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CORRIGENDUM AND ADDENDUM TO
“STRUCTURE MONOIDS OF SET-THEORETIC SOLUTIONS
OF THE YANG-BAXTER EQUATION”

FERRAN CEDO, ERIC JESPERS, AND CHARLOTTE VERWIMP

Abstract: One of the results in our article which appeared in Publ. Mat. 65(2) (2021), 499-528,
is that the structure monoid M (X,r) of a left non-degenerate solution (X, ) of the Yang—Baxter
equation is a left semi-truss, in the sense of Brzezinski, with an additive structure monoid that is
close to being a normal semigroup. Let n denote the least left cancellative congruence on the additive
monoid M (X, r). It is then shown that 7 is also a congruence on the multiplicative monoid M (X, r)
and that the left cancellative epimorphic image M = M(X,r)/n inherits a semi-truss structure
and thus one obtains a natural left non-degenerate solution of the Yang-Baxter equation on M.
Moreover, it restricts to the original solution r for some interesting classes, in particular if (X,r)
is irretractable. The proof contains a gap. In the first part of the paper we correct this mistake by
introducing a new left cancellative congruence p on the additive monoid M (X, r) and show that it
also yields a left cancellative congruence on the multiplicative monoid M (X,r), and we obtain a
semi-truss structure on M (X, r)/u that also yields a natural left non-degenerate solution.

In the second part of the paper we start from the least left cancellative congruence v on the
multiplicative monoid M (X, r) and show that it is also a congruence on the additive monoid M (X, r)
in the case where 7 is bijective. If, furthermore, r is left and right non-degenerate and bijective,
then v = 7, the least left cancellative congruence on the additive monoid M (X,r), extending an
earlier result of Jespers, Kubat, and Van Antwerpen to the infinite case.
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1. Introduction

We have detected a mistake in the proof of [3, Lemma 5.5]. What is correctly proved
is the following result for a left non-degenerate solution (X,r) of the Yang—Baxter
equation (YBE) with structure monoid M = M (X,r). Write r(z,y) = (02(y), vy(2)).
Thus, all o, are bijective maps. Its additive structure is denoted by (M, +) and its
multiplicative structure by (M, o). The least cancellative congruence on (M,+) is
denoted by 7. Let \': (M, o) — End(M, +) denote the unique monoid homomorphism
such that A (z)(y) = o, (y) for z,y € X (see Proposition 3.1 in [3]).

Lemma 1.1. With the same notation as in [3, Lemma 5.5] we have n =n'. Further-
more, for all z € M,

n={(X.(a), X, (b)) | (a,0) € n} = {(X,)""(a), (\D) 7' (B)) | (a,0) € n}.

We do not know whether X, = A}, for all (a,b) € n, and whether 1 is a congru-
ence on (M, o). As a consequence [3, Remark 5.6, Corollaries 5.9 and 5.10] are not
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proved. Therefore [3, Question 5.7] and the definition of an injective left non-degen-
erate solution of the YBE given in [3] have no sense. In Section 2 we will introduce
a new congruence on (M, +) and prove a correct version of the listed corollaries.

In Section 3, we start from the least left cancellative congruence v on the mul-
tiplicative monoid (M,o) and show that it is also a congruence on the additive
monoid (M,+) in the case where r is bijective. If furthermore r is left and right
non-degenerate and bijective, then v = 7, the least left cancellative congruence on
the additive monoid (M, +), extending an earlier result of Jespers, Kubat, and Van
Antwerpen to the infinite case.

2. Correction of [3, Section 5|

In this section, we shall introduce a new congruence p on (M, +) such that it is also
a congruence on (M,o), (M,+)/u is left cancellative, and ((\,)=(b), (A,,)=(V)) € pu,
for all (a,a’), (b,b') € p and € € {—1,1}. Furthermore, u is the least binary relation
on M with these properties.

We first recall the definition of a left semi-truss.

Definition 2.1 (Brzezidski [1]). A left semi-truss is a quadruple (A, +,0, @) such
that (A,+) and (A, 0) are semigroups and ¢: A x A — A is a function such that

ao(b+c)=(aobd)+¢(a,c),
for all a,b,c € A.

Example 2.2 ([3, Example 5.2]). Let (X,r) be a left non-degenerate set-theoretic
solution of the YBE (not necessarily bijective). Again write r(z,y) = (04(y), 1y (x)),
forxz,y € X. As stated in [3, Section 3|, and with the same notation, the map

r'(z,y) = (v, 9y Vo7 (y) (2))

defines the left derived solution on X. Let M=M(X,r) and M'=A(X,r)=M(X,r")
be the structure monoids of the solutions (X,r) and (X,r') respectively. From [3,
Corollary 3.9 and Proposition 3.1] we obtain a left action X': (M,o) — Aut(M’,+)
and a bijective 1-cocycle m: M — M’ with respect to X' satisfying N (x)(y) = 02(y)
and w(x) = z, for all x,y € X. We identify M and M’ via 7, that is, a = w(a) for
all a € M. With this identification, we obtain the operation + on M, and aob =
a+ N, (b), for all a,b € M. Put ¢(a,b) = N, (b), for all a,b € M. Then,

ao(btc)=a+X,(b+c)=a+\,(b)+ A (c) = (aob)+d(a,c),

for all a,b € M. Furthermore, M +a C a+ M, for alla € M. Hence (M,+,0,¢) is a
left semi-truss. Note that if, furthermore, r is bijective, then it can easily be verified
that (X,r') is a right non-degenerate solution and thus M +a = a+ M for all a €
M; that is, (M,+) consists of normal elements. As shown in [4], this property is

fundamental in the study of the associated structure algebra KM (X,r), where K is a
field.

We will use the assumptions and notations as in Example 2.2.
Let
o = {(a,b) € M? | 3¢ € M such that ¢+ a = ¢+ b}.
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Note that pg is a reflexive and symmetric binary relation on M. Let pq be its transitive
closure, that is,

p1 = {(a,b) € M?* | Jay,...,a, € M such that (a,a,), (a1,a2),...,(an,b) € po}.
Thus w7 is an equivalence relation on M. Let
po = {((\)¥(aoc),(N)5(boc)) € M? | z,c€ M, e € {—1,1}, and (a,b) € u1},
us = {(a,b) € M?* | Jay,...,a, € M such that (a,a1), (a1,a2),...,(an,b) € p2},
ps={(c+a+dc+b+d) € M*|c,de M and (a,b) € 3}
U{(a,b) € M? | 3¢ € M such that (c+a,c+b) € us},
and for every m > 1 we define

tami1=1(a,b)e M?* | Jay,...,a, €M such that (a,a1), (a1,as),. .., (an,b) € tiam},

tamiz2={((\,)(aoc),(\,)¢(boc))eM? | z,ce M, ec{—1,1}, and (a,b) € pam+1},

tamiz=1{(a,b)e M?*|3ay,...,a, €M such that (a,a1),(a1,az2), ..., (an,D)E tiamr2},
pamin ={(c+a+d,c+b+d) € M| c,d € M and (a,b) € fam+3}
U{(a,b) € M* | 3¢ € M such that (c+a,c+b) € pami3}-

Note that fi,, C pn1, for all n > 0. Let p = (U~ pon.

Lemma 2.3. With the above notation, we have that p is a congruence on (M,+)
and it is also a congruence on (M, o). Furthermore, (M,+)/u and (M,o)/u are left
cancellative monoids, and

(Ae(@), Ag(0)), (M)~ (@), A) T (b)) €
for all (a,b), (c,d) € p.

Proof: First we shall prove that p is a congruence on (M, +). Clearly p is reflexive
and symmetric because so is each p,. Let a,b,c € M be such that (a,b), (b,c) € pu.
There exists a positive integer m such that (a,b), (b,c) € pon,. Since pgmy1 is the
transitive closure of pa,,, we have that (a,c¢) € pam4+1 C p. Hence p is an equivalence
relation.

Let (a,b) € p and ¢,d € M. There exists a positive integer k such that (a,b) €
paky3. Thus, (c+a+d,c+b+d) € pg41y) € p. Hence, p is a congruence on (M, +).

Let (¢,¢’) € pand a,b € M be such that (¢c+a,c +b) € p. Since u is a congruence
on (M,+), we have that (¢ + a,c+ a) € u. Hence, (¢ + a,c +b) € u. There exists
a positive integer m such that (¢’ 4+ a,c’ +b) € pamy3. Hence (a,b) € pymy1) € p-
Therefore, (M, +)/p is a left cancellative monoid.

Let (a,b) € p and ¢,d € M. There exists a positive integer k such that (a,b) €
pak+1. It follows that (X (aoc), N;(boc)) € pag42 and (doaoe,doboc) = (d+ X, (ao
c),d+ Ag(boc)) € pys1y € p. Hence, pu is a congruence on (M, o).

Let (¢,c’) € pand a,b € M be such that (coa,c ob) € . Since u is a congruence
on (M, o), we have that (¢’ oa,coa) € u. Hence (¢ + A (a), ¢ + Aer (b)) = (' oa,c o
b) € u. Since (M, +)/p is a left cancellative monoid we get that (A (a), A (b)) € p.
Now there exists a positive integer m such that (A (a), A\er(b)) € pam+1, and thus
(a,b) € ptam+2 C pu. Therefore (M,0)/u is a left cancellative monoid.

Let (a,b), (¢,d) € p. Since p is a congruence on (M, o), we have that

(c+ M), d+ Nya)) = (coz,doa) € p,
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for all z€ M. Since (M, +)/p is a left cancellative monoid, we get that (A, (z), A, (z)) €
u, for all z € M. For x = (\.)~1(y), we have that

(, MM () € m,

for all y € M. Thus, there exists a positive integer m such that (y, \;(\.)"!(y)) €
pamer. Hence (X))~ (5), (X) (1)) € fiam 2. Therefore,

(V)™ @), M) (W) €

for all y € M. Now there exists a positive integer k such that

()™ (@), W)™ (@), (Ny(a), X(a)), (a,b) € pa1.

Hence,

(A0~ (@), M) ™ (@), (A ™ (@), () 1 (1), (Nela), Aa(a))(Xa(a), Ay (D)) € pana,
and thus,
(Ae(@); (1)), (V)™ (@), A ™1 (b)) € pranss.
Therefore,
(Ae(@), (1)), ()~ (@), ()1 (b)) €

for all (a,b), (¢,d) € u, and the result follows. O

With the assumptions and notations as in Example 2.2, let M = M/u and let
M — M: a — a be the natural map. Let A: (M, o) — Aut(M +) be the map defined

by A(a )f)\a_and Xa(b) = X, (b), for all a,b € M. o
Note that X is well defined, because if ¢ = @ and d = b, then, by Lemma 2.3,

X, (b) = X.(d).

Now it is easy to check that Az € Aut(M,+); in fact (A\g)~*: M — M is the map
defined by (A\z)~*(b) = (A\,)~1(b), which is also well defined by Lemma 2.3. Further-
more, by Lemma 2.3, (M, o) is left cancellative and ) is a homomorphism such that
aob=a-+As(b), for all a,b e M.

Let ¢: M x M — M be the map defined by é(a,b) = \g(b), for all a,b € M. Then
(M, +,0,¢) is a left semi-truss.

By [3, Lemma 5.8], the left cancellative monoid (M, +) satisfies that for all a,b € M
there exists a unique ¢ € M (denoted as ¢(a, b)) such that a+b = b+¢. Hence, from [3,
Proposition 5.4], we have the following corollary.

Corollary 2.4. Let (X,r) be a left non-degenerate set-theoretic solution of the YBE.
Let pi be the congruence on M = (M(X,r'),+) defined above. Then (M, +,o,¢))

a left semi-truss with M +a C a+ M for all a € M and with ¢(a,b) = Aa(b), for
all a,b € M. Furthermore, (M,7), where

7(a.8) = (Aa(5), A5 (e(@ Aa(5)))),

for all a,b € M, is a left non-degenerate set-theoretic solution of the YBE. In partic-
ular, (X T|x2) 18 a left non-degenerate solution on the image X of X in M.
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3. Addendum

In this section, we will generalize the first part of [4, Proposition 4.2]. Let n be
the left cancellative congruence on (M, +), defined in [3]. For a left non-degenerate
solution (X, r), we will define the (least) left cancellative congruence on (M, o), say v,
and show that 7 = v and X, = X}, for all (a,b) € 7, in the case where the solution is
bijective and (left and right) non-degenerate. Again we will follow the notation of [3].

Let v be the left cancellative congruence on (M, o), that is, v is the smallest
congruence such that M = (M, o) /v is a left cancellative monoid.

We shall give a description of the elements in v. Let

vo = {(a,b) € M? | Ic € M such that coa = cob}.

Note that v is a reflexive and symmetric binary relation on M. Let v; be its transitive
closure, that is,

vy = {(a,b) € M* | 3ay,...,a, € M such that (a,a1), (a1,as),...,(an,b) € 1}
Thus, v is an equivalence relation on M. Let
vy ={(coa,cob) € M*|c€ M and (a,b) € 11}
U{(a,b) € M* | 3¢ € M such that (coa,cob) € v},
and for every m > 1 we define
Vami1 = {(a,b) € M? | Jay,...,a, € M such that (a,ay), (a1,az2),...,(an,b) € Vo, }
and
Vomya = {(coa,cob) € M?|c€ M and (a,b) € Vapi1}

U{(a,b) € M* | 3¢ € M such that (coa,cob) € vg,i1}-.
Note that v, C vp41 C v for all n > 0. Let v/ =, vy.

Lemma 3.1. With the above notation we have that v’ = v and X, = X}, for all (a,b) €
v. Furthermore, if v is bijective, then for all z € M,

v 2 {((\) (@), (A\)) T (B) | (a,0) € v},

and v is also a congruence on (M, +).

Proof: First we shall prove that v/ is a congruence on (M, o). Clearly v’ is reflexive
and symmetric because so is each v,. Let a,b,¢ € M be such that (a,b), (b,c) € V.
There exists a positive integer m such that (a,b), (b,c) € vo,. Since vo,, 41 is the
transitive closure of va,,, we have that (a,c) € vam41 C v/. Hence v/ is an equivalence
relation. Note that every v, satisfies that (z o 2,y 0 2) € v, for all (z,y) € v,. Thus
(aoc,boc) € vy, C V. Since (a,b) € vay, C voyy1, we have that (coa,cob) €
Vamao C V. Therefore, v/ is a congruence.

Let a,b,¢,c’ € M be elements such that (¢,c'),(coa,c ob) € V. Since V' is a
congruence on (M, o), (¢ ob,cob) € /. Hence (coa,cob) € /. There exists a positive
integer ¢ such that (coa,cob) € varrq1. Thus (a,b) € varro C v/ Hence (M,0)/v is
a left cancellative monoid. Since v’ C v, we have 1/ = v by the definition of v.

Let (a,b) € vg. Then there exists ¢ € M such that coa = cob. Hence,

AeAa = Ay
and thus A, = X}, for all (a,b) € vy. Let n > 0 and suppose that A, = A}, for all (a,b) €
Vn—1. lf n—11s even, then for every (a,b) € v, there exist (a,c1), (¢1,¢2),. .., (ck,b) €
Vn—1. By the induction hypothesis A, = X, = --- = X, = Aj. If n —1is odd and
(a,b) € vy, then either (a,b) = (coa’,cob’), for some ¢ € M and (a/,b") € vy,_1, or
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there exists ¢ € M such that (coa,cob) € v,_;1. In the first case, by the induction
hypothesis, we have that

)\/ _)\I

)\/ )\/ _ )\/ !/ )\/ )\/
1= ANt T AN T Neod! =
In the second case, by the induction hypothesis, we have that
)\/)\/7)\/ )\/b*A//

and thus X, = A\;. Hence, we get that A, = A}, for all (a,b) € v,,. Hence, by induction,
we have that A, = A}, for all (a,b) € v.

Suppose that r is bijective. By Example 2.2, we have that M 4+ a = a + M, for
all a € M. Let (a,b) € 1. Then there exists ¢ € M such that coa = cob. Let y € M.
We have that there exists z € M such that z +c¢ = c+ y. Hence,

(A" eoa) = ()7 e+ Xe(a))

= () 7He) + (AT A(a)

= (AL)7He) o (Aa)-1(0) THAD) TN (@)
= (X)) 7He) o (Noary 1))~ Nel@)

= (X)) 7He) o (Mose)™ 1X(a)

= (A\)7He) o () "N (@)

= (\)"He)o (Neo(n) 1))~ "X (a)

= (D) 7He) o (M) -1()) T D) T AL(a)
= (X)) 7He) o (May-10y) (@)

Since coa = co b, we have that

(\2)7He) 0 My -1¢)) " H@) = (L) 7H(e) 0 (Nay-1¢y))  (B)-
We get that
((X(,\'C)fl(y))fl(a), (Azxé)—l(y))fl(b)) € vy,
for all y € M. Hence,
vo 2 {((\) " (a), (A)7H(B)) | (a,b) € o},

for all z € M. Let n be a positive integer and suppose that

V-1 2 {((\)7 (@), X)) 7' (0) | (a.b) € v},
for all z € M. Let (a,b) € v,. If n is odd, then there exist (a,c1), (c1,¢2), ..., (ck, b) €
Vp—1. By the induction hypothesis,
(07 (@), (307 ) ()™ ), () (ea)) - () (), (X)) € v,
Hence ((A\,)"(a),(\,)"1(b)) € vy, in this case. If n is even, then either (a,b) =
(cod,cob), for some ¢ € M and (a/,b’) € v,_1, or there exists ¢ € M such that
(coa,cob) € v,_1. In the first case,

(A2~ Ha) = (AL)7H(e) © (Aa)-1(y)) ' (@),
and

(AL)7HO) = (X)) TH(e) o (Magy-1 () ™ (),
where z + ¢ = ¢ +y. Hence, by the induction hypothesis, (\,)~(a), (\,)71(b)) € vy,
in this case. In the second case, by the induction hypothesis,

(X)) H(eoa), (N) T (cob)) € vyi.
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Since (A,)"1(coa) = (\,)7(c)o ()\’(A,C),l(y))_l(a)7 we have that

(Napy 1) (@), (Nag)=15)) T (B)) € v

Since M +c=c+ M,

(N -10) (@), Ay 1) 7' (0)) € vy

for all y € M. Hence,

v 2 {((AD) 7 (a), (W) TH(0)) | (a,b) € v},

for all z € M. By induction, we get that

v 2 {((\) (@), (\)) T (0) | (a,0) € v},

for all z € M.
Let (a,b) € v. Then for every ¢ € M, we have that

(c+a,c+b)=(co(A\) Ha),co(N) b)) € v
Since A, = A}, we have that
(a+ebtc)=(ao(X)  (c),bo(A) " (e) = (a0 () (e),bo (X)) (c) € v.

Hence v is a congruence on (M, +), and the result follows. O

In order to prove the main result of this section, we first show that, for left non-
degenerate set-theoretic solutions of the YBE, the maps A and X are equal. Here X is
the unique monoid homomorphism M — Map(M, M): a — A, defined in [3, Theo-
rem 2.1] such that A\y(aoc) = Ay(a) oA, )(c) and py(coa) = px, ) (c) o po(a), where
also p: M — Map(M, M) is the monoid anti-homomorphism defined in [3, Theo-
rem 2.1]. This result comes from [2], but for completeness’ sake we include a proof.

Lemma 3.2. Let (X,r) be a set-theoretic solution of the YBE. Let M = M(X,r) and
M’ = A(X,r). As usual, write r(z,y) = (6,(y), vy (x)). Then, X, (7(b)) = w(Aa (b)),
for all a,b € M, where w: M — M’ is the unique 1-cocycle with respect to the left
action N such that w(xz) = z, for all x € X. Furthermore, if (X,r) is left non-
degenerate, then, with the identification of M and M’ in Example 2.2, A, (b) = Ao (D),
for all a,b € M. In particular,

W N0 oagoa) = Nyl o om0 X, () (a),

forallx, xi,...,x, € X anda € M.

Proof: The existence and uniqueness of 7 is proved in [3, Proposition 3.2]. Let b € M.
There exist a non-negative integer k and x1,...,xr € X such that b =x10---0xg.
We first prove that X, (7(b)) = w(A()), for all z € X, by induction on k. If k =0,
then (1) = 0 and by the definition of A, A;(1) = 1. Hence A, (7(1)) = N, (0) =0 =
(1) = 7(Az(1)). For k =1,

T(Aa(21)) = 00 (21) = 0w (m(21)) = X, (7(21))-
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Suppose that k& > 1 and we have proved the result for words in M (X, r) of length at
most k — 1. By the definition of A, [3, Theorem 2.1], and the induction hypothesis,
we have

T(Az(b)) = 7(Aa(z1 0+ 0 7))
=m(Ae(z1) 0 Ay, (2) (T2 0~ 0 2k))
= 1(Aa(@1)) + A}, (20) (T (A, (@) (T2 0+ - 0 7))
= N (m(21)) + A\, (20) (A, (o) (T(@2 0+ 0 21)))
= Ap(m(x1) + N (A, (m(@z 0+ 0 1))
= X, (m(21) + X, (m(22 0+ 0 )
= Xy (m(zy 0 0mp))
= X, (m(D)).

Hence, by induction AL (7(b)) = w(A, (b)), for all z € X and b € M. Using that both A

and X\ are homomorphisms, we obtain A, (m(b)) = m(A\,(b)) for all a,b € M.

Suppose that (X,r) is left non-degenerate. Then with the identification of M
and M’ in Example 2.2, we have that X\, (b) = A\, (b), for all a,b € M. In this case,
by [3, Theorem 2.1],

N(zyo0-ompoa)=N(z10- 0w 0a)
x(xl 0 0TE) O Np, oo () (@)
Ag(x1 0 0mp)0 /\'ywk---’ywl(w)(a)

= Aw(xl 0200 zk) © Aiymkmfyml(x)(a)?
for all x,21,...,2, € X and a € M. Hence, (1) follows. O

Proposition 3.3. Let (X,r) be a bijective (left and right) non-degenerate set-theoretic
solution of the YBE. Let M = M(X,r). As usual, write r(z,y) = (04(y),vy(2)).
Let v be the left cancellative congruence on (M, o), and let n be the left cancellative
congruence on (M,4+). Then n=v and thus, for every z € M,

= {(X.(a), X (b)) | (a,b) € v} = {((A\)) " (a), (\L) (1)) | (a,b) € v}
Furthermore X, = X\j, for all (a,b) € n.

Proof: From the proof of Lemma 3.1, we know that for all z € M,

vo 2 {((X) " (a), (X)) 7H(B) | (a,b) € v},

and v is also a congruence on (M, +).

Let (a,b) € vp. Then there exists ¢ € M such that coa = ¢ ob. There exist
Z1y...,2, € X such that ¢ = x1 0---ox. Let z € X. By (1) (in Lemma 3.2), we
have that

N(coa) = Ny(c)o N, o ((a).

Yoy

Hence
No(@) o N, oy (@) = No€) o N (D)
for all z€ X. Hence, ()‘fy%w'ml(r)(a)’ )\;Ik..%l(z)(b)) €y, for all z€ X. Since (X, ) is

right non-degenerate, and thus all ., are bijective, we obtain that (A} (a), A}, (b)) € v,
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for all y € X. Therefore (X, (a), X, (b)) € vy, for all z€ M. Since ((X,)"(a), (X,)7(b)) €
vy, for all z € M, we get that

vo = {(X.(a), XL(0)) | (a,b) € vo} = {((\2) " (a), (\L)7'(®)) | (a,]) € o},
for all z € M. We shall prove by induction on n that

2 o ={(\(a), Xo(0)) | (a,b) € v} = {(X) 7 (a), \) T (B)) | (a,D) € v},

for all z € M and all non-negative integers n. Suppose that n > 0 and (2) is true
for n — 1. From the proof of Lemma 3.1, we know that for all z € M,

v 2 {((A\D)7H(a), W) I 0)) | (a,b) € v}

Let (a,b) € vy, z € M. If n is odd, then there exist (a,c1), (c1,¢2),. .., (Ck,b) € V1.
Hence,

()‘/z(a)’ )‘;(cl))v ()‘;(Cl)’ )‘lz(CQ))’ IR ()‘lz<ck)7 Alz(b)) € Un—1,
and thus (A, (a), A, (b)) € vy, in this case. If n is even, then either (a,b) = (cod’, cod’),
for some ¢ € M and (a’,b') € v;,_1, or there exists ¢ € M such that (coa,cob) € v,_1.

Put ¢ = xy0---oxy. In the first case, by the previous lemma, we get (X, (a), A, (b)) =

(N(cod),N,(cod)) w (Ao(e)o X (@), A(e)o X, () (V). By the in-
Tk 1 Tk 1

duction hypothesis, and since (a’,b’) € v,,_1, also (Xymk~‘-%1(2)(a/)’ )\/“fwk"%l(z)(b/)) €

ety and then (M.(a), X.(5) = (Xo(0) o X, (@) AL(e)o X, ) em
(because n is even). In the second case, by (1),

Xo(coa) = Ny(ar o+ 0w 0a) = Nyl 0+ 0ax) 0N, o (),
for all x € X. By the induction hypothesis,
(Ap(coa), Xy(cobd)) € vnon,
for all z € X. Hence,
()\’/sz""Yzl (I)(a)’Afyzk""Yxl (z) (b)) € Un,
for all x € X. Since (X, r) is right non-degenerate, we have that
(Ay(a), Ay (b)) € v,

for all y € X. Hence, (X, (a), N, (D)) € vy, for all z € M. Since

v 2 {((AD) 7 (a), (AL)TH0) | (a,b) € v},
we get that

vo = {(\o(a), A2(0)) | (a,0) € v} = {((XL)"H(a), (XL) "1 (1)) | (a,b) € v},
for all z € M. Hence, by induction,
v={(\(a), \L(0) | (a,b) € v} = {((\2) "} (a), (AL) "' (1)) | (a,b) € v},

for all z € M.

Let a,b,c,¢ € M be such that (¢,c'), (¢ + a,d +b) € v. Since v is a congruence
on (M, +), (¢/+b, c+b) € v. Hence (c+a, c+b) € v. Then, (co(X,) " (a),co(N.)~1(b)) =
(c+ a,c+b) € v. Hence, ((\.)7'(a),(\.)"1(b)) € v and thus (a,b) € v. Therefore,
(M, +)/v is left cancellative and thus clearly n C v.

By Lemma 3.1, X, = A}, for all (a,b) € n C v. Let (a,b) € n and let ¢ € M. By
Lemma 1.1, we have that (coa,cob) = (c+ A.(a),c+ A.(b)) € n, and since X, = A},
we have that (aoc,boc) = (a+ N,(c), b+ N, (¢)) = (a+ N, (c),b+ A, (c)) € n. Hence,
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n is a congruence on (M, o). Let a,b,c,¢’ € M be such that (¢,¢'),(coa,d ob) € n.
Then, (¢ + A.(a),c + AL/(b)) = (coa,cd ob) € n. Since X, = AL, we have that

(c+ AL(a),c + A.(b)), (" + AL(b),c+ AL(b)) €

and then (c+M.(a), c+X, (b)) € n. Hence, (A.(a), AL(b)) € n. By Lemma 1.1, (a,b) € 7.
Therefore, (M, o)/n is left cancellative and v C 5. So, 7 = v and the result follows. [
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