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CORRIGENDUM AND ADDENDUM TO

“STRUCTURE MONOIDS OF SET-THEORETIC SOLUTIONS

OF THE YANG–BAXTER EQUATION”

Ferran Cedó, Eric Jespers, and Charlotte Verwimp

Abstract: One of the results in our article which appeared in Publ. Mat. 65(2) (2021), 499–528,
is that the structure monoid M(X, r) of a left non-degenerate solution (X, r) of the Yang–Baxter

equation is a left semi-truss, in the sense of Brzeziński, with an additive structure monoid that is

close to being a normal semigroup. Let η denote the least left cancellative congruence on the additive
monoid M(X, r). It is then shown that η is also a congruence on the multiplicative monoid M(X, r)

and that the left cancellative epimorphic image M̄ = M(X, r)/η inherits a semi-truss structure

and thus one obtains a natural left non-degenerate solution of the Yang–Baxter equation on M̄ .
Moreover, it restricts to the original solution r for some interesting classes, in particular if (X, r)

is irretractable. The proof contains a gap. In the first part of the paper we correct this mistake by

introducing a new left cancellative congruence µ on the additive monoid M(X, r) and show that it
also yields a left cancellative congruence on the multiplicative monoid M(X, r), and we obtain a

semi-truss structure on M(X, r)/µ that also yields a natural left non-degenerate solution.
In the second part of the paper we start from the least left cancellative congruence ν on the

multiplicative monoid M(X, r) and show that it is also a congruence on the additive monoid M(X, r)

in the case where r is bijective. If, furthermore, r is left and right non-degenerate and bijective,
then ν = η, the least left cancellative congruence on the additive monoid M(X, r), extending an

earlier result of Jespers, Kubat, and Van Antwerpen to the infinite case.
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1. Introduction

We have detected a mistake in the proof of [3, Lemma 5.5]. What is correctly proved
is the following result for a left non-degenerate solution (X, r) of the Yang–Baxter
equation (YBE) with structure monoid M = M(X, r). Write r(x, y) = (σx(y), γy(x)).
Thus, all σx are bijective maps. Its additive structure is denoted by (M,+) and its
multiplicative structure by (M, ◦). The least cancellative congruence on (M,+) is
denoted by η. Let λ′ : (M, ◦)→ End(M,+) denote the unique monoid homomorphism
such that λ′(x)(y) = σx(y) for x, y ∈ X (see Proposition 3.1 in [3]).

Lemma 1.1. With the same notation as in [3, Lemma 5.5] we have η = η′. Further-
more, for all z ∈M ,

η = {(λ′z(a), λ′z(b)) | (a, b) ∈ η} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ η}.

We do not know whether λ′a = λ′b, for all (a, b) ∈ η, and whether η is a congru-
ence on (M, ◦). As a consequence [3, Remark 5.6, Corollaries 5.9 and 5.10] are not
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proved. Therefore [3, Question 5.7] and the definition of an injective left non-degen-
erate solution of the YBE given in [3] have no sense. In Section 2 we will introduce
a new congruence on (M,+) and prove a correct version of the listed corollaries.

In Section 3, we start from the least left cancellative congruence ν on the mul-
tiplicative monoid (M, ◦) and show that it is also a congruence on the additive
monoid (M,+) in the case where r is bijective. If furthermore r is left and right
non-degenerate and bijective, then ν = η, the least left cancellative congruence on
the additive monoid (M,+), extending an earlier result of Jespers, Kubat, and Van
Antwerpen to the infinite case.

2. Correction of [3, Section 5]

In this section, we shall introduce a new congruence µ on (M,+) such that it is also
a congruence on (M, ◦), (M,+)/µ is left cancellative, and ((λ′a)ε(b), (λ′a′)

ε(b′)) ∈ µ,
for all (a, a′), (b, b′) ∈ µ and ε ∈ {−1, 1}. Furthermore, µ is the least binary relation
on M with these properties.

We first recall the definition of a left semi-truss.

Definition 2.1 (Brzeziński [1]). A left semi-truss is a quadruple (A,+, ◦, φ) such
that (A,+) and (A, ◦) are semigroups and φ : A×A→ A is a function such that

a ◦ (b+ c) = (a ◦ b) + φ(a, c),

for all a, b, c ∈ A.

Example 2.2 ([3, Example 5.2]). Let (X, r) be a left non-degenerate set-theoretic
solution of the YBE (not necessarily bijective). Again write r(x, y) = (σx(y), γy(x)),
for x, y ∈ X. As stated in [3, Section 3], and with the same notation, the map

r′(x, y) = (y, σyγσ−1
x (y)(x))

defines the left derived solution on X. Let M=M(X, r) and M ′=A(X, r)=M(X, r′)
be the structure monoids of the solutions (X, r) and (X, r′) respectively. From [3,
Corollary 3.9 and Proposition 3.1] we obtain a left action λ′ : (M, ◦) → Aut(M ′,+)
and a bijective 1-cocycle π : M → M ′ with respect to λ′ satisfying λ′(x)(y) = σx(y)
and π(x) = x, for all x, y ∈ X. We identify M and M ′ via π, that is, a = π(a) for
all a ∈ M . With this identification, we obtain the operation + on M , and a ◦ b =
a+ λ′a(b), for all a, b ∈M . Put φ(a, b) = λ′a(b), for all a, b ∈M . Then,

a ◦ (b+ c) = a+ λ′a(b+ c) = a+ λ′a(b) + λ′a(c) = (a ◦ b) + φ(a, c),

for all a, b ∈M . Furthermore, M +a ⊆ a+M , for all a ∈M . Hence (M,+, ◦, φ) is a
left semi-truss. Note that if, furthermore, r is bijective, then it can easily be verified
that (X, r′) is a right non-degenerate solution and thus M + a = a + M for all a ∈
M ; that is, (M,+) consists of normal elements. As shown in [4], this property is
fundamental in the study of the associated structure algebra KM(X, r), where K is a
field.

We will use the assumptions and notations as in Example 2.2.

Let

µ0 = {(a, b) ∈M2 | ∃ c ∈M such that c+ a = c+ b}.
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Note that µ0 is a reflexive and symmetric binary relation onM . Let µ1 be its transitive
closure, that is,

µ1 = {(a, b) ∈M2 | ∃ a1, . . . , an ∈M such that (a, a1), (a1, a2), . . . , (an, b) ∈ µ0}.

Thus µ1 is an equivalence relation on M . Let

µ2 = {((λ′z)ε(a ◦ c), (λ′z)ε(b ◦ c)) ∈M2 | z, c ∈M, ε ∈ {−1, 1}, and (a, b) ∈ µ1},
µ3 = {(a, b) ∈M2 | ∃ a1, . . . , an ∈M such that (a, a1), (a1, a2), . . . , (an, b) ∈ µ2},
µ4 = {(c+ a+ d, c+ b+ d) ∈M2 | c, d ∈M and (a, b) ∈ µ3}

∪ {(a, b) ∈M2 | ∃ c ∈M such that (c+ a, c+ b) ∈ µ3},

and for every m ≥ 1 we define

µ4m+1 ={(a, b)∈M2 | ∃ a1, . . . , an∈M such that (a, a1), (a1, a2), . . . , (an, b)∈µ4m},
µ4m+2 ={((λ′z)ε(a ◦ c), (λ′z)ε(b ◦ c))∈M2 | z, c∈M, ε∈{−1, 1}, and (a, b)∈µ4m+1},
µ4m+3 ={(a, b)∈M2 |∃ a1, . . . , an∈M such that (a, a1),(a1, a2), . . . , (an, b)∈µ4m+2},
µ4(m+1) ={(c+ a+ d, c+ b+ d) ∈M2 | c, d ∈M and (a, b) ∈ µ4m+3}

∪ {(a, b) ∈M2 | ∃ c ∈M such that (c+ a, c+ b) ∈ µ4m+3}.

Note that µn ⊆ µn+1, for all n ≥ 0. Let µ =
⋃∞
n=0 µn.

Lemma 2.3. With the above notation, we have that µ is a congruence on (M,+)
and it is also a congruence on (M, ◦). Furthermore, (M,+)/µ and (M, ◦)/µ are left
cancellative monoids, and

(λ′c(a), λ′d(b)), ((λ
′
c)
−1(a), (λ′d)

−1(b)) ∈ µ,

for all (a, b), (c, d) ∈ µ.

Proof: First we shall prove that µ is a congruence on (M,+). Clearly µ is reflexive
and symmetric because so is each µn. Let a, b, c ∈ M be such that (a, b), (b, c) ∈ µ.
There exists a positive integer m such that (a, b), (b, c) ∈ µ2m. Since µ2m+1 is the
transitive closure of µ2m, we have that (a, c) ∈ µ2m+1 ⊆ µ. Hence µ is an equivalence
relation.

Let (a, b) ∈ µ and c, d ∈ M . There exists a positive integer k such that (a, b) ∈
µ4k+3. Thus, (c+a+d, c+ b+d) ∈ µ4(k+1) ⊆ µ. Hence, µ is a congruence on (M,+).

Let (c, c′) ∈ µ and a, b ∈M be such that (c+a, c′+ b) ∈ µ. Since µ is a congruence
on (M,+), we have that (c′ + a, c + a) ∈ µ. Hence, (c′ + a, c′ + b) ∈ µ. There exists
a positive integer m such that (c′ + a, c′ + b) ∈ µ4m+3. Hence (a, b) ∈ µ4(m+1) ⊆ µ.
Therefore, (M,+)/µ is a left cancellative monoid.

Let (a, b) ∈ µ and c, d ∈ M . There exists a positive integer k such that (a, b) ∈
µ4k+1. It follows that (λ′d(a◦ c), λ′d(b◦ c)) ∈ µ4k+2 and (d◦a◦ c, d◦ b◦ c) = (d+λ′d(a◦
c), d+ λ′d(b ◦ c)) ∈ µ4(k+1) ⊆ µ. Hence, µ is a congruence on (M, ◦).

Let (c, c′) ∈ µ and a, b ∈M be such that (c ◦ a, c′ ◦ b) ∈ µ. Since µ is a congruence
on (M, ◦), we have that (c′ ◦ a, c ◦ a) ∈ µ. Hence (c′ + λc′(a), c′ + λc′(b)) = (c′ ◦ a, c′ ◦
b) ∈ µ. Since (M,+)/µ is a left cancellative monoid we get that (λc′(a), λc′(b)) ∈ µ.
Now there exists a positive integer m such that (λc′(a), λc′(b)) ∈ µ4m+1, and thus
(a, b) ∈ µ4m+2 ⊆ µ. Therefore (M, ◦)/µ is a left cancellative monoid.

Let (a, b), (c, d) ∈ µ. Since µ is a congruence on (M, ◦), we have that

(c+ λ′c(x), d+ λ′d(x)) = (c ◦ x, d ◦ x) ∈ µ,
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for all x∈M . Since (M,+)/µ is a left cancellative monoid, we get that (λ′c(x), λ′d(x))∈
µ, for all x ∈M . For x = (λ′c)

−1(y), we have that

(y, λ′d(λ
′
c)
−1(y)) ∈ µ,

for all y ∈ M . Thus, there exists a positive integer m such that (y, λ′d(λ
′
c)
−1(y)) ∈

µ4m+1. Hence ((λ′d)
−1(y), (λ′c)

−1(y)) ∈ µ4m+2. Therefore,

((λ′d)
−1(y), (λ′c)

−1(y)) ∈ µ,

for all y ∈M . Now there exists a positive integer k such that

((λ′d)
−1(a), (λ′c)

−1(a)), (λ′d(a), λ′c(a)), (a, b) ∈ µ4k+1.

Hence,

((λ′c)
−1(a), (λ′d)

−1(a)), ((λ′d)
−1(a), (λ′d)

−1(b)), (λ′c(a), λ′d(a))(λ′d(a), λ′d(b)) ∈ µ4k+2,

and thus,

(λ′c(a), λ′d(b)), ((λ
′
c)
−1(a), (λ′d)

−1(b)) ∈ µ4k+3.

Therefore,

(λ′c(a), λ′d(b)), ((λ
′
c)
−1(a), (λ′d)

−1(b)) ∈ µ,

for all (a, b), (c, d) ∈ µ, and the result follows.

With the assumptions and notations as in Example 2.2, let M̄ = M/µ and let
M → M̄ : a 7→ ā be the natural map. Let λ̄ : (M̄, ◦)→ Aut(M̄,+) be the map defined

by λ̄(ā) = λ̄ā and λ̄ā(b̄) = λ′a(b), for all a, b ∈M .
Note that λ̄ is well defined, because if c̄ = ā and d̄ = b̄, then, by Lemma 2.3,

λ′a(b) = λ′c(d).

Now it is easy to check that λ̄ā ∈ Aut(M̄,+); in fact (λ̄ā)−1 : M̄ → M̄ is the map

defined by (λ̄ā)−1(b̄) = (λ′a)−1(b), which is also well defined by Lemma 2.3. Further-
more, by Lemma 2.3, (M̄, ◦) is left cancellative and λ̄ is a homomorphism such that
ā ◦ b̄ = ā+ λ̄ā(b̄), for all a, b ∈M .

Let φ̄ : M̄ × M̄ → M̄ be the map defined by φ̄(ā, b̄) = λ̄ā(b̄), for all a, b ∈M . Then
(M̄,+, ◦, φ̄) is a left semi-truss.

By [3, Lemma 5.8], the left cancellative monoid (M̄,+) satisfies that for all ā, b̄ ∈ M̄
there exists a unique c̄ ∈ M̄ (denoted as c(ā, b̄)) such that ā+b̄ = b̄+c̄. Hence, from [3,
Proposition 5.4], we have the following corollary.

Corollary 2.4. Let (X, r) be a left non-degenerate set-theoretic solution of the YBE.
Let µ be the congruence on M = (M(X, r′),+) defined above. Then (M̄,+, ◦, φ̄) is
a left semi-truss with M̄ + ā ⊆ ā + M̄ for all ā ∈ M̄ and with φ̄(ā, b̄) = λ̄ā(b̄), for
all ā, b̄ ∈ M̄ . Furthermore, (M̄, r̄), where

r̄(ā, b̄) = (λ̄ā(b̄), λ̄−1
λ̄ā(b̄)

(c(ā, λ̄ā(b̄)))),

for all ā, b̄ ∈ M̄ , is a left non-degenerate set-theoretic solution of the YBE. In partic-
ular, (X̄, r̄|X̄2) is a left non-degenerate solution on the image X̄ of X in M̄ .
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3. Addendum

In this section, we will generalize the first part of [4, Proposition 4.2]. Let η be
the left cancellative congruence on (M,+), defined in [3]. For a left non-degenerate
solution (X, r), we will define the (least) left cancellative congruence on (M, ◦), say ν,
and show that η = ν and λ′a = λ′b, for all (a, b) ∈ η, in the case where the solution is
bijective and (left and right) non-degenerate. Again we will follow the notation of [3].

Let ν be the left cancellative congruence on (M, ◦), that is, ν is the smallest
congruence such that M̄ = (M, ◦)/ν is a left cancellative monoid.

We shall give a description of the elements in ν. Let

ν0 = {(a, b) ∈M2 | ∃ c ∈M such that c ◦ a = c ◦ b}.
Note that ν0 is a reflexive and symmetric binary relation on M . Let ν1 be its transitive
closure, that is,

ν1 = {(a, b) ∈M2 | ∃ a1, . . . , an ∈M such that (a, a1), (a1, a2), . . . , (an, b) ∈ ν0}.
Thus, ν1 is an equivalence relation on M . Let

ν2 = {(c ◦ a, c ◦ b) ∈M2 | c ∈M and (a, b) ∈ ν1}
∪ {(a, b) ∈M2 | ∃ c ∈M such that (c ◦ a, c ◦ b) ∈ ν1},

and for every m ≥ 1 we define

ν2m+1 = {(a, b) ∈M2 | ∃ a1, . . . , an ∈M such that (a, a1), (a1, a2), . . . , (an, b) ∈ ν2m}
and

ν2m+2 = {(c ◦ a, c ◦ b) ∈M2 | c ∈M and (a, b) ∈ ν2m+1}
∪ {(a, b) ∈M2 | ∃ c ∈M such that (c ◦ a, c ◦ b) ∈ ν2m+1}.

Note that νn ⊆ νn+1 ⊆ ν for all n ≥ 0. Let ν′ =
⋃∞
n=0 νn.

Lemma 3.1. With the above notation we have that ν′ = ν and λ′a = λ′b, for all (a, b) ∈
ν. Furthermore, if r is bijective, then for all z ∈M ,

ν ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν},

and ν is also a congruence on (M,+).

Proof: First we shall prove that ν′ is a congruence on (M, ◦). Clearly ν′ is reflexive
and symmetric because so is each νn. Let a, b, c ∈ M be such that (a, b), (b, c) ∈ ν′.
There exists a positive integer m such that (a, b), (b, c) ∈ ν2m. Since ν2m+1 is the
transitive closure of ν2m, we have that (a, c) ∈ ν2m+1 ⊆ ν′. Hence ν′ is an equivalence
relation. Note that every νn satisfies that (x ◦ z, y ◦ z) ∈ νn, for all (x, y) ∈ νn. Thus
(a ◦ c, b ◦ c) ∈ ν2m ⊆ ν′. Since (a, b) ∈ ν2m ⊆ ν2m+1, we have that (c ◦ a, c ◦ b) ∈
ν2m+2 ⊆ ν′. Therefore, ν′ is a congruence.

Let a, b, c, c′ ∈ M be elements such that (c, c′), (c ◦ a, c′ ◦ b) ∈ ν′. Since ν′ is a
congruence on (M, ◦), (c′ ◦b, c◦b) ∈ ν′. Hence (c◦a, c◦b) ∈ ν′. There exists a positive
integer t such that (c ◦ a, c ◦ b) ∈ ν2t+1. Thus (a, b) ∈ ν2t+2 ⊆ ν′. Hence (M, ◦)/ν′ is
a left cancellative monoid. Since ν′ ⊆ ν, we have ν′ = ν by the definition of ν.

Let (a, b) ∈ ν0. Then there exists c ∈M such that c ◦ a = c ◦ b. Hence,

λ′cλ
′
a = λ′cλ

′
b

and thus λ′a = λ′b, for all (a, b) ∈ ν0. Let n > 0 and suppose that λ′a = λ′b, for all (a, b) ∈
νn−1. If n−1 is even, then for every (a, b) ∈ νn there exist (a, c1), (c1, c2), . . . , (ck, b) ∈
νn−1. By the induction hypothesis λ′a = λ′c1 = · · · = λ′ck = λ′b. If n − 1 is odd and
(a, b) ∈ νn, then either (a, b) = (c ◦ a′, c ◦ b′), for some c ∈ M and (a′, b′) ∈ νn−1, or
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there exists c ∈ M such that (c ◦ a, c ◦ b) ∈ νn−1. In the first case, by the induction
hypothesis, we have that

λ′a = λ′c◦a′ = λ′cλ
′
a′ = λ′cλ

′
b′ = λ′c◦b′ = λ′b.

In the second case, by the induction hypothesis, we have that

λ′cλ
′
a = λ′c◦a = λ′c◦b = λ′cλ

′
b,

and thus λ′a = λ′b. Hence, we get that λ′a = λ′b, for all (a, b) ∈ νn. Hence, by induction,
we have that λ′a = λ′b, for all (a, b) ∈ ν.

Suppose that r is bijective. By Example 2.2, we have that M + a = a + M , for
all a ∈M . Let (a, b) ∈ ν0. Then there exists c ∈M such that c◦a = c◦b. Let y ∈M .
We have that there exists z ∈M such that z + c = c+ y. Hence,

(λ′z)
−1(c ◦ a) = (λ′z)

−1(c+ λ′c(a))

= (λ′z)
−1(c) + (λ′z)

−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′(λ′z)−1(c))

−1(λ′z)
−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′z◦(λ′z)−1(c))

−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′z+c)

−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′c+y)−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′c◦(λ′c)−1(y))

−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′(λ′c)−1(y))

−1(λ′c)
−1λ′c(a)

= (λ′z)
−1(c) ◦ (λ′(λ′c)−1(y))

−1(a).

Since c ◦ a = c ◦ b, we have that

(λ′z)
−1(c) ◦ (λ′(λ′c)−1(y))

−1(a) = (λ′z)
−1(c) ◦ (λ′(λ′c)−1(y))

−1(b).

We get that

((λ′(λ′c)−1(y))
−1(a), (λ′(λ′c)−1(y))

−1(b)) ∈ ν0,

for all y ∈M . Hence,

ν0 ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν0},

for all z ∈M . Let n be a positive integer and suppose that

νn−1 ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn−1},

for all z ∈M . Let (a, b) ∈ νn. If n is odd, then there exist (a, c1), (c1, c2), . . . , (ck, b) ∈
νn−1. By the induction hypothesis,

((λ′z)
−1(a), (λ′z)

−1(c1)), ((λ′z)
−1(c1), (λ′z)

−1(c2)), . . . , ((λ′z)
−1(ck), (λ′z)

−1(b)) ∈ νn−1.

Hence ((λ′z)
−1(a), (λ′z)

−1(b)) ∈ νn, in this case. If n is even, then either (a, b) =
(c ◦ a′, c ◦ b′), for some c ∈ M and (a′, b′) ∈ νn−1, or there exists c ∈ M such that
(c ◦ a, c ◦ b) ∈ νn−1. In the first case,

(λ′z)
−1(a) = (λ′z)

−1(c) ◦ (λ′(λ′c)−1(y))
−1(a′),

and

(λ′z)
−1(b) = (λ′z)

−1(c) ◦ (λ′(λ′c)−1(y))
−1(b′),

where z+ c = c+ y. Hence, by the induction hypothesis, ((λ′z)
−1(a), (λ′z)

−1(b)) ∈ νn,
in this case. In the second case, by the induction hypothesis,

((λ′z)
−1(c ◦ a), (λ′z)

−1(c ◦ b)) ∈ νn−1.
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Since (λ′z)
−1(c ◦ a) = (λ′z)

−1(c) ◦ (λ′(λ′c)−1(y))
−1(a), we have that

((λ′(λ′c)−1(y))
−1(a), (λ′(λ′c)−1(y))

−1(b)) ∈ νn.

Since M + c = c+M ,

((λ′(λ′c)−1(y))
−1(a), (λ′(λ′c)−1(y))

−1(b)) ∈ νn,

for all y ∈M . Hence,

νn ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn},

for all z ∈M . By induction, we get that

ν ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν},

for all z ∈M .
Let (a, b) ∈ ν. Then for every c ∈M , we have that

(c+ a, c+ b) = (c ◦ (λ′c)
−1(a), c ◦ (λ′c)

−1(b)) ∈ ν.

Since λ′a = λ′b, we have that

(a+ c, b+ c) = (a ◦ (λ′a)−1(c), b ◦ (λ′b)
−1(c)) = (a ◦ (λ′a)−1(c), b ◦ (λ′a)−1(c)) ∈ ν.

Hence ν is a congruence on (M,+), and the result follows.

In order to prove the main result of this section, we first show that, for left non-
degenerate set-theoretic solutions of the YBE, the maps λ and λ′ are equal. Here λ is
the unique monoid homomorphism M → Map(M,M) : a 7→ λa defined in [3, Theo-
rem 2.1] such that λb(a ◦ c) = λb(a) ◦ λρa(b)(c) and ρb(c ◦ a) = ρλa(b)(c) ◦ ρb(a), where
also ρ : M → Map(M,M) is the monoid anti-homomorphism defined in [3, Theo-
rem 2.1]. This result comes from [2], but for completeness’ sake we include a proof.

Lemma 3.2. Let (X, r) be a set-theoretic solution of the YBE. Let M = M(X, r) and
M ′ = A(X, r). As usual, write r(x, y) = (σx(y), γy(x)). Then, λ′a(π(b)) = π(λa(b)),
for all a, b ∈ M , where π : M → M ′ is the unique 1-cocycle with respect to the left
action λ′ such that π(x) = x, for all x ∈ X. Furthermore, if (X, r) is left non-
degenerate, then, with the identification of M and M ′ in Example 2.2, λ′a(b) = λa(b),
for all a, b ∈M . In particular,

(1) λ′x(x1 ◦ · · · ◦ xk ◦ a) = λ′x(x1 ◦ · · · ◦ xk) ◦ λ′γxk
···γx1

(x)(a),

for all x, x1, . . . , xk ∈ X and a ∈M .

Proof: The existence and uniqueness of π is proved in [3, Proposition 3.2]. Let b ∈M .
There exist a non-negative integer k and x1, . . . , xk ∈ X such that b = x1 ◦ · · · ◦ xk.
We first prove that λ′x(π(b)) = π(λx(b)), for all x ∈ X, by induction on k. If k = 0,
then π(1) = 0 and by the definition of λ, λx(1) = 1. Hence λ′x(π(1)) = λ′x(0) = 0 =
π(1) = π(λx(1)). For k = 1,

π(λx(x1)) = σx(x1) = σx(π(x1)) = λ′x(π(x1)).
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Suppose that k > 1 and we have proved the result for words in M(X, r) of length at
most k − 1. By the definition of λ, [3, Theorem 2.1], and the induction hypothesis,
we have

π(λx(b)) = π(λx(x1 ◦ · · · ◦ xk))

= π(λx(x1) ◦ λρx1 (x)(x2 ◦ · · · ◦ xk))

= π(λx(x1)) + λ′λx(x1)(π(λρx1 (x)(x2 ◦ · · · ◦ xk)))

= λ′x(π(x1)) + λ′λx(x1)(λ
′
ρx1 (x)(π(x2 ◦ · · · ◦ xk)))

= λ′x(π(x1)) + λ′x(λ′x1
(π(x2 ◦ · · · ◦ xk)))

= λ′x(π(x1) + λ′x1
(π(x2 ◦ · · · ◦ xk)))

= λ′x(π(x1 ◦ · · · ◦ xk))

= λ′x(π(b)).

Hence, by induction λ′x(π(b)) = π(λx(b)), for all x ∈ X and b ∈M . Using that both λ
and λ′ are homomorphisms, we obtain λ′a(π(b)) = π(λa(b)) for all a, b ∈M .

Suppose that (X, r) is left non-degenerate. Then with the identification of M
and M ′ in Example 2.2, we have that λ′a(b) = λa(b), for all a, b ∈ M . In this case,
by [3, Theorem 2.1],

λ′x(x1 ◦ · · · ◦ xk ◦ a) = λx(x1 ◦ · · · ◦ xk ◦ a)

= λx(x1 ◦ · · · ◦ xk) ◦ λρx1◦···◦xk
(x)(a)

= λx(x1 ◦ · · · ◦ xk) ◦ λγxk
···γx1

(x)(a)

= λ′x(x1 ◦ x2 ◦ · · · ◦ xk) ◦ λ′γxk
···γx1 (x)(a),

for all x, x1, . . . , xk ∈ X and a ∈M . Hence, (1) follows.

Proposition 3.3. Let (X, r) be a bijective (left and right) non-degenerate set-theoretic
solution of the YBE. Let M = M(X, r). As usual, write r(x, y) = (σx(y), γy(x)).
Let ν be the left cancellative congruence on (M, ◦), and let η be the left cancellative
congruence on (M,+). Then η = ν and thus, for every z ∈M ,

ν = {(λ′z(a), λ′z(b)) | (a, b) ∈ ν} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν}.

Furthermore λ′a = λ′b, for all (a, b) ∈ η.

Proof: From the proof of Lemma 3.1, we know that for all z ∈M ,

ν0 ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν0},

and ν is also a congruence on (M,+).
Let (a, b) ∈ ν0. Then there exists c ∈ M such that c ◦ a = c ◦ b. There exist

x1, . . . , xk ∈ X such that c = x1 ◦ · · · ◦ xk. Let x ∈ X. By (1) (in Lemma 3.2), we
have that

λ′x(c ◦ a) = λ′x(c) ◦ λ′γxk
···γx1

(x)(a).

Hence

λ′x(c) ◦ λ′γxk
···γx1 (x)(a) = λ′x(c) ◦ λ′γxk

···γx1 (x)(b),

for all x∈X. Hence, (λ′γxk
···γx1

(x)(a), λ′γxk
···γx1

(x)(b))∈ν0, for all x∈X. Since (X, r) is

right non-degenerate, and thus all γxi are bijective, we obtain that (λ′y(a), λ′y(b)) ∈ ν0,
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for all y∈X. Therefore (λ′z(a), λ′z(b))∈ν0, for all z∈M . Since ((λ′z)
−1(a), (λ′z)

−1(b))∈
ν0, for all z ∈M , we get that

ν0 = {(λ′z(a), λ′z(b)) | (a, b) ∈ ν0} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν0},

for all z ∈M . We shall prove by induction on n that

(2) νn = {(λ′z(a), λ′z(b)) | (a, b) ∈ νn} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn},

for all z ∈ M and all non-negative integers n. Suppose that n > 0 and (2) is true
for n− 1. From the proof of Lemma 3.1, we know that for all z ∈M ,

νn ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn}.

Let (a, b) ∈ νn, z ∈M . If n is odd, then there exist (a, c1), (c1, c2), . . . , (ck, b) ∈ νn−1.
Hence,

(λ′z(a), λ′z(c1)), (λ′z(c1), λ′z(c2)), . . . , (λ′z(ck), λ′z(b)) ∈ νn−1,

and thus (λ′z(a), λ′z(b)) ∈ νn, in this case. If n is even, then either (a, b) = (c◦a′, c◦b′),
for some c ∈M and (a′, b′) ∈ νn−1, or there exists c ∈M such that (c◦a, c◦b) ∈ νn−1.
Put c = x1 ◦ · · · ◦xk. In the first case, by the previous lemma, we get (λ′z(a), λ′z(b)) =

(λ′z(c ◦ a′), λ′z(c ◦ b′))
(1)
= (λ′z(c) ◦ λ′γxk

···γx1
(z)(a

′), λ′z(c) ◦ λ′γxk
···γx1

(z)(b
′)). By the in-

duction hypothesis, and since (a′, b′) ∈ νn−1, also (λ′γxk
···γx1

(z)(a
′), λ′γxk

···γx1
(z)(b

′)) ∈
νn−1, and then (λ′z(a), λ′z(b)) = (λ′z(c) ◦ λ′γxk

···γx1 (z)(a
′), λ′z(c) ◦ λ′γxk

···γx1 (z)(b
′)) ∈ νn

(because n is even). In the second case, by (1),

λ′x(c ◦ a) = λ′x(x1 ◦ · · · ◦ xk ◦ a) = λ′x(x1 ◦ · · · ◦ xk) ◦ λ′γxk
···γx1

(x)(a),

for all x ∈ X. By the induction hypothesis,

(λ′x(c ◦ a), λ′x(c ◦ b)) ∈ νn−1,

for all x ∈ X. Hence,

(λ′γxk
···γx1

(x)(a), λ′γxk
···γx1

(x)(b)) ∈ νn,

for all x ∈ X. Since (X, r) is right non-degenerate, we have that

(λ′y(a), λ′y(b)) ∈ νn,

for all y ∈ X. Hence, (λ′z(a), λ′z(b)) ∈ νn, for all z ∈M . Since

νn ⊇ {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn},

we get that

νn = {(λ′z(a), λ′z(b)) | (a, b) ∈ νn} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ νn},

for all z ∈M . Hence, by induction,

ν = {(λ′z(a), λ′z(b)) | (a, b) ∈ ν} = {((λ′z)−1(a), (λ′z)
−1(b)) | (a, b) ∈ ν},

for all z ∈M .
Let a, b, c, c′ ∈ M be such that (c, c′), (c + a, c′ + b) ∈ ν. Since ν is a congruence

on (M,+), (c′+b, c+b) ∈ ν. Hence (c+a, c+b) ∈ ν. Then, (c◦(λ′c)−1(a), c◦(λ′c)−1(b)) =
(c + a, c + b) ∈ ν. Hence, ((λ′c)

−1(a), (λ′c)
−1(b)) ∈ ν and thus (a, b) ∈ ν. Therefore,

(M,+)/ν is left cancellative and thus clearly η ⊆ ν.
By Lemma 3.1, λ′a = λ′b, for all (a, b) ∈ η ⊆ ν. Let (a, b) ∈ η and let c ∈ M . By

Lemma 1.1, we have that (c ◦ a, c ◦ b) = (c+ λ′c(a), c+ λ′c(b)) ∈ η, and since λ′a = λ′b,
we have that (a ◦ c, b ◦ c) = (a+ λ′a(c), b+ λ′b(c)) = (a+ λ′a(c), b+ λ′a(c)) ∈ η. Hence,
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η is a congruence on (M, ◦). Let a, b, c, c′ ∈ M be such that (c, c′), (c ◦ a, c′ ◦ b) ∈ η.
Then, (c+ λ′c(a), c′ + λ′c′(b)) = (c ◦ a, c′ ◦ b) ∈ η. Since λ′c = λ′c′ , we have that

(c+ λ′c(a), c′ + λ′c(b)), (c
′ + λ′c(b), c+ λ′c(b)) ∈ η

and then (c+λ′c(a), c+λ′c(b)) ∈ η. Hence, (λ′c(a), λ′c(b)) ∈ η. By Lemma 1.1, (a, b) ∈ η.
Therefore, (M, ◦)/η is left cancellative and ν ⊆ η. So, η = ν and the result follows.
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