptotic average running time of computing. To do this he introduced a method, based
on Theorem 1, to analyze the running time of computing of the general class of Divide
and Conquer algorithms.

Let us recall the aforenamed method with the aim of motivating our subsequent work.
A Divide and Conquer algorithm solves a problem of sizen (n 2 N) splitting it into

a subproblems of sizen
b ; for some constantsa; b with a; b 2 N and a; b > 1; and solving

them separately by the same algorithm. After obtaining the solution of the subproblems,
the algorithm combines all subproblem solutions to give a global solution to the original
problem: The recursive structure of a Divide and Conquer algorithm leads to a recurrence
equation for the running time of computing. In many cases therunning time of a Divide
and Conquer algorithm is the solution to a recurrence equation of the form

(2) T(n) =
�

c if n = 1
aT( n

b ) + h(n) if n 2 ! b
;

where ! b = f bk : k 2 Ng, c 2 R+ (c > 0) denotes the complexity on the base case (i.e. the
problem size is small enough and the solution takes constanttime), h(n) represents the
time taken by the algorithm in order to divide the original pr oblem into a subproblems
and to combine all subproblems solutions into a unique one (h 2 C with 0 < h (n) < 1 for
all n 2 N).

Notice that for Divide and Conquer algorithms, it is typical ly su�cient to obtain the
complexity on inputs of sizen with n ranges over the set! b ([1, 2, 7]):

The Mergesort and the Quicksort (in the best case behaviour)are typical and well-
known examples of Divide and Conquer algorithms whose running time of computing
satis�es the recurrence equation (2) (see, for instance, [1, 2, 3] for a fuller description).

In order to compute the running time of computing of a Divide and Conquer algorithm
satisfying the recurrence equation (2), it is necessary to show that such a recurrence
equation has a unique solution and, later, to obtain the asymptotic complexity class of
such a solution. The method introduced by Schellekens to show that the equation (2) has
a unique solution, and to obtain the asymptotic complexity class of the solution is the
following one:

Denote by Cb;c the subset ofC given by

Cb;c = f f 2 C : f (1) = c and f (n) = 1 for all n =2 ! b with n > 1g:

Since the quasi-metric space (C; dC) is bicomplete (see Theorem 3 and Remark in page
317 of [5]) and the set Cb;c is closed in (C; ds

C); we have that the quasi-metric space
(Cb;c; dCjCb;c ) is bicomplete.

Next we associate a functional �T : Cb;c ! C b;c with the recurrence equation (2) of a
Divide and Conquer algorithm given as follows:

(3) � T (f )(n) =

8
<

:

c if n = 1
1 if n =2 ! b and n > 1
af ( n

b ) + h(n) otherwise
:
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Of course a complexity function in Cb;c is a solution to the recurrence equation (2) if and
only if it is a �xed point of the functional � T : It was proved in [7] that

(4) dCjCb;c (� T (f ); � T (g)) �
1
a

dCjCb;c (f; g )

for all f; g 2 Cb;c: So, by Theorem 1, the functional � T : Cb;c ! C b;c has a unique �xed
point and, thus, the recurrence equation (2) has a unique solution.

In order to obtain the asymptotic complexity class of the solution to the recurrence
equation (2), Schellekens introduced a special class of functionals known as improvers.

Let C � C ; a functional � : C ! C is called an improver with respect to a function
f 2 C provided that � n+1 (f ) � � n (f ) for all n 2 !: Of course � 0(f ) = f .

Observe that an improver is a functional which corresponds to a transformation on
programs in such a way that the iterative applications of the transformation yield an
improved, from a complexity point of view, program at each step of the iteration.

Note that when � is monotone, to show that � is an improver with respect to f 2 C,
it su�ces to verify that �( f ) � f:

Under these conditions the following result was stated in [7]:

Theorem 2. A Divide and Conquer recurrence of the form (2) has a unique solution f T
in Cb;c. Moreover, if the monotone functional � T associated to (2) is an improver with
respect to some functiong 2 Cb;c; then the solution of the recurrence equation satis�es that
f T 2 O (g).

Schellekens discussed the complexity class of the Mergesort, whose pseudocode descrip-
tion is provided below, in order to illustrate the utility of Theorem 2. In the particular
case of Mergesort, the recurrence equation (2) in the average case is exactly

(5) T(n) =
�

c if n = 1
2T( n

2 ) + n
2 if n 2 ! 2

:

It is clear that Theorem 2 provides that the recurrence equation (5) has a unique solution
f T . In addition, Schellekens proved that the functional � T induced by the recurrence
equation (5) is an improver with respect to a complexity function gk 2 C2;c, with k 2 R+

and gk (n) = kn log2(n) for all n 2 ! 2, if and only if 1
2 � k: Therefore, by Theorem 2, we

conclude that f 2 O (g1
2
); i.e. Theorem 2 provides a formal proof of the well-known fact

that the running time of computing of the Mergesort in the average case behaviour is in
the asymptotic complexity class ofn log2(n):

MERGESORT (A; n )
if n > 1 then

m  b n=2c
MERGESORT(A[1::m])
MERGESORT(A[m + 1 ; n])
MERGE(A[1::n]; m)

MERGE (A[1::n]; m)
i  1; j  m + 1
for k  1 to n do

if j > n then
B [k]  A[i ]; i  i + 1

else if i > m then
B [k]  A[j ]; j  j + 1

else if A[i ] < A [j ] then
B [k]  A[i ]; i  i + 1

else
B [k]  A[j ]; j  j + 1

for k  1 to n do
A[k]  B [k]
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In spite of it seems natural that the complexity analysis of Divide and Conquer algo-
rithms always leads up to recurrence equations of type (2), this is not the case. Sometimes
this kind of recursive algorithms yields recurrence equations that di�er from (2). A well-
known example of this type of situations is provided by the Quicksort whose pseudocode
description is the following one:

QUICKSORT (A; p; r )
if p < r then

q  PARTITION (A; p; r )
QUICKSORT(A; p; q)
QUICKSORT(A; q + 1 ; n)

PARTITION (A; p; r )
x  A[p]
i  p � 1
j  r + 1
while TRUEdo

repeat j  j � 1 until A[j ] � x
repeat i  i + 1 until A[i ] � x
if i < j then

exchangeA[i ]  ! A[j ]
else

return j

In the worst case behaviour the recurrence equation obtained for the Quicksort is given
exactly as follows:

(6) T(n) =
�

c if n = 1
T(n � 1) + jn if n � 2

;

wherec is the time taken by the algorithm in the base case, andj 2 R+ with j > 0. Note
that the worst case bahaviour occurs when the Partition procedure of Quicksort produces
one subproblem of sizen � 1 and another one of size 1 withn 2 N (n � 2): Observe, also,
that in this case it is not necessary to restrict the input size of the data to the set ! b for
someb 2 N with b > 1:

Another example of algorithms, in this case a non recursive algorithm, whose complexity
analysis leads to a recurrence equation di�erent from (2) is the well-known Largetwo. This
�nds the two largest entries in one-dimensional array of size n 2 N with n > 1 , and its
pseudocode description is provided below (for a deeper discussion see [3]).

LARGETWO (A)
F irst  A[1]
Sec A[2]
for i  2 to n do

if A[i ] > First then
Sec F irst
F irst  A[i ]

else if A[i ] > Sec then
Sec A[i ]

The running time of computing of Largetwo in the average casebehaviour can be
associated with the solution to the recurrence equation given as follows:

(7) T(n) =
�

c if n = 1
T(n � 1) + 2 � 1

n if n � 2
;
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where c is, again, the time taken by the algorithm in the base case, i.e. when the input
data is a one-diemensional array with only one element or thearray does not contain input
data. Notice that Largetwo needs inputs data with size at least 2.

Of course the recurrence equations that yield the running time of computing of the
above aforesaid algorithms can be considered as particularcases of the following general
one:

(8) T(n) =
�

c if n = 1
T(n � 1) + h(n) if n � 2

;

where c 2 R+ with c > 0, and h 2 C such that 0 < h (n) < 1 for all n 2 N.

Inspired by the exposed Schellekens work, our purpose in this paper is to demonstrate
that the analysis techniques based on the complexity space can be used satisfactorily
to discuss the complexity of those algorithms whose runningtime of computing yields
with recurrence equations of type (8). In particular we prove that the aforesaid recurrence
equations have a unique solution and, in addition, we obtainthe complexity class of such a
solution by means of a new �xed point theorem. In order, on onehand, to validate our new
results and, on the other hand, to show the potential applicability of the developed theory
to complexity analysis in Computer Science, we end the paperdiscussing the running
time of the noted Quicksort and Largetwo in the worst and average case behaviours,
respectively.

2. The new results

In the following we prove the existence and uniqueness of thesolution to the recurrence
equations of type (8) via �xed point techniques in the spirit of Schellekens. To this end
consider the subsetCc of C given by

Cc = f f 2 C : f (1) = cg:

De�ne the functional 	 T : Cc! C c by

(9) 	 T (f )(n) =
�

c if n = 1
f (n � 1) + h(n) if n � 2

for all f 2 Cc: It is clear that a complexity function in Cc is a solution to the recurrence
equation (8) if and only if it is a �xed point of the functional 	 T : Moreover, an easy
computation shows that the functional 	 T is monotone.

The next result supplies us the bicompleteness of the pair (Cc; dCjCc ).

Proposition 3. The subsetCc is closed in (C; ds
C):

Proof. Let g 2 Cc
ds

C and (f k )k2 N � C c with lim k!1 ds
C(g; f k ) = 0 :
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First of all we prove that g 2 C. Indeed, given " > 0, there exist k0; k1 2 N such that
ds

C(g; f k ) < "
2 wheneverk � k0 and

P 1
n= k+1 2� n f k0 (n) < "

2 for all k � k1. Whence

1X

n= k+1

2� n 1
g(n)

=
1X

n= k+1

2� n
�

1
g(n)

�
1

f k0 (n)
+

1
f k0 (n)

�

�
1X

n= k+1

2� n
�
�
�
�

1
g(n)

�
1

f k0 (n)

�
�
�
� +

1X

n= k+1

2� n f k0 (n)

� ds
C(g; f k0 ) +

1X

n= k+1

2� n f k0 (n)

< ":

for all k � k1.
Now suppose for the purpose of contradiction thatg =2 Cc: Then g(1) 6= c. Put 0 < " =

j 1
g(1) � 1

c j: Then there exists k0 2 N such that ds
C(g; f k ) < " wheneverk � k0: Thus

1X

n=1

2� n
�
�
�
�

1
g(n)

�
1

f k (n)

�
�
�
� < "

wheneverk � k0: As a result we have that

" = j
1

g(1)
�

1
c

j �
1X

n=1

2� n
�
�
�
�

1
g(n)

�
1

f k0 (n)

�
�
�
� < ";

which is a contradiction. So g(1) = c
Therefore we have shown thatCc

ds
C = Cc: �

Since the metric space (C; ds
C) is complete and, by Proposition 3, the subsetCc is closed

in (C; ds
C) we immediately obtain the following consequence.

Corollary 4. The quasi-metric space(Cc; dCjCc ) is bicomplete.

The next result provides a method (Theorem 6) to describe thecomplexity of those
algorithms whose running time of computing satis�es the recurrence equation (8).

Theorem 5. Let 	 T : Cc ! C c be the functional given by (9). Then	 T has a unique
�xed point f T in Cc. Moreover if there exists g 2 Cc such that dCjCc (	 T (g); g) = 0 ; then
dCjCc (f T ; g) = 0 :
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Proof. Let f; g 2 Cc: Then

dCjCc (	 T (f ); 	 T (g)) =
1X

n=1

2� n max
�

1
	 T (g)(n)

�
1

	 T (f )(n)
; 0

�

=
1X

n=2

2� n max
�

1
g(n � 1) + h(n)

�
1

f (n � 1) + h(n)
; 0

�

=
1X

n=2

2� n max
�

f (n � 1) � g(n � 1)
g(n � 1)f (n � 1) + s(n)

; 0
�

�
1X

n=2

2� n max
�

f (n � 1) � g(n � 1)
g(n � 1)f (n � 1)

; 0
�

=
1X

n=2

2� n max
�

1
g(n � 1)

�
1

f (n � 1)
; 0

�

=
1
2

dCjCc (f; g );

where s(n) = h(n)( f (n � 1) + g(n � 1)) + h(n)2 for all n � 2.
Now the existence and uniqueness of the �xed pointf T 2 Cc of 	 T follow from Corollary

4 and Theorem 1.
Next assume that there existsg 2 Cc such that dCjCc (	 T (g); g) = 0 : Suppose for the

purpose of contradiction that dCjCc (f T ; g) > 0: Then we have that

dCjCc (f T ; g) � dCjCc (f T ; 	 T (g)) + dCjCc (	 T (g); g) = dCjCc (f T ; 	 T (g))

� dCjCc (f T ; 	 T (f T )) + dCjCc (	 T (f T ); 	 T (g))

= dCjCc (	 T (f T ); 	 T (g)) �
1
2

dCjCc (f T ; g):

From the preceding inequality we deduce that 1� 1
2 , which is imposible. SodCjCc (f T ; g) =

0: �

Theorem 6. A recurrence of the form (8) has a unique solutionf T in Cc. Moreover if the
monotone functional 	 T associated to (8), and given by (9), is an improver with respect
to some function g 2 Cc, then f T 2 O (g):

Proof. Sincef T 2 Cc is a solution to the recurrence equation (8) if and only iff T is a �xed
point of 	 T , Theorem 5 guarantees the existence and uniqueness of the solution to (8).

Assume that 	 T is an improver with respect to g 2 Cc. Then we have 	 T (g) � g.
Hence we obtain that dCjCc (	 T (g); g) = 0 : It immediately follows, by Theorem 5, that
dCjCc (f T ; g) = 0 and, thus, f T � g: Therefore we conclude thatf T 2 O (g): �

We end the paper validating our results. Speci�cally we retrieve as an immediate
consequence of Theorem 6 the asymptotic complexity class for Quicksort and Largetwo in
the worst and average case behaviours, respectively.
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Corollary 7. Let d; r 2 R+ with d; r > 0. Then the following assertions hold:

1) The running time of computing of the Quicksort in the worst case behaviour is in

the the complexity classO(gk ), where k = max
�

c
4 + j

2 ; 3j
5

�
and

gr (n) =
�

c if n = 1
rn 2 if n � 2

:

2) The running time of computing of the Largetwo in the average case behaviour is

in the the complexity classO(gk ), where k = max
�

2c+3
6+2 d ; 1

�
and

gr (n) =
�

c if n = 1
r (2(n � 1) + log 2 n + d) if n � 2

Proof. (1) It is clear that gr 2 Cc. Let 	 QW
T be the functional associated to recurrence

equation (6) and let f QW
T be its solution (guaranteed by Theorem 6). It is a simple matter

to check that

dCjCc (	 QW
T (gr ); gr ) = 0 , max

�
c
4

+
j
2

;
3j
5

�
� r:

Thus 	 QW
T is an improver with respect to gmax( c

4 + j
2 ; 3j

5 ) : Consequently, by Theorem 6, we

obtain f QW
T 2 O

�
gmax( c

4 + j
2 ; 3j

5 )

�
:

(2) Obviously gr 2 Cc. Let 	 LA
T be the functional associated to recurrence equation (7)

and let f LA
T be its solution (guaranteed by Theorem 6). A straightforward computation

shows that

dCjCc (	 LA
T (gr ); gr ) = 0 , max

�
2c + 3
6 + 2d

; 1
�

� r:

Hence 	 LA
T is an improver with respect to gmax( 2c+3

6+2 d ;1) : Consequently, by Theorem 6, we

obtain f LA
T 2 O

�
gmax( 2c+3

6+2 d ;1)

�
: �

3. Conclusion

In [7], M.P. Schellekens introduced a mathematical formalism in order to provide al-
ternative rigorous arguments, based on quasi-metric �xed point techniques, for describing
the computational complexity of Divide and Conquer algorithms. We have shown that
the original techniques introduced by Schellekens are alsoappropriate to carry out the
asymptotic complexity analysis of algorithms whose running time of computing can be de-
scribed by recurrence equations which di�er from the Divide and Conquer ones. Finally,
the running time of computing of Quicksort (in the worst case behaviour) and Largetwo
(in the average behaviour) has been analyzed as speci�c examples in order to validate the
developed theory.
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Abstract

The aim of the present work is to state some topological dynamics results for a
family of lattice dynamical systems stated by K. Kaneko in [Phys. Rev. Lett.,
65, 1391-1394, 1990] which is related to the Belusov{Zhabotinskii chemical
reactions. We prove that these LDS (Lattice Dynamical Systems) systems are
chaotic in the sense of Li{Yorke, in the sense of Devaney and have positive
topological entropy for zero coupling constant. Moreover,we present a de�-
nition of distributional chaos on a sequence (DCS) for LDS systems and we
state two di�erent su�cient conditions for having DCS. These results survey
three di�erent papers, two of them written jointly with M. Lam part.

1. Introduction

Classical Discrete Dynamical Systems (DDS's), i.e., a couple composed by a spaceX
(usually compact and metric) and a continuous self{map on X , have been highly con-
sidered in the literature (see e.g., [BC] or [D]) because aregood examples of problems
coming from the theory of Topological Dynamics and model many phenomena from biol-
ogy, physics, chemistry, engineering and social sciences (see for example, [Da], [KO], [Pu]
or [Po]). In most cases in the formulation of such models is a C1 , an analytical or a
polynomial map.

Coming from physical/chemical engineering applications,such a digital �ltering, imag-
ing and spatial vibrations of the elements which compose a given chemical product, a
generalization of DDS's have recently appeared as an important subject for investigation,
we mean the so called (LDS)Lattice Dynamical Systems or 1d Spatiotemporal Discrete
Systems. In the next section we provide all the de�nitions. To show the importance of
these type of systems, see for instance [ChF].

To analyze when one of this type of systems have a complicateddynamics or not by
the observation of one topological dynamics property is an open problem. The aim of
this work is, by using di�erent notions of chaosand the concept of topological entropy we
characterize the dynamical complexity of a family coupled lattice dynamical systems which

1This work has been partially supported by M.C.I. (Ministeri o de Ciencia e Innovaci�on) and FEDER
(Fondo Europeo Desarrollo Regional), grant number MTM2008 {03679/MTM; by Fundaci�on S�eneca de
la Regi�on de Murcia, grant number 08667/PI/08 and by Junta d e Comunidades de Castilla{La Mancha,
grant number PEII09-0220-0222.
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contains the stated one by K. Kaneko in [K] (for more details see for references therein)
which is related to the Belusov{Zhabotinskii's reactions type. Concretely, we prove that
these LDS systems are chaotic in the sense of Li{Yorke, in thesense of Devaney and have
positive topological entropy for zero coupling constant. Moreover, we present a de�nition
of distributional chaos on a sequence (DCS) for LDS systems and we state two di�erent
su�cient conditions for having DCS.

We present some other problems for the future related with physical/chemical applica-
tions.

2. Definitions and notation

Let us start introducing two of the most well{known notions o f chaos for a discrete
dynamical systems generated by the iteration of a continuous self{map f de�ned on a
compact metric spaceX with metric d .

De�nition 1. A pair of points x; y 2 X is called aLi-Yorke pair if

(1) lim supn!1 d(f n (x); f n (y)) > 0
(2) lim inf n!1 d(f n (x); f n (y)) = 0 :

A set S � X is called aLY-scrambled set for f (Li-Yorke set ) if # S � 2 and every pair
of di�erent points in S is a LY-pair where # means the cardinality.

For continuous self{maps on the interval [0; 1], Li and Yorke [LY] suggested that a
map should be called \chaotic" if it admits an uncountable scrambled set. This was
subsequently accepted as a formal de�nition.

De�nition 2. We say that a map f is Li and Yorke chaotic if it has an uncountable
LY-scrambled set.

One may consider weaker variants of chaos in the sense of Li and Yorke based on the
cardinality of scrambled sets (see for instance [GL1]).

On the other hand, a map f is:

(1) transitive if for any pair of nonempty open setsU; V � X there exists an n 2 N
such that f n(U) \ V 6= ; ;

(2) locally eventually ontoif for every nonempty open setU � X there exists anm 2 N
such that f m (U) = X . Since this property can be regarded as the topological
analog of exactness de�ned in ergodic theory, it is often called topological exactness.
We use the second name here.

Recall that a periodic point of period n of f is a point x such that f n (x) = x and
f j (x) 6= x for 0 < j < n .

De�nition 3. A map f is calledDevaneychaotic if it satis�es the following two properties:

(1) f is transitive,
(2) the set of periodic points of f is dense inX .

The original de�nition given by Devaney [D] contained an additional condition on f ,
which re
ects unpredictability of chaotic systems: sensitive dependence on initial condi-
tions. However, it was proved see, e.g., [Ba] that sensitivity is aconsequence of transitivity
and dense periodicity under the assumption thatX is an in�nite set.

Let us recall the notion of Positive topological entropy which is known to topological
chaos.
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An attempt to measure the complexity of a dynamical system isbased on a computation
of how many points are necessary in order to approximate (in some sense) with their orbits
all possible orbits of the system. A formalization of this intuition leads to the notion of
topological entropy of the map f , which is due to Adler, Konheim and McAndrew [AKM].
We recall here the equivalent de�nition formulated by Bowen [B], and independently by
Dinaburg [Di]: the topological entropy of a map f is a number h(f ) 2 [0; 1 ] de�ned by

h(f ) = lim
" ! 0

lim sup
n!1

# E(n; f; " );

whereE(n; f; " ) is a (n; f; " ){span with minimal possible number of points, i.e., a set such
that for any x 2 X there is y 2 E(n; f; " ) satisfying d(f j (x); f j (y)) < " for 1 � j � n.

A map f is topologically chaotic (brie
y, PTE) if its topological entropy h(f ) is positive.

Lattice Dynamical Systems. The state space of LDS (Lattice Dynamical System) is
the set

X = f x : x = f x i g; x i 2 Rd; i 2 ZD ; kx i k < 1g ;
where d � 1 is the dimension of the range space of the map of statex i , D � 1 is the

dimension of the lattice and the l2 norm kxk2 = (� i 2 ZD j x i j2)1=2 is usually taken (j x i j
is the length of the vector x i ).

We deal with the following LDS family of systems which contains the system stated by K.
Kaneko in [K] (for more details see for references therein) which is related to the Belusov{
Zhabotinskii reactions (see [KO] and for experimental study of chemical turbulence by
this method [HGS], [HOY], [HHM]):

(1) xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) � f (xm

n+1 )];

where m is discrete time index, n is lattice side index with system sizeL (i.e. n =
1; 2; : : : L ), � is coupling constant andf (x) is the unimodal mapon the unite closed interval
I = [0 ; 1], i.e. f (0) = f (1) = 0 and f has unique critical point c with 0 < c < 1 such that
f (c) = 1. For simplicity we will deal with so called \tent map", de �ned by

(2) f (x) =
�

2x; x 2 [0; 1=2);
2 � 2x; x 2 [1=2; 1]:

In general, one of the following periodic boundary conditions of the system (1) is as-
sumed:

(1) xm
n = xm

n+ L ,
(2) xm

n = xm+ L
n ,

(3) xm
n = xm+ L

n+ L ,
standardly, the �rst case of the boundary conditions is used.

The equation (1) was studied by many authors, mostly experimentally or semi-analytically
than analytically. The �rst paper with analytic results is [ ChL], where it was proved that
this system is Li{Yorke chaotic, we give alternative and easier proof of it in this paper.

We consider, as an example the 2{element one{way coupled logistic lattice (see [KW])
H : I 2 ! I 2 written as

xm+1
1 = (1 � � )f (xm

1 ) + �f (xm
2 );

xm+1
2 = �f (xm

1 ) + (1 � � )f (xm
2 );

(3)

where f is the tent map.
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3. Li{Yorke, Devaney and topological chaos

The following two lemmas will be used for the proof of the mainresults. The proof of
the �rst one is obvious (or, see e.g. [DK]).

Lemma 4. Let f : X ! X and g : Y ! Y be maps with dense sets of periodic points.
Then the Cartesian product f � g : X � Y ! X � Y has also dense set of periodic points.

Proposition 5 ([BC]) . Let f be the tent map de�ned by (2). PutI k;l = [( l � 1)=2k ; l=2k ]
where l = f 1; 2; 3; : : : ; 2kg and k 2 N. Then the restriction of f k to I k;l is linear homeo-
morphism onto [0; 1].

Let us note that the Cartesian product of two topologically t ransitive maps is not
necessarily topologically transitive (see e.g. [DK] ). Hence, for the proof of Theorem 7 we
need to prove:

Lemma 6. The system

xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) � f (xm

n+1 )];

is topologically exact for � = 0 .

Proof. Let U be given open subset ofI L . Then the projection of U to the m{th coordinate
contains Um open connected subset ofI , for each m = 1 ; 2; : : : L . Then by Proposition 5
there is km such that f km (Um ) = I . If we put K = max f km j m = 1 ; 2; : : : Lg then the
K {th iteration of U by the system (1) equals toI L . �

Theorem 7. The system

xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) � f (xm

n+1 )];

is chaotic in the sense of Devaney for� = 0 .

Proof. The assertion follows by Lemma 4 and Lemma 6. �

The following Proposition is very powerful tool of symbolic dynamics2 for observing
nearly all dynamical properties.

Proposition 8. There is a subsystem of (1) which is conjugated3 to (� L
2 ; � L

2 ).

Proof. Since the critical point for the tent map is equal to 1/2 we can divide the interval
I into two sets P1 = [0 ; 1=3) and P2 = (2 =3; 1] and get a family P = f P1; P2g. Then each
point x0 2 � 1 can be represented as an in�nite symbol sequenceC1(x0) = � = a1a2a3 : : :
where � 1 is Cantor ternary set and

an =
�

0 if f n(x0) 2 P1;
1 if f n(x0) 2 P2:

Returning to (3) we can divide its range set into four setsP = f P1
1 ; P1

2 ; P2
1 ; P2

2 g (see
the �gure below) where the upper index corresponds to thex1 coordinate and x2 to the

2Here, � 2 is the shift operator on the space of all two element sequences � 2 .
3We say that two dynamical systems ( X; f ) and (Y; g) are topologically conjugated if there is a homeo-

morphism h : X ! Y such that h � f = g � h, such homeomorphism is calledconjugacy.
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lower one. Then again each pointp 2 � 2 can be encrypted as an in�nite symbol sequence
C2(p) = � = a1a2a3 : : : where � 2 is 2-dimensional Cantor ternary set4 and

an =

8
>><

>>:

0 if H n(p) 2 P1
1 ;

1 if H n(p) 2 P1
2 ;

2 if H n(p) 2 P2
1 ;

3 if H n(p) 2 P2
2 :

Now, we denote thek-shift operator � k on k symbol alphabet, de�ned by � k : � k ! � k
and � k (a1a2a3 : : : ) = a2a3 : : : where � k = f � j � = a1a2a3 : : : and ai 2 f 1; 2; : : : kgg, so
the e�ect of this operator is to delete the �rst symbol of the sequence� .

We can observe that � 2 is invariant 5 subset of the range space of the system (3) and
that each its point is encoded by exactly one point from � 4, for � = 0. So, by [F] the shift
operator � 4 acts on � 4 exactly as (3) on � 2, for � = 0. �

Theorem 9. The system

xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) � f (xm

n+1 )];

is chaotic in the sense of Li{Yorke for � = 0 .

Proof. By Proposition 8 the system (1) has a subsystem conjugated to(� L
2 ; � L

2 ) which is
Li{Yorke chaotic (see e.g. [BGKM]). �

Proposition 10 ([W]) . If (X; f ) and (Y; g) are topologically conjugated systems then
h(f ) = h(g).

For the proof of result concerning topological entropy we use the well known result:

Proposition 11 ([W]) . Let � k be thek-shift operator. Then h(� k ) = k log 2.

Theorem 12. The system

xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) � f (xm

n+1 )];

has positive topological entropy for� = 0 . Moreover, its entropy equals toL log 2.

4by n-dimensional Cantor set we mean the Cantor set constructed as subset ofRn

5a set M is invariant for the map f if f (M ) � M
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Proof. By the construction of the Section 2 it follows that the 2{dim ensional system (1)
contains 2-dimensional Cantor set which is conjugated (see, e.g. [F]) to the shift space � 4
by the conjugacy map C2, for � = 0. Then by Proposition 10 the system has topological
entropy equal to the entropy of � 4. Consequently, by Proposition 11 its entropy is 2 log 2.

To the end of the proof, it su�ce to note, that the constructio n of the Section 2 can be
generalized to theL-dimensional systems. Such system will be conjugated to the2L -shift
by CL conjugacy and by the same arguments, as in the paragraph above, its entropy equals
to L log 2. �

Remark 13. There are many other notions of chaos, like distributional{chaos,! {chaos or
to satisfy the speci�cation property. The system (1) ful�ll s all this chaotic behavior by
the same arguments as in the proof of the Theorem 9 for zero coupling constant. But
obviously this system is not minimal, where minimal means that there is no proper subset
which is invariant, nonempty and closed.

The proof of Theorem 12 can be done in an alternative way. For zero coupling constant
it is obvious that each lattice side contains a subsystem conjugated to (� 2; � 2). Then
the system (1) contains subsystem conjugated to theL-times product of (� 2; � 2) and by
h(� 2 � � � � � � 2| {z }

L

) = Lh (� 2) (see, e.g. [W]) the assertion follows.

For non{zero coupling constants the dynamical behavior of the system (1) is more com-
plicated. The �rst question is how the invariant subsets of phase space look like? Secondly,
what are the properties of ! {limit sets (i.e., set of limits points of the trajectories) ? The
answer for these questions will be nontrivial. Similar system was studied in [BGLL] and
there was used the method of resultants to prove existence ofperiodic points of higher
order. The same concept like in [BGLL] should be used.

4. Distributional chaos on a sequence for LDS

The aim of this section is, by the introduction of the notion of distributional chaos
on a sequence(DCS) for coupled lattice systems (LDS), to characterize the dynamical
complexity of the coupled lattice family of systems (1). We present two di�erent su�cient
conditions for having DCS for this family of LDS. These results complete and generalize
the result surveyed in the previous sections from [GL1, GL2]where Li-Yorke chaos and
topological entropy are respectively studied.

The statement of the main results in this direction are the following, see [G]:

Theorem 14. Let f be a continuous self{map de�ned on a compact interval[a; b]. If f
is Li{Yorke chaotic, then the LDS system de�ned byf in the form (1) is distributionally
chaotic with respect to a sequence considering[a; b]1 endowed with the metrics� i , i = 1 ; 2,
respectively.

and

Theorem 15. Let f be a continuous self{map de�ned on a compact interval[a; b]. If f
has positive topological entropy, then the LDS system de�nedby f in the form (1) has an
uncountable distributionally scrambled set, composed by almost periodic points, with respect
to a sequence considering[a; b]1 endowed with the metrics� i , i = 1 ; 2, respectively.
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4.1. From LDS to classical DDS. Consider the set of sequences of real numbers

R1 = f (:::; a� 2; a� 1; a0; a1; a2; :::) : an 2 R; n 2 Zg:

Let x1 = ( xm
1 )m2 Z , x2 = ( xm

2 )m2 Z 2 R1 , in R1 we consider the following two non-
equivalent metrics:

(4) � 1(x1; x2) =
n= 1X

n= �1

�
�x1

n � x2
n

�
�

2jnj

and

(5) � 2(x1; x2) = sup f
�
�x1

n � x2
n

�
� : n 2 Zg:

Note that ( R1 ; � i ), i = 1 ; 2, is a complete metric space. We consider [a; b]1 the subset
of R1 composed by sequences with terms in the compact interval [a; b] endowed with the
restriction of � i .

Let N0 = N [ f 0g and f : [a; b] ! [a; b] be a continuous self{map. Letx = f xn
m : m 2

N0; n 2 Zg be a solution of the LDS system (1) with initial condition � = ( � n = � 0
n )n2 Z

where � n 2 [a; b] for all n 2 Z.

De�ne for all m 2 N0, xm = ( :::; xm
� 1; xm

0 ; xm
1 ; :::) and consider the self-mapFf de�ned

on [a; b]1 in the form

(6) Ff (xm ) = ( :::; xm+1
� 1 ; xm+1

0 ; xm+1
1 ; :::) = xm+1

where x0 = � and xm+1
n = (1 � � )f (xm

n ) + �=2[f (xm
n� 1) + f (xm

n+1 )], m 2 N0.

Remark 16. From the previous construction, for a given self-mapf de�ned on a compact
interval [ a; b], the LDS system (1) associated withf is equivalent to the classical dynamical
system ([a; b]1 ; Ff ) where Ff is de�ned in (6).

Let us recall the de�nition of distributional chaos with res pect to a sequence in the
setting of discrete dynamical systems.

Let f pi gi 2 N be an increasing sequence of positive integers, letx; y 2 [a; b] and t 2 R.
Let

� (n)
xy (t; f pi gi 2 N) :=

1
n

# f i : jf pi (x) � f pi (y)j < t; 0 � i < n g;

� xy (t; f pi gi 2 N) := lim inf
n!1

� (n)
xy (t; f pi gi 2 N);

� �
xy (t; f pi gi 2 N) := lim sup

n!1
� (n)

xy (t; f pi gi 2 N)

where #( A) denotes the cardinality of a setA. Using these notations distributional chaos
with respect to a sequence is de�ned as follows:

De�nition 17. A pair of points ( x; y) 2 [a; b]2 is calleddistributionally chaotic with respect
to a sequencef pi gi 2 N if � xy (s; f pi gi 2 N) = 0 for some s > 0 and � �

xy (t; f pi gi 2 N) = 1 for all
t > 0.

A set S containing at least two points is called distributionally scrambled with respect
to f pi gi 2 N if any pair of distinct points of S is distributionally chaotic with respect to
f pi gi 2 N.

A map f is distributionally chaotic with respect to f pi gi 2 N, if it has an uncountable set
distributionally scrambled with respect to f pi gi 2 N.
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De�nition 18. A point x is calledalmost periodic of f , if for any " > 0 there existsN > 0
such that for any q � 0, there existsr; q < r � q + N , holding jf r (x) � xj < " . By AP(f )
we denote the set of all almost periodic points off .

The following results from Oprocha [Op] and Liao et al. [L] will play a key role in the
proof of Theorems 14 and 15.

Lemma 19. Let f be a continuous self-map on[a; b]. The map f is Li{Yorke chaotic i�
there exists an increasing sequencef pi gi 2 N such that f is distributionally chaotic repect to
f pi gi 2 N.

Lemma 20. Let f be a continuous self-map on[a; b]. If f has positive topological en-
tropy, then there exists an increasing sequencef pi gi 2 N such that f has an uncountable
distributionally scrambled setT with respect to f pi gi 2 N. Moreover, the setT is composed
by almost periodic points.

For details on the de�nition of topological entropy see [W].
Note that the de�nition of distributional chaos in a sequence f pi gi 2 N for a continuous

self-map f de�ned on an interval [a; b] is equivalent to the existence of an uncountable
subsetS � [a; b] such that for any x; y 2 S, x 6= y,

� there exists � > 0 such that

lim inf
n!1

1
n

nX

i =1

� [0;� ) (jf
pi (x) � f pi (y)j) = 0 ;

� for every t > 0,

lim sup
n!1

1
n

nX

i =1

� [0;t ) (jf
pi (x) � f pi (y)j) = 1 ;

where � A (x) = 1 if x 2 A and � A (x) = 0 otherwise.

Proof of Theorem 14. Since the mapf is Li{Yorke chaotic, by Lemma 19 there exists an
increasing sequencef pi gi 2 N such that f is distributionally chaotic with repect to f pi gi 2 N.
Let S � [a; b] be the uncountable set distributionally scrambled with respect to f pi gi 2 N
for f . Let E � [a; b]1 be the uncountable set such that each element of it is a constant
sequence equal to an element ofS. Let x = f xn = agn2 N and y = f yn = bgn2 N be two
di�ernt elements of E . Then, there exists � > 0 such that

lim inf
n!1

1
n

nX

i =1

� [0;� ) (� 1(F pi (x); F pi (y))) =

lim inf
n!1

1
n

nX

i =1

� [0;� ) (
1X

n= �1

jf pi (a) � f pi (b)j
2jnj

) =

lim inf
n!1

1
n

nX

i =1

� [0;� )(3 jf pi (a) � f pi (b)j) = 0 :
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and for every t > 0 is

lim sup
n!1

1
n

nX

i =1

� [0; t
3 ) (� 1(F pi (x); F pi (y))) =

lim sup
n!1

1
n

nX

i =1

� [0; t
3 ) (

1X

n= �1

jf pi (a) � f pi (b)j
2jnj

) =

lim sup
n!1

1
n

nX

i =1

� [0; t
3 )(3 jf pi (a) � f pi (b)j) = 1 :

In a similar way for the distance � 2 we have that there exists� � > 0 such that

lim inf
n!1

1
n

nX

i =1

� [0;� � ) (� 2(F pi (x); F pi (y))) =

lim inf
n!1

1
n

nX

i =1

� [0;� � )(sup jf pi (a) � f pi (b)j) =

lim inf
n!1

1
n

nX

i =1

� [0;� � )(jf
pi (a) � f pi (b)j) = 0 ;

and for every t > 0 is held

lim sup
n!1

1
n

nX

i =1

� [0;t )(� 2(F pi (x); F pi (y))) =

lim sup
n!1

1
n

nX

i =1

� [0;t )(sup jf pi (a) � f pi (b)j) =

lim sup
n!1

1
n

nX

i =1

� [0;t )(jf
pi (a) � f pi (b)j) = 1 :

Thus, F is distributionally chaotic with respect to f pi gi 2 N respectively using in [a; b]1
the metrics � 1 and � 2 ending the proof. �

Proof of Theorem 15. Since f has positive topological entropy by Lemma 20 there ex-
ists an increasing sequencef pi gi 2 N such that f is distributionally chaotic with repect to
f pi gi 2 N. Let S � [a; b] be the uncountable set distributionally scrambled with respect to
f pi gi 2 N for f composed by almost periodic points. LetE � [a; b]1 be the uncountable
set such that each element of it is a constant sequence equal to an element ofS. The
proof of Theorem A states that E is an uncontable distributionally scrambled set for F
with respect to f pi gi 2 N. Now, we shall see thatE is composed by almost periodic points
of F respectively for the metrics � 1 and � 2. Indeed, let � = f xn = x � gn2 N 2 E where
x 2 AP( f ). Then, for any " > 0 there existsN > 0 such that for any q � 0, there exists
r; q < r � q + N , holding jf r (x � ) � x � j < " . In this setting,

� 1(F r (x0); x0) =
1X

n= �1

jf r (x � ) � x � j
2jnj

< 3"
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and

� 2(F r (x0); x0) = sup jf r (x � ) � x � j �
"
3

;

proving that E � AP( F ) ending the proof. �
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Abstract

In this paper we revise some aspects of the completion of fuzzy metric spaces
and in particular of stationary fuzzy metric spaces in the sense of George and
Veeramani.

1. Introduction

The concept of fuzzy metric space due to Kramosil and Michalek [12] is an extension
to the fuzzy context of the Menger (probabilistic metric) space [13]. Later, George and
Veeramani [4] gave a new concept of fuzzy metric space by modifying the de�nition of
Kramosil and Michalek. The topology deduced by fuzzy metrics and some other notions
relative to the completion of fuzzy metric spaces, that we will see in Section 3, are analogous
to the corresponding ones in Menger spaces [1, 23, 22].

Fuzzy metrics have been a useful tool in the color image �ltering process [2, 14, 15, 16].
In this paper we brie
y survey the theory relative to the comp letion of the above mentioned
spaces and, in particular, we include our last results on stationary fuzzy metrics [11].

The structure of the paper is as follows. In Section 2 we relate the notion of Menger
space with fuzzy metric space in the sense of Kramosil and Michalek which let to conclude
that this type of fuzzy metrics are completable. In Section 3we give the preliminary
notions on fuzzy metrics in the sense of George and Veeramani, with which we deal.
Finally, in Section 4, we study some aspects related to the completion of strong fuzzy
metrics.

In the sequel R; R+ ; Q and N will denote the sets of real numbers, positive real num-
bers, rational numbers and positive integers, respectively. Our basic reference for general
topology is [3].

2. Fuzzy metric spaces in the sense of Kramosil and Michalek

The concept of fuzziness found place in probabilistic metric spaces. The main reason
behind this was that, in some cases, uncertainty in the distance between two points was
due to fuzziness rather than randomness. With this idea, in 1975, Kramosil and Michalek
[12] extended the concept of probabilistic metric space to the fuzzy situation as follows.

1This research is supported by Universidad Polit�ecnica de V alencia under Grant PAID-06-08 Primeros
Proyectos de Investigaci�on del Vicerrectorado de Investi gaci�on de la UPV and the Spanish Ministery of
Science and Innovation under Grant MTM2009-12872-C02-01.



On the completion of fuzzy metric spaces

De�nition 1 ([12]). The tern (X; M; � ) is a fuzzy metric space ifX is a nonempty set,� is
a continuous t-norm and M is a fuzzy set onX 2 � R satisfying for all x; y; z 2 X; t; s 2 R
the following axioms:

(KM1) M (x; y; t ) = 0 for all t � 0.
(KM2) M (x; y; t ) = 1 for all t > 0 if and only if x = y.
(KM3) M (x; y; t ) = M (y; x; t )
(KM4) M (x; y; t ) � M (y; z; s) � M (x; z; t + s)
(KM5) The function M xy : R ! [0; 1] de�ned by M xy (t) = M (x; y; t ) for all t 2 R
is left continuous.
(KM6) lim

t !1
M (x; y; t ) = 1

If ( X; M; � ) is a fuzzy metric space we say that (M; � ) (or simply M ) is a fuzzy metric
on X .

From the above axioms one can show thatM xy is an increasing function.
Any fuzzy metric space (X; M; � ) is equivalent to a Menger space ([12] Corollary of

Theorem 1) if we de�ne for all x; y 2 X , the (distribution) function Fxy given by Fxy (t) =
M (x; y; t ) for all t 2 R. Then, by this formula, since � is continuous, we can deduce from
M a topology � M in an analogous way to that in Menger spaces. Moreover, if we translate
the concepts and results relative to completion in Menger spaces we obtain, imitating the
Sherwood's proof [23], that every fuzzy metric space in the sense of Kramosil and Michalek
has a completion which is unique up to an isometry [17].

Remark 2. In a modern terminology [7, 4] a fuzzy metric (in the sense of Kramosil and
Michalek) M on X is a fuzzy set onX 2 � [0; 1 [ satisfying axioms (KM2)-(KM5), being �
a continuous t-norm and where (KM1) is replaced with

(KM1) ' M (x; y; 0) = 0

Now, mainly because (KM6) has been removed, in this case a fuzzy metric cannot be
regarded as a Menger space. Nevertheless, in the same way as in the Menger spaces
theory, a topology � M deduced from M is de�ned on X , and the concepts relative to
completeness inPM spaces can be translated to this fuzzy theory. Further, if weimitate
the Sherwood's construction of the completion of a Menger space, based on the properties
of Levi's metric, we obtain that this fuzzy metric space admits completion and it is unique
up to an isometry. A direct proof of this conclusion using suprema of subsets of [0; 1] and
lower limits of sequences in [0; 1] has been recently given in [18].

Notice that in the de�nition of probabilistic metric space i n [22] (and in [1], also known
as generalized Menger space) there is no any equivalence to (KM6) condition.

In 1994, George and Veeramani introduced the notion of fuzzymetric space by modifying
the modern concept of fuzzy metric due to Kramosil and Michalek (Remark 2) which is
given at the beginning of the following section and which we will adopt from now on.

3. Fuzzy metric spaces in the sense of George and Veeramani

De�nition 3 ([4]). A fuzzy metric space is an ordered triple (X; M; � ) such that X is
a (nonempty) set, � is a continuous t-norm and M is a fuzzy set onX � X � ]0; + 1 [
satisfying the following conditions, for all x; y; z 2 X; t; s > 0 :

(GV1) M (x; y; t ) > 0;
(GV2) M (x; y; t ) = 1 if and only if x = y;
(GV3) M (x; y; t ) = M (y; x; t );
(GV4) M (x; y; t ) � M (y; z; s) � M (x; z; t + s);
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(GV5) The function M xy : R+ ! ]0; 1] de�ned by M xy (t) = M (x; y; t ) for all t > 0
is continuous.

If ( X; M; � ) is a fuzzy metric space, we will say that (M; � ), or simply M , is a fuzzy
metric on X .

The three most commonly used continuoust-norms in fuzzy logic are the minimum,
denoted by ^ , the usual product, denoted by � and the Lukasievicz t-norm, denoted by L
(xLy = max f 0; x + y � 1g). They satisfy the following inequalities:

xLy � x � y � x ^ y

and
x � y � x ^ y

for each (continuous) t-norm � .
Recall that if ( X; M; � ) is a fuzzy metric space and� is a continuous t-norm such that

a � b � a � b for eacha; b2 [0; 1] (brie
y � � � ), then (X; M; � ) is a fuzzy metric space but
the converse, in general, is false. Consequently, if (X; M; ^ ) is a fuzzy metric space then
(X; M; � ) is a fuzzy metric space for each continuoust-norm � .

George and Veeramani proved in [4] that every fuzzy metricM on X generates a
topology � M on X which has as a base the family of open sets of the formf BM (x; r; t ) :
x 2 X; 0 < r < 1; t > 0g; where BM (x; r; t ) = f y 2 X : M (x; y; t ) > 1 � r g for all x 2 X;
r 2 ]0; 1[ and t > 0:

Proposition 4 ([4]). Let (xn ) be a sequence onX . Then (xn ) converges tox if and only
if lim

n
M (xn ; x; t ) = 1 for each t > 0.

De�nition 5 ([6]). Let (X; M; � ) be a fuzzy metric space. Then
a) A sequence (xn ) in X is said to beM -Cauchy (or simply Cauchy) if for each " 2]0; 1[

and each t > 0 there is n0 2 N such that M (xn ; xm ; t) > 1 � " for all n; m � n0, i.e.
lim
n;m

M (xn ; xm ; t) = 1 for all t > 0.

b) (X; M; � ) is called complete if every Cauchy sequence inX is convergent with respect
to � M .

It has been proved that the class of topological spaces whichare fuzzy metrizable agrees
with the class of metrizable topological spaces (see [5] and[8]) and then, some classical
theorems on metric completeness and metric (pre)compactness have been adapted to the
realm of fuzzy metric spaces ([8]). Nevertheless, the theory of fuzzy metric completion,
that we will see in the following is, in this context, very di�e rent from the classical theory
of metric completion, because there are fuzzy metric spaceswhich are non-completable.

De�nition 6 ([9]). Let (X; M; � ) and (Y; N; ?) be two fuzzy metric spaces. Then
a) A mapping ' from X to Y is called an isometry if for each x; y 2 X and eacht > 0,

M (x; y; t ) = N (' (x); ' (y); t):
b) (X; M; � ) and (Y; N; ?) are called isometric if there is an isometry from X onto Y:

Recall that, as in the classical metric case, every isometryis one-to-one.

De�nition 7 ([9]). Let (X; M; � ) be a fuzzy metric space. A complete fuzzy metric space
(X � ; M � ; � ) is a fuzzy metric completion of (X; M; � ) if ( X; M ) is isometric to a dense
subspace of (X � ; M � ).

De�nition 8. A fuzzy metric space (X; M; � ) is called completable if it admits a fuzzy
metric completion.
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Proposition 9 ([9]). If a fuzzy metric space has a fuzzy metric completion then it is
unique up to isometry.

Suppose (X � ; M � ; � ) is a fuzzy metric completion of (X; M; � ). Attending to the last
proposition and the construction of the completion [10], wecan consider that X � X � , �
is � , and that M � is de�ned on X � by

M � (x; y; t ) = lim
n

M (xn ; yn ; t)

for all x; y 2 X � ; t > 0, where (xn ) and (yn ) are sequences inX that converge to x and
y, respectively.

In [10] a characterization of the completable fuzzy metric spaces was given as follows.

Theorem 10. A fuzzy metric space(X; M; � ) is completable if and only if it satis�es the
two following conditions:

Given two Cauchy sequences(an )n ; (bn )n ; in X then

(C1) t 7! lim
n

M (an ; bn ; t) is a continuous function on R+ with values in ]0; 1]:

(C2) If lim
n

M (an ; bn ; t0) = 1 for some t0 > 0 then lim
n

M (an ; bn ; t) = 1 for all
t > 0.

De�nition 11. A fuzzy metric M (or a fuzzy metric space (X; M; � )) is said to be sta-
tionary ([10]) if M does not depend ont; i.e. if for each x; y 2 X; the function M xy is
constant.

If ( X; M; � ) is a stationary fuzzy metric space, we will simply write M (x; y) instead of
M (x; y; t ).

De�nition 12 ([11]). Let (X; M; � ) be a fuzzy metric space. The fuzzy metricM (or the
fuzzy metric space (X; M; � )) is said to be strong if it satis�es for each x; y; z 2 X and
each t > 0

(GV4') M (x; z; t ) � M (x; y; t ) � M (y; z; t)

If ( X; M; ^ ) is strong then it is called a fuzzy ultrametric space [11].

Obviously, stationary fuzzy metrics are strong.
Let (M; � ) be a non-stationary fuzzy metric. De�ne the family of funct ions f M t : t 2

R+ g where, for eacht 2 R+ , M t : X 2 ! ]0; 1] is given by M t (x; y) = M (x; y; t ). Then
(M; � ) is strong if and only if (M t ; � ) is a stationary fuzzy metric on X for each t 2 R+ .
Further, if ( M; � ) is strong then � M =

W
f � M t : t > 0g. In this case we will say that

f M t : t 2 R+ g is the family of stationary fuzzy metrics associated to M . Clearly, this
family characterizes M in the sense thatM (x; y; t ) = M t (x; y) for all x; y 2 X; t > 0.

Moreover, it is easy to verify that the sequence (xn ) in X is M -Cauchy if and only if
(xn ) is M t -Cauchy for eacht > 0. In consequence we have the following corollary.

Corollary 13 ([20]). Let (X; M; � ) be a strong fuzzy metric space.(X; M; � ) is complete
if and only if (X; M t ; � ) is complete for eacht 2 R+ .
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4. Completion

In this section we give a class of stationary fuzzy metrics which are completable [11].
The �rst results regards the t-norm L.

Proposition 14. Let (M; L) be a stationary fuzzy metric onX and let d be the metric
on X given byd(x; y) = 1 � M (x; y) for all x; y 2 X . Then

(i) A sequence(xn ) in X is M -Cauchy if and only if (xn ) is d-Cauchy.
(ii) ( X; M; � ) is complete if and only if (X; d ) is complete.

Theorem 15. Let (X; M; L) be a stationary fuzzy metric space and consider the metric
d on X given byd(x; y) = 1 � M (x; y). Let (X � ; d� ) be the completion of(X; d). Then

(i) If (X; M; L) admits completion then(X � ; M � ; L ) is its completion whereM � is
given byM � (x; y) = 1 � d� (x; y) for each x; y 2 X � .
(ii) ( X; M; L) admits completion if and only if d� (x; y) < 1 for all x; y 2 X � .

Remark 16. Notice that Theorem 15 is also satis�ed by a stationary fuzzy metric space
(X; M; � ) if � � L .

De�nition 17. We will say that the continuous t-norm � is integral if it satis�es a � b 6= 0
whenevera; b6= 0.

The continuous t-norms ^ and � are integral while L is not integral.
In the non-completable stationary fuzzy metric space (X; M; L) of [10], Example 1, two

Cauchy sequences (xn ) and (yn ) are given such that lim
n

M (xn ; yn ) = 0. This fact is not

possible when� is integral as shows the next theorem.

Theorem 18. Let (X; M; � ) be a strong fuzzy metric space and suppose that� is integral.
If (xn ) and (yn) are Cauchy sequences inX and t > 0 then (M (xn ; yn ; t)) converges in
]0; 1].

The authors do not know any example where the continuity condition in (C1) of The-
orem 10 fails. So, after seeing the above theorem, the following natural question arises.

Problem 19. In the conditions of last theorem, is the real function t ! lim
n

M (an ; bn ; t)

continuous?

By Theorem 10 it is obvious that a stationary fuzzy metric space (X; M; � ) is com-
pletable if and only if lim n M (an ; bn ) > 0 for each pair of Cauchy sequences (an ); (bn ) in
X. So, by the last theorem we obtain the next corollaries.

Corollary 20. If (M; � ) is a stationary fuzzy metric on X and � is integral then (X; M; � )
is completable.

Corollary 21. Stationary fuzzy ultrametrics are completable.

Remark 22. The completion of (X; M; � ) in the conditions of Corollary 21, and Corollary
20 if � � L , is the one given in Theorem 15 (see Remark 16).

Example 2 of [9] (Example 1 of [10]) is an example of a stationary fuzzy metric space
which does not admit fuzzy completion.

We cannot extend Corollary 21 to fuzzy ultrametrics since Example 41 of [11] is a
non-completable fuzzy ultametric space.

Lemma 23. Suppose(X; M; � ) completable. Let (X � ; M � ; � ) be the fuzzy completion of
(X; M; � ). If (M; � ) is strong then (M � ; � ) is strong.
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Theorem 24. Let (X; M; � ) be a strong fuzzy metric space. IfX is completable then
(X; M t ; � ) is completable for all t > 0.

The next example shows that the converse of the above theoremis false.

Example 25. Let X =]0 ; 1], A = X \ Q, B = X r A. De�ne the function M on X 2 � R+

by

M (x; y; t ) =

8
>><

>>:

minf x; yg
maxf x; yg

� t if ( x 2 A; y 2 B or x 2 B; y 2 A) and t < 1:

minf x; yg
maxf x; yg

elsewhere.

It is easy to verify that ( M; �) is a fuzzy metric on X .

Now, we see that (M; �) is strong. Since for all x; y; z 2 X and t < 1, it is satis�ed that

minf x; zg
maxf x; zg

>
minf x; zg
maxf x; zg

� t �
minf x; yg
maxf x; yg

�
minf y; zg
maxf y; zg

� t �
minf x; yg
maxf x; yg

� t �
minf y; zg
maxf y; zg

� t

then, with an easy discussion, it follows thatM (x; z; t ) � M (x; y; t ) � M (y; z; t) if t < 1.
The caset � 1 is trivial, and so, (M; �) is strong.
Nevertheless, we will see that (X; M; �) is non-completable. Indeed, let (xn ) and (yn )

be two strictly increasing sequences inA and B , respectively, converging in the usual
topology of R to 1. Then lim

n;m
M (xn ; xm ; t) = lim

n;m
M (yn ; ym ; t) = 1 for all t > 0 and hence

(xn ) and (yn ) are Cauchy.
We have that lim

n
M (xn ; ym ; 1) = 1 but lim

n
M (xn ; yn ; 1

2) = 1
2 and so condition (C2) of

Theorem 10 is not satis�ed by (xn ) and (yn ) and then (X; M; �) does not admit completion.
On the other hand, since (X; M; �) is strong then (X; M t ; �) are stationary fuzzy metric

spaces and so completable for eacht > 0, since� is integral.
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Abstract

In the pointfree topological context of locales and frames,real functions on a
locale L are represented as localic morphismsS(L) ! L(R) ( i.e. frame homo-
morphisms L(R) ! S (L )) where S(L) stands for the frame of all sublocales
of L and L(R) denotes the frame of reals. This is reminiscent of dealing with
(not necessarily continuous) real functionsX ! R as with continuous func-
tions D(X ) ! R whereD(X ) is the discrete space on the underlying set ofX .
But it is deeper: the structure of S(L ) is rich enough to provide a nice com-
mon framework for the three types of continuity (lower semicontinuity, upper
semicontinuity and continuity ) as well as general(not necessarily continuous)
real functions. The aim of this expository note is to providea short overview
of the theory of pointfree real functions and the strength of its applications.

1. Introduction

Given a topological space (X; OX ), the lattice OX of open sets is complete since any
union of open sets is an open set; of course thein�nite distribution law

A ^
W

i 2 I
B i =

W

i 2 I
(A ^ B i )

holds in OX since the operations^ (being a �nite meet) and
W

coincide with the usual
set-theoretical operations of \ (intersection) and

S
(union), respectively. Moreover, if

f : (X; OX ) ! (Y;OY ) is a continuous map, f � 1 de�nes a map of OY into OX that
clearly preserves the operationŝ and

W
. Therefore, de�ning a frame as a complete

lattice L satisfying the in�nite distribution law

a ^
W

i 2 I
bi =

W

i 2 I
(a ^ bi );

and de�ning a frame homomorphism h : L ! M as a map from L in M such that
h(

V
i 2 F ai ) =

V
i 2 F h(ai ) for every �nite F (in particular, for F = ? , h(1) = 1) and

1The authors are grateful for the �nancial assistance of the C entre for Mathematics of the University of
Coimbra (CMUC/FCT), grant GIU07/27 of the University of the Basque Country and grant MTM2009-
12872-C02-02 of the Ministry of Science and Innovation of Spain.
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h(
W

i 2 I ai ) =
W

i 2 I h(ai ) for every I (in particular, for I = ? , h(0) = 0), we have the
category Frm of frames and frame homomorphisms and a contravariant functor O : Top !
Frm de�ned by ( X; OX ) 7! O X and (f : (X; OX ) ! (Y;OY)) 7! (f � 1 : OY ! O X ).

Because of contravariance, to keep the original geometrical motivation it is necessary
to introduce the dual category Frmop, making functor O covariant. This is the genesis
of the category Loc of locales and localic maps: it is precisely the categoryFrmop. So, a
locale is the same thing as a frame, but morphisms diverge: localic morphisms are de�ned
abstractly, as morphisms of frames acting in the opposite direction.

The category of localesis a category set up to behave like the familiar one of topological
spaces. One speaks aboutsublocalesand, in particular, of closed, openand dense sublocales.
One speaks aboutcontinuous maps between localesand, in particular, of proper and open
maps. One speaks aboutcompact localesand, analogously, many other separation axioms
have their versions in locales: e.g, one speaks ofcompact Hausdor�

locales, regular locales, normal locales, etc. But there is an important new aspect: the
dual category of Loc (that is, the category Frm of frames) is an algebraic category, with
all the nice properties and tools available in any category of algebras ([15]).

This analogy between the theory of locales and the theory of topological spaces is
not quite exact; otherwise, the two theories would be indistinguishable and locale theory
would be redundant. What exists is a translating device between the two theories: each
topological spaceX de�nes naturally a locale O(X ) (speci�cally, its topology). And
given a localeL there exists a topological space �(L ) naturally associated to L . More
precisely, there is a categorical adjunction between the category Top of topological spaces
and continuous maps and the categoryLoc of locales, de�ned by the open-sets functor
O : Top ! Loc and the spectrum functor � : Loc ! Top (see [15] or [24] for details).

Each frame L has associated with it the well-known ring C(L) = Frm(L(R); L ) of its
continuous real functions ([1]). This is a commutative archimedean (strong) f -ring with
unit. Since the spectrum �( L(R)) of the frame of reals is homeomorphic to the usual
space of reals, by the adjunction

Top
O //Loc
�

oo

mentioned above there is a bijection

(1) Top(X; R) ' Loc(OX; L(R)) = Frm(L(R); OX ):

Thus the classical ring C(X ) ([7]) is naturally isomorphic to C(OX ) and the correspon-
denceL  C(L ) for frames extends that for spaces.

Now, replace the spaceX in (1) by a discrete spaceD(X ). We get

RX ' Top(D(X ); R)) ' Frm(L(R); D(X )) :

For any L in the category Frm, the role of the lattice D(X ) of all subspaces ofX is
taken by the lattice S(L ) of all sublocales ofL , which justi�es to think of the members of
Frm(L(R); S(L )) = C(S(L )) as arbitrary not necessarily continuous real functions on the
frame L ([11]). The real functions on a frameL are thus the continuous real functions on
the sublocale lattice of L and therefore, from the results of [1], constitute a commutative
archimedean (strong)f -ring with unit that we denote by F (L ). It is partially ordered by

f � g � f (r; | ) � g(r; | ) for all r 2 Q
, g(| ; r ) � f (| ; r ) for all r 2 Q:
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Since anyL is isomorphic to the subframecL of S(L ) of all closed sublocales, the ringC(L)
may be equivalently viewed as the subring ofF (L ) of all real functions f : L(R) ! S (L )
for which f (p; q) is a closed sublocale for everyp; q (i.e. f (L(R)) � cL ). So our ring F (L )
embodies the ring C(L) in a nice way. We shall refer to thesef 2 C(L) (indistinctly
regarded as elements ofF (L ) or as elements ofFrm(L(R); L )) as the continuous real
functions on L and will use the same notationC(L) for denoting both classes.

Besides continuity, F (L ) allows also to distinguish the two types of semicontinuity: f 2
F (L ) is lower semicontinuousif f (p; | ) is always closed, andf is upper semicontinuousif
f (| ; q) is always closed. We shall denote byLSC (L) and USC(L) the classes of lower and
upper semicontinuous functions respectively. Hence, the ring F (L ) provides an appropriate
level of generality for C(L ), LSC (L) and USC(L) and

lower semicontinuous + upper semicontinuous = continuous:

The �rst right approach to semicontinuity in pointfree topo logy was presented in [12].
The approach here considered, succinctly described above,has wider scope and was intro-
duced recently in [11] (see also [13]).

2. Preliminaries: the lattice of sublocales and the frame of re als

For general information on frames and locales the reader is referred to [15], [24] or [25].
One of the fundamental di�erences betweenTop and Loc relies on their lattices of

subobjects. In fact, sublocale lattices are much more complicated than their topological
counterparts (complete atomic Boolean algebras): they arein general co-frames (i.e.,
complete lattices satisfying the distribution law S _

V
i 2 I Ti =

V
i 2 I (S _ Ti ), dual to the

distribution law that characterizes frames). Even the sublocale lattice of a topologyOX
can be much larger than the Boolean algebra of the subspaces of X ; e.g.,Q considered as a
subspace ofR (with the usual euclidean topology) has 2c many non-isomorphic sublocales.

Let L be a locale. Thesublocalesj : M � L of L , that is, the regular monomorphisms
in Locwith codomain L (or still, the quotients or surjective frame homomorphismsL � M
with domain L) can be described in several equivalent ways (cf. [25] or [24]). Here we
shall use the approach of [24]: a subsetS of L is a sublocaleof L if:

(1) For each A � S,
V

A 2 S.
(2) For any a 2 L and s 2 S, a ! s 2 S.

Since any intersection of sublocales is a sublocale, the setof all sublocales ofL is a
complete lattice. This is a co-frame, in which

V
i 2 I Si =

T
i 2 I Si ,

W
i 2 I Si = f

V
A j A �S

i 2 I Si g, 0 = f 1g and 1 = L. It will be convenient to work with the corresponding dual
lattice, hence a frame, that we shall denote byS(L).

Each sublocaleS is itself a frame with
V

and ! as in L (the top of S coincides with
the one of L but the bottom 0 S may di�er from the one of L ).

In spite of S(L ) not being in general a Boolean algebra, it contains many complemented
elements. For example, for eacha 2 L , the sets

c(a) := " a = f b 2 L j a � bg and o(a) := f a ! b j b 2 Lg

de�ne sublocales ofL , complemented to each other, i.e.c(a) _ o(a) = 1 and c(a) ^ o(a) = 0.
The former are the so-calledclosed sublocales, while the latter are the open sublocales.

Here is a list of some of the most signi�cative properties ofS(L ) ([24, 25]):
(S1) cL := f c(a) j a 2 Lg is a subframe ofS(L ) isomorphic to L ; the isomorphism

c : L ! cL is given by a 7! c(a). In particular, c(
W

i 2 I ai ) =
W

i 2 I c(ai ) and
c(a ^ b) = c(a) ^ c(b).
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(S2) Let oL denote the subframe ofS(L ) generated by f o(a) j a 2 Lg. The map
L ! oL de�ned by a 7! o(a) is a dual lattice embedding. In particular, we have
o(

W
i 2 I ai ) =

V
i 2 I o(ai ) and o(a ^ b) = o(a) _ o(b).

(S3) c(a) � o(b) i� a ^ b = 0, and o(a) � c(b) i� a _ b = 1.
(S4) The closure S :=

W
f c(a) j c(a) � Sg and the interior S� :=

V
f o(a) j S �

o(a)g of a sublocaleS satisfy the following properties, where (�)� stands for the
pseudocomplementation operator:c(a)� = o(a� ), o(a) = c(a� ), (S� )� = S� .

SinceFrm is an algebraic category, we have at our disposal the familiar procedure from
traditional algebra of presentation of objects by generators and relations([15, 1]). The
frame of reals ([1]) is the frame L(R) generated by ordered pairs (p; q), with p; q 2 Q, and
relations

(R1) (p; q) ^ (r; s) = ( p _ r; q ^ s),
(R2) (p; q) _ (r; s) = ( p; s) wheneverp � r < q � s,
(R3) (p; q) =

W
p<r<s<q (r; s),

(R4)
W

p;q2 Q(p; q) = 1.

Notice that a map from the generating set ofL(R) into L de�nes a frame homomorphism
L(R) ! L if and only if it transforms relations (R 1){(R 4) of L(R) into identities in L .

Let (p; | ) =
W

q2 Q(p; q) and (| ; q) =
W

p2 Q(p; q): With ( p; | ) and (| ; q) taken as the
primitive notions, L(R) may be equivalently de�ned ([21]) as the frame generated by
elements (p; | ) and (| ; q), with p; q 2 Q, and relations

(R0
1) (p; | ) ^ (| ; q) = 0 whenever p � q,

(R0
2) (p; | ) _ (| ; q) = 1 whenever p < q,

(R0
3) (p; | ) =

W
r>p (r; | ),

(R0
4) ( | ; q) =

W
s<q (| ; s),

(R0
5)

W
p2 Q(p; | ) = 1,

(R0
6)

W
q2 Q(| ; q) = 1.

3. Constructing real functions: scales

In order to de�ne a real function f 2 F (L ) it su�ces to consider two maps from Q to
S(L) that turn the de�ning relations (R 0

1){(R 0
6) above into identities in S(L ).

This can be easily done with scales ([8]; trails in [1]): hereby a scalein S(L ) is meant
a family (Sp)p2 Q of sublocales ofL satisfying (1) Sp _ Sq

� = 1 whenever p < q; and (2)W
p2 Q Sp = 1 =

W
p2 Q Sp

� .
The following lemma, essentially proved in [10], plays a keyrole.

Lemma 1. For each scale(Sr )r 2 Q the formulas

f (p; | ) =
W

r>p
Sr and f (| ; q) =

W

r<q
Sr

� ; p; q 2 Q

determine an f 2 F (L ). Moreover, if every Sr is closed(resp. open, resp. clopen) then
f 2 LSC (L) (resp. f 2 USC(L), resp. f 2 C(L)) . �

Let us mention two basic examples of real functions.
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Example 2 (Constant functions ). For eachr 2 Q, the family ( Sr
t )t2 Q de�ned by Sr

t = 1
if t < r and Sr

t = 0 if t � r is a scale. The corresponding function inC(L) provided by
Lemma 1 is given for eachp; q 2 Q by

r (p; | ) =

(
1 if p < r
0 if p � r

and r (| ; q) =

(
0 if q � r
1 if q > r:

Example 3 (Characteristic functions ). Let S be a complemented sublocale ofL with
complement : S. Then (Sr )r 2 Q de�ned by Sr = 1 if r < 0, Sr = : S if 0 � r < 1 and
Sr = 0 if r � 1, is a scale. We denote the corresponding real function inF (L ) by � S and
refer to it as the characteristic function of S. It is de�ned for each p; q 2 Q by

� S(p; | ) =

8
><

>:

1 if p < 0
: S if 0 � p < 1
0 if p � 1

and � S(| ; q) =

8
><

>:

0 if q � 0
S if 0 < q � 1
1 if q > 1:

4. The algebraic structure of F (L )

For any frame L, the algebraC(L) of continuous real functions onL has as its elements
the frame homomorphismsf : L(R) ! L (or, equivalently, as already pointed out, the
frame homomorphismsf : L(R) ! S (L ) for which f (p; q) is closed for anyp; q 2 Q). The
operations are determined by the operations ofQ as lattice-ordered ring as follows (see [1]
for more details):

(1) For � = + ; �; ^ ; _ , (f � g)(p; q) is given by
W

f f (r; s) ^ g(t; u) j hr; si �h t; ui � h p; qig;
whereh�; �i stands for open interval in Q and the inclusion on the right means that
x � y 2 hp; qi wheneverx 2 hr; si and y 2 ht; ui .

(2) ( � f )(p; q) = f (� q;� p).
(3) For all � > 0 in Q, (� � f )(p; q) = f ( p

� ; q
� ).

Indeed, these stipulations de�ne maps fromQ � Q to L and turn the de�ning relations
(R1){(R 4) of L(R) into identities in L and consequently determine frame homomorphisms
L(R) ! L (the result that C(L ) is an f -ring follows then from the fact that any identity in
these operations which is satis�ed byQ also holds inC(L)). In particular, F (L ) = C(S(L ))
is an f -ring. In the sequel we present alternative formulas for itsoperations, picked from
[13], which were obtained with the help of scales and Lemma 1.

Given f; g 2 F (L ), ( f (p; | ) _ g(p; | ))p2 Q and (f (p; | ) ^ g(p; | ))p2 Q are scales that
generate respectively thesupremumf _ g 2 F (L ) and the in�mum f ^ g 2 F (L ). Therefore
(f _ g)(p; | ) =

W
r>p

�
f (r; | ) _ g(r; | )

�
= f (p; | ) _ g(p; | ), ( f _ g)( | ; q) =

W
r<q

�
f (r; | ) _

g(r; | )
� � = f (| ; q) ^ g(| ; q), ( f ^ g)(p; | ) = f (p; | ) ^ g(p; | ) and, �nally, ( f ^ g)( | ; q) =

f (| ; q) _ g(| ; q). In summary, we have:

Proposition 4. The posetF (L ) has binary joins and meets;LSC (L), USC(L) and C(L)
are closed under these joins and meets. �

Now for each p 2 Q de�ne Sf + g
p =

W
r 2 Q

�
f (r; | ) ^ g(p � r; | )

�
. The family ( Sf + g

p )p2 Q

is a scale that determines thesum f + g 2 F (L ) of f and g. It is not hard to see
that ( f + g)(p; | ) =

W
r 2 Q

�
f (r; | ) ^ g(p � r; | )

�
for every p 2 Q and (f + g)( | ; q) =

W
s2 Q

�
f (| ; s) ^ g(| ; q � s)

�
for every q 2 Q. Hence we have:

Proposition 5. Let f; g 2 F (L ). If f; g 2 LSC (L) (resp. USC(L), resp. C(L )) then
f + g 2 LSC (L) (resp. USC(L), resp. C(L )) . �
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Given f; g 2 F (L ), with f � g = f + ( � g) we also have:

Proposition 6. Let f; g 2 F (L ). Then:
(i) ( f � g)(p; | ) =

W
r 2 Q f (r; | ) ^ g(| ; r � p) for every p 2 Q.

(ii) ( f � g)( | ; q) =
W

s2 Q f (| ; s) ^ g(s � q;| ) for every q 2 Q.
(iii) If f 2 LSC (L) (resp. USC(L), resp. C(L )) and g 2 USC(L) (resp. LSC (L), resp.

C(L )) then f � g 2 LSC (L) (resp. USC(L), resp. C(L )) . �

Finally, with respect to the product f � g, for the casef; g � 0 we have that, de�ning,
for each p 2 Q, Sf �g

p =
W

r> 0

�
f (r; | ) ^ g( p

r ; | )
�

if p � 0 and Sf �g
p = 1 otherwise, then

(Sf �g
p )p2 Q is a scale generatingf � g. Therefore

(f � g)(p; | ) =

8
<

:

W

r> 0

�
f (r; | ) ^ g( p

r ; | )
�

if p � 0

1 if p < 0

and

(f � g)( | ; q) =

8
<

:

W

s> 0

�
f (| ; s) ^ g(| ; q

s )
�

if q > 0

0 if q � 0:

Proposition 7. Both LSC (L) and USC(L) are closed under products of non-negative
elements(and so doesC(L)) .

In order to extend this result to the product of two arbitrary f and g in F (L ) let
f + = f _ 0 and f � = ( � f ) _ 0. Notice that f = f + � f � . SinceC(S(L )) is an `-ring, from
general properties of̀ -rings we have that f � g =

�
f + � g+ ) � (f + � g� ) � (f � � g+ )+( f � � g� ):

In particular, if f; g � 0, then f � g = f � � g� = ( � f ) � (� g). Hence:

Proposition 8. C(L ) is closed under products. If f; g � 0 and f; g 2 LSC (L) (resp.
USC(L)) then f � g 2 USC(L) (resp. LSC (L)) . �

5. Upper and lower regularizations

A fact from the theory of real functions asserts that every real function f : X ! R on a
topological spaceX admits the so-called lower semicontinuous regularizationf � : X ! R,
given by the lower limit of f :

f � (x) := lim inf
y! x

f (y) =
W

f
V

f (U) j x 2 U 2 O X g:

This is the largest lower semicontinuous minorant off : f � =
W

f g 2 LSC(X; R) j g � f g:
For each p 2 Q we have

f � 1
� (]p;+ 1 [) =

S

r>p
(f � 1([r; + 1 [)) � = X n

T

r>p
f � 1(] � 1 ; r [);

which means that the lower regularization f � takes values in R if and only if it has a
lower semicontinuous minorant; equivalently, if and only if

S
r 2 Q f � 1

� (]r; + 1 [) = X; that

is,
T

r 2 Q f � 1(] � 1 ; r [) = ? :

In the pointfree context, since we know already how to deal with generic real functions,
the construction of the corresponding lower and upper regularizations can be performed
in a surprisingly easy way ([9]) which we describe in the sequel.

Let f 2 F (L ). The family
�
f (r; | )

�
r 2 Q is a scale so, by Lemma 1, formulas

f � (p; | ) =
W

r>p
f (r; | ) and f � (| ; q) =

W

s<q
: f (s; | )
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determine anf � 2 LSC (L), called the lower regularization of f . It satis�es, among others,
the following properties ([9, 11]):

Proposition 9. Let f; g 2 F (L ). Then f � � f , (f ^ g)� = f � ^ g� and f �� = f � . Moreover,
f � =

W
f g 2 LSC (L) j g � f g and LSC (L) = f f 2 F (L ) j f = f � g. �

Analogously, we can de�ne theupper regularization of f 2 F (L ) by

f � (| ; q) =
W

s<q
f (| ; s) and f � (p; | ) =

W

r>p
: f (| ; r ):

Thus f � = ( � f )� which with Proposition 9 yields the following:

Proposition 10. Let f; g 2 F (L ). Then f � 2 USC(L), f � f � , (f _ g)� = f � _ g� ,
f � � = f � , f � =

V
f g 2 USC(L) j f � gg and USC(L) = f f 2 F (L ) j f = f � g. �

6. Insertion-type results

Our aim now is to give evidence of the scope and usefulness of the ring F (L ) with a short
review of its main applications to insertion-type results in normal or extremally discon-
nected frames. Their classical (particular) versions about the existence of continuous real
functions in normal spaces or extremally disconnected spaces rank among the fundamental
results of point-set topology and can be classi�ed in three types: separation theorems (like
Urysohn's Lemma), extension theorems (like Tietze's Theorem), and insertion theorems
(like Kat�etov-Tong Theorem). The latter are the most impor tant since they imply the
former two as corollaries.

We begin by the pointfree extension of Kat�etov-Tong insertion theorem which holds for
normal frames, that is, frames in which, whenevera _ b = 1, there exists u 2 L such that
a _ u = 1 = b_ u� . It is not di�cult to show that a frame L is normal if and only if

for any countableA; B � L satisfying a _
V

B = 1 = b_
V

A for all a 2 A
and b 2 B , there exists u 2 L such that a _ u = 1 = b_ u� for all a 2 A
and b 2 B ([23]).

Based on this characterization it is then possible to show the Kat�etov-Tong Theorem:

Theorem 11 (Insertion: Kat�etov-Tong; [12]). For a frame L, the following are equiv-
alent:

(i) L is normal.
(ii) For every f 2 USC(L) and g 2 LSC (L) satisfying f � g, there existsh 2 C(L) such

that f � h � g. �

Other insertion theorems were meanwhile obtained for otherclasses of frames ([5, 8,
9, 10, 13]). The following one is, in some sense, a dual version of the previous theorem;
equivalence (i), (v) generalizes Corollary 4 of [20] and all the others extendresults of
Kubiak-de Prada Vicente ([19]). Recall that a frame L is extremally disconnectedif a� _
a�� = 1 for every a 2 L . These frames are precisely those in which the second De Morgan
law (

V
i 2 I ai )� =

W
i 2 I a�

i holds (this is the reason why they are also referred to asDe
Morgan frames).

Theorem 12 (Insertion: Lane, Kubiak-de Prada Vicente; [9]). For a frame L, the
following are equivalent:

(i) L is extremally disconnected.
(ii) C(L ) = f f � j f 2 USC(L) and f � 2 LSC (L)g.
(iii) C(L ) = f g� j g 2 LSC (L) and g� 2 USC(L)g.
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(iv) For every f 2 USC(L) and g 2 LSC (L), if g � f then g� � f � .
(v) For every f 2 USC(L) and g 2 LSC (L) satisfying g � f , there existsh 2 C(L) such

that g � h � f . �

Our next result is the monotone version of Kat�etov-Tong Theorem and generalizes the
(monotone insertion) theorem of Kubiak in [18]. First note that the de�nition of normality
may be rephrased in the following way: letDL = f (a; b) 2 L � L j a _ b = 1g; a frame
L is normal if and only if there exists a map � : DL ! L satisfying a _ �( a; b) = 1 =
b_ �( a; b)� . Equipping DL with the partial order ( � op; � ) inherited from L op � L , L is
called monotonically normal in case it is normal and � is monotone ([8]). Let UL(L ) =
f (f; g ) 2 USC(L) � LSC (L) j f � gg be partially ordered by the order inherited from
F (L)op � F (L ), i.e., (f 1; g1) � (f 2; g2) � f 2 � f 1 and g1 � g2: Then:

Theorem 13 (Monotone insertion: Kubiak; [8]). For a frame L, the following are
equivalent:

(i) L is monotonically normal.
(ii) There is a monotone map� : UL(L ) ! C(L ) such that f � �( f; g ) � g for every

(f; g ) 2 UL(L ). �

Now let f; g 2 F (L ) and de�ne �(f; g ) =
W

p2 Q

�
f (| ; p) ^ g(p; | )

�
2 S(L ). One writes

f < g whenever� (f; g ) = 1. Note that the relation < is indeed stronger than� .
The next insertion theorem in our list is the pointfree version of the (insertion) theorem

of Dowker ([3]) for countably paracompact spaces. More generally, a frame L is said to be
countably paracompact([4]) if every countable non-decreasing cover (aj ) j 2 J is shrinkable
(i.e., there is a cover (bj ) j 2 J such that b�

j _ aj = 1 for all j 2 J ).

Theorem 14 (Strict insertion: Dowker; [10, 13]). For a frame L, the following are
equivalent:

(i) L is normal and countably paracompact.
(ii) For every f 2 USC(L) and g 2 LSC (L) satisfying f < g , there existsh 2 C(L) such

that f < h < g . �

The last two insertion results that we list here are the pointfree extensions of respec-
tively the insertion theorem of Michael for perfectly normal spaces ([22]) and the insertion
theorem of Kubiak for completely normal spaces ([17]). We recall from [10] that a frame
L is perfectly normal if, for each a 2 L , there exists a countable subsetB � L such that
a =

W
B and b� _ a = 1 for every b 2 B ; a frame L is completely normalif for each a; b2 L

there exist u; v 2 L such that u ^ v = 0, b � a _ u and a � b_ v ([5]).

Theorem 15 (Bounded insertion: Michael; [10, 13]). For a frame L, the following
are equivalent:

(i) L is perfectly normal.
(ii) For every f 2 USC(L) and g 2 LSC (L) satisfying f � g, there existsh 2 C(L) such

that f � h � g and �(f; h ) = �(h; g) = �(f; g ). �

Theorem 16 (General insertion: Kubiak; [5]). For a frame L, the following are
equivalent:

(i) L is completely normal.
(ii) For every f; g 2 F (L ) satisfying f � � g and f � g� , there existsh 2 LSC (L) such

that f � h � h� � g. �
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It is worth mentioning that all the preceding theorems, when applied to L = OX (for
the speci�c type of spaceX in question), yield the corresponding classical result. We
illustrate this here with Kat�etov-Tong insertion: applyi ng Theorem 11 to the topology
OX of a normal spaceX , the implication \(i) ) (ii)" provides the non-trivial implication
of the classical Kat�etov-Tong Theorem ([16, 27]) as we describe next.

Let f : X ! R be an upper semicontinuous function andg : X ! R a lower semicon-
tinuous one such that f � g. The families (c(f � 1(] � 1 ; q[))q2 Q and (c(p� 1(]p;+ 1 [))p2 Q
are scales inS(OX ). Then, by Lemma 1, the formulas

ef (| ; q) = c(f � 1(] � 1 ; q[)) ; ef (p; | ) =
W

r>p o(f � 1(] � 1 ; r [)) ;

eg(p; | ) = c(g� 1(]p;+ 1 [)) ; eg(| ; q) =
W

s<q o(g� 1(]s;+ 1 [)) ;

establish functions ef ; eg : L(R) ! S (OX ) with ef 2 USC(OX ) and eg 2 LSC (OX ). The
condition f � g implies f � 1(] � 1 ; q[) � g� 1(] � 1 ; q[) for every q 2 Q, thus ef � eg.
Consider eh 2 C(OX ) provided by Theorem 11, and the corresponding continuous map

h : X ! R de�ned by h(x) 2 ]p; q[ i� x 2 c� 1
�

eh(p; q)
�

: It is then clear that f � h � g.

For a more detailed discussion of the preceding results and more examples of results in
this vein consult [5, 8, 11, 13].

Remark 17. For a uni�ed presentation of insertion-type results regarding normal and ex-
tremally disconnected objects in the categories of topological spaces, bitopological spaces,
ordered topological spaces and locales see [6].

7. Separation-type corollaries

Let L be a normal frame and considera; b 2 L satisfying a _ b = 1. By property (S 3)
of Section 2, o(a) � c(b). Therefore, � c(b) � � o(a) . Consequently, applying Theorem 11

we obtain a continuouseh : L(R) ! S (L ) such that � c(b) � eh � � o(a) : Consider then the

h : L(R) ! L given by h = c� 1 � eh. Observing that � c(b) � eh i� h(| ; 0) = 0 and h(| ; 1) � b

and that, on the other hand, eh � � o(a) i� h(0; | ) � a and h(1; | ) = 0, we get immediately
the non-trivial implication of the following:

Corollary 18 (Separation: Urysohn; [11]). A frame L is normal if and only if, for
everya; b2 L satisfying a_b = 1 , there existsh : L(R) ! L such thath(( | ; 0)_ (1; | )) = 0 ,
h(0; | ) � a and h(| ; 1) � b. �

The statement of Corollary 18 is precisely the statement of the (separation) lemma of
Urysohn for frames (cf. [1], Prop. 5), that extends the famous Urysohn's Lemma of point-
set topology. From Theorem 12 we can arrive, in a similar way,at the frame extension
of the (separation) lemma for extremally disconnected spaces in Gillman and Jerison ([7,
1.H]):

Corollary 19 (Separation: Gillman and Jerison; [9]). A frame L is extremally
disconnected if and only if, for everya; b2 L satisfying a^ b= 0 , there existsh : L(R) ! L
such that h(( | ; 0) _ (1; | )) = 0 , h(0; | ) � a� and h(| ; 1) � b� . �

If we do a similar thing with Theorem 15 we arrive to the pointf ree extension of a
separation result due to Vedenisso� ([28]):

Corollary 20 (Bounded separation: Vedenisso�; [10]). A frame L is perfectly normal
if and only if, for every a; b 2 L satisfying a _ b = 1 , there existsh : L(R) ! L such that
h(( | ; 0) _ (1; | )) = 0 , h(0; | ) = a and h(| ; 1) = b. �
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8. Extension-type corollaries

We conclude our journey through pointfree real functions with the question: when is it
possible to extend a continuous functions from a sublocale of L to all of L?

For any sublocaleS of L , let cS : L � S denote the corresponding frame quotient, given
by cS(x) =

V
f s 2 S j x � sg. A continuous eh 2 C(L) is said to be acontinuous extension

of h 2 C(S) whenever cS � c � eh = c� h ([11]).
As outlined in [23], from Theorem 11 it also follows the well-known (extension) Theorem

of Tietze for frames:

Corollary 21 (Extension: Tietze; [21, 23]). For a frame L, the following are equivalent:

(i) L is normal.
(ii) For any closed sublocaleS of L and any h 2 C(S), there exists a continuous extension

eh 2 C(L) of h. �

Dually, from Theorem 12 it readily follows:

Corollary 22 (Extension: Gillman and Jerison; [9]). For a frame L, the following
are equivalent:

(i) L is extremally disconnected.
(ii) For any open sublocaleS of L and any h 2 C(S), there exists a continuous extension

eh 2 C(L) of h. �

A similar characterization holds for perfectly normal frames, in terms of the ringsC � (L )
and C � (S) of boundedfunctions (of course, anf 2 F (L ) is bounded in case0 � f � 1):

Corollary 23 (Bounded extension; [10]). For a frame L, the following are equivalent:

(i) L is perfectly normal.
(ii) For every closed sublocaleS of L and any h 2 C � (S), there exists a continuous

extensioneh 2 C � (L ) of h such that eh(0; 1) � S. �

Remark 24. Replacing the frameL(R) of reals by the frameL
�
R

�
of extended reals(de�ned

by dropping conditions (R0
5) and (R0

6) in Section 2) we are able to deal with rings of
extended real functions. This is the object of study of the ongoing research project [2].
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Abstract

Monotone normality is usually de�ned in the class of T1 spaces. In this work
we extend well-known characterizations of these kind of spaces to the T1-
free context and besides, we generalize such results considering lattice-valued
maps instead of real-valued maps. Among the newT1-free characterizations
of monotonically normal spaces we provide are a Katetov-Tong-type insertion
theorem and Tietze-type extension theorem for lattice-valued functions.

1. Introduction

There has been an extensive literature devoted to monotonically normal spaces (see the
surveys [3, 5] and the references on them) since the notion was introduced in [1, 8, 17].
With the exception of [9], monotone normality has always been studied in the restricted
class ofT1 spaces.

The in
uence of computer science not only has given relevance to those spaces not
satisfying T1 axiom, but also has focussed attention in functions with values in ordered
sets rather than in the reals. Continuous lattices or domains with their Scott topology are
an important class among the spaces which do not satisfy theT1 axiom.

In concordance with those ideas, the present work explores monotone normality in
a T1 free context. Also lattice-valued functions rather than real-valued functions are
considered throughout. The techniques established in [6] will allow us to give lattice-
valued counterparts of some known characterizations of monotonically normal spaces given
in terms of real-valued functions, and all of them will be free of the T1 axiom.

After some lattice theoretic preliminaries, the notion of monotone normality, free of
T1 axiom, is studied. Several characterizations of monotone normality in this context
are provided and some deviation fromT1-monotonically normal spaces is exhibited. It
is well known that in the class of normal spaces (eitherT1 or not), complete normality
and hereditary normality are equivalent concepts as well asthe fact that open subsets
inherit the property [16]. As to the class of T1-monotonically normal spaces is concerned,
it has been proved [2, 8, 13] that monotone normality is equivalent to any one of the
following notions: complete monotone normality, hereditary monotone normality, open
subsets inherit the property. The proof of these equivalences depends strongly on the

1This research was supported by the Ministry of Education and Science of Spain under grant MTM2006-
14925-C02-02 and by the UPV-EHU under grant GIU07/27.
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axiom T1. It relies upon a new property, also equivalent to monotone normality, which can
be properly called monotone regularity and implies the Hausdor� axiom. The question as
to whether the above equivalences hold in spaces not satisfying the axiom T1 is answered
in negative. The answer is based on a construction of a nonT1 monotonically normal
compacti�cation associated to any topological space. It isimportant to notice that, when
characterizing monotone normality, the role of points will now be played by the closure of
singletons (the minimal closed sets in a nonT1-space). This idea is as simple as e�ective. It
is also used to provide an extension property of lattice-valued functions for monotonically
normal spaces. This extension property is obtained as a consequence of a monotone and
lattice-valued version of the Kat�etov-Tong's insertion t heorem and Urysohn's lemma that
we shall also obtain.

This presentation is a summary of the two papers [12, 7] already published by the
authors.

2. Preliminaries

2.1. Lattices. In the sequel L denotes a completely distributive lattice (with bounds 0
and 1). For general concepts regarding lattices and complete distributivity we refer the
reader to [4]. We shall use the Raney's characterization of complete distributivity in terms
of an extra order C with the approximation property:

Given a complete lattice L and a; b2 L , take the following binary relation: a C b if and
only if, whenever C � L and b �

W
C; there exists somec 2 C with a � c: The lattice L

is said to becompletely distributive if and only if a =
W

f b 2 L : b C ag for eacha 2 L . The
previous relation has the following properties: (1)a C b implies a � b; (2) c � a C b � d
implies c C d; (3) a C b implies a C c C b for somec 2 L (Interpolation Property).

A subset D � L is called join-dense (or a base) if a =
W

f d 2 D : d � ag for each
a 2 L . An element a 2 L is called supercompact if a C a holds. As in [6], any completely
distributive lattice which has a countable join-dense subset free of supercompact elements
will be called C-separable.

2.2. Semicontinuous lattice-valued functions. Given a set X , L X denotes the col-
lection of all functions from X into L ordered pointwisely, i.e., f � g in L X i� f (x) �
g(x) in L for eachx 2 X . Given f 2 L X and a 2 L , we write [f � a] = f x 2 X : a � f (x)g
and similarly for [ f B a].

Let X be a topological space. A functionf 2 L X is said to be upper (resp. lower)
semicontinuous if [f � a] is closed (resp. [f B a] is open) for eacha 2 L (cf. [6, 11]).

The collections of all upper [lower] semicontinuous functions of L X will be denoted
by USC(X; L ) [LSC(X; L )]. Elements of C(X; L ) = USC( X; L ) \ LSC(X; L ) are called
continuous.

3. Monotone normality in a T1 free context

Let X be a topological space with topologyo(X ) and let us denote by� (X ) the family
of closed subsets ofX . We shall need the following sets (the notation comes from [2] and
[9]):

DX = f (K; U ) 2 � (X ) � o(X ) : K � Ug;

SX = f (A; B ) 2 2X � 2X : A � B and A � Int B g;

cSX =
�

(A; B ) 2 2X � 2X : A �
T

y2 X nB
Int( X n f yg) and

S

x2 A
f xg � Int B

	
:
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All these sets are partially ordered considering the componentwise order.
Note that DX � cSX � S X and besides,SX = cSX if X is T1.

De�nition 1. [8]. A topological spaceX is called monotonically normal if there exists
and order-preserving function � : DX ! o(X ) such that

K � �( K; U ) � �( K; U ) � U

for any (K; U ) 2 D X . The function � is called a monotone normality operator.

Remark 2. The spaces described in the previous de�nition were originally assumed to be
T1. However, as in [9], we will not consider the axiomT1 as part of the de�nition of
monotone normality. A trivial example of a monotonically normal space, not satisfying
T1 axiom, is provided by the reals endowed with the right-order topology (Kolmogorov's
line). We will show some more relevant examples after Proposition 4.

Let us recall the following characterizations of monotone normality (under condition
T1). The �rst one was originally called complete monotone normality [17]. The second one
could be properly called monotone regularity. Many of the known results on monotonically
normal spaces rely on these characterizations.

Proposition 3. [2, 8]. Let X be T1. The following statements are equivalent:
(1) X is monotonically normal;
(2) There exists an order-preserving function� : SX ! o(X ) such that

A � �( A; B ) � �( A; B ) � B for any (A; B ) 2 SX .
(3) There exists a function H which assigns to each ordered pair(x; U ) (with x 2 U

and U 2 o(X )) an open setH (x; U ) such that:
(a) x 2 H (x; U ) � U,
(b) If x 2 U � V , then H (x; U ) � H (x; V ),
(c) If x 6= y are points of X , then H (x; X n f yg) \ H (y; X n f xg) = ; .

The proposition below gives the counterpart of Proposition 3 when T1 axiom is not
assumed. We would like to point out that it is the key to extend many known results to
the T1-free context.

Proposition 4. Let X be a topological space. The following are equivalent:
(1) X is monotonically normal;
(2) There exists an order preserving function b� : cSX ! o(X ) such that

A � b�( A; B ) � b�( A; B ) � B

for any (A; B ) 2 cSX .
(3) For each point x and open setU containing f xg we can assign an open setH (x; U )

such that:
(a) f xg � H (x; U ) � U;
(b) if V is open andf xg � U � V , then H (x; U ) � H (x; V );
(c) if f xg \ f yg = ? , then H (x; X n f yg) \ H (y; X n f xg) = ? .

Remark 5. As it was said in the introduction, under the T1 axiom, monotone normality
and hereditary monotone normality are equivalent axioms (see Proposition 3 in [13], or
Lemma 2.2 in [8] or Theorem 2.4 in [2]). The proof of this result is based on Proposition
3. However, in the absence of theT1 axiom, the equivalence between monotone normality
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and hereditary monotone normality cannot be derived directly from Proposition 4. Even
more, for spaces not satisfying the axiomT1, this equivalence does not hold, as the following
construction shows:

Any topological space has a monotonically normal nonT1 compacti�cation. Indeed, for
a topological space (X; � ), let Y be a set such thatX � Y and Y n X 6= ; . De�ne on
Y the topology � ? = � [ f Yg. Then, X is an open, dense subspace of the monotonically
normal non T1 compact spaceY .

Some other interesting examples of monotonically normal non T1 spaces, come from
the �eld of quasi-pseudo-metrics (where by a quasi-pseudo-metric we mean a map d :
X � X ! [0; 1 ) such that d(x; y) = d(y; x) = 0 i� x = y and d(x; z) � d(x; y) + d(y; z)
for any x; y; z 2 X ).

Example 6. Let K > 0 and X = ( �1 ; 0][ [K; + 1 ). De�ne the map d : X � X ! [0; 1 )
as follows:

d(x; y) =

8
><

>:

jx � yj if x; y � 0 or x; y � K;
y � x � K if x � 0 and y � K;
x � y if y � 0 and x � K:

The map d de�ned above is a quasi-pseudo-metric and the collectionf Bd(x; " ) : x 2
X; " > 0g (where Bd(x; " ) = f y 2 X : d(x; y) < " g) forms a base for a topology� d on X .

Clearly the space (X; � d) is not T1 (notice that f 0� g = f 0; 0� g). Even if monotone
normality is not a property easy to manage with, condition (3) of Proposition 4 turns out
to be very e�ective to prove that the previous space is monotonically normal.

4. Monotone normality and lattice-valued functions

Monotonically normal spaces will now be characterized in terms of insertion and exten-
sion of some kind of lattice-valued functions. Before doingso, we shall need some more
notation. Let us consider the following families:

UL(X; L ) = f (f; g ) 2 USC(X; L ) � LSC (X; L ) : f � gg;

SF(X; L ) = f (f; g ) 2 L X � L X : f � � g and f � g� g;

dSF(X; L ) =
�

(f; g ) 2 L X � L X :
W

y2 f xg

f � (y) � g(x) and

f (x) �
V

y2 f xg

g� (y) for each x 2 X
	

;

which are partially ordered considering the componentwiseorder.

Remark 7. (a) UL(X; L ) � dSF(X; L ) � SF(X; L ) and besides,SF(X; L ) = dSF(X; L ) if
X is T1.
(b) ( A; B ) 2 SX ( cSX ) if and only if (1 A ; 1B ) 2 SF(X; L ) (dSF(X; L )).

The proposition below is a characterization of monotonically normal spaces in terms of
insertion of semicontinuous lattice-valued functions. For the case of real-valued functions,
the equivalence (1), (2) in the T1-free context was obtained in [9].
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Proposition 8. Let X be a topological space andL be a completely distributive lattice.
The following are equivalent:

(1) X is monotonically normal;
(2) There exists an order preserving function � : UL(X; L ) ! LSC (X; L ) such that

f � �( f; g ) � �( f; g )� � g for any (f; g ) 2 UL(X; L ).
(3) There exists an order preserving function b� : dSF(X; L ) ! LSC(X; L ) such that

f � b�( f; g ) � b�( f; g )� � g for any (f; g ) 2 dSF(X; L );

Thanks to the previous proposition, the following equivalent results hold for arbitrary
topological spaces. The �rst one is a monotone and lattice-valued version of the well known
Katetov-Tong insertion theorem and generalizes a result obtained by Kubiak [9] (see also
Lane and Pan [10]). The second one is a monotone lattice-valued version of Urysohn's
lemma, which for the case of real-valued function was obtained by Borges [1, 2].

Theorem 9. Let X be a topological space andL be a completely distributiveC-separable
lattice. The following statements are equivalent:

(1) X is monotonically normal;
(2) [Monotone Kat�etov-Tong theorem] There exists an order-preserving function

� : UL(X; L ) ! C(X; L ) such that f � �( f; g ) � g for any (f; g ) 2 UL(X; L );
(3) [Monotone Urysohn's lemma]There exists an order-preserving function

	 : DX ! C(X; L ) such that 	( K; U )(K ) = f 1g and 	( K; U )(X � U) = f 0g
for each (K; U ) 2 D X .

As a consequence, we have the following result, which shows that monotonically normal
spaces satisfy the monotone extension property for lattice-valued functions.

Corollary 10. Let X be a topological space andL be a completely distributiveC-separable
lattice. If X is monotonically normal, then for every closed subspaceA � X there exists
an order-preserving function � : C(A; L ) ! C(X; L ) such that �( f )jA = f for all f 2
C(A; L ).

Remark 11. In [8] Heath, Lutzer and Zenor proved the previous extensionproperty for
L = [0 ; 1] (under T1 axiom). In the same paper they raised the question of whetherthe
converse was true. It was Van Douwen [15] who proved that, forreal-valued functions, the
previous property does not characterize monotone normality. Later, in 1995, Stares [14]
pointed out that the problem for the converse not to hold seemed to be that the above
property does not link continuous functions de�ned in di�ere nt closed subspaces. Taking
this fact into account, he gave an additional condition which solved the situation and
obtained an analogue of the Tietze-Urysohn theorem for monotonically normal spaces [14,
Theorem 2.3]. The proof of Stares depends on the axiomsT1. Our �nal result extends to
the T1-free context and generalizes to lattice-valued functionsthe extension theorem given
by Stares. We include the proof to highlight the importance of Proposition 4.

Theorem 12. Let X be a topological space andL be a completely distributiveC-separable
lattice. The following are equivalent:

(1) X is monotonically normal,
(2) For every closed subspaceA � X there exists an order-preserving function� A :

C(A; L ) ! C(X; L ) such that � A (f )jA = f for all f 2 C(A; L ) and which satis�es
the following two conditions:
(a) If A1 � A2 are closed subspaces andf 1 2 C(A1; L ); f 2 2 C(A2; L ) are such

that f 2jA 1 � f 1 and f 2(x) = 1 for any x 2 A2 n A1, then � A 2 (f 2) � � A 1 (f 1).
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(b) If A1 � A2 are closed subspaces andf 1 2 C(A1; L ); f 2 2 C(A2; L ) are such
that f 2jA 1 � f 1 and f 2(x) = 0 for any x 2 A2 n A1, then � A 2 (f 2) � � A 1 (f 1).

Proof. (1) ) (2): For any closed A � X let � A : C(A; L ) ! C(X; L ) be de�ned by
� A (f ) = �( hf ; gf ), where hf ; gf : X ! L are such that hf = f = gf on A, hf = 0 and
gf = 1 on X nA and � the monotone inserter of Theorem 9 (2). If A1 � A2 are closed
subspaces andf 1 2 C(A1; L ); f 2 2 C(A2; L ) are such that f 2jA 1 � f 1 and f 2(x) = 1 for
any x 2 A2 n A1, then hf 1 � hf 2 and gf 1 � gf 2 so

� A 1 (f 1) = �( hf 1 ; gf 1 ) � �( hf 2 ; gf 2 ) = � A 2 (f 2)

and hence condition (a) is satis�ed. Condition (b) is proved similarly.
(2) ) (1): In order to prove monotone normality we will use (3) of Proposition 4. Let U
be open andx 2 X such that f xg � U. We take the closed subspaceAx

U = f xg [ (X n U)
and de�ne the maps

f A x
U

; gA x
U

: f xg [ (X n U) ! L

as f A x
U

= 1 X nU and gA x
U

= 1 f xg. Then f A x
U

; gA x
U

2 C(Ax
U ; L ) and hence the extensions

� A x
U

(f A x
U

); � A x
U

(gA x
U

) belong to C(X; L ). Let a 2 L n f 0g be such that 0 C a C 1 and
de�ne

H (x; U ) = ( X n [� A x
U

(f A x
U

) � a]) \ [� A x
U

(gA x
U

) B a]:

Then, clearly H (x; U ) is open andf xg � H (x; U ) � U. Now, if V is open andf xg � U �
V , by property (a) it easy to prove that [� A x

V
(f A x

V
) � a] � [� A x

U
(f A x

U
) � a] and property

(b) yields the inclusion [� A x
U

(gA x
U

) B a] � [� A x
V

(gA x
V

) B a] so

H (x; U ) � H (x; V ):

Moreover, if x; y 2 X are such that f xg \ f yg = ? , one easily checks that

H (x; X n f yg) \ H (y; X n f xg) = ; :

By Proposition 4 the space is monotonically normal. �
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Abstract

We introduce here a potential new line of research concerning the study of
topologies that are induced by binary relations on sets. First we show that
given a binary relation (of any kind) on a given set, a topology is induced on the
set in a natural way. Then we consider other binary relationsthat are directly
associated to the given binary relation (e.g.: the negationof its transpose)
in order to study the topologies that they induce and comparethem to the
former topology de�ned by the given binary relation. After t hat, we consider
di�erent classical categories of topological spaces (e.g.:metric spaces, second
countable spaces) whose topology is de�ned for at least one binary relation.
Given a topology de�ned by some binary relation on a set, we also analyze if
the binary relation could belong to some particular category (e.g.: if it is a total
order, a total preorder, an interval order, etc.). We furnish some example of
a topological space whose topology cannot be induced by any binary relation.
We extend these questions to the study of bitopological spaces, so that given a
set X endowed with two di�erent topologies, we ask ourselves whether or not
there exists a binary relation that de�nes the �rst topology and such that the
negation of its transpose induces the second topology. We also analyze some
of these items in the context of pointfree topology.

� Learn from yesterday, live for today, hope for tomorrow. The important thing is not to
stop questioning.�

Albert Einstein

1. Introduction and motivation

First of all, we want to warn the reader about the fact that this is an un�nished work ,
that we present here in a very informal way. Our aim is just to introduce a new potential
line of research, that in many aspects remains stillunexplored, despite, as we will see
here, it could have important implications on other classical theories arising in General
Topology.

1This research is supported by the research project MTM2007-62499 (Spain)
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The starting point that motivates the study that we begin her e is the recent paper
[2], on which topologies that are de�ned by a total preorder are characterized. Similar
ideas and examples appeared then in [3], where the key concept of our study, namely, the
consideration of topologies induced for binary relationsof any kind appeared for the �rst
time.

Let X be a nonempty set. LetR be a binary relation de�ned on X . Given an element
x 2 X , let L x = f y 2 X : yRxg, and Rx = f z 2 X : xRzg. Let � R be the topology
de�ned on X by means of the subbasisf L xgx2 X [ f Rx gx2 X . By de�nition, we say that
� R is the topology induced by the binary relationR on the setX .

A typical example of this situation appears whenR is a (strict) linear order on X , so
that the topology � R is the order topology on X , a subbasis of which is de�ned by the
upper and lower contour sets of the elements ofX . Thus, if X is the real line R and R is
the usual strict order < , the corresponding topology is the usual (Euclidean) one.

Once we have introduced the notion of a topology induced by a binary relation, a natural
question appears. Suppose thatX is a set endowed with a topology� (i.e. (X; � ) is a
topological space). Is there a binary relation R on X such that � and � R coincide?.

Several important particular cases related to the above question have been analyzed in
the literature. For instance, the topologies de�ned by linear orders, namely the orderable
topologies, were characterized in [6]. (See also [4]). Also, the topologies induced by total
preorders, known as thepreorderable topologieshave recently been characterized in [2].
Moreover, in [3] there appear some examples of topological space (X; � ) whose topology
� cannot be induced by any binary relation R de�ned on the set X .

The question of analyzing in a systematic way which familiesof topologies on a setX
can be induced by binary relations was also launched in [3].

2. Preliminaries

Let X be an arbitrary nonempty set. A binary relation R on X is a subset of the
cartesian product X � X . Given two elementsx; y 2 X , we will use the standard notation
xRy to express that the pair (x; y) belongs to R.

Associated to a binary relation R on a setX , we consider itsnegation or complement
(respectively, its transposeor dual) as the binary relation R c (respectively, R t ) on X given
by (x; y) 2 R c () (x; y) =2 R for every x; y 2 X (respectively, given by (x; y) 2 R t ()
(y; x) 2 R ; x; y 2 X ).

A binary relation R de�ned on a set X is said to be
i) re
exive if xRx holds for every x 2 X ,

ii) symmetric if R and R t coincide,
iii) antisymmetric if R \ R t � � = f (x; x ) : x 2 X g,
iv) asymmetric if R \ R t = ; ,
v) transitive if xRy ^ yRz ) xRz for every x; y; z 2 X .

In the particular case of ordered or preordered structures (i.e.: nonempty sets endowed
with a binary relation that is either a linear order or a total preorder), the standard
notation is di�erent. We include it here for sake of completeness.

Thus, a preorder - on an arbitrary nonempty set X is a binary relation on X which is
reflexive and transitive.

An antisymmetric preorder is said to be an order. A total preorder - on a setX is a
preorder such that if x; y 2 X then [x - y] or [y - x]. A total order is also called a linear
order, and a totally ordered set (X; - ) is also said to be achain.
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If - is a preorder onX , then as usual we denote the associatedasymmetric relation
by � and the associatedequivalencerelation by � and these are de�ned, respectively, by
[x � y () (x - y) ^ : (y - x)] and [x � y () (x - y) ^ (y - x)]. Also, the associated
dual preorder - d is de�ned by [x - d y () y - x].

3. Topologies and binary relations: a wealth of problems

In this section we provide a list of problems, most of them still open, that appear in a
natural way after introducing the notion of a topology induced by a binary relation on a
set.

Let us comment �rst some questions related to the relationship between the binary
relation and its induced topology. To this respect we may observe that the topology is
de�ned by the binary relation, but the converse is not true. T hat is, given a topology �
on a set X , it may happen that there exist two binary relations, of a tot ally disparate
nature, R and S on X , such that � , � R and � S coincide.

Consider the following easyexamples:

Example 1. Let R be the real line, and take on it the binary relation R given by the
usual strict Euclidean order (< ), and the binary relation S de�ned by xSy () j x � yj <
1; x; y 2 R. It is clear that both relations R and S de�ne on the real line R the same
topology, namely the usual Euclidean one.�

Example 2. Let R be the real line, and take on it the binary relation R given by aRb ()
a � b; a; b2 R , and the binary relation S de�ned by aSb () 0 � b� a < 1; a; b 2 R. It
is straightforward to see that both relations R and S de�ne on the real line R the discrete
topology. �

The following questions are in order now:
1. How can we describe the set of all the binary relations (if there is at least one)

that de�ne a (�xed) given topology on a set X ?
2. How can we characterize the topologies (if any) on a setX that cannot be induced

by any binary relation R?
3. How can we describe the category of topological spaces whose topology is induced

by a binary relation? Which particular categories does it include?
Concerning the second question, we may observe the following easy facts.

Proposition 3. Let X be a nonempty set and let� R be a binary relation on X . Let � R
be the topology thatR induces onX . The following properties hold:

i) If X is �nite, then � R has a �nite basis,
ii) If X is in�nite, then � R has a basis whose cardinality is not greater than the

cardinality of X .

Proof. It is a direct consequence of the de�nition of � R . Notice that a basis is obtained
through �nite intersections of the elements of a subbasis. �

Corollary 4. (see also[3]) Let X be a countable set and let� R be a binary relation on
X . Then, the topology � R that R induces onX is second countable.

Remark 5. Corollary 4 immediately furnishes the idea to get anexample of a topological
space(X; � ) whose topology is not induced by any binary relation. �

A suitable example is the following one:
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Example 6. Consider the Arens-Fort topology on the setX = N � N n f (0; 0)g, where N
stands for the set of natural numbers. DespiteX is countable, the Arens-Fort topology
fails to be �rst countable. (See e.g. [3] and [5], pp. 54 and �. for details). �

Proposition 7. Let (X; � ) be a topological space. The topology� is induced by a binary
relation R if and only if it has a subbasisf Ux ; Vx : x 2 X g such that y 2 Vx () x 2 Uy
for every x; y 2 X .

Proof. See Proposition 2 in [3]. �

Remark 8. The converse of Corollary 4 is not true. In [3] there is a new example of a
topological space (X; � ) whose topology is not de�ned by a binary relation. Unlike the
aforementioned example of the Arens-Fort topology (Example 6), in this one the setX is
�nite, so that � is a fortiori second countable. �

We furnish here a third examplein the same direction. First we introduce the following
helpful lemma.

Lemma 9. Let (X; � ) be a topological space. Suppose that� has a subbasisf Ux ; Vx : x 2
X g such that y 2 Vx () x 2 Uy for every x; y 2 X . Let a; b 2 X and assume that
a 2 O =) b 2 O for every O 2 � . Then it holds that Ua � Ub and Va � Vb.

Proof. See Proposition 3 in [3]. �

Example 10. On the set N of natural numbers, let us consider the topology� = f N n
f 0; 1; 2; : : : ; kg : k 2 Ng [ ; [ N. Obviously this topology is second countable because
it consists of a countable family of � -open subsets. Assume, by way of contradiction,
that � is induced by a binary relation R. With respect to this binary relation R, let
L 0 = f j; j + 1 ; j + 2 ; : : : ; g and R0 = f k; k + 1 ; k + 2 ; : : : ; g, for some j; k 2 N. Let
m = maxf j; k g. Given n > 0; n 2 N it holds by Lemma 9 that both L n and Rn contain
the subsetf m; m +1 ; m+2 ; : : : ; g. But this immediately implies that the topology induced
by R does not contain the subsetf m +1 ; m +2 ; : : : ; g (nor any subsetf p; p+1 ; p+2 ; : : : ; g
with p > m ). Therefore � R cannot coincide with � , which contradicts our hypothesis. �

Remark 11. Notice that the Example 10 furnishes an alternative counterexample to the
converse of Corollary 4. �

Related to question 3 above, and in some sense, related also to the analysis of the
validity of the converse of Corollary 4 on some particular spaces, we announce here that
we can prove the following results (that we state herewithout proof ). These results provide
some su�cient conditions for a topology to be induced by a binary relation.

Theorem 12. A su�cient condition for a topology � on a nonempty setX to be induced
by a binary relation is the existence of a subbasisf B � : � 2 Ag of � jointly with a family
f O� : � 2 Ag of pairwise disjoint nonempty members of� (i.e.: each O� is a � -open
subset). HereA stands for an arbitrary set of indexes.

Theorem 13. Let X be a nonempty set, and� a topology onX . If � is second countable,
T1 and T3, then it is induced by a binary relation.

Theorem 14. On every metric space, the (metric) topology is induced by a binary relation.

Remark 15. After a glance to the statement of Theorem 12, we point out thefollowing
key fact: The su�cient condition that appears in the stateme nt does not depend on the
points of the set X . In other words, is a condition that comes from the so-called\pointfree
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topology" (see e.g. [1]). In pointfree topology, the features and mainproperties of a
topology on a set should be described and characterized in terms that do not make use of
points (e.g.: in terms, directly, of the subsets of suitablebases and subbases).�

This remark immediately gives raise to the following new important questions:
4. Let R be a binary relation de�ned on a nonempty set X . Can we describe the

topology � R that R induces onX in terms (only) of pointfree topology (i.e.: with-
out any reference to the points ofX )?

5. Can we describe the category of topological spaces whose topology is induced by
a binary relation in terms of pointfree topology?

Another result in terms of pointfree topology concerning topologies induced by binary
relations appears when we consider nested topologies.

De�nition 16. Let X be a nonempty set. A topology� de�ned on X is said to benested
if � is linearly order by set inclusion, that is, given any U; V 2 � it must happen that
either U � V or V � U holds.

The following pointfree result, that we state here without proof , is in order now:

Theorem 17. Let X be a nonempty set endowed with a nested topology� such that
there exist two collections of � -open subsets,f U� : � 2 Ag and f V� : � 2 Ag (i.e.:
both collections have the same cardinality;A stands here for an arbitrary set of indexes)
satisfying the following three conditions:

i) The family f V� : � 2 Ag is a subbasis for the topology� ,
ii) for every �; � 2 A it holds that U� � U� () V� � V� ,
iii) for every � 2 A, either U� n

S
U� � U�

U� 6= ; or (
T

U� � U�
(U� n U� ) 6= ; ) ^ (V� =

S
V� � V�

V� ) holds.

Then the topology� is induced by a binary relation.

Another set of questions and open problems related to topologies induced by binary
relations appears as follows:

Suppose that we know that a topology� on a setX is indeed induced by some binary
relation. Is it possible to say \more" on the binary relation that induces � ?

Is it possible to �nd a binary relation that induces � and belongs to some particular
category?

In this direction, to state some new questions we introduce �rst some necessary de�ni-
tions.

De�nition 18. Let R a binary relation on a nonempty set X . R is said to be:
a) An interval order if it is re
exive and ( xPy) and (zPt) =) (xPt) or (zPy) for

every x; y; z; t 2 X:
b) A semiorder if it is an interval order and ( xPy) and (yPz) =) (xPt) or ( tPz)

for every x; y; z; t 2 X:
c) Acyclic if for every �nite subset f x1; x2; : : : ; xkg � X it holds that ( x1; x2), (x2; x3),

: : :, (xk� 1; xk ) 2 R implies that ( xk ; x1) =2 R .

Once we know which topologies are induced by binary relations, new questions appear:
6. Which topologies de�ned by a binary relation are orderable?
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7. Which topologies de�ned by a binary relation are preorderable?
8. Which topologies are de�ned through a binary relation that is an interval order?
9. Which topologies are de�ned through a binary relation that is a semiorder?

10. Which topologies are de�ned by an acyclic binary relation?

In this line, let us point out again that orderable and preorderable topologies have
already been characterized (see [5] and [2]). With respect to the question relative to
interval orders, some partial result appears in [3].

A new set of questions and open problems appears when we consider on a given
nonempty set X , binary relations R and S that are associated in some sense (e.g.:
S = ( R t )c). Which is the relationship (if any) between the induced topologies � R and
� S? Can we guess the structure of one of those two topologies if we know the other one?

A trivial fact related to the above question is the following result, that comes directly
from the de�nition of a topology induced by a binary relation .

Proposition 19. Let X be a nonempty set andR a binary relation de�ned on X . The
transposeR t of R induces onX the same topology asR, that is � R and � R t coincide.

Another easy fact in this direction is the following one:

Proposition 20. Let X be a nonempty set andR a binary relation de�ned on X . Suppose
that R is a linear order on X , such that for everyx 2 X the setsL x and Rx relative to R
are both nonempty (in other words, the linear orderR has neither maximal nor minimal
elements). Let S = ( R t )c. Then the topology� S , that S induces onX , is the discrete one.

Proof. SinceR is a linear order, we have that with respect toR it holds that L x , f xg and
Rx are nonempty and pairwise disjoint for every x 2 X . Moreover yRx () y 2 L x .
Therefore, xSy () : (yRx) () y =2 L x () y 2 f xg [ Rx (x; y 2 X ): In the same
way, it holds that zSx () z 2 f xg [ L x (x; z 2 X ): Thus, for every x 2 X we have that
f z 2 X : zSxg \ f y 2 X : xSyg is the singleton f xg and belongs to the topology� S that
S induces onX . Hence� S is the discrete topology onX . �

Remark 21. It is plain that given a binary relation R de�ned on a nonempty set X , we
can describe immediately a suitable subbasis for the topology induced by (R t )c. This fact
leads to the following question. �

First we introduce a de�nition.

De�nition 22. A bitopological spaceis a triple (X; � 1; � 2) where X is a nonempty setX
and � 1, � 2 are two topologies (not necessarily di�erent) de�ned on X .

And now we introduce a new question, with which we conclude the present note.

11. Let (X; � 1; � 2) be a bitopological space. Which additional conditions do imply that
there is a binary relation R de�ned on X such that � R = � 1 and � (R t )c = � 2?

Remark 23. Obviously, some condition is necessary because, as seen before in Example 6
and Example 10, there exist topological spaces whose topology is not induced by a binary
relation. Hence, there exist bitopological spaces (X; � 1; � 2) for which there is no binary
relation R de�ned on X such that � R = � 1 and � (R t )c = � 2.
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Abstract

Over the years many di�erent kinds of �lter pairs on quasi-uni form spaces
have been studied by De�ak, Doitchinov, Fletcher, Kopperman, Lindgren, Ro-
maguera and many others. In our talk we survey and complementsome of this
work. In particular our presentation owes much to investigations due to De�ak.
While �lter pairs have been used successfully to construct several completions
of quasi-uniform spaces, they are also useful to describe various interesting
classes of quasi-uniform spaces. Indeed in our talk we shallmainly concen-
trate on this second aspect of the theory and refer the readerto the literature
for a more thorough discussion of completions of quasi-uniform spaces based
on (Cauchy) �lter pairs.

1. Introduction

In this talk we shall discuss various types of (Cauchy) �lter pairs on quasi-uniform
spaces. While such �lter pairs have been studied by many mathematicians (for instance
by De�ak, Doitchinov, Fletcher, Kopperman, Lindgren and Romaguera, to mention just a
few), the presentation given in the following is mainly based on work due to De�ak (see
[1, 2, 3, 4, 5, 6, 7]). For the convenience of the reader we haveincluded several proofs
in order to illustrate some of the techniques used in this theory. For a more detailed
discussion of our topic we refer the reader to our related much longer article [20], where
investigations about �lter pairs were also motivated in connection with the construction
of completions of quasi-uniform spaces.

For basic facts about quasi-uniform spaces the reader should consult [15, 17]. In partic-
ular for a quasi-uniform space (X; U), Us will denote the uniformity U _ U� 1 where U� 1

is the conjugate of the quasi-uniformity U: Furthermore for each x 2 X; U(x) will denote
the � (U)-neighborhood �lter at x: Moreover (X; U) is called a T0-quasi-uniform spaceif
and only if ( \U ) \ (\U )� 1 is equal to the diagonal ofX: Given a subbaseS for a �lter on
a set X; that �lter will be denoted by �l S:

2. Preliminaries

Let (X; U) be a quasi-uniform space. A �lter pair hF; Gi on X is called a Cauchy �lter
pair (or more precisely, aU-Cauchy �lter pair ) provided that for each U 2 U there are

1The authors were partially supported by the South African Na tional Research Foundation.
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F 2 F and G 2 G such that F � G � U (compare for instance [12]). Obviously, this
concept generalizes the notion of a Cauchy �lter, as it is well known for uniform spaces.

On the set of all Cauchy �lter pairs a partial order is de�ned b y \ hF; Gi is coarser than
hF0; G0i " provided that F � F 0 and G � G 0:

A Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U) is called constant (see e.g.
[20]) provided that F = G: The following simple observation is often useful when working
with Cauchy �lter pairs on quasi-uniform spaces.

Lemma 1 ([20, Lemma 5]). Let hF; Gi be a Cauchy �lter pair on a quasi-uniform space
(X; U): Then for any F 2 F ; G 2 G we have thatF �G; where� denotes the quasi-proximity
induced byU on X:

Proof. For any U 2 U there are FU 2 F and GU 2 G such that FU � GU � U: Consider
any F 2 F ; G 2 G: Therefore (F \ FU ) � (G \ GU ) � U where F \ FU 6= ; 6= G \ GU and
hence (F � G) \ U 6= ; : Thus F �G: �

De�ak investigated various methods to construct a quasi-uniformity on an appropriate
set eX of Cauchy �lter pairs of a quasi-uniform space (X; U) [3, p. 76]. In our context the
following technique seems most appropriate:

For each U 2 U we let eU = f (hF; Gi; hF0; G0i ) 2 eX � eX : There are F 2 F and G0 2 G0

such that F � G0 � Ug:
Clearly each eU contains the diagonal of eX; since eX consists of Cauchy �lter pairs on

(X; U): However in general the �lter eU on eX � eX generated by the basef eU : U 2 Ug will
not be a quasi-uniformity. We next discuss a concept due to De�ak that is useful when
investigating the question under which conditions eU is a quasi-uniformity.

3. Weakly concentrated Cauchy filter pairs

A Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U) is called weakly concentrated
(compare [3, Lemma 7.7]) provided that for eachU 2 U there is V 2 U such that for any
x; y 2 X; V (x) 2 G and V � 1(y) 2 F imply that ( x; y) 2 U:

In this case we say thatV is quiet with respect toU on the Cauchy �lter pair hF; Gi:
We next mention an auxiliary result that helps to better understand this de�nition.

Lemma 2 ([3, Lemma 7.7 and De�nition 7.6]). A Cauchy �lter pair hF; Gi on a quasi-
uniform space (X; U) is weakly concentrated if and only if the following condition (� ) is
satis�ed: For each U 2 U there is V 2 U such that for all F1; F2 2 F ; G1; G2 2 G with
F1 � G1 � V and F2 � G2 � V we have thatF1 � G2 � U:

Proof. A proof can be found for instance in [20, Lemma 1]. �

Intuitively the condition of weak concentration should be interpreted as follows: If
hF; Gi is a point of an extension (bX; bU) of (X; U) and hF; Gi 2 bV(x) and hF; Gi 2 bV � 1(y)
with x; y 2 X; then (x; y) 2 bV 2 \ (X � X ) � bU \ (X � X ) = U; where bU resp. bV are the
extensions of appropriate entouragesU resp. V from X � X to bX � bX:

Note that any Cauchy �lter pair coarser than a weakly concentrated Cauchy �lter pair
on a quasi-uniform space is weakly concentrated.

As usual, we shall say that a Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U)
converges tox 2 X provided that U� 1(x) � F and U(x) � G ; that is, the Cauchy �lter
pair hU� 1(x); U(x)i is coarser thanhF; Gi:

Recall that a �lter pair hF; Gi on a quasi-uniform space (X; U) is called linked [3,
De�nition 7.1] provided that F \ G 6= ; wheneverF 2 F and G 2 G:
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We also recall that if hF; Gi is a Cauchy �lter pair on a quasi-uniform space (X; U); then
the �lter pair hU� 1(F ); U(G)i is called the envelope[3, De�nition 7.12] of hF; Gi, where
U� 1(F ) is the �lter �l f U � 1(F ) : F 2 F ; U 2 Ug and U(G) is the �lter �l f U(G) : G 2
G; U 2 Ug on X:

On any quasi-uniform space (X; U), hU� 1(x); U(x)i whenever x 2 X is a minimal
Cauchy �lter pair. This is a consequence of the following observation due to De�ak.

Lemma 3. [3, Lemma 7.9a)](a) Each linked Cauchy �lter pair hF; Gi on a quasi-uniform
space(X; U) is weakly concentrated.

[3, Lemma 7.9b)](b) The envelopehU� 1(F ); U(G)i of a linked Cauchy �lter pair hF; Gi
on a quasi-uniform space(X; U) is a minimal Cauchy �lter pair that is weakly concentrated.

Proof. (a) Indeed for eachU 2 U any V 2 U such that V 2 � U will clearly satisfy the
condition of weak concentration for hF; Gi; sincehF; Gi is linked.

(b) Assume that hF0; G0i is a Cauchy �lter pair on X such that F 0 � U � 1(F ) and
G0 � U (G): Let U 2 U and G 2 G: There exist F 0 2 F 0 and G0 2 G0 such that F 0� G0 � U;
since hF0; G0i is a Cauchy �lter pair on ( X; U): By assumption there is x 2 G \ G0 \ F 0:
Then G0 � U(x) � U(G) 2 U(G): Therefore U(G) � G 0: Similarly we can show that
U� 1(F ) � F 0: Hence we conclude thathU� 1(F ); U(G)i is a minimal Cauchy �lter pair on
(X; U); which is weakly concentrated by part (a). �

A �lter G on a quasi-uniform space (X; U) is called U-stable [6, x 5.1] provided thatT
G2G U(G) 2 G wheneverU 2 U:
Clearly each Us-Cauchy �lter is both U� 1-stable and U-stable.
A Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U) is called stable [6, x5.1]

provided that G is U-stable and F is U� 1-stable.
A Cauchy �lter pair hF; Gi is called costableif F is U-stable and G is U� 1-stable.
It is known that each Cauchy �lter pair on a totally bounded qu asi-uniform space is

both stable and costable, since any �lter on a totally bounded quasi-uniform space (X; U)
is Us-stable (compare [17, Proposition 2.4.7]) as the intersection of Us-Cauchy ultra�lters
(see [15, Proposition 3.14] and [6, Lemma 5.4]).

Lemma 4 ([3, Lemma 7.17]). Any linked Cauchy �lter pair on a quasi-uniform space
(X; U) is stable.

Proof. Let U 2 U: There are FU 2 F and GU 2 G such that FU � GU � U: Consider any
G 2 G. Then there is xG 2 FU \ G: Thus GU � U(xG) � U(G): Hence G is U-stable.
Similarly one shows that F is U� 1-stable. �

Lemma 5. Let (X; U) be a T0-quasi-uniform space. Then the limit of a weakly concen-
trated Cauchy �lter pair is unique if it exists.

Proof. Assume that hF; Gi is a weakly concentrated Cauchy �lter pair on (X; U) and
suppose thathF; Gi converges tox as well asy in X: Then for eachU 2 U there is V 2 U
such that for each a; b 2 X with V (a) 2 G and V � 1(b) 2 F we have that (a; b) 2 U: By
our assumption on convergence we conclude that (x; y) 2 U as well as (y; x) 2 U whenever
U 2 U: Thus x = y; since (X; U) is a T0-quasi-uniform space. �

Lemma 5 can be generalized as follows (see Corollary 7 below): Each weakly concen-
trated Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U) contains a coarsest Cauchy
�lter pair [3, Lemma 7.11] (that | of course | is weakly concen trated).

A weakly concentrated Cauchy �lter pair that is minimal Cauc hy is called concentrated
[3, Lemma 7.13].
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De�ak has given several equivalent methods to construct weakly concentrated minimal
Cauchy �lter pairs ([4, p. 351],[3, Lemma 7.11]). The following results are essentially due
to him (see [6,x5]).

Proposition 6. Let hF; Gi be a Cauchy �lter pair on a quasi-uniform space(X; U):
For each U 2 U set UG = f x 2 X : U(x) 2 Gg and F (U � 1) = f x 2 X : U � 1(x) 2 Fg :
Let FG = �l f UG : U 2 Ug and F G = �l f F (U � 1) : U 2 Ug on X:
(a) Then FG � F and F G � G :
(b) If hF0; Gi is a Cauchy �lter pair on (X; U), then FG � F 0:
Similarly if hF; G0i is a Cauchy �lter pair on (X; U), then F G � G 0:
(c) The �lter pair hFG; F Gi is Cauchy on(X; U) if and only if hF; Gi is weakly concen-

trated on (X; U):
(d) (compare [6, Lemma 5.2]) If G is U-stable, thenhFG; Gi is a Cauchy �lter pair on

(X; U):
Similarly if F is U� 1-stable, thenhF;F Gi is a Cauchy �lter pair on (X; U):
(e) [6, Lemma 5.6]Each stable, minimal Cauchy �lter pair hF; Gi on a quasi-uniform

space(X; U) is (weakly) concentrated.
(f ) (compare [6, Corollary 5.6]) Suppose that(X; U) is a totally bounded quasi-uniform

space. Then the Cauchy �lter pairshFG;(F G) Gi and hF(F G) ;F Gi are stable, minimal Cauchy
�lter pairs. (Hence these Cauchy �lter pairs are weakly concentrated by (e).)

Proof. (a) BecausehF; Gi is a Cauchy �lter pair on ( X; U); we have FG � F ; indeed
U 2 U, F 2 F , G 2 G and F � G � U imply that F � UG: Analogously F G � G :

(b) The proof is similar to the one in part (a): Let U 2 U; F 0 2 F and G 2 G such that
F 0 � G � U: Then F 0 � UG: Thus FG � F 0: The second statement is proved analogously.

(c) The statement follows directly from the de�nition of wea k concentration: Consider
\for each U 2 U there is V 2 U such that VG � F (V � 1) � U00: The latter part of this
statement exactly means that V (x) 2 G and V � 1(y) 2 F with x; y 2 X imply that
(x; y) 2 U:

(d) Let U 2 U: Since G is U-stable, we know that
T

G2G U(G) 2 G: If ( x; y) 2 UG �T
G2G U(G); then y 2 U2(x); since U(x) 2 G; and thus (x; y) 2 U2: Therefore hFG; Gi

is a Cauchy �lter pair on ( X; U): Similarly, U� 1-stability of F implies that hF;F Gi is a
Cauchy �lter pair on ( X; U):

(e) Since hF; Gi is a minimal Cauchy �lter pair, by (b) and (d) we have FG = F and
F G = G: Hence we conclude thathFG;F Gi is a Cauchy �lter pair. So hF; Gi is weakly
concentrated by (c).

(f) As noted in the discussion above, by total boundedness all Cauchy �lter pairs on
(X; U) are stable. So by (a) and (d) hF; Gi, hFG; Gi and hFG;(F G) Gi is a decreasing
sequence of Cauchy �lter pairs on (X; U): Let hF0; G0i be a Cauchy �lter pair coarser than
hFG;(F G) Gi: Hence F 0 � F G and G0 � (F G)G: Since hF0; Gi is a Cauchy �lter pair, then
by (b) FG = F 0; and sincehFG; G0i and thus hFG; Gi are Cauchy �lter pairs, then by (b)
(F G)G = G0: HencehFG;(F G) Gi is a minimal Cauchy �lter pair. Similarly hF(F G) ;F Gi is a
minimal Cauchy �lter pair on ( X; U): They are weakly concentrated by (e), because they
are stable. �

Corollary 7 ([3, Lemma 7.11]). Let hF; Gi be a Cauchy �lter pair that is weakly concen-
trated on a quasi-uniform space(X; U): Then hFG;F Gi is the coarsest Cauchy �lter pair
on (X; U) coarser than hF; Gi:
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Proof. By Proposition 6(c), hFG;F Gi is a Cauchy �lter pair coarser than hF; Gi: If hF0; G0i
is coarser thanhF; Gi, then hF0; Gi is a Cauchy �lter pair on ( X; U): So by Proposition
6(a) FG � F 0: Similarly by Proposition 6(a) F G � G 0: SohFG;F Gi is coarser thanhF0; G0i :
Thus hFG;F Gi is the coarsest Cauchy �lter pair coarser thanhF; Gi: �

Corollary 8 ([6, p. 412]). A Cauchy �lter pair hF; Gi on a quasi-uniform space(X; U)
is concentrated if and only if F = FG and G = F G: 2

Remark 9. Let us note that if hF; G1i and hF; G2i are weakly concentrated Cauchy �lter
pairs on a quasi-uniform space (X; U); then F G1 = F G2 and FG1 = FG2 :

Proof. By Corollary 7 we have hFG1 ;F G1i = hF(G1 \G 2) ; F (G1 \ G 2)i = hFG2 ;F G2i ; because
obviously hF; G1 \ G 2i is a (weakly concentrated) Cauchy �lter pair coarser than hF; G1i
and hF; G2i : �

Corollary 10 ([6, Corollary 5.6]). Let (X; U) be a totally bounded quasi-uniform space.
Then each Cauchy �lter pair on (X; U) contains a weakly concentrated minimal Cauchy
�lter pair.

Proof. The assertion is a consequence of Proposition 6(f). �

A quasi-uniform space (X; U) is called Cauchy [9, p. 318] provided that whenever the
�lter pairs hF1; G1i and hF2; G2i are Cauchy andF1 _F 2 and G1 _G2 are well-de�ned �lters
on (X; U) (that is, F1 [ F 2 and G1 [ G 2 are subbases for �lters), thenhF1 \ F 2; G1 \ G 2i is
a Cauchy �lter pair on ( X; U):

Lemma 11 ([20, Lemma 6]). (a) If a Cauchy �lter pair hF; Gi on a Cauchy quasi-uniform
space(X; U) contains a minimal Cauchy �lter pair, then this is the coarsest Cauchy �lter
pair coarser than hF; Gi:

(b) Let (X; U) be a CauchyT0-quasi-uniform space. Then the limit of a convergent
Cauchy �lter pair on (X; U) is unique.

Proof. (a) Let hF0; G0i be a minimal Cauchy �lter pair coarser than hF; Gi and let hH; Li
be any Cauchy �lter pair coarser than hF; Gi: Then by Cauchyness of (X; U) we see that
hH \ F 0; L \ G 0i is a Cauchy �lter pair equal to hF0; G0i ; since the latter Cauchy �lter pair
is minimal. Hence hF0; G0i is the coarsest Cauchy �lter pair coarser thanhF; Gi:

(b) Suppose that hF; Gi converges tox and y: HencehU� 1(x); U(x)i and hU� 1(y); U(y)i
are coarser thanhF; Gi; and both are minimal according to Lemma 3(b). So they must be
equal according to part (a). Thus x = y, because the quasi-uniform space (X; U) satis�es
the T0-axiom. �

Lemma 12 ([20, Lemma 7]). Each stable Cauchy �lter pair on a Cauchy quasi-uniform
space is weakly concentrated.

Proof. Let hF; Gi be a stable Cauchy �lter pair on a Cauchy quasi-uniform space(X; U):
According to Proposition 6(d) hFG; Gi and hF; F Gi are Cauchy �lter pairs coarser than
hF; Gi: Hence by Cauchyness ofU, we have that hFG \ F ; G \ F Gi = hFG; F Gi is a Cauchy
�lter pair on ( X; U): Thus according to Proposition 6(c) hF; Gi is weakly concentrated. �

Unfortunately in general the entourageV used in the de�nition of a weakly concentrated
Cauchy �lter pair depends on the Cauchy �lter pair so that we c annot prove that eU is a
quasi-uniformity on the collection of all weakly concentrated Cauchy �lter pairs.
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That is why De�ak called a family 	 of Cauchy �lter pairs of a qu asi-uniform space (X; U)
uniformly weakly concentrated[3, Lemma 7.15] provided that each member of 	 satis�es
the condition of weak concentration with V not depending on the considered Cauchy �lter
pair, but only on the family 	 :

If 	 is a uniformly weakly concentrated family of Cauchy �lte r pairs on a quasi-uniform
space (X; U), then 	 m = fhF G; F Gi : hF; Gi 2 	 g is uniformly weakly concentrated, too.

On a given quasi-uniform space (X; U) the union of �nitely many collections of uniformly
weakly concentrated Cauchy �lter pairs yields another uniformly weakly concentrated
collection of Cauchy �lter pairs on ( X; U).

It immediately follows from the de�nitions that for any quas i-uniform space (X; U) the
collection 	 L of all linked Cauchy �lter pairs is uniformly weakly concent rated (see [3,
Lemma 7.16]).

In particular for any quasi-uniform space (X; U) the collection fhU � 1(x); U(x)i : x 2 X g
is uniformly weakly concentrated.

The following result can essentially be found in De�ak's work (compare [3, Theorem
8.13]).

Proposition 13. Let 	 be a collection of Cauchy �lter pairs of a quasi-uniform space
(X; U) containing all neighborhood �lter pairs hU� 1(x); U(x)i where x 2 X:

(a) Then 	 is uniformly weakly concentrated if and only if eUj(	 � 	) is a quasi-
uniformity on 	 : (In order not to overload the notation we may write eU instead of
eUj(	 � 	) for restrictions like this in the following.)

(b) If 	 is a uniformly weakly concentrated family, then the map� X : (X; U) ! (	 ; eU)
de�ned by x 7! hU� 1(x); U(x)i yields a quasi-uniform embedding for theT0-quasi-uniform
space(X; U):

Proof. (a) Let 	 be a collection of Cauchy �lter pairs on ( X; U) such that eUj(	 � 	) is a
quasi-uniformity. Let U 2 U: There is V 2 U such that eV 2 � eU: ChooseW 2 U such that
W 2 � V: Consider hF; Gi 2 	 : Let x; y 2 X be such that W (x) 2 G and W � 1(y) 2 F :
Then there is G 2 G such that f xg � G � W: Thus W � 1(x) � G � V and therefore
(hU� 1(x); U(x)i ; hF; Gi) 2 eV : Similarly ( hF; Gi; hU� 1(y); U(y)i ) 2 eV : By assumption then

(hU� 1(x); U(x)i ; hU� 1(y); U(y)i ) 2 eU

and therefore (x; y) 2 U: We conclude that 	 is uniformly weakly concentrated.
On the other hand we note that for any uniformly weakly concentrated collection 	 of

Cauchy �lter pairs of a quasi-uniform space (X; U) the set of all relations eU with U 2 U
de�nes a base of a quasi-uniformity eUj(	 � 	) : Let U 2 U: There is V 2 U such that
for any hF; Gi 2 	 ; V (x) 2 G and V � 1(y) 2 F with x; y 2 X we have (x; y) 2 U: We
show that ( eV )2 � eU : Let (hF; Gi; hF0; G0i ) 2 eV and (hF0; G0i ; hF00; G00i ) 2 eV : Then there
are F 2 F ; G0 2 G0 such that F � G0 � V and there are F 0 2 F 0; G002 G00such that
F 0� G00� V: Thus f 2 F and g002 G00imply that V (f ) 2 G0 and V � 1(g00) 2 F 0: Therefore
F � G00� U by assumption and we conclude that (hF; Gi; hF00; G00i ) 2 eU: Hence eUj(	 � 	)
is a quasi-uniformity.

(b) Let U 2 U be � (U� 1) � � (U)-open. Then (x; y) 2 U if and only if

(hU� 1(x); U(x)i ; hU� 1(y); U(y)i ) 2 eU:

Since f U 2 U : U is a � (U� 1) � � (U)-openg is a base forU (see [15, Corollary 1.17]), the
assertion follows. �
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We next discuss connections between several properties de�ned with the help of Cauchy
�lter pairs. By de�nition on a quiet [12, 13] quasi-uniform space the set of all Cauchy �lter
pairs is uniformly weakly concentrated: In fact we recall that a quasi-uniform space (X; U)
is calledquiet provided that for each U 2 U there is V 2 U such that for each Cauchy �lter
pair hF; Gi on (X; U); V (x) 2 G and V � 1(y) 2 F with x; y 2 X imply that ( x; y) 2 U:

Let us call a Cauchy �lter pair hF; Gi on a quasi-uniform space (X; U) symmetric pro-
vided that hG; Fi is a Cauchy �lter pair on ( X; U); too. A quasi-uniform space (X; U) is
called �lter symmetric [9, De�nition 5.1] provided that each Cauchy �lter pair on ( X; U)
is symmetric.

Proposition 14 ([10, Proposition 5.1]). Each �lter symmetric quasi-uniform space (X; U)
is quiet.

Proof. Let U 2 U and V 2 U be such that V 3 � U: Suppose thathF; Gi is a Cauchy �lter
pair on (X; U) and V(x) 2 G and V � 1(y) 2 F with x; y 2 X: By �lter symmetry hG; Fi is
a Cauchy �lter pair on ( X; U): According to Lemma 1, G�F wheneverF 2 F and G 2 G;
where � is the quasi-proximity induced by U on X: It follows that V (x)�V � 1(y) and thus
(x; y) 2 V 3 � U: Hence the set of all Cauchy �lter pairs on (X; U) is uniformly weakly
concentrated. �

A quasi-uniform space (X; U) is called locally quiet [8] provided that each Cauchy �lter
pair is weakly concentrated and it is calledcostable[10] provided that wheneverhF; Gi is a
Cauchy �lter pair on ( X; U); then the �lter F is U-stable. A quasi-uniform space (X; U) is
doubly costable(compare [10]) provided that for each Cauchy �lter pair hF; Gi on (X; U)
the �lter F is U-stable and the �lter G is U� 1-stable, that is, the U-Cauchy �lter pair
hF; Gi is costable on (X; U):

Proposition 15 ([9, Proposition 2.1]). Each locally quiet quasi-uniform space(X; U) is
Cauchy.

Proof. Let hF1; G1i and hF2; G2i be Cauchy �lter pairs on ( X; U) such that F1 _ F 2 and
G1_G2 are well-de�ned �lters. By local quietness the Cauchy �lter pair hF1 _F 2; G1 _G2i is
weakly concentrated and thus contains a coarsest Cauchy �lter pair by Corollary 7, which is
necessarily coarser than bothhF1; G1i and hF2; G2i ; that is, is coarser thanhF1\F 2; G1\G 2i :
In particular the latter �lter pair is Cauchy. Hence ( X; U) is Cauchy. �

Our next proposition is closely related to De�ak's result that a quasi-uniform space is
�lter symmetric if and only if it is quiet and doubly costable [9, Proposition 5.1].

Proposition 16. A quasi-uniform space (X; U) is �lter symmetric if and only if it is
Cauchy and each Cauchy �lter pair on (X; U) is stable and costable.

Proof. For the rather complex proof we refer the reader to [20, Proposition 3]. �

A quasi-uniform space (X; U) is called proximally symmetric (compare [9, p. 325])
provided that the quasi-proximity � induced by U on X is a proximity.

Proposition 17 ([9, Proposition 5.2]). Each proximally symmetric quasi-uniform space
(X; U) is �lter symmetric.

Proof. A proof of this result can be found in [20, Proposition 4]. �

Another interesting result about Cauchyness of quasi-uniformities due to De�ak general-
izes the well-known fact �rst proved by Fletcher and Hunsaker that totally bounded quiet
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quasi-uniformities are uniformities (see [14]). We include the instructive proof of De�ak's
version of this result.

Proposition 18 ([9, Theorem 1.3]). Each totally bounded Cauchy quasi-uniform space
(X; U) is symmetric, that is, U is a uniformity.

Proof. Let U be a totally bounded Cauchy quasi-uniformity on a set X and let � be
the quasi-proximity induced by U on X: Since trivially any totally bounded proximally
symmetric quasi-uniformity is a uniformity, we only have to show that � is a proximity.
We suppose that � is not a proximity and choose A; B � X such that A�B; but B �A:
For the proof we recall that U is generated by the subbasic entourages (X � X ) n (E � F )
where E; F � X and E�F [15, Theorem 1.33].

In the following we use some ideas developed in [16]. SinceA�B; we have that A 6= ;
and B 6= ; : Let M = fhF 1; F2i : F1; F2 are �lters on X such that A 2 F 1; B 2 F 2 and
such that C 2 F 1; D 2 F 2 imply that C�D g partially ordered by the usual coarser relation
between �lter pairs, that is, hF1; F2i � hG 1; G2i if F1 � G 1 and F2 � G 2: Since the union
of a chain of �lters is a �lter, we see that we can apply Zorn's Lemma. We conclude that
M has a maximal elementhH1; H 2i : We next note that H 1 and H 2 are ultra�lters on X :
Suppose that H 1 is not an ultra�lter on X: Then there is an E � X such that E 62 H1
and X nE 62 H1: Let K1 be the �lter generated by H 1 [ f Eg on X and let K2 be the �lter
generated byH 1 [ f X nEg on X: SincehH1; H 2i is maximal in (M ; � ) and K1 and K2 are
strictly �ner than H 1; there are H1; H 0

1 2 H 1 and H2; H 0
2 2 H 2 such that H1 \ E �H 2 and

H 0
1 \ (X n E)�H 0

2: It follows that H1 \ H 0
1 \ E �H 2 \ H 0

2 and H1 \ H 0
1 \ (X n E)�H 2 \ H 0

2:
Thus H1 \ H 0

1�H 2 \ H 0
2 |a contradiction. Hence H 1 is an ultra�lter on X: Similarly, one

proves that H 2 is an ultra�lter on X:
Next we show that hH1; H 2i is a Cauchy �lter pair on ( X; U): Assume the contrary.

Then it is clear that by total boundedness of U there are C; D � X such that C�D; but
(H1 � H2) \ (C � D ) 6= ; wheneverH1 2 H 1 and H2 2 H 2: HenceC 2 H 1 and D 2 H 2,
becauseH 1 and H 2 are ultra�lters |contradicting the fact that hH1; H 2i 2 M : Thus
hH1; H 2i is a Cauchy �lter pair on ( X; U):

Then hH1; H 1i and hH2; H 2i are Cauchy �lter pairs, since by total boundedness each
ultra�lter is Us-Cauchy [15, Proposition 3.14]. Consequently obviouslyhH1; H 1 \ H 2i
and hH1 \ H 2; H 2i are Cauchy �lter pairs on ( X; U): Therefore by Cauchyness ofU;
hH1 \ H 2; H 1 \ H 2i is a Cauchy �lter pair on ( X; U): HencehH2; H 1i is a Cauchy �lter
pair on (X; U); which implies by Lemma 1 that B�A , sinceB 2 H 2 and A 2 H 1: We have
reached a contradiction and conclude that� is a proximity. �

4. An approach to completions

As we noted above (see Proposition 13), in order to single outthose Cauchy �lter pairs
on a quasi-uniform space (X; U) that are suitable for the construction of our completion,
some �xed connection between the entouragesV and U that appear in the de�nition of
\weakly concentrated" is required.

Example 19 ([20, Example 2]). Given a baseB of a quasi-uniformity U on a setX with
a function M : B ! B such that M (B )2 � B wheneverB 2 B we can consider all Cauchy
�lter pairs on ( X; U) such that on these �lter pairs, M (B ) is quiet for B: Obviously in
this way we obtain a uniformly weakly concentrated family of Cauchy �lter pairs of ( X; U)
which in general depends onB and the chosen functionM: The family also contains all
linked Cauchy �lter pairs on ( X; U):
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Remark 20 ([20, Remark 2]). Similarly, given a quasi-uniform space (X; U); we can con-
sider the collection 	 of all Cauchy �lter pairs on ( X; U) such that for any V; U 2 U with
V 2 � U we have that V is quiet for U on these �lter pairs.

Evidently in this way we obtain a uniformly weakly concentrated family of Cauchy �lter
pairs on (X; U) which contains all linked Cauchy �lter pairs on ( X; U):

In the following we shall consider an approach which is motivated by Doitchinov's work
dealing with balancedT0-quasi-metrics and more generally by our recent work on balanced
Cauchy �lter pairs on T0-quasi-metric spaces [18, 19].

We recall some notation introduced in [18]. Let (X; d) be a quasi-pseudometric space and
let A; B be nonempty subsets ofX: We de�ne the 2-diameter from A to B by � d(A; B ) =
supf d(a; b) : a 2 A; b 2 B g: Of course,1 is a possible value of a 2-diameter. For singleton
f xg we write � d(x; A ) and � d(B; x ) instead of � d(f xg; A) and � d(B; f xg); respectively.

Let (X; d) be a quasi-pseudometric space and lethF; Gi and hF0; G0i be two Cauchy
�lter pairs on X: Then the following formula de�nes a distance

d+ (hF; Gi; hF0; G0i ) := inf
F 2F ;G02G0

� d(F; G0)

from hF; Gi to hF0; G0i : It is readily checked that if ( X; d ) is a quasi-pseudometric space,
then the �lters Ud+ and fUd are equal on the set eX of all Cauchy �lter pairs of ( X; Ud):
Hence one can consider the constructiond+ for a quasi-pseudometricd as a variant of the
construction eU for a quasi-uniformity U: It is known that the distance d+ attains only
values in [0; 1 [ [18, Lemma 2] and is indeed a quasi-pseudometric on the set of balanced
(see De�nition 21 below) Cauchy �lter pairs of ( X; d) [18, Theorem 1].

De�nition 21 (compare [1]). Let C be a chosen real constant larger than or equal to 1:
Let hF; Gi be a Ud-Cauchy �lter pair on a quasi-pseudometric space (X; d). We shall call
hF; Gi C-balanced, provided that for each x; y 2 X we have

d(x; y) � C( inf
G2G

� d(x; G) + inf
F 2F

� d(F; y)) :

(Note that this condition becomes weaker ifC gets larger.) We shall say that a quasi-
pseudometric space (X; d) is C-balancedprovided that each Cauchy �lter pair on ( X; d) is
C-balanced.

Of course 1-balancedness is exactly Doitchinov's concept of balancedness (see [18,
Proposition 3], compare [20, De�nition 1]). Our next result is motivated by remarks
due to De�ak in [1] and describes a connection betweenC-balancedness and uniform weak
concentration of a set of Cauchy �lter pairs of a quasi-uniform space.

Proposition 22 ([20, Proposition 9]). A collection 	 of Cauchy �lter pairs on a quasi-
uniform space (X; U) is uniformly weakly concentrated if and only if there is a nonempty
subbasic familyD on X of quasi-pseudometrics for(X; U) (that is, U =

W
d2D Ud) such

that each Cauchy �lter pair of 	 is 2-balanced in any quasi-pseudometric space(X; d) with
d 2 D :

Proof. A proof is given in [20, Proposition 9]. �

Example 23 ([20, Lemma 9]). Each symmetric Cauchy �lter pair hF; Gi on a quasi-
pseudometric space (X; d) is balanced.

Proof. Let a; b2 X: In order to reach a contradiction suppose that there areF 2 F , G 2 G
and � > 0 such that d(a; b) > � d(a; G) + � d(F; b) + �: Since by our assumptionhG; Fi is a
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Cauchy �lter pair on ( X; d); there are F 0 2 F and G0 2 G such that F 0 � F; G0 � G and
� d(G0; F 0) < �:

Let f 0 2 F 0 and g0 2 G0: Then d(a; b) � d(a; g0) + d(g0; f 0) + d(f 0; b) � � d(a; G0) + � +
� d(F 0; b) � � d(a; G)+ � +� d(F; b) < d (a; b): We have reached a contradiction and conclude
that d(a; b) � inf G2G � d(a; G) + inf F 2F � d(F; b): HencehF; Gi is balanced on (X; d). �

Since any collection of uniformly weakly concentrated Cauchy �lter pairs on a quasi-
uniform space (X; U) remains uniformly weakly concentrated after adding one weakly
concentrated Cauchy �lter pair to it, only quasi-uniform sp aces in which the set of all
weakly concentrated �lter pairs that are minimal Cauchy are uniformly weakly concen-
trated possess a canonical maximal ground set for our methodof completion. Example
24 below describes a quasi-pseudometrizable quasi-uniform space due to De�ak for which
that condition is not satis�ed. It follows from this example (see [20]) that Doitchinov's
completion theory cannot be extended from quiet to arbitrary T0-quasi-uniform spaces.
On the other hand we recall that Doitchinov's completion for balanced T0-quasi-metric
spaces (see [11]) has been generalized to a (quasi-metric) completion theory for arbitrary
T0-quasi-metric spaces (see [18, 19]) with the help of the aforementioned concept of a
balanced Cauchy �lter pair.

Example 24 (see [3, Example 7.15]). Let X = ( R n f 0g) � N and considerUd; where the
T0-quasi-metric d on X is de�ned as follows: d((s; n); (t; k )) = min f 1; (t � s)ng if n = k
and s < 0 < t: Furthermore set d equal to 0 on the diagonal ofX and d = 1 otherwise.
One readily veri�es that d is a T0-quasi-metric on X:

For each n 2 !; let Fn be the �lter generated on X by the basef ] � �; 0[�f ng : � > 0g
and let Gn be the �lter on X generated by the basef ]0; � [�f ng : � > 0g: Set 	 = fhF n ; Gn i :
n 2 ! g: One checks that for eachn 2 !; hFn ; Gn i is a minimal Cauchy �lter pair on ( X; Ud)
(compare Proposition 6).

Furthermore for each n 2 !; hFn ; Gn i is 2n -balanced: Sinced � 1; it su�ces to con-
sider the case that x; y 2 X such that inf G2Gn � d(x; G) < 1 and infF 2F n � d(F; y) < 1:
Then there are u; v 2 R n f 0g such that x = ( u; n) and y = ( v; n) with u < 0 < v:
Consequently (v � u)n �

P n
k=0

� n
k

�
(� u)kvn� k � 2n (maxf v; � ug)n � 2n (( � u)n + vn ) =

2n (inf G2Gn � d(x; G) + inf F 2F n � d(F; y)) : So hFn ; Gn i is indeed 2n -balanced on (X; d):
Let � = 1

2 : Consider any � > 0: Then for any n 2 N with 2n� 1� > 1; we have that

Vd;� (( � ( �
2)

1
n ; n)) 2 Gn and V � 1

d;� (( �
2)

1
n ; n)) 2 F n , but d(( � ( �

2)
1
n ; n); (( �

2 )
1
n ; n)) = 1 > 1

2 :
Hence 	 is not uniformly weakly concentrated.

Therefore fUd is not a quasi-uniformity on 	 according to Proposition 13, b ut for any
n 2 N it is certainly a quasi-uniformity restricted to 	 n � 	 n where 	 n = fhF k ; Gk i : k 2 N
and k � ng; because 	n is a (�nite) collection of Cauchy �lter pairs, which are all 2 n -
balanced. So there does not exist a largest ground set for ourquasi-uniform completion
of the quasi-uniform space (X; Ud): 2
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Abstract

We present some examples for which well-known �xed point theorems in fuzzy
(quasi-)metric spaces cannot be applied, and neverthelessour results work on
such examples.

1. Introduction and preliminaries

Following the modern terminology, by a quasi-metric on a nonempty set X we mean a
nonnegative real valued functiond on X � X such that for all x; y; z 2 X :

(i) x = y if and only if d(x; y) = d(y; x) = 0;
(ii) d(x; z) � d(x; y) + d(y; z):
If d satis�es condition (i) above and
(ii') d(x; z) � maxf d(x; y); d(y; z)g

then, d is called a non-Archimedean quasi-metric onX:
If d satis�es the conditions (i), (ii) and
(ii") d(x; y) = d(y; x)

then, d is called a metric onX:
The notion of a non-Archimedean metric is de�ned in the obvious manner.

A (non-Archimedean) quasi-metric space is a pair (X; d) such that X is a nonempty set
and d is a (non-Archimedean) quasi-metric onX:

Each quasi-metric d on X generates aT0 topology � d onX which has as a base the
family of open balls f Bd(x; r ) : x 2 X; r > 0g; where Bd(x; r ) = f y 2 X : d(x; y) < r g for
all x 2 X and r > 0:

Given a (non-Archimedean) quasi-metric d on X; then the function d� 1 de�ned on
X � X by d� 1(x; y) = d(y; x); is also a (non-Archimedean) quasi-metric onX; called the
conjugate ofd; and the function ds de�ned on X � X by ds(x; y) = max f d(x; y); d� 1(x; y)g
is a (non-Archimedean) metric onX:

1The author thanks the support of the Spanish Ministry of Scie nce and Innovation, grant MTM2009-
12872-C02-01.
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A quasi-metric space (X; d) is said to be bicomplete if (X; d s) is a complete metric
space. In this case, we say thatd is a bicomplete quasi-metric onX:

By a contraction map on a (quasi-)metric space (X; d) we mean a self-mapf on X such
that d(fx; fy ) � kd(x; y) for all x; y 2 X; where k is a constant with 0 < k < 1: The
number k is called a contraction constant for f:

It is clear that if f is a contraction map on a quasi-metric space (X; d) with contrac-
tion constant k; then f is a contraction map on the metric space (X; d s) with contraction
constant k:

According to [10], a binary operation � : [0; 1] � [0; 1] ! [0; 1] is a continuous t-norm if
� satis�es the following conditions: (i) � is associative and commutative; (ii) � is contin-
uous; (iii) a � 1 = a for every a 2 [0; 1]; (iv) a � b � c � d whenevera � c and b � d, with
a; b; c; d2 [0; 1].

Paradigmatic examples of continuous t-norm are Min, Prod, and TL (the Lukasiewicz
t-norm).

In the following Min will be denoted by ^ ; Prod by � and TL by � L : Thus we have
a ^ b = min f a; bg; aProd= a:b and a � L b = max f a + b � 1; 0g for all a; b 2 [0; 1]: The
following relations hold:
^ > � > � L : In fact, ^ > � for any continuous t-norm � :

An example of a class of continuous t-norm ([1]), that cover the full ranges of these
operations, are de�ned for all a; b2 [0; 1] by:

a � � b = 1 � minf 1; [(1 � a)1=� + (1 � b)1=� ]� g

where � is a parameter whose range is (0; 1 ). A particular continuous t-norm is obtained
for each value of the parameter� . These operations are often referred to in the literature
as the Yager continuous t-norm.

It is easy to see thata � � 1 b � a � � 2 b whenever� 1 � � 2, with a; b2 [0; 1]. In particular
a � n1 b � a � n2 b whenevern1 � n2, with n1; n2 2 N and a; b2 [0; 1] ( N will denote the set
of positive integer numbers).

A subclass of Yager continuous t-norm isf� � g� 2 N. In particular we have that � 1 is the
Lukasiewicz t-norm a. We will call these subclasses as theN-Yager continuous t-norm.

De�nition 1 [4]. A KM-fuzzy quasi-metric on a set X is a pair (M; � ) such that � is a
continuous t-norm and M is a fuzzy set in X � X � [0; 1 ) such that for all x; y; z 2 X :

(KM1) M (x; y; 0) = 0;
(KM2) x = y if and only if M (x; y; t ) = M (y; x; t ) = 1 for all t > 0;
(KM3) M (x; z; t + s) � M (x; y; t ) � M (y; z; s) for all t; s > 0;
(KM4) M (x; y; ) : [0; 1 ) ! [0; 1] is left continuous.
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A KM-fuzzy quasi-metric ( M; � ) satisfying for all x; y 2 X and t > 0 the symmetry
axiom M (x; y; t ) = M (y; x; t ); is a fuzzy metric in the sense of Kramosil and Michalek [6].

De�nition 2 [4]. A KM-fuzzy quasi-metric space is a triple (X; M; � ) such that X is a
(nonempty) set and (M; � ) is a KM-fuzzy quasi-metric on X .

If ( M; � ) is a fuzzy metric in the sense of Kramosil and Michalek then (X; M; � ) is a
fuzzy metric space in the sense of Kramosil and Michalek [12].

In the following, KM-fuzzy quasi-metrics and fuzzy metrics in the sense of Kramosil and
Michalek will be simply called fuzzy quasi-metrics and fuzzy metrics respectively, and KM-
fuzzy quasi-metric spaces and fuzzy metric spaces in the sense of Kramosil and Michalek
will be simply called fuzzy quasi-metric spaces and fuzzy metric spaces, respectively.

If ( M; � ) is a fuzzy quasi-metric on X; then (M � 1; � ) is also a fuzzy quasi-metric on
X; where M � 1 is the fuzzy set in X � X � [0; 1 ) de�ned by M � 1(x; y; t ) = M (y; x; t ):
Moreover, if we denote by M i the fuzzy set in X � X � [0; 1 ) given by M i (x; y; t ) =
minf M (x; y; t ); M � 1(x; y; t )g, then (M i ; � ) is a fuzzy metric on X [4].

Given a fuzzy quasi-metric space (X; M; � ) we de�ne the open ball BM (x; r; t ), for
x 2 X; 0 < r < 1; and t > 0; as the set BM (x; r; t ) = f y 2 X : M (x; y; t ) > 1 � r g.
Obviously, x 2 BM (x; r; t ).

For eachx 2 X , 0 < r 1 � r2 < 1 and 0< t 1 � t2, we haveBM (x; r 1; t1) � BM (x; r 2; t2).
Consequently, we may de�ne a topology� M on X as

� M := f A � X : x 2 A there is r 2 (0; 1); t > 0, with BM (x; r; t ) � Ag

Moreover, for eachx 2 X the collection of open ballsf BM (x; 1=n;1=n) : n = 2 ; 3:::g,
is a local base atx with respect to � M . It is clear, that for any fuzzy quasi-metric space
(X; M; � ), � M is a T0 topology.

The topology � M is called the topology generated by the fuzzy quasi-metric space
(X; M; � ). It is clear that each open ball BM (x; r; t ) is an open set for the topology
� M .

A sequencef xn gn in a fuzzy (quasi-)metric space (X; M; � ) converges to a pointx 2 X
with respect to � M if and only if lim n M (x; x n ; t) = 1, for all t > 0.

In order to introduce a Hausdor� topology on the fuzzy metric space, in [2] George and
Veeramani gave an appropriate modi�cation of the concept of fuzzy metric space from
Kramosil and Michalek that we will know as GV-fuzzy metric space.

By using the notion of a fuzzy metric space in the sense of Kramosil and Michalek [6],
Grabiec proved in [3] a fuzzy version of the celebrated Banach �xed point theorem. To
this end, Grabiec introduced the following notions: A sequence f xngn in a fuzzy metric
space (X; M; � ) is called G-Cauchy if for each" 2 (0; 1); p 2 N, t > 0 there existsn0 2 N
such that M (xn ; xn+ p; t) > 1 � " for all n > n0. A fuzzy metric space (X; M; � ) is called
G-complete provided that every G-Cauchy sequence inX is convergent. In this case,
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(M; � ) is called a G-complete fuzzy metric onX .

Theorem 1 [3]. Let (X; M; � ) be a G-complete fuzzy metric space such thatlim t !1 M (x; y; t ) =
1 for all x; y 2 X . Let f : X ! X be a self-map satisfying:

M (fx; fy; kt ) � M (x; y; t )

for all x; y 2 X ,and t > 0, with k 2 (0; 1). Then f has a unique �xed point.

George and Veeramani presented in [2] an example which showsthat Grabiec�s notion
of completeness is very strong; indeed, the fuzzy metric induced by the Euclidean metric
is not complete in the sense of Grabiec. Due to this fact, theymodi�ed the de�nitions of
Cauchy sequence and completeness due to Grabiec as follows:A sequencef xngn in a fuzzy
metric space (X; M; � ) is called a Cauchy sequence if for each" 2 (0; 1); t > 0 there exists
n0 2 N such that M (xn ; xm ; t) > 1 � " for all n; m > n0. A fuzzy metric space (X; M; � )
is called complete provided that every Cauchy sequence inX is convergent. In this case,
(M; � ) is called a complete fuzzy metric onX . Nevertheless the notion of G-completeness
is very interesting in the case of non-Archimedean fuzzy metric spaces because (see [8,
Theorme 3]) each complete non-Archimedean fuzzy metric space is G-complete.

In [8], Romaguera, Sapena and Tirado generalized the previous theorem to the fuzzy
quasi-metric setting. To this end they gave the following notions: A sequencef xngn in
a fuzzy quasi-metric space (X; M; � ) is called G-Cauchy if f xn gn is a G-Cauchy sequence
in (X; M i ; � ). A fuzzy quasi-metric space (X; M; � ) is called G-bicomplete if (X; M i ; � )
is a G-complete fuzzy metric space. In this case, (M; � ) is called a G-bicomplete fuzzy
quasi-metric on X . So the notions of Cauchy sequence and bicomplete fuzzy quasi-metric
space can be given in a natural way as follows: A sequencef xngn in a fuzzy quasi-metric
space (X; M; � ) is called Cauchy if f xn gn is a Cauchy sequence in (X; M i ; � ). A fuzzy
quasi-metric space (X; M; � ) is called bicomplete if (X; M i ; � ) is a complete fuzzy metric
space. In this case, (M; � ) is called a bicomplete fuzzy quasi-metric onX .

Theorem 2 [8]. Let (X; M; � ) be a G-bicomplete fuzzy quasi-metric space such that
lim t !1 M (x; y; t ) = 1 for all x; y 2 X . Let f : X ! X be a self-map satisfying:

M (fx; fy; kt ) � M (x; y; t )

for all x; y 2 X ,and t > 0, with k 2 (0; 1). Then f has a unique �xed point.

2. The results

Next we present several contraction principles on fuzzy quasi-metric spaces and we also
present several examples for which well-known �xed point theorems cannot be applied and
our result work to such examples.

Theorem 3 [12]. Let (X; M; � ) be a G-complete fuzzy metric space. Iff is a self-map
on X such that there is k 2 (0; 1) satisfying:

M (fx; fy; t ) > 1 � k + kM (x; y; t )

for all x; y 2 X and t > 0, then f has a unique �xed point.
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Theorem 4 [12]. Let (X; M; � ) be a complete fuzzy metric space such that� > � � , for
some � 2 N. If f is a self-map onX such that there is k 2 (0; 1) satisfying:

M (fx; fy; t ) > 1 � k + kM (x; y; t )

for all x; y 2 X and t > 0, then f has a unique �xed point.

The previous theorems can be extended to fuzzy quasi-metricspaces as follows:

Theorem 5 [12]. Let (X; M; � ) be a G-bicomplete fuzzy quasi-metric space. Iff is a
self-map on X such that there is k 2 (0; 1) satisfying

M (fx; fy; t ) > 1 � k + kM (x; y; t )

for all x; y 2 X and t > 0, then f has a unique �xed point.

Theorem 6 [12]. Let (X; M; � ) be a bicomplete fuzzy quasi-metric space such that� > � � ,
for some � 2 N. If f is a self-map onX such that there is k 2 (0; 1) satisfying

M (fx; fy; t ) > 1 � k + kM (x; y; t )

for all x; y 2 X and t > 0, then f has a unique �xed point.

The notion of a non-Archimedean fuzzy metric space was introduced by Sapena [9]. A
natural generalization of this concept to the quasi-metricsetting can be found in [8] as fol-
lows: A fuzzy quasi-metric space (X; M; � ) such that M (x; y; t ) � minf M (x; z; t ); M (z; y; t)g
for all x; y; z; 2 X; t > 0; is called a non-Archimedean fuzzy quasi-metric space, and (M; � )
is called a non-Archimedean fuzzy quasi-metric.

In [8, Theorem 3] it is shown that each bicomplete non-Archimedean fuzzy quasi-metric
space is G-bicomplete. So from previous theorem we have:

Theorem 7 [12]. Let (X; M; � ) be a bicomplete non-Archimedean fuzzy quasi-metric
space. If f is a self-map onX such that there is k 2 (0; 1) satisfying

M (fx; fy; t ) > 1 � k + kM (x; y; t )

for all x; y 2 X and t > 0, then f has a unique �xed point.

Next we present an example where the quasi-metric version ofGrabiec's �xed point
theorem cannot be applied (Theorem 2).

Example 1. Let (X; d) be the metric space whereX = f 0g [ f 1=n : n 2 Ng and d de�ned
on X � X by d(x; y) = max f (y � x); 0g. Let � L be the Lukasiewicz continuous t-norm.
We de�ne a fuzzy setM in X � X � [0; + 1 ) given in the following way:

M (x; y; 0) = 0 ,

M (x; y; t ) = 1 � d(x; y), if 0 < t 6 1,

M (x; y; t ) = 1 , if t > 1.

It is clear that (X; M; � L ) is a G-bicomplete fuzzy quasi-metric space.
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Let f : X ! X be given byfx = x=2 for all x 2 X (obviously f has a unique �xed
point x = 0 ). Nevertheless the conditions of Theorem 2 are not satis�ed.Indeed, suppose
that there exists a contraction constant k 2 (0; 1) such that:

M (fx; fy; kt ) � M (x; y; t )

for all x; y 2 X ,and t > 0, with k 2 (0; 1). Fix t = 1=k, then we have:

M (fx; fy; 1) = 1 � d(x; y) � M (x; y; 1=k) = 1

which is a contradiction. Therefore the conditions of the quasi-metric version of Grabiec's
�xed point theorem are not satis�ed.

Nevertheless, the following example shows that Theorem 5 can be applied to deduce
the existence of �xed point for the contraction map f .

Indeed, for all x; y 2 X , we have that:

M (fx; fy; t ) = 1 � d(fx; fy ) = 1 �
1
2

d(x; y) = 1 �
1
2

+
1
2

M (x; y; t )

for all t > 0.
Therefore f is a contraction on (X; M; � L ) with contraction constant 1/2 : So, by The-

orem 5, f has a unique �xed point which is, obviously,x = 0 :

In [5], V. Gregori and A. Sapena gave �xed point theorems for complete GV-fuzzy met-
ric spaces. To this end they introduced the notion of fuzzy contractive map and fuzzy
contractive sequence, respectively. Later on, Mihet adapted (see [7]) the previous notions
to fuzzy metric spaces in the sense of Kramosil and Michalek as follows:

De�nition 3. Let (X; M; � ) be a fuzzy metric space. We will say the mapf : X ! X is
fuzzy contractive if there existsk 2 (0; 1) such that

M (fx; fy; t ) �
M (x; y; t )

M (x; y; t ) + k(1 � M (x; y; t ))

for all x; y 2 X and t > 0. ( k is called the contractive constant of f ).

De�nition 4. Let (X; M; � ) be a fuzzy metric space. We will say that the sequencef xn gn
in X is fuzzy contractive if there existsk 2 (0; 1) such that

M (xn+1 ; xn+2 ; t) �
M (xn ; xn+1 ; t)

M (xn ; xn+1 ; t) + k(1 � M (xn ; xn+1 ; t))
for all t > 0 and n 2 N.

The next theorem was proved by Gregori and Sapena in [5] for GV-fuzzy metric spaces.
However the proof remains valid for fuzzy metric spaces in the sense of Kramosil and
Michalek.

Theorem 8 [5]. Let (X; M; � ) be a complete fuzzy metric space in which fuzzy contractive
sequences are Cauchy. Letf : X ! X be a fuzzy contractive map beingk the contractive
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constant. Then f has a unique �xed point.

Gregori and Sapena showed in [5] that each fuzzy contractivesequence is G-Cauchy and
asked if a fuzzy contractive sequence is Cauchy. Mihet gave in [7] the following example
which shows that the answer is negative in the case of fuzzy metric spaces in the sense of
Kramosil and Michalek.

Example 2 [7]. Let X = [0 ; 1 ) and d(x; y) = jx � yj. Then (X; d) is a complete metric
space. In [11] it is shown that (X; M; � ) is a complete fuzzy metric space, where� is any
continuous t-norm and M is the fuzzy set inX � X � [0; 1 ) given in the following way:

M (x; y; t ) = 1 , if d(x; y) < t
M (x; y; t ) = 0 , if d(x; y) � t.

Since

M (x; y; t )
M (x; y; t ) + k(1 � M (x; y; t ))

= M (x; y; t );

the contraction condition can be written as:

M (fx; fy; t ) � M (x; y; t );

for all x; y 2 X and t > 0, or equivalently,

d(fx; fy ) � d(x; y);

for all x; y 2 X . Thus , the map f : X ! X , f (x) = x + 1 is a fuzzy contractive map and
so every sequencef xngn , xn = f n (x) is a contractive sequence.

On the other hand, sincef is a �xed point free mapping on (X; M; � ) it follows from
previous theorem that f xngn is not a Cauchy sequence.

Next we present an example for which Theorem 8 cannot be applied, and nevertheless,
Theorem 4 works to such an example.

Example 3. Let (X; M; � ) be a fuzzy metric space, where� is any continuous t-norm
satisfying � > � � , for some � 2 N, X = [0 ; 1 ) and M is the fuzzy set inX � X � [0; 1 )
given in the following way:

M (x; y; t ) = 1 , if d(x; y) < t;
M (x; y; t ) = 0 , if d(x; y) � t:

Let f : X ! X be the function given byf (x) = 0 for all x 2 X . It is obvious that
f has a unique �xed point which is x = 0 . Example 2 shows that Theorem 8 cannot be
applied to deduce the existence of the unique �xed point off . On the other hand we have
that:

M (fx; fy; t ) > 1 � k + kM (x; y; t );

for all x; y 2 X and t > 0, because

M (fx; fy; t ) = M (0; 0; t) = 1 > 1 � k + kM (x; y; t );

for all x; y 2 X and t > 0. Since (X; M; � ) is a complete fuzzy metric space and� > � � ,
for some � 2 N, we can applied Theorem 4 to deduce the existence of the unique�xed
point of f , x = 0 .
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Remark 1. Note that if it is satis�ed the contraction in the sense of Theorem 4, i.e

M (fx; fy; t ) > 1 � k + kM (x; y; t );
for all x; y 2 X and t > 0, then it is satis�ed the contraction in the sense of De�nitio n 3,
i.e

M (fx; fy; t ) �
M (x; y; t )

M (x; y; t ) + k(1 � M (x; y; t ))
for all x; y 2 X and t > 0.

Indeed, if

M (fx; fy; t ) > 1 � k + kM (x; y; t );
then

k(1 � M (x; y; t )) � 1 � M (fx; fy; t );
therefore

k(1 � M (x; y; t ))
M (x; y; t )

�
1 � M (fx; fy; t )

M (fx; fy; t )
;

and so

k(
1

M (x; y; t )
� 1) �

1
M (fx; fy; t )

� 1;

i.e.

M (x; y; t )
M (x; y; t ) + k(1 � M (x; y; t ))

� M (fx; fy; t )

Gregori and Sapena established in [5] the following theorem(valid for fuzzy metric
spaces in the sense of Kramosil and Michalek):

Theorem 9. Let (X; M; � ) be a G-complete fuzzy metric space and letf : X ! X be a
fuzzy contractive map. Thenf has a unique �xed point.

Remark 2. Note that Theorem 3 can be also deduced from Theorem 9.
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