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TEST VECTORS FOR ARCHIMEDEAN PERIOD INTEGRALS

PETER HUMPHRIES AND YEONGSEONG JO

Abstract: We study period integrals involving Whittaker functions associated to generic irreducible
Casselman—Wallach representations of GL, (F), where F is an archimedean local field. Via the
archimedean theory of newforms for GL,, developed by the first author, we prove that newforms
are weak test vectors for several period integrals, including the GL,, X GL,, Rankin—Selberg integral,
the Flicker integral, and the Bump-Friedberg integral. By taking special values of these period inte-
grals, we deduce that newforms are weak test vectors for Rankin—Selberg periods, Flicker—Rallis pe-
riods, and Friedberg—Jacquet periods. These results parallel analogous results in the nonarchimedean
setting proved by the second author, which use the nonarchimedean theory of newforms for GL,,
developed by Jacquet, Piatetski-Shapiro, and Shalika. By combining these archimedean and nonar-
chimedean results, we prove the existence of weak test vectors for certain global period integrals of
automorphic forms.
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1. Introduction

1.1. Test vectors for GL,, X GL,, Rankin—Selberg integrals. A period integral
of automorphic forms over a number field F' is said to be Fulerian if it factorises
as a product of period integrals over local fields. A quintessential example is the
GL,, x GL,, Rankin—Selberg integral

o (9)¢s(9)E(g, 5; @, wrwo) dg
Zn (AF) GLn(F>\ GLn (AF)

involving two automorphic forms ¢, and ¢, lying in two automorphic representa-
tions m and o of GL,, (Ar) as well as a distinguished Eisenstein series FE(g, $; P, wrw,)
associated to a Schwartz—Bruhat function ® € .(A%) and a product w,w, of central
characters. If ¢, ¢, and ® are pure tensors, then by unfolding, this global period
integral factorises as a product over all places v of F' of local GL,, x GL,, Rankin—
Selberg integrals

U(s, Wr,, Ws,,®y) == Wi, (90)Wo, (90)Pu(engy)|det goly dgo,

Ny (Fyp)\ GLn (Fv)

where W, and W, are the local Whittaker functions associated to ¢, and ..
The local period integrals U (s, Wy , W, ®,) represent the local GL,, x GL,, Rank-
in—Selberg L-function L(s,m, X 0,), where m, and o, are the generic irreducible
admissible smooth representations of GL,(F,) occurring in the tensor product de-
compositions of w and o. More precisely, if v is a nonarchimedean place with residue
field of order ¢, then the quotient W(s, Wy, , W, ,®,)/L(s,m, x 0,) is a polynomial
in ¢° and ¢—°, and in particular is entire. If v is an archimedean place, then the quo-
tient W(s, Wy, , Ws,,®,)/L(s,m, X 0,) is entire and of finite order in vertical strips.
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While the quotient ¥(s, Wy, , Wy, ®,)/L(s,m, X 0,) is always entire regardless of
the choice of Whittaker functions W, and W, and Schwartz-Bruhat function ®,,
for many applications, one requires something stronger, namely, that for particu-
lar choices of W , W, , and ®, this quotient be nicely behaved — in particular,
nonvanishing apart from a prescribed collection of values of s € C. When the repre-
sentations 7, and o, are both unramified, there exists an explicit Schwartz—Bruhat
function ®, for which this quotient is exactly equal to 1 when W, and W, are
chosen to be spherical Whittaker functions. This motivates the following problem.

Strong Test Vector Problem. Given generic irreducible admissible smooth repre-
sentations m, and o, of GL,(F,), determine the existence of Whittaker functions W,
and Wy in the Whittaker models of m, and o, and a Schwartz—Bruhat function ®, €
L (F) for which

U(s, Wr,, Wo,, D) = L(s, Ty X o).

We call such a triple (Wy, ,W,, ,®,) a strong test vector for the GL, x GL,
Rankin—Selberg integral. In full generality, this problem remains unresolved, though
some special cases have been settled:

e When n = 2 and F,, is nonarchimedean for several families of representations ,
and o, by Kim [40, Chapters 4 and 5].

e When n = 2 and F, is archimedean, by Jacquet [29, Theorem 7.2], S.-W. Zhang
[68, Proposition 2.5.2], Miyazaki [47, Theorem 6.1], and Hirano, Ishii, and
Miyazaki [21, Appendix A].

e When at least one of the two representations 7, and o, is unramified, by Kim
[40, Theorem 2.1.1] for F,, nonarchimedean, and by the first author [23, Theo-
rem 4.18] for F), archimedean.

e When both representations are principal series of prescribed forms and F, is
archimedean, by Ishii and Miyazaki [27, Theorem 2.9].

We focus on a weaker yet more tractable problem, where we are satisfied with
finding a triple (Wr,,W,,,®,) for which ¥ (s, W, ,W, ,®,) is an explicit polyno-
mial multiple of L(s,m, X o,). Associated to m, and o, are unramified representa-
tions m, u and o, 4, whose standard L-functions are such that L(s, my w) = L(s, my)
and L(s, 0, u) = L(s,0,). We then define the naive Rankin—Selberg L-function asso-
ciated to m, and o, to be L(s, Ty ur X 0y, ur), which we show is an explicit polynomial
multiple of L(s,m, X gy,).

Weak Test Vector Problem. Given generic irreducible admissible smooth repre-
sentations m, and o, of GL,,(F,), determine the existence of Whittaker functions Wy,
and Wy in the Whittaker models of m, and o, and a Schwartz—Bruhat function ®, €
L (F) for which

U(s,War,, Wo,,Py) = L(8, To,ur X Ov,ur)-

We call such a triple (W, , W, , ®,) a weak test vector for the GL,, x GL,, Rankin—
Selberg integral. The second author ([37, Theorem 1.1(i)]) resolved this problem when
F, is nonarchimedean via the theory of nonarchimedean newforms due to Jacquet,
Piatetski-Shapiro, and Shalika [31]. We resolve this problem when F, is archimedean
via the theory of archimedean newforms introduced by the first author [23].
Theorem 1.1. Let F, be an archimedean local field and let w, and o, be generic
irreducible admissible smooth representations of GLy, (F,). Then there exist Whittaker
functions Wy, and Wy, in the Whittaker models of m, and o, and a Schwartz—Bruhat
function &, € L (F)) for which

\11(37 Wﬂ'“7WgU7¢)’U) = L(svﬂ-v,‘lr X U'v,ur)~

A more precise statement of this result is given in Theorem 5.3.
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1.2. Test vectors for archimedean period integrals. Theorem 1.1 is but one
of many results that we prove pertaining to weak test vectors for archimedean pe-
riod integrals. There are many local period integrals involving integrals of Whittaker
functions that represent distinguished L-functions. As well as for the GL,, x GL,
Rankin—Selberg integral, we resolve the analogue of the weak test vector problem for
the following:

e The modified GL,, x GL,, Rankin—Selberg integral introduced by Sakellaridis
given by (5.6). This represents L(sz2,m, X UU)L(Sl - ”7_1,%)7 the product of
the GL, x GL,, Rankin—Selberg L-function, and the standard L-function. In
Theorem 5.9, we prove the existence of a weak test vector (W, , W, ,®,) for
which this integral is equal to L(s2, Ty ur X ov,ur)L(sl — %’1, crv).

e The modified GL,, x GL,,_; Rankin—Selberg integral introduced by Sakellaridis
given by (5.7). This represents L(32 + %, Ty X O’U)L(Sl — "T_Q, av), the product
of the GL,, x GL,,_; Rankin—Selberg L-function, and the standard L-function.
In Theorem 5.10, we prove that when o, is unramified there exists a strong test

vector (Wy,, Wy, ®,) for which this integral is equal to L($2—|— %, Ty X O’U)L(Sl —

n—1
n o).
e The Flicker integral given by (6.5). This represents L(s, m,, As), the Asai L-func-

tion. In Theorem 6.6, we prove the existence of a weak test vector (W, ,®,)
for which this integral is equal to L(s, 7y, ur, As).

e The Bump-Friedberg integral given by (7.4). This represents the product
L(s1,m,)L(s2, 7y, A?) of the standard L-function and the exterior square L-func-
tion. In Theorem 7.9, we prove the existence of a weak test vector (W, ,®,)
for which this integral is equal to L(s1,m,)L(s2, Ty ur, A?).

The period integrals listed above either involve a single complex variable s or a
pair of complex variables sy, so. In certain situations, these complex variables can be
specialised to special values, at which point these period integrals are linear functionals
for particular representations. We list below the periods of interest that arise from
specialising these complex variables.

e The GL,, x GL,, Rankin—Selberg period given by (5.4). When 7, and o, are uni-
tary, we show in Theorem 5.7 the existence of a test vector (W, Wy, ) for which
this period is equal to the special L-value L(1,7y w X 0y u)/L(n, Wr,  Wo, o),
where wr, . and w,, . denote the central characters of 7,y and vau,r'

e The Flicker—Rallis period given by (6.6). When , is unitary, we show in The-
orem 6.9 the existence of a test vector W, for which this period is equal to the
special L-value L(1, 7y ur, As)/L(n,wn, . [rx)-

e The Friedberg-Jacquet period given by (7.5). When =, is unitary, we show in
Theorem 7.12 the existence of a test vector W  for which this period is equal
to the special L-value L(3,m,)L(1, Ty ur, A2)/L(%,wr, ..).

1.3. Comparisons between archimedean and nonarchimedean results. Our
results on test vectors for archimedean period integrals parallel analogous results
of the second author [37] in the nonarchimedean setting. The strategy of proof in
both settings is similar: via the Iwasawa decomposition and the fact that Whittaker
newforms transform on the right under the maximal compact subgroup K, of GL,,(F)
in a prescribed manner, these integrals can be reduced to integrals over a diagonal
torus A, (Fy).

When F, is nonarchimedean, the behaviour of the Whittaker newform when re-
stricted to the diagonal torus has a closed form via the Casselman—Shalika—Shintani
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formula [10, 50] together with work of Matringe [42] and Miyauchi [45]. This allows
one to directly evaluate the period integrals of interest.

When F,, is archimedean, on the other hand, no such closed form exists for the
Whittaker newform when restricted to the diagonal torus. Instead, there exists a prop-
agation formula due to the first author [23, Lemmata 9.8 and 9.17] that gives a recur-
sive formula for this Whittaker newform in terms of a Whittaker newform associated
to a representation of GL,,_1(F,); for unramified representations, such an identity is
due independently to Gerasimov, Lebedev, and Oblezin [19, Proposition 4.1] and to
Ishii and Stade [28, Proposition 2.1]. In this way, the period integrals of interest can
be evaluated via induction. This approach has been previously used to successfully
solve the strong test vector problem for the unramified GL,, x GL,, Rankin—Selberg
integral [53, Theorem 1.1] and the unramified Bump-Friedberg integral [52, Theo-
rem 3.3]. For the modified GL,, x GL,, and GL,, x GL,,_; Rankin—Selberg integrals
introduced by Sakellaridis and for the Flicker integral, our results are new even for
the unramified case.

Known results for weak test vectors for nonarchimedean period integrals encompass
more than just the analogues of the archimedean results listed in Subsection 1.2.
Weak test vectors have been determined for GL, x GL,, Rankin—Selberg integrals
with n > m [6, Theorem 1.1], for Jacquet—Shalika integrals [46, Theorem 1.1], and for
Bump-Ginzburg integrals [37, Theorem 6.3]. In turn, these give weak test vectors for
GL,, x GL,;, Rankin—Selberg periods, Jacquet—Shalika periods, and Bump—Ginzburg
periods.

In the archimedean setting, on the other hand, we do not expect to be able to
find such weak test vectors for these various period integrals, with the exception of
the GL,, x GL,,_1 Rankin—Selberg integral, if we enforce the condition that these test
vectors be right K,-finite. Indeed, even if all representations are unramified and all
Whittaker functions are spherical, it is widely believed that these period integrals
are not a nonzero polynomial multiple of the L-function associated to such a pe-
riod integral [7, §2.6]. A prototypical example of this phenomenon is the identity for
the unramified GL,, x GL,_2 archimedean Rankin—Selberg integral due to Ishii and
Stade [28, Theorem 3.2], namely,

[e%S) 0 s5—
W (7 Wi (goo)|det goo |5 dgos
0 1o
Ny 2(R)\ GL,_5(R)

1 [ L(w,7e)
(5, 7o0 X & )471'1 /07100 L(s+w,05) dw

1.4. Global applications. In conjunction with the nonarchimedean results on test
vectors in [37], our archimedean results have global applications. Each local period
integral has a global counterpart, and we are able to show the existence of weak
test vectors for these global period integrals. More precisely, we resolve the weak test
vector problem for the following:

e The global GL,, x GL,, Rankin—Selberg integral given by (8.3) in Theorem 8.2.

e The global modified GL,, x GL,, Rankin—Selberg integral introduced by Sakel-
laridis given by (8.5) in Theorem 8.6.

e The global modified GL,, x GL,,_1 Rankin—Selberg integral introduced by Sakel-
laridis given by (8.6) in Theorem 8.7.

e The global Flicker integral given by (8.7) in Theorem 8.8.

e The global Bump—Friedberg integral given by (8.9) and (8.10) in Theorem 8.11.
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By specialising the value of the complex variables s or s1, s5 in these period integrals,
our results give weak test vectors for certain periods:

e The global GL,, x GL,, Rankin—Selberg period given by (8.4) in Theorem 8.4.
e The global Flicker—Rallis period given by (8.8) in Theorem 8.10.
e The global Friedberg—Jacquet period given by (8.12) in Theorem 8.15.

2. Preliminaries

From here on, we work over an archimedean local field. Since all that follows is
local, we drop the usage of the subscript v. We list below some standard facts on the
representation theory of GL, (F) with F archimedean. Much of this is well known
and appears elsewhere in the literature; see in particular [23, §2].

2.1. Groups and measures.

2.1.1. Local fields. Let F be an archimedean local field, so that F' is either R or C.
We denote by | - |r the absolute value on F', which we normalise such that

2] max{z, —z} if F =R,
m =
" ez it F=C.

When the local field is clear from the context, we omit the subscript F in our notation

. . . 1/2
and simply write |- | = |- |p. We also let || - || == |- |¢
on C.

We fix a nontrivial additive character ¢ = 1 of F. For F' =R, we choose ¢ (z) =
exp(2miz), while for F = C, we choose 9(x) = exp(2wi(z + T)); in Section 6, we
will also work with a slightly different nontrivial additive character ¢c g of C that is
trivial when restricted to R. We normalise the Haar measure dz on F' so that it is
self-dual with respect to ¥. For F' = R, dx is simply the Lebesgue measure, whereas

for F' = C, dx is twice the Lebesgue measure. The multiplicative Haar measure d*z
on F* is (p(1)|z|~! dz, where

30 (2) i F =R,
(rio) = { )
2(2m)°I'(s) if F=C.

denote the standard module

2.1.2. Groups and Haar measures. We write 1,, to denote the n x n identity ma-
trix. Let {e;. : 1 <7 < n} be the standard row basis of F". Let P(F) = P(,,, . n.)(F)
denote the standard upper parabolic subgroup of GL,,(F') of type (n1,na, ..., n,) with
n =ny +ng+---+n,. This has the Levi decomposition P(F') = Np(F)Mp(F'), where
the block-diagonal Levi subgroup Mp(F') is isomorphic to GLy,, (F') X - - x GL,,, (F),
while the unipotent radical Np(F') of P(F’) consists of upper triangular matrices with
block-diagonal entries (1,,,...,1,,.). When P(F) is the standard Borel (and mini-
mal parabolic) subgroup Py 1)(F) = B, (F) of upper triangular matrices, we write
Np(F) = N, (F) = F*"=1/2 the subgroup of unipotent upper triangular matri-
ces, and Mp(F) = A, (F) = (F*)", the subgroup of diagonal matrices. We write
Zn(F) = F* to denote the centre consisting of scalar matrices. We define P, (F'), the
mirabolic subgroup of GL,,(F'), given by

P, (F) = {(g tf) :h € GLy_1(F), z € F"_l} .
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The modulus character of a parabolic subgroup P(F) = Py, . ) (F) is

dp(ry(m) = H |det |~ 2(natnzt - =n,
=1
for any m = blockdiag(my, ..., m,) € Mp(F). We let K,, denote the maximal compact
subgroup of GL,,(F), unique up to conjugacy, so that

K _Jom) ifF=R,
" lum) ifF=CcC.

We have the Iwasawa decomposition GL,(F) = N, (F)A,(F)K,. We normalise
the Haar measure dg on GL,(F) 3 g via the Iwasawa decomposition g = uak with
u € Ny (F), a € Ay (F), and k € K, so that

dg = 05" (a) dud adk.

Here du = [[,<; ;< du;;, where du;; is the Haar measure on F, while d*a =
HJ 1 d*aj, where d*a; is the Haar measure on F'*, and dk is the probability Haar
measure on K. The modulus character of By, (F) is simply d,, (r)(a) =]}—, a;["~> .

The Iwasawa decomposition also gives rise to the Haar measure on N, (F')\ GL,,(F)
via dg = 5l;i(F)(a)andk for ¢ = ak with a € A,(F) and k € K,. There is
an alternate expression for this Haar measure via the Iwasawa decomposition g =
(21,) (% 9)k associated to the maximal parabolic subgroup P,_11)(F) of GL,(F)
of type (n — 1,1). Here z € F*, h € Ny,_1(F)\ GL,_1(F), and k € K,; the Haar
measure on N, (F)\ GL,(F') becomes

dg = |det h|™* d* z dh dk,
where d* z denotes the multiplicative Haar measure on F'* and dh denotes the Haar
measure on Ny,_1(F)\ GL,,—1 (F).
2.2. Representations of GL,, (F).

2.2.1. Isobaric sums. Given representations (w1, Vi, ),..., (7, Vy,) of the linear
groups GL,, (F),...,GL, (F) with n = n; + -+ + n,, we form the representa-
tion |Z|§:1 m; of Mp(F'), where X denotes the outer tensor product. We then extend
this representation trivially to a representation of P(F). We obtain a normalised
parabolically induced representation (7, V;) of GL,(F) by

GLy, (F)
T —IndP(F( |X|7r],

where V,; denotes the space of smooth functions f: GL,,(F) = Vi, ® ---® V,_, upon
which 7 on V; via right translation, namely, (7(h) - f)(g) == f(gh), that satisfy

1/2
f(umg) = 5p/(F) ® mj(m;)

for any u € Np(F'), m = blockdiag(my,...,m,) € Mp(F), and g € GL,,. The induced
representation 7 is called the isobaric sum of my,..., ., which we denote by

T
=
j=1
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2.2.2. Essentially square-integrable representations. Essentially square-inte-
grable representations of GL,, (C) exist only for n = 1. An essentially square-integrable
representation of GL;(C) = C* must be a character of the form 7(z) = €% 8(®)|z|L,
for some k € Z and t € C, where e!*8() = z/||z|.

Essentially square-integrable representations of GL,(R) exist only for n € {1,2}.
An essentially square-integrable representation of GL;(R) = R* must be a character
of the form m(z) = sgn(z)"|z|; for some k€{0,1} and t € C, where sgn(z) = z/||z||.
We view GL1(C) as a subgroup of GLy(R) via the identification a + ib — (%, %).
For k # 0, the essential discrete series representation of weight ||| + 1,

GL2(R) ikar ~ GL2(R) —ikar,
Djjaji1 @ |detli; = Indgp2(3) " *"%| - & = Ind 2 e "% - |,

is essentially square-integrable. Every essentially square-integrable representation of
GL2(R) is of the form 7 = D,; ® |det|}, for some integer k > 2 and ¢ € C.

2.2.3. Induced representations of Whittaker and Langlands types. A repre-
sentation 7 of GL,,(F) is said to be an induced representation of Whittaker type if it is
the isobaric sum of 71,7, ..., and each 7; is essentially square-integrable. Such a
representation is an admissible smooth Fréchet representation of moderate growth and
of finite length. Induced representations of Whittaker type are Casselman—Wallach
representations [9, 55|, which is to say admissible smooth Fréchet representations of
moderate growth and finite length. In addition, if each 7; is of the form o; ® |det|%,
where o is irreducible, unitary, square-integrable, and R(¢;) > R(t2) > --- > R(¢,),
then 7 is said to be an induced representation of Langlands type.

Induced representations of Whittaker and Langlands type need not be irreducible.
Nonetheless, every generic irreducible Casselman—Wallach representation of GL,, (F)
is isomorphic to some (necessarily irreducible) induced representation of Langlands
type. For this reason, we will work more generally with induced representations of
Langlands type, since this encompasses generic irreducible Casselman—Wallach rep-
resentations.

A spherical induced representation of Whittaker type of GL,,(F) is a representation
of the form © = EE]?:1 m; with each m; an unramified character of F'*, namely a
character of the form m; = |- | with ¢; € C. Such a representation has a K,-fixed
vector, which is unique up to scalar multlphcatlon this is called the spherical vector.

2.2.4. The Whittaker model. Let (7, V;) be an induced representation of Whit-
taker type. We let 1,, denote an additive character of N,,(F') defined by

n—1
=9 <Z uj,j+1>
j=1

for all w € N,,(F). A Whittaker functional A: V; — Cis a continuous linear functional
that satisfies

A(m(u) - v) = ¢n(u)A(v)
for all v eV, and v e N, (F). If 7 is additionally irreducible, then the space
Homy, () (7, 1) of Whittaker functionals of 7 is at most one-dimensional. If the space
is one-dimensional, it admits a unique functional up to scalar multiplication, and the
representation 7 is said to be generic.

Let W(m,v¢) denote the Whittaker model of m, which is the image of V; un-
der the map v — A(w(:) - v). The Whittaker model W(m, 1)) consists of Whittaker
functions W: GL,(F) — C of the form W(g) := A(w(g) - v). Every induced rep-
resentation of Langlands type is generic and isomorphic to its unique Whittaker
model W(m, ). Although an induced representation of Whittaker type 7 affords a
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one-dimensional space of Whittaker functionals, the map v — A(w(-) - v) need not be
injective, so the Whittaker model may only be a model of a quotient of 7.

Let 7= Bﬂ;zl m; be an induced representation of Whittaker type of GL,,(F'), so that
each 7; is of the form 28| . | if F = C or either sgn™ |- |% or D,, ® |det|"
if F = R. The induced model of 7 consists of smooth functions f: GL,(F) —
®;:1 Vz;- Each Vi, may itself be identified with a space of smooth functions
from GL,,(F) to C [23, Lemma 8.1]. Evaluating such a function at the identity 1,
for each j € {1,...,7}, we may thereby view an element f of the induced model V.
of 7 as a smooth function from GL, (F) to C [23, Corollary 8.2].

Given f € V., we define the Jacquet integral

Wi(g) = / | F g B )

where w,, := antidiag(l,...,1) denotes the long Weyl element in GL, (F). This in-
tegral converges absolutely if R(t1) > R(¢t2) > --- > R(¢,) and defines a Whittaker
function Wy € W(m,v); that is, as a function of f € Vi, A(f) = Wy(1,) defines a
Whittaker functional, which is therefore unique up to scalar multiplication. Moreover,
the Jacquet integral provides a Whittaker functional for all induced representations
of Whittaker type, and not just those for which R(t1) > R(t2) > --- > R(¢,), via
analytic continuation in the sense of Wallach [55].

2.2.5. L-functions. We put

1 if F=R,

dF:_[F:R]_{z if F=C

The integral representation of the zeta function (g (s) is
cr(s) = [ exp(-demlal)ial* s,
FX
which converges absolutely for #(s) > 0 and extends meromorphically to the entire

complex plane. In particular, if w is an unramified character of F'*, so that w = | - |*
for some t € C, then for R(s) > —R(¢), we have that

(2.1) L(s,w) = / (@) exp(—dpr||z|?)|z|* d*z.
FX
Given an induced representation of Whittaker type m = BE|§:1 mj of GL,(F), the
local Langlands correspondence, as explicated by Knapp [41], gives that the standard
L-function of 7 [20] is
L(s,m) = [ [ L(s,m),
j=1

where the L-function of the essentially square-integrable representation ; is

C‘C (S+t]‘+@> ifF:(Candﬁj:einjarg|.|g’
L(s,m;) = 4 Cals + 15+ #5) if =R and m; =sgn™ ||,

K;j-ﬁ-].

1 ) )
C]R(S+tj+K/]T)CR(S+tj+ ) 1fF:Rand7rj:D,ij®\det\§{.
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3. Archimedean newform theory

We now survey the theory of newforms for induced representations of Whittaker
type of GL,(F) introduced by the first author [23]. While newforms over nonar-
chimedean fields are usually defined in terms of vectors fixed under certain congruence
subgroups, newforms over archimedean fields are instead defined in terms of vectors
lying in distinguished K, -types. We first recall some properties of representations
of K,,, as well as properties of distinguished models of such representations.

3.1. Representation theory of K,,. The equivalence classes of finite-dimensional
irreducible representations of the orthogonal group

O(n) = {k € Mat,xn(R) : k'k = 1,}

are parametrised by the set of highest weights, which may be identified with n-tuples
of nonnegative integers of the form

ﬂ:{/j‘17"'aum7 UIRRERY/] 507"'70}€va
————  ———

n — 2m times m times

where m € {0,..., {gJ}, H1 > >y > 1, and n € {0,1}.

Similarly, the equivalence classes of finite-dimensional irreducible representations
of the unitary group

U(n) = {k € Matnxn(C) : k' = 1}

are parametrised by the set of highest weights, which may be identified with n-tuples
of integers p = (u1, ..., 4n) € Z™ that are nonincreasing, so that pq > -+ > pp.

In both settings, to each 7 € I/(:L, the set of equivalence classes of irreducible
representations of K,,, one can associate a nonnegative integer deg 7 called the Howe
degree of T [22]. The Howe degree of an irreducible representation 7 of highest weight u

1S
n
deg7 = |lull.
j=1

When n = 1, these irreducible representations are simply characters. Characters x
of K are of the form
sgn(z)™ if K1 = 0(1),
X('T) = ik egrg)(z) : ' _ ( )
e if K1 =U(1),
where k € {0,1} if K1 = O(1) 2 Z/2Z and k € Z if K; = U(1) 2 R/Z = S'. In
either case, the conductor exponent of x is ¢(x) = ||&]|.

3.2. Spaces of homogeneous harmonic polynomials. Let y be a character
of O(1). We let m be a nonnegative integer for which m > ¢(x) and m = ¢(x)
(mod 2). Let P, ,,»(R™) denote the space of degree m homogeneous polynomials with
central character x, and let H,, ., (R™) denote the subspace of P, ,,(R™) of harmonic
homogeneous polynomials; H, ., (R™) is a model for the irreducible representation
of O(n) with central character y and highest weight (m,0,...,0), which we denote
by Ty, m-

Similarly, let x be a character of U(1). We let m be a nonnegative integer for
which m > ¢(x) and m = ¢(x) (mod 2). Let P, ,,,(C") denote the space of de-
gree m homogeneous polynomials with central character x, and let H, ., (C") denote
the subspace of P, ,,(C") of harmonic homogeneous polynomials; #, ,,(C") is a
model for the irreducible representation of U(n) with central character y and high-
est weight (mq,0,...,0, —ms2), which we also denote by 7, ,,. The nonnegative inte-
gers my, my are such that mq +mo = m and m; — my = £, where y = earg g0 that
¢(x) = max{¢, —¢}, and elements of P, ,,,(C™) have bidegree (mq,ms).
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In both cases, every irreducible representation of K, whose restriction to K, 1
contains the trivial representation is of the form 7, ,,, for some character x of K; and
some integer m > ¢(x); moreover, the Howe degree deg 7y, of 7y, is simply the
nonnegative integer m. The action of the group K, > k on the space Py ,,(F™) > P
is via right translation, namely (7 m (k) - P)(z) = P(xk). The homogeneity of a
polynomial P in Py, (F"™) means that

(3.1) Pow) = x (137 ) AP

for all x € F™ and A € F*, while polynomials in #, ,,,(F") are additionally annihi-
lated by the Laplacian

n 2
9 if F =R,

9P .
We record the following key properties of homogeneous polynomials in Py, (F™).

Proposition 3.1 (cf. [23, Lemmata 7.1 and 7.7]). There exists a unique K,_1-in-
variant polynomial Py . in Hy m(F™) satisfying PY ,,,(en) =1, where the group K, 1
is embedded in K, via k' — (%" 9). In particular, for all k € K,,, we have that

(3.2) Py (enk) = P2 . (enk™ ).
We define an inner product on P, ., (F") 3 P,Q via

(P,Q) = [ P(enk)Q(enk) dk.

Kn

Our first utilisation of PY ,, is the following, which is known as the addition theorem
for Hy m (F™).

Proposition 3.2 (cf. [3, Theorem 2.9]). Let {Q¢} be an orthonormal basis of
Hym (F™). Then, for any x € R™ and k € K,,, we have that

dim 7y m

Z Qe(x)Qe(enk) = dimTX,mP;,m(xk_l).
=1

We make crucial use of the fact that for all P € H, ,,(F™) and k € K,,, P(e,k) is
equal to a matrix coefficient of 7, ,,,. This can be thought of as an explicit form of
Schur orthogonality.

Proposition 3.3 (cf. [23, Lemmata 7.5 and 7.12]). The reproducing kernel for
Hy.m(F™) is the homogeneous harmonic polynomial (dim 7y, ) Py, (), while the re-
producing kernel for Py ((F™) is the homogeneous polynomial

¢
(3.3) S (@) T (dim Ty P (),

m=c(x)
m=c(x) (mod 2)

so that for all k € K,
(3.4) Plenk)= P(enk'k)(dim Ty, m ) P2 o (enk’) dK' for all PeHy m(F™),

Kn

£
(3.5) Plenk)=[ P(e.k'k) > (dimrm) Py,

xX,m

(enk’) dk' for all PEPy o(F™).
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Proof: The first assertion is justified in [23, Lemmata 7.5 and 7.12]. The second
assertion follows from the first upon recalling that every homogeneous polynomial P €
Pye(F™) of degree £ and central character x admits a decomposition of the form

P(z) = Y, (@) T Pu(e)
m=c(x)
m=c(x) (mod 2)

for some harmonic homogeneous polynomials P, € H,, n,(F") [48, Theorem 12.1.3].
O

3.3. Archimedean newform theory. Let (7, V) be an induced representation of
Whittaker type of GL,, (F'). Since 7 is admissible, Hompg, (7, 7|k, ) is finite-dimensional
for any irreducible representation 7 of K,. We say that 7 is a K,-type of w if
Homg, (7, 7|k, ) is nontrivial, and we call dim Homg, (7, 7|k, ) the multiplicity of T
in 7. The fundamental result proved in [23] is the existence of a distinguished K,,-type
of 7 that occurs with multiplicity one.

Theorem 3.4 ([23, Theorem 4.7]). Let (m, V) be an induced representation of Whit-
taker type of GLy,(F). Among the K, -types Ty m of m whose restriction to K,_1 con-
tains the trivial representation, there exists a unique such K, -type of minimal Howe
degree m. Furthermore, this K,-type Ty ., occurs with multiplicity one, and the sub-
space of Vi of Ty m-isotypic K, _1-invariant vectors is one-dimensional.

Remark 3.5. By considering the restrictions of 7 and 7, ., to the centre of K,,, we
observe that Hompg, (7y,m, 7|k, ) is trivial if the central character x of 7, ., is not
equal to

Xn = wTr‘K17

the restriction of the central character w, of 7 to Kj.

Definition 3.6 ([23, Definition 4.8]). Let (m, V;) be an induced representation of
Whittaker type of GL,, (F). We define the newform K,-type 7, c(r) to be the K,-type
of minimal Howe degree m = c¢(m) whose restriction to K,_; contains the trivial
representation. We define the conductor exponent c(m) of m to be the Howe degree of
the newform K, -type. The nonzero 7,  .(r)-isotypic K, _i-invariant vector v° € Vg,
unique up to scalar multiplication, is called the newform of .

Remark 3.7. As proved by the first author in [24], this definition of the conductor
exponent and the newform, as well as the existence of the newform K,,-type, is consis-
tent with the nonarchimedean definition of the conductor exponent and the newform
first introduced by Jacquet, Piatetski-Shapiro, and Shalika [31].

When V. is the induced model of 7, we may normalise the newform v° € V. as
in [23, Corollary 8.17 and Definition 9.2], which gives us a canonically normalised
newform. When 7 is an induced representation of Langlands type, the Whittaker
model W(m, 1) is a model of m, which is given by the analytic continuation of the
Jacquet integral of the induced model. The image of the canonically normalised new-
form under this map is called the Whittaker newform and denoted by W?2 [23, §9.1].
When 7 is unramified, the Whittaker newform W? is simply the spherical Whittaker
function.

The following lemma may be thought of as the archimedean analogue of [24, The-
orem 4.16].
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Lemma 3.8 (cf. [23, Theorem 4.17]). For all g € GL,,(F) and k' € K,,_1, the Whit-
taker newform W2 € W(r,) of an induced representation of Langlands type (w,Vy)
of GL,,(F) satisfies

(3.6) dimTXmC(ﬂ/ W,f(gk)P;mc(ﬂ)(enkfl)dk =W3(9),

n

(3.7) Wy (g (’B (1))) =W:(9)-

Proof: The identity (3.7) is simply the fact that W2 is right K, _;-invariant. Since
W7 is additionally 7, .(x)-isotypic, it satisfies

dim TXﬂ-,C<ﬂ') / W; (gk) Tr TXTr,c(ﬂ) (k_l) dk = WT? (g)
Kp

for all g € GL,(F). Upon replacing g with g(%’ ¢), integrating over K,,_; > k', and
making the change of variables k' — k'~ and k — (’B’ ?)k, we deduce that

!
dim ey [ WelaR) [ e (570 ( 1)) avde=wi),
n n—1

From Proposition 3.1 and (3.4), the inner integral is equal to

<7'X,r,c(7r)(k_l) : P)?ﬂ.,c(ﬂ'ﬁ P;;.,,e(w))

(P etm) Pame(m)

= Oﬂ_’c(ﬂ.)(enk_l). D

4. Langlands parameters

We now associate an induced representation of Langlands type 7 of GL,(F) to
a distinguished spherical induced representation of Langlands type my, of GL,(F)
defined in terms of the Langlands parameters of 7.

Definition 4.1. The Langlands parameters associated to an induced representa-
tion of Whittaker type m# = FH._, m; of GL,(F) are the n-tuple of complex num-

bers (Qr 1, .., Qrn) given by o
tj+”";—j” if £ =n1+ - +n; and m; = e VE[ |,
ti + K if £ =n1+--+n; and 75 = sgn® |- [/,
Qryg = tj+/-cj+1 if£=ni+--+n;—1and m; = Dy, ® |det|,
L if £=n1+-+n; and m; = Dy, @ |det|y.

Proposition 4.2. Given an induced representation of Whittaker type m of GL,,(F),
there exists a spherical induced representation of Langlands type my, of GL,(F) for
which L(s,m) = L(s, Tyy).

Proof: There exists a permutation ¢ for which the Langlands parameters of m are
such that R(aro(1)) > -+ > R(r o)) Let mue == HH;_, | - [*~<. This isobaric
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sum of unramified characters is a spherical induced representation of Langlands type
of GL,,(F) that satisfies

L(s,Tur) = H Cr (s + or,0())
j=1

. (e (s—&-tj—&-i”zj”) if 7 = '™ 278 -|(tcj,
= Cr(s +1t; + K;5) if m; = sgn™ | - [/,
! CR(S-Q-tj-Q-H]T)ﬁR(S-I-tj-I-M; ) lle'j:Dnj®|det|E{,
=[] (s, my)
j=1
= L(s, ). O

Remark 4.3. Proposition 4.2 ensures the existence of such a spherical representa-
tion 7y, of GL,(F), but does not guarantee the uniqueness. Indeed, if there are
at least two Langlands parameters whose real parts are equal but whose imaginary
parts are not, then there exists more than one permutation ¢ for which the condi-
tion R(atr »(1)) > -+ > R(ar 5(n)) is met, and hence more than one spherical induced
representation of Langlands type having the same L-function as 7. Nonetheless, the
spherical Whittaker function W7 € W(my:, ) is uniquely determined, since if two
spherical induced representations of Langlands type have the same L-function, then
their spherical Whittaker functions are equal due to the Whittaker—Plancherel theo-
rem (see [23, Lemma 10.5] and Lemma 4.6).

Remark 4.4. A result analogous to Proposition 4.2 also holds in the nonarchimedean
setting. A notable difference in this setting is that if 7 is ramified, then m,, is a
spherical representation of GL,,(F') with m < n.

The central character wy . of m,, is closely related to the central character w, of 7.

Lemma 4.5. Let 7 be an induced representation of Langlands type of GL,(F). Then
for all z € F*

_ ([ z -
wr (e <H) 127 = e (2)-
T

Proof: We write m = Bﬂ;zl m;, so that the central character of 7 is w, = H]’:1 W s
where the central character wy, of 7; is

et g |1 if ;= et 8| |
we, = { sgn’ |- |}/ if ;= sgn® |- |,

sgn“f (mod 2) | . ‘5{ if T = Dnj ® |det|]§€

Thus for F' = C, w, = €™~ 8| . |7, where i, = > iy ke and tr = Y70 t;, while
for FF = R, we have that w, = sgn®~ |-|i7, where r. € {0,1} is such that r, = Z;Zl Kj
(mod 2) and tr == }77_, t;. In particular,

(i) _ ein,\- arg(z) ifF = (C,
X lzll) — \segn(z)"™ if F=R.
From [23, Theorem 4.15 and Section 5.2.1], we have that c¢(m) = >"_, ||x;]|, so that

e(m) |z‘((c|\'€1||+“‘+|\'<r“)/2 if F=C,
Il = |2‘n1+n.+nr fF =R
R =R.
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From thiS7 we see that
— z T ety ” d
wr (2) X (TZH) ||ZHC( ) — |Z|(t1+ ) (sl Hlerl)/de

On the other hand, the central character of 7y, is W, = |-|"mu with ¢y, = >77_ (t;+
I /dr). Thus

wao (2) = ||t o+l i) /e 0

We introduce the following by now well-known lemma. Over nonarchimedean fields,
this lemma plays an important role in the proofs of the stability of v-factors [35,
Lemma 3.2] and of the local converse theorem [57]. Our case is the archimedean
analogue (cf. [23, Lemma 10.5]) of a result of Jacquet, Piatetski-Shapiro, and Shalika
[31, Lemme (3.5)].

Lemma 4.6. Let w be an induced representation of Langlands type of GL,,(F). Then
ofg 0\ o (g O
Wy (O 1) =Wr. (0 1) for all g € GL,—1(F).

Proof: We claim that for every spherical induced representation of Langlands type o
of GL,,_1(F') with spherical Whittaker function W2 € W(a, ),

o9 0 o g 0 o s—1 _
(we (3 9)-we (5 9)) we@mens b ag =0

N'n.fl(F)\GLn—l(F)
for R(s) sufficiently large; by the Whittaker—Plancherel theorem (see [23, Lem-
ma 10.5]), this implies the desired equality. Indeed, we have by [23, Theorem 4.17]
that
ofg O o s—1
we (0 1) W2(g)ldet gl'~# dg = L(s, 7 x o),
Nn—l(F)\GLnfl(F)

W;f)ur (g (1)) Wi(g)ldetg|57% dg = L(S,Tl'ur X 0)7
Np—1(F)\ GLy 1 (F)

and these are equal as we can write o = EE|:L:_11 | - |% for some t; € C, and then

n—1 n—1
L(s,m x o) = H L(s+tj,m) = H L(s+tj,mur) = L(s, Tur X 0). O
i=1 =1

5. Rankin—Selberg integrals

Given induced representations of Whittaker type 7 and o of GL, (F), Whittaker
functions W, € W(m,v) and W, € W(o,1), and a Schwartz-Bruhat function ® €
S (F™), the GL,, x GL,, Rankin—Selberg integral is defined by

U (s, Wy, Wy, ®) = / Wx(9)Wo(g9)®(eng)|det g|° dg.
Ny (F)\ GLy (F)

The local Rankin—Selberg L-function L(s,7 X o) is defined via the local Langlands
correspondence as delineated in [41]. This integral converges absolutely for R(s) suffi-
ciently large and extends meromorphically to the entire complex plane. Jacquet ([30,
Theorem 2.3]) has shown that (s, W, W,,, ®) is a holomorphic multiple of L(s, 7 x o)
and that the quotient
U (s, Wr, Wy, @)
L(s,m X o)
is of finite order in vertical strips.
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5.1. Test vectors for GL, X GL, Rankin—Selberg integrals and periods.
For & € Mat, xm(F'), we define the Schwartz—Bruhat function ®,, € .(Mat, xm (F))
by

exp(—m Tr(z‘z)) if F =R,

> Burle) = explden () = {exp(—zn Tr(z'z) if F=C.

It is readily seen that @, (zk) = @y (K'z) = @y (z) for all k € K,,, and k' € K,;; that
is, @, is right K,,-invariant and left K,-invariant.

Our goal is to evaluate the GL,,x GL,, Rankin—Selberg integral when 7 and o may be
ramified. Our first step is to reduce this integral to an integral over N, _1(F)\GL,,_1(F).

Proposition 5.1. Let m and o be induced representations of Langlands type of GL,, (F)
with Whittaker newforms W2 € W(m, ) and W2 € W(o,%). Let ® € .#(F™) be the
right K, -finite Schwartz—Bruhat function of the form ®(x) = P(x)exp(—dpnaz '),
where the distinguished homogeneous polynomial P € Py c(x)+e(o) (F™) is given by

e(m)+e(o)
(5.2) P(z) = > (z'7)

m=c(XrXo)
m=c(xrXo) (mod 2)

Then the GL,, x GL,, Rankin—Selberg integral ¥ (s, W2, W2, ®) is equal to

c(m)te(o)=—m —
2 (dlmTXﬂ'Xaam)P)?—,rxg,m(:r)'

ofh O ofh O s—1
(5.3) L(ns, WrWoy, ) / W, (0 1>WG <0 1) |det h|*~" dh.

Np_1(F)\ GLp_1(F)

Proof: The absolute convergence of the ensuing integral can be justified from [30,
Proposition 3.3 and Lemma 3.5]. By the Iwasawa decomposition g = (z1,)(% )k for
N, (F)\ GL,(F), the GL,, x GL,, Rankin-Selberg integral ¥ (s, W2, W2, ®) is equal
to

/ wawe (2)]2]™° / |det A[*~"
FX
Ny 1 (F)\ GLp—1(F)

(5 ) w (4 0)8) e

We now insert the identities (3.6) for both W2 (g) and W (g) with g replaced by (£ 9)k
and the variables of integration being k; € K, for W? and k; € K, for W;. We then
interchange the order of integration and make the change of variables k +— k1,
ki — k7 'kq, and ko — k™ 1ko, arriving at

N B S (R A (D

Ny —1(F)\ GL,,—1(F)
xdim 7y o(mydim Ty, ooy Py ctmy(enki k)P, ooy(enks k)P (zenk ") dk dkz dky dhd* .
By the addition theorem, Proposition 3.2, the last line is

dim 7y () AM Ty, (o)

> > Qulenky Qi (enks ) B Qo (enk)Q), (enk)®(zenk ™) dk,

=1 lo=1

where {Qy, } and {Q}, } are orthonormal bases of H,_(x)(F") and Hy, o) (F").
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To proceed further, we observe that for z € F* and k € K, we have that

- < c(m c(o — ||z 2
B(zenk™) = Xaxo (H) [|2]| e He(@) g =dr =l

e(m)+e(o)
X Z (dimTXanym)P)(zﬂxa,m(enk)

m=c(XnXo)
m=c(xxXo) (mod 2)

by the definition of the Schwartz—Bruhat function ® € (F™), the homogeneity

of P | ., asin (3.1), and the identity (3.2). By (3.3), the sum over m is the reproduc-
ing kernel for Py o(x)+c(o) (F™), and so the integral over K, > k is @(en)@(en)
by (3.5). Using the addition theorem, Proposition 3.2, in reverse and then using (3.6)
to evaluate the integrals over K, 3 k; and K, 3 ko, we find that U(s, W2, W2, ®) is

equal to

/ wﬂwo'(z)iXﬂ'Xo' (i) HZ”C(TF)+C<J>|Z‘n5€7dF7r“ZH2 dXZ
Fx B

o h O o h O s—1
x / We (0 1) we (0 1) |det h|* " dh.

Np 1 (F)\ GLp 1 (F)

It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over F'* 5 z
is L(ns, wyr, Wo.,, ) O

Remark 5.2. The same proof remains valid in the nonarchimedean setting using the
theory of the newform K,,-type and p-adic spherical harmonics [24].

With this in hand, we are now able to evaluate this Rankin—Selberg integral by
reducing to the spherical case.

Theorem 5.3. With the notation and hypotheses of Proposition 5.1, the GL,, x GL,,
Rankin—Selberg integral
(s, W, Wy, ®)

is equal to L(8,Tuy X Our).

Proof: According to Lemma 4.6 and Proposition 5.1, we have the identity
W W W) =Lnsonen) [ we (5 D)wa () ])iecntan
Np—1 (F)\ GLp—1(F)

On the other hand, with ®,, € .(F™) given by (5.1), the same calculation shows
that the right-hand side above is equal to W(s, W2 ,W¢ , ®,,). Stade’s formula ([53,
Theorem 1.1]) then gives the identity

@(57 W7?ur7 W;ura (pur) = L(Syﬂ-ur X U\lr)~ ]

Remark 5.4. Stade’s formula is only proved for F' = R in [53], though from [51, Propo-
sition 2.1], the same method can be used to prove this formula for F' = C. Different
proofs of Stade’s formula, valid for F' € {R,C}, were given in more general settings
by the first author [23, Theorem 4.18] and independently by Ishii and Miyazaki [27,
Theorem 2.9]; both proofs are based on the work of Jacquet [30].

As previously highlighted, the triple (W2, W2, @) is a weak test vector, rather
than a strong test vector, for the GL,, x GL,, Rankin-Selberg integral, since in gen-
eral the naive Rankin—Selberg L-function L(s, my X oy,) is not equal to L(s, 7 X o).
Nonetheless, these two L-functions are closely related.
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Proposition 5.5. Given induced representations of Whittaker type m of GL,(F)
and o of GL,,,(F), there exists a polynomial p(s) for which

L(s,mur X our) = p(s)L(s, 7™ X o).

Proof: For m = {{;_, mj and ¢ = [Hj_, 0, with each m; and oy essentially square-
integrable, we have that

rop
L(s,mx0) = H HL(S,WJ- X o¢)
j=10=1
via the local Langlands correspondence [41]. Thus it suffices to consider the case
where m and ¢ are both essentially square-integrable.
Suppose first that F' = C, so that 7 = e8| . |4, and o = 28| . |4. Then since
Ce(s) =2(2m)~°T'(s), and recalling the fact that I'(s + 1) = sI'(s), we have that

L(s,Tur X Our) Ccc(8+t+u+ M)

K+
L(s,m x 0) CC(S+t+u+w)
1 if sgn(k) = sgn(A),
_ A min{[|x[l,][All} -1 ls + Al
(27r)~ mindlslLIND H (S+t+u+ T +m) if sgn(x) # sgn(A).
m=0

Next suppose that F' = R and that 7 = sgn® | - %, and o = sgn* | - |%. Then since
(r(s) == 775/2T(s/2) we have that

L(s,Tur X 0ur) _ Cr(s+t+ut+r+A)

1 if (k,A) # (1,1),
Lsmxo) ~ G(stitutle-d = (#) i (1) = (1,1).

If F=R, 7 =D, ®|det|k, and o = sgn* | - |, then
L(s, Mo X ow) _ (s +t+ut =58 + NGr(s+t+ut =57 +2)

Lis,mtxo) — G(s+t+u+ 5 )e(s+t+u+ )
1 if A =0,
— t k—1
! (—H +2“+ 2 ) i A= 1.

An analogous identity holds if 7 = sgn” | - |& and o = D) ® |det|{.
Finally, if F =R, 7 = D,, @ |det|, and 0 = D) @ |det|, then

L(s,mur X owr) _ Ge(s+t+ut P> —1)Ga(s+t+ut “F)

(
L(s,mx o) Ga(s+ttu+ 52 —1)G(s+t+u+ =)

(
(

G(s+t+u+ =)
Ga(s+t+ut =520

s+t+u+ 2 4+1)
s+t+ut 152520 4 0)

— min{x,\} H

m=0

2

|V% min{n,)\}] -1 <

2 am

L%min{n,)\}Jfl
I <

m=0

s+t+ut A 4 )
5 +m ).
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When s = 1, the integral appearing in (5.3) is known as the Rankin—Selberg pe-
riod. In general, this integral need not converge at s = 1. When 7 and o are unitary,
however, convergence is guaranteed by the following lemma. We omit the proof of this
lemma, since it is standard [33, Proposition 3.17]; it relies upon bounds for Whittaker
functions by a gauge, namely [36, §4, Propositions 2 and 3].

Lemma 5.6. Let m and o be unitary generic irreducible Casselman—Wallach repre-
sentations of GL,(F). For any W, € W(w,¢) and W, € W(0,v), the integral

h O h 0 s—1
Wi (0 1)1/14r (o 1) |det h|*~* dh

Np—1(F)\ GLp—1(F)
converges absolutely for R(s) > 1.

Archimedean components of cuspidal automorphic representations are unitary
generic irreducible Casselman—Wallach representations twisted by a (possibly nonuni-
tary) unramified character. In this regard, our unitary assumption is sufficient for
potential global applications therein (cf. Section 8). For ¢ = 7, the Rankin—Selberg
period (in a slightly modified form as the inner product) appears in the work of
Feigon, Lapid, and Offen [13, Appendix A.1], Gelbart, Jacquet, and Rogawski [18,
Lemma 3.3], and W. Zhang [59, (3.2)]), which are all based on the pioneering re-
sult of Jacquet and Shalika [33, Proposition 3.17]. Notably, Venkatesh ([54, §7]) has
evaluated the Rankin—Selberg period for nonarchimedean F' when o = 7 and both
Whittaker functions are newforms, so that this is simply the square of the L?-norm
of the newform. We prove an archimedean analogue.

Theorem 5.7. Let m and o be unitary generic irreducible Casselman—Wallach rep-
resentations of GLy, (F) with Whittaker newforms W2 € W(w,v¢) and W2 € W(a, ).
Then the GL,, x GL,, Rankin—Selberg period

(5.4) / we (8 (1)) we <’5 (1)) dh

Np—1(F)\ GLy 1 (F)

18 equal to
L(lvﬂ_ur X Uur)
L(n, Wy Woy, )

Proof: Having Lemma 5.6 in mind, we take s = 1 in Proposition 5.1 and invoke
Theorem 5.3. O

We say that 7 ® o is GL,, (F)-distinguished if Homgy,, (r)(7 ® 0, 1) is nontrivial. If
7w and o are irreducible, this condition amounts to saying that o ~ 7.

Remark 5.8 ([4, §10]). We define a P, (F)-invariant bilinear form g: W(m, ) x
W(o,v) — C by

(5.5) B(We, W) = / W, (g (D W, (g (1)) dh.

Ny —1(F)\ GLy, 1 (F)

It can be deduced from Theorem 5.7 that S is a nontrivial bilinear form. Furthermore,
Baruch ([4]) has shown that any P, (F)-invariant pairing is GL,, (F)-invariant; the
proof is purely local, whereas a local-to-global approach can be extracted from [59,
Proposition 3.1]. Thus S gives rise to a nontrivial GL, (F)-invariant bilinear form
on W, 1) x W(e, ).
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5.2. Modified Rankin—Selberg integrals by Sakellaridis. Sakellaridis ([49, §5])
has introduced new types of GL, x GL,, and GL,, x GL,_; Rankin—Selberg inte-
grals that extend the classical theory of Rankin—Selberg integrals due to Jacquet,
Piatetski-Shapiro, and Shalika [32]. We solve the weak test vector problems for these
integrals. For these modified Rankin-Selberg integrals, we let G42¢ denote the image
of G under the diagonal embedding GL,, — GL, x GL,, given by g — (g, g) with G
a subgroup of GL, (F).

Theorem 5.9. Let m and o be induced representations of Langlands type of GLy, (F)
with Whittaker newforms W2 € W(m,v) and WS € W(a,1). Let ® € S (F™) be the
right K,-finite Schwartz—Bruhat function of the form ®(z) = P(z)exp(—dpmx'T),
where the distinguished homogeneous polynomial P € Pz c(m)4c(o)(F™) is given
by (5.2), and let ®* € & (Maty,xn(F)) be the bi-K,,-finite Schwartz—Bruhat function of
the form ®*(x) = P*(e,x) exp(—dpn Tr(x 'T)), where the distinguished homogeneous
polynomial P* € Hx; o(o)(F™) is given by
P*(z) = (dim Txosc(@) P (o)(@)-

Then, for R(s1) and R(s2) sufficiently large, the modified GL,, (F) x GL,,(F') Rankin—
Selberg integral by Sakellaridis

(5.6) / WE(g1)WE (92) 87 (97 g2) ®(engn)

N@'*8(F)\ GLy (F) X GLy (F)

S

det g2
det g1

1
|det g1]°2 dg2 dg1

s equal to

L(s2, Tur X our)L (sl _n ; 1,0) .
Proof: We make the change of variables go — ¢192. The ensuing integral becomes

WEg®(eng)ldetal® [ Welg192)@" (g)ldet gl dgn .
Ny, (F)\ GLy, (F) Gl (1)

The absolute convergence of the above double integral follows from [30, Lemma 3.2(ii),
Proposition 3.3, and Lemma 3.5]. Applying [23, Lemma 9.6] to the innermost integral
yields
p(a-"Fo) [ WEaWi @R idetan | don.
N (F)\ GL, (F)
The latter is the GL,, x GL,, Rankin-Selberg integral, which is L(sg, Ty X 0ur) by
Theorem 5.3. 0

Theorem 5.10. Let 7 be an induced representation of Langlands type of GL,, (F') with
Whittaker newform W2 € W(m, 1) and let o be a spherical induced representation of
Langlands type of GL,,_1(F) with spherical Whittaker function W2 € W(a,). Then,
for R(s1) and R(s2) sufficiently large, the modified GLy,(F) x GLy,_1(F) Rankin—
Selberg integral by Sakellaridis

(5.7) / we (40 W ltulor s

N8 (F)\ GL,,_ 1 (F)XGL;_1 (F)

1 n—2
L(82+§,WXJ)L(517T,J),

where the Schwartz—Bruhat function @ € .7 (Mat(,,—1)x (n—1)(F)) is given by (5.1).

det g2

51
det g1|°* dg d
dot g1 |det g1]°* dg2 dg1

s equal to
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Proof: We make the change of variables g, — g1g2 in order to obtain
o 0 s o S
W (901 1) |det g™ / W5 (9192) Pur(g2)|det 2| dg2 dga.
Np—1(F)\ GLy 1 (F) GLy—1(F)

The absolute convergence of the above double integral can be shown by [30, Lem-
ma 3.2(ii) and Section 8.3]. Then [23, Lemma 9.6] implies that this is equal to

-2 o o s
p(n-"520 [ () weelenal do.
Np—1(F)\ GLy 1 (F)
From [23, Theorem 4.17], the latter integral is simply L(sy + 1/2,7 X o). O

We take this occasion to complete weak test vector problems for modified Rankin—
Selberg integrals over a nonarchimedean local field F'. The missing ingredient is a
convolution section identity for the Whittaker newform, namely the nonarchimedean
analogue of [23, Lemma 9.6]. The identity can be viewed as a generalisation of an
identity of Godement—Jacquet [20, Lemma 6.10] (cf. [49, (5-2)]).

Lemma 5.11. Let F be a nonarchimedean local field and let m be an induced represen-
tation of Langlands type of GL,,(F) with Whittaker newform W2 € W(r, ). Then,
for all h € GL,(F) and for R(s) sufficiently large, we have that

/ W2 (hg)®" (g)[det g|**"F" dg = L(s, /)W2 (h),
GL’”(F)

where ®* € ./ (Mat,xn(F)) is the bi-K,-finite Schwartz—Bruhat function

1 Zf C(Tl') = 0, x € Matnxn(0)7
and Tn,iy...,Ton € O,
1
(58) @7 (a)={ _Wr @nn) e 000 4 e Matnen(O),
vol(Ko(pe(™))
TniseeosTnno1 €0, and 2, € OX,
0 otherwise.

Here O denotes the ring of integers of F, p denotes the maximal ideal of O, ¢(r) de-
notes the conductor exponent of 7, and for m > 0, Ky(p™) denotes the congruence
subgroup

Ko(p™) ={k € GLL(O) 1 kn1,.- . knn-1 €p"},
which has volume ¢~ (=D~ (g —1)/(¢" — 1), where q == #0O/p.

Proof: Let o= EE]?Zl ||t and o := EE]?Z2 |-|* be induced representations of Langlands
type of GL,,(F) and GL,,_ (F) with spherical Whittaker functions W2 € W(o, 1) and

Ws € W(oo,v). By [40, Theorem 2.1.1], the GL,, x GL;,, Rankin-Selberg integral

(s, Wr, W, 0°) := Wi (9)W5 (9)®°(eng)|det g|* dg
N (F)\ GLin (F)
is equal to
L(s,m x o) = L(s + t1,m)L(s, 7 X 00),
where ®° € S (F"™) is the Schwartz—Bruhat function
1 if ¢(r) =0 and z1,...,2, € O,

-1
59 (bo L1y, Tpn) = Wr (.’L’n) if c(m) X
(5.9) (w1 ) vol(Ko(p=)) ife(mr) >0, z1,...,2n—1 € p", and z, € 0%,

0 otherwise.
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On the other hand, we may insert into the GL,, x GL,, Rankin—Selberg integral the
propagation formula ([25, Lemma 4.1])

WE(g) = |det g2 / W, (h)ldet h| =%
GL,,_1(F)

X / ®'(h™! (Ln1 v) g)¥(en—1v) dv dh,

Mat(, —1yx 1 (F)

where ®' € .7 (Mat(,,—1)xn (F')) is the Schwartz-Bruhat function

q)/(x) o 1 ifze Mat(n—l)Xn(O)y
0 otherwise,

unfold the integration, and make the change of variables g — (£ 9)g in order to see
that

W(s, W2, W2, 8°) = W2, (h)|det h|* 3

Np—1(F)\ GLyp 1 (F)

[ ((’g (f) g) 8" (g)|det g1+ 7" dg dh
GLn (F)

since *(g) = ®'((1n—1 0) g)®°(eng). So, letting W/ € W(r, 1) be given by

1
L(w, )

o * w1
W (h) = /G L MR (@)l T dg

with $(w) sufficiently large, we see that for every induced representation of Langlands

type oo of GL,,_1(F) with spherical Whittaker function W, € W(0oo,v),

, (h O ofh O o 1 B
(WW (0 1)—W,, (0 1)>Woo(h)|deth\ 2dh=0

Ny 1 (F)\ GLp—1(F)

for R(s) sufficiently large due to [31, Théoreme (4)]. Since W/ is right GL,,_1(O)-in-
variant, as we may make the change of variables g — (klo_ ! (1)) g and use the fact
that @ is left GL,,_1(O)-invariant, we therefore have that W/ (% 9) = W2(k9) for
all h € GL,,—1(F) by [31, Lemme (3.5)]. Invoking the uniqueness of the Kirillov model

of m, we deduce that W/ (g) = W2(g) for all g € GL,,(F). O

We present the following consequences of the convolution section identity in
Lemma 5.11, which follow in the exact same manner as in the archimedean setting.

Corollary 5.12. Let F be a nonarchimedean local field, and let m and o be induced
representations of Langlands type of GL,,(F') with Whittaker newforms W2 € W(r, 1))
and W2 € W(o,%). Let ®* € ./ (Mat,xn(F)) and ®° € Z(F™) be the Schwartz—
Bruhat functions given by (5.8) and (5.9). Then, for R(s1) and R(s2) sufficiently
large, the modified GL,,(F) x GL,(F) Rankin-Selberg integral by Sakellaridis

s

det g2
det g1

1
/ WE (g1) W2 (92)®" (97 g2)8° (engn) |det g1|** dg» dgs

NE2E(F)\ GL;, (F) X GLy, (F)

s equal to

L(s2, Tur X our)L (sl _n- 1,0) .
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Corollary 5.13. Let F be a nonarchimedean local field, let m be an induced represen-
tation of Langlands type of GL,,(F) with Whittaker newform W2 € W(m,v), and let
o be a spherical induced representation of Langlands type of GLy,_1(F) with spherical
Whittaker function W2 € W(o,). Then, for R(s1) and R(s2) sufficiently large, the
modified GL,,(F) x GL,,—1(F') Rankin—Selberg integral by Sakellaridis

o 0 ° _
/ W (901 1) Wg (g2)®ur (g7 192)

N8 (F)\ GLy,—1 (F)XGLy_1(F)

n—1
1 n—2
L(82+§,7T><O')L(517T,0'),

where the Schwartz-Bruhat function ®,, € . (Mat(,—1)xn—1)(F)) is given by

By (1) = {1 if 2 € Mat(n—1)x(n-1)(0),

det g2

51
det 1|2 dg d
dot g1 |det g1|°* dg= dg1

s equal to

0 otherwise.

For a pair of spherical induced representations of Langlands type over nonar-
chimedean local fields, such formula are due to Sakellaridis [49, §5].

6. Flicker integrals

We define an additive character on C by 9c/r(2) == e~ 2m(2=%) 5o that Ye/r(z +
iy) = e~ for x,y € R; this additive character is trivial when restricted to R. We

let )
Ye/rn(u) = Yosm (Z Uj,j+1>
j=1

denote the corresponding character of N,,(C) > u. Given an induced representation of
Whittaker type 7 of GL,,(C), a Whittaker function W € W(n,9¢/r), and a Schwartz—
Bruhat function ® € .(R"), the GL,, Flicker integral ([15, 16]) is defined by

W Wrd)= [ Wg)(eng)ldetl
Np (R)\ GLn (R)
Once more, this integral converges absolutely for R(s) sufficiently large and extends
meromorphically to the entire complex plane. The local Asai L-function L(s, 7, As)
is defined via the local Langlands correspondence as described accurately in [5, Sec-
tion 3.2]. Beuzart-Plessis ([5, Theorem 3.5]) has shown that U(s, W, ®) is a holo-
morphic multiple of L(s,w, As) and that the quotient

U (s, Wr, D)
L(s,m, As)
is of finite order in vertical strips.
6.1. The spherical calculation. We recall the Iwasawa decomposition
GL,(C) = N,(C)A,.(C)U(n).

Since every element of A, (C) may be written as the product of an element of A, (R)
and of A,,(C) NU(n), we also have the Iwasawa decomposition

GLn(C) = N,y (C)An (R)U(n).

We write g = uak, where g € GL,(C), u € N,(C), a = diag(a,...,a,) € A,(R),
and k € U(n). The Haar measure on GL,,(C) becomes

dg = 2"057 ) (a) dk d” a du.
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Here the additional factor of 2™ arises from the fact that the diagonal torus is chosen
to be A, (R) in place of A, (C), recalling that the Haar measure on C is twice the
Lebesgue measure, while for a € A,,(R) we observe that 5};3(11&)( a) = 5131(((:)( a).

We first require the following propagation formula.

Lemma 6.1. Let 7 = EE|;L:1| . |E and o = BE]?:2| . (tcj be spherical induced rep-
resentations of Langlands type of GL,(C) and GL,_1(C) respectively with spheri-
cal Whittaker functions W2 € W(m,bc/r) and W2 € W(mo,Yc/r). Then for a =
diag(a1, ..., an) € Ap(R) we have that

n—1

(6.1)  Wg(a) =2"""|det a\nzqfléBn(]R) (a) / Wy, (a') H exp(—27ra;~2aj__f1)

Ap—1(R) =1

1—2 2)\deta|R2t16 1

X exp(—2ma; Lam(a a)yd*d.

Proof: From [23, Lemma 9.14], we have the identity

o 0 1+ -5t
we, (5 0) = ldetgl " ol

241

></ W2, (h)®1(h ™" g)®a(an  en—ih)|dethlc "~ 2" dh
GL,_1(C)

for g € GL,(C) and a, € C*, where ®; € .7 (Mat(,_1)x(n-1)(C)) and &, €
' (Mat; x (n—1)(C)) are given by

Oy (x1) = exp(—27 Tr(x1 ‘77)), ®2(x2) = exp(—2mz2 'T2).

We employ the Iwasawa decomposition in order to write h = v'a’k’, where v’ €
N,-1(C), o' = diag(ay,...,a;, ) € Ay_1(R), and k' € U(n —1). As W? (v'a’'k’) =
Ye/rn—1(w)W2 (a'), the integral over U(n — 1) 3 k' is trivial.

Now we specify g=diag(ai,...,an—1) €A, 1(R) and a,€R, so that <I>2 (a;? en 1h)=
exp(—2mal?_ a,?). We make the change of variables u’ +— u/~!, then uf ; — aja; !

g 1,57
and finally evaluate the integrals over C > v/ ; they are equal to 1 if j 75 i1+ 1 and to

i,7 ;
exp(—2mal? aiH) if 7 =i+ 1. This gives the desired identity. O

We also require a convolution section identity.

Lemma 6.2. Let m = Bﬂ?zl | - |g be a spherical induced representation of Langlands
type of GL,(C) with spherical Whittaker functions W2 € W(m,¥¢/r). Then, for
a' = diag(al,...,al,) € A,(R), we have that for R(s) sufficiently large

(6.2) L(s,Tr)W,f(a'):2n/ Wy (a'a) [ [ exp(—2maj)

An (R) j=1

n—1
X H exp(727ra;-2a;fla;fl)|det a|]§ségi(m(a) d*a.

j=1
Proof: From [23, Lemma 9.6] we have the identity
L(s, )W (d') :/ W2 (a'B)®ur (h)]det b5 dh,
GLp—1(C)

with @, € Z(Maty,x,(C)) given by (5.1). We employ the Iwasawa decomposition
in order to write h = uak, where u € N,(C), a = diag(ai,...,a,) € An(R), and
k € Un). As Wz(a'uak) = ve/rn_1(a’'ua’"1)W2(a'a), the integral over U(n) > k
is trivial. We make the change of variables u; ; aj_lum, and finally evaluate the
integrals over C 3 w; ;; they are equal to 1 if j # i+ 1 and to exp(— 27ra’2a;+?az_+21) if
j =1+ 1. We arrive at the identity (6.2).
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We are now able to prove that when 7 is a spherical induced representation of
Langlands type of GL,(C), the spherical Whittaker function W2 € W(m,¢¢c/r) is a
strong test vector for the Flicker integral.

Theorem 6.3. Let m = EE;L:1 ||8 be a spherical induced representation of Langlands
type of GL,(C) with spherical Whittaker function W2 € W(n,¢¢/r). Then, with
D, € S (R™) given by (5.1), the Flicker integral W(s, W2, ®y,) is equal to

n

L(S,T{',AS) = HCR(S+2tj) H C(C(S+tj -‘rtz).

j=1 1<j<t<n
Proof: We prove this by induction. The base case n = 1 is trivially true since the GL;
Flicker integral is simply

/ exp(—mz®)|z|3 T d¥x = Cr(s + 2t1) = L(s, 7, As).
RX

For the general case, we shall show that if 7 = H{_, |- |(tcj and 7o = ;|- |é§, then
the GL,, Flicker integral satisfies the identity

(6.3) U(s, Wy, ®ur) = Cr(s + 2¢1)L(s + t1,70)V(s, Wry, Pur),

where the GL,,_; Flicker integral on the right-hand side involves the spherical Whit-
taker function W2 € W(m, tc/r) and the Schwartz—Bruhat function @, € . (R"~1)
given by (5.1). Since

n
L(s+t1,m0) H (s+t1+te),

this implies the result by the induction hypothesns.
We first note that the (s, W2, ®,,) is equal to

/ W2 (a) exp(—mal)|det a|f§5gnl(]R) (a)d*a
An(R)

via the Iwasawa decomposition g = ak, since the integral over O(n) > k is triv-
ial. We insert the propagation formula (6.1) and relabel a = diag(aq,...,a,) € An(R)
as (g 2), where now y € R* and a = diag(ay,...,an—1) € Ap_1(R). The Flicker
integral W(s, W2, ®,,) becomes

n—2
2"71/ exp(—ﬂai,1)|deta\§+2t1/ We,(a") Hexp(—Zﬂa;fla?)
An_1(R) An_1(R) j=1
n—1
X l_Iexp(—szJ ?)|det o’ |R2t1(5_n L®(a /)/ exp(—2may 2y*)|ylt* d¥yd*a' d¥a.
j=1 R

We make the change of variables y — 271/2

1/2a;a and a; — 2'/%a ; 1 asqaj, and finally a, 1 — 21/2¢,,_1. We arrive at the
identity

/ exp(—my) ylEt? d*y / exp(—mal’,)|det @' [305" o (@)
RX n 1(]R)

a1y, then the change of variables a;

n—2
><2"*1/A . Wy, (d'a) H eXP(—QW%z) H EXP(_QWG?Q;;ZI‘L;?J
n—1(R

i=1 =1
\deta|25+2t15 ! mla a)d*ad”a.
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The integral over R* > y is (r(s+2t1), while the last two lines are L(s+t1,mo) Wy (a’)
by the convolution section identity (6.2). So this is

Cr(s+ 2t1)L(s + t1,m0) / Wy, (a') exp(—mar_1)|det a/|]§5g3 1(R)(a') d*a,
Ap—1(R) .

which is precisely (6.3) by the Iwasawa decomposition ¢ = a’k’, since the integral

over O(n — 1) 3 k' is trivial. O

6.2. Test vectors for Flicker integrals and Flicker—Rallis periods. We pro-
ceed to the more general case where m may be ramified. Our first step is to reduce
the Flicker integral to an integral over N,,_;(R)\ GL,_1(R).

Proposition 6.4. Let © be an induced representation of Langlands type of GL,,(C)
with Whittaker newform W2 € W(rm,¢c/r). Let @ € S (R") be the right O(n)-finite
Schwartz-Bruhat function of the form ®(z) = P(x)exp(—mnz'z), where the distin-
guished homogeneous polynomial P € P. ) (R™) is given by

e(m) c(m)—m

P(x) = E (x tx) 2 (dimTX"‘O(l)vm)P)?w\o(l),'m(m)'
m=c(xxlo(1))
mEc(Xﬂ-|o(1)) (mod 2)

Then the Flicker integral U (s, W2, ®) is equal to

° 0 o
(6.4) L(ns,wny, |rx) / W, (g 1) |det g|r Ldg.
Ny —1(R)\ GLy, —1(R)

The proof of this proceeds along similar lines to that of Proposition 5.1.

Proof: We use the Iwasawa decomposition g = (z1,,)(% )k for N,,(R)\ GL, (R) to see
that the Flicker integral (s, W2, @) is equal to

/ wr(2)]2|R" / |det Al3 " wy ((h 0> k:) ®(zen k) dk dhd” 2.
RX O(n) 0 1

Np 1 (R)\ GLy 1 (R)

We insert the identity (3.6) for W2 (g) with g replaced by (! 9)k and the variable of
integration being k' € U(n), then interchange the order of integration and make the
change of variables k — k~! and k' — kk’. We end up with

/wﬁ(z)\zﬁs / ety [ we ((h O)k)
RX U(n) 0 1

N1 (®)\ GLy 1 (®)
xdimTch(,r)/ Py cimy(enk’ kT ®(2enk ™) dk dK' dhd” 2.
O(n)

By the addition theorem, Proposition 3.2, the last line is
dim T ()

> Qelenk’™) Qulenk)®(zenk ™) dk,
=1 O(n)
where {Q} is an orthonormal basis of H, ) (C"). By the homogeneity of Q,
(3.1), we observe that the restrictions of these polynomials to R™ are elements of
PX‘lrlO(l)’C(ﬂ')(R")'
We now use the fact that
c(m)
— _— z c(m —7T22 . o
B(zenk ') =X (m> ll2]|<™e Z (dlmeﬂIou),m)walo(l),m(e"k)

m=c(xrlo(1))
m=c(xr|o(1)) (mod 2)
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for z € R* and k € O(n) by the homogeneity of P)(()wlo(l)a
identity (3.2). By (3.3), the sum over m is the reproducing kernel of P W|O(1)7c(ﬂ)(R”),

and so the integral over O(n) > k is Qu(e,) by (3.5). Using the addition theorem,
Proposition 3.2, in reverse and then using (3.6) to evalute the integral over U(n) > &/,
we find that (s, W2, ®) is equal to

— z c(m ns —71'22 o h 0 s—
/ wr (2)Xm (—) 2] | 2|5 e ™™ d* 2 / Wy (0 1) |det hl3 " dh.
RX Il

Np—1(R)\ GL,—1(R)

., s in (3.1) coupled with the

It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over R* > z
is L(ns,wnr,, |rx)- O

Remark 6.5. Just as for Proposition 5.1, the same proof remains valid in the nonar-
chimedean setting.

Finally, we use Theorem 6.3 to show that when 7 is an induced representation
of Langlands type of GL,,(C), the newform Wy € W(w,c/r) is a weak test vector
for the Flicker integral. The proof proceeds by reducing the problem to the spherical
case.

Theorem 6.6. With the notation and hypotheses of Proposition 6.4, the Flicker
integral

(6.5) U(s, Wy, ®)

is equal to L(s, Ty, As).

Proof: By Lemma 4.6 and Proposition 6.4, we have that

(s, W2, ®) = L(ns,wr, |gx) / Wy (g (1’) |det h|5~" dh.
Np—1 (R)\ GL, 1 (R)
On the other hand, the same calculation shows that the right-hand side is equal to

U(s, We &y ) with &, € (R") given by (5.1). It remains to invoke Theorem 6.3.
O

In general, the naive Asai L-function L(s, ., As) is not equal to L(s,m, As).
Nonetheless, these two L-functions are closely related.

Proposition 6.7. Given an induced representation of Whittaker type m of GL,(C),
there exists a polynomial p(s) for which

L(s,mur, As) = p(s)L(s, w, As).

Proof: For m = [j_, mj, we have that

L(s,m As) = [ [ L(s,m5,As)  []  L(s,m5 x m)
i=1 1<j<t<n
via the local Langlands correspondence (cf. [5, Lemma 3.2.1]). Recalling Proposi-
tion 5.5, it thereby suffices to consider the case where 7 is essentially square-integrable.
For  essentially square-integrable, so that 7 = ¢ ?'¢|. |t and 7, = |- \g“””ﬂ, the
fact that (r(s) := 7—*/?T'(s/2) and that T'(s + 1) = sT'(s) means that for ' € {0,1}
satisfying £ = &’ (mod 2)

|, Slsl-s)-1

L(s,mur, As) _ Cr(s+2t+ [|w]]) _ s’ s+2t+ K
L(s,m As)  (r(s+2t+r) -7 H 2 tmj-

m=0
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When s = 1, the integral appearing in (6.4) is known as the Flicker—Rallis pe-
riod. In general, this integral need not converge at s = 1. When 7 is unitary, however,
convergence is guaranteed by the following lemma, whose proof we omit as it is a
standard application [39, Lemma 7.1]; [16, Proposition 1] of bounds for Whittaker
functions by a gauge [36, §4, Propositions 2 and 3].

Lemma 6.8. Let m be a unitary generic irreducible Casselman—Wallach representa-
tion of GL,,(C). For any W € W(m, ¢ r), the integral

h O s—1
W (o 1) |det b3~ dh

Np—1(R)\ GL,_1(R)
converges absolutely for R(s) > 1.

We explicitly evaluate the Flicker—Rallis period at the Whittaker newform. The
nonvanishing of this integral (in a slightly modified form) is implicitly described in
work of Gelbart, Jacquet, and Rogawski [18, §2], Kemarsky [38, §1]; [39, §8], and
W. Zhang [59, (3.14) and (3.21)].

Theorem 6.9. Let w be a unitary generic irreducible Casselman—Wallach represen-
tation of GL,,(C) with Whittaker newform W2 € W(m,v¢c/r). Then the Flicker-Rallis

period
ofh O
(6.6) / Wy (0 1) dh
Np—1 (R)\ GLp 1 (R)

s equal to
L(1, myr, As)

L(n7 Wrryy |]R>< ) .
Proof: With Lemma 6.8 in hand, we take s = 1 in Proposition 6.4 and combine this
with Theorem 6.6. O

Remark 6.10. The nonarchimedean analogue of this result has been resolved by Anan-
davardhanan and Matringe [2, Theorem 1.1].

We say that 7 is GL,(R)-distinguished if Homgy,, () (7, 1) is nontrivial.

Remark 6.11 ([39, §6]). We define 9°: W(r,¢c/r) — C, the P, (R)-invariant linear
functional, by
6.7) 9 (W) = / W, (g (1’) dh.

Np—1(R)\ GLp -1 (R)
Owing to Theorem 6.9, the linear functional ¥” is nontrivial. In addition, Kemarsky
([38, Theorem 1.1]) shows that a P,(R)-invariant linear functional extends to a
GL,, (R)-invariant linear functional in a purely local manner. Alternatively, a local-to-
global method may be adapted as in [18, pp. 185-186] (cf. [59, Proposition 3.2]). Hence
9" gives rise to a nontrivial GL,(R)-invariant linear functional on the Whittaker
model W(7, ¢ r)-

7. Bump—Friedberg integrals

For n = 2m, we define the embedding J: GL,,(F) x GL,,(F) — GL,(F) by

9i,j ifk:Qi—landZ:Qj—l,
J(9,9 ke =1 gl; ifk=2iandl=2j,

0 otherwise.
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We denote by My, i (F) =2 GL,, (F) X GL,,, (F') the standard Levi subgroup of GL,,(F)
associated to the partition (m,m). Let

(1 2 .- m m+1 m+2 --- 2m
Wmm =1 3 .. 2m—1| 2 4 o 2m)”
We then set
Hm,m(F) = wm,mMm,m(F)w;&m
={J(9,9") = win,m diag(g, ¢ )wy'm : diag(g, ¢') € My (F)}.
Similarly, for n = 2m + 1, we define the embedding J: GL.,11(F) x GL,,(F) —
GLy(F) by
gi; ifk=2i—1land{=2j—1,
J(9, 9 ke = gi; if k=2iand £ = 27,
0 otherwise.
We denote by My,11 m(F) = GLyy41(F) x GLy,, (F) the standard Levi subgroup as-
sociated to the partition (m + 1,m) of 2m + 1. Let W i1,m = Wimt1,m+1/GLapsi (F)
so that
(1 2 - m+1 | m+2 m+3 --- 2m 2m+1
Wmtlm =\ 3 o 2m+1| 2 4 - 2m-2 2m )’

and then set
1

Hm+1,m(F) = w"L+1,mMm+l,nL(F)w;+1,m
= {J(g7 gl) = Wm+1,m dlag(g7 gl)w;r.h-l,m : dla‘g(gag/) € Mm+1,m(F)}-
To make the above description much more transparent, we provide prototypical
elements in the cases of Hy o(F) and Hg o(F).

Example 7.1. The group Hs o(F') consists of invertible matrices of the form

g1,1 0 gi1,2 0

7 g1,1 g1,2 91,1 g’1,2 _ 0 93,1 0 gl1,2
k) ! / -

92,1 g2,2 92,1 92,2 921 0 g22 O

95,1 0 95,2

The group Hs 2(F') consists of invertible matrices of the form

gii 0 gi2 0 g3
0 gi,l 0 91,2 0

) =921 g22 0 g23
0 95,1 0 9/2,2 0

gsai 0 gz2 0 g33

J 92,1 922 923

91,1 91,2 g1,3 (
93,1 932 933

Given an induced representation of Whittaker type 7 of GL, (F'), a Whittaker
function W, € W(r,9), and a Schwartz—Bruhat function ® € .(F™), where m :=
| 2], the Bump-Friedberg integral [8] is given by

B(s1, 82, Wr, D)

Wa(J(g9,9))®(emg’)|det g2~ |det ¢'|*2 1+ 2 dg dg’
Ny (F)\ GLy, (F) Ny (F)\ GLyp (F)
for n = 2m,
W (J(g,9"))®(emy1g)|det g [det g'[*2 7" dg dg’

N (F)\ GLyn (F) Ny 1 (F)\ GLypp 41 (F)

for n = 2m + 1.
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Alternatively, one can write this as an integral over (N, (F) N Hyy . (F))\Hppm (F)
for n = 2m and as an integral over (N,,(F) NHyq1.1m(F))\Hip1,m (F) for n =2m+1
(cf. [43, 44]). The Bump-Friedberg integral converges absolutely for R(s) sufficiently
large and extends meromorphically to the entire complex plane. The local exterior
square L-function L(s, 7, A?) is defined via the local Langlands correspondence as
illustrated in [41] and [5, Section 3.2]. We take the local Bump-Friedberg L-func-
tion L(s1, s2, 7, BF) to be L(s1,7)L(s2,m, A?). For our purposes, it will often be con-
venient to write B(s, Wy, ®) in place of B(s,2s,W,,®) and L(s,w,BF) in place of
L(s,m)L(2s,m,A?) when n = 2m is even.

7.1. The spherical calculation. We summarise a propagation formula for GL,,(F')
Whittaker functions in terms of GL,_1(F) Whittaker functions and a convolution
section identity for radial parts. We omit the proofs, since they are essentially identical
to the corresponding proofs of Lemmata 6.1 and 6.2.

Lemma 7.2 (cf. Lemma 6.1). Let = {;_, |-[ and mo = H]_, |-|"" be the spherical
induced representations of Langlands type of GL,,(F') and GL,,_1(F) respectively with
spherical Whittaker functions W7 € W(n,¢) and W2 € W(mo,v). Then for a =
diag(as,...,a,) € A, (F) we have

n—1

(7.1)  Wg(a) = |deta|t15]g{fm(a)/ Wy (a') [ ] exp(—drrllaja;ti)1?)
Ap_1(F) j=1
x exp(—dpr|a; " a;]|*)|det a'|7t16gi121(1,)(a') d*a.

Lemma 7.3 (cf. Lemma 6.2). Let 7 = EE|?=1 |]% be a spherical induced representation
of Langlands type of GL,,(F) with spherical Whittaker function W2 € W(w, ). Then
for a = diag(aq,...,a,) € Ap(F) we have

L(s, ))W2(a) = / W2 (a'a) [ exp(~drrlas]®)
Ap(F)

j=1
n—1

x 1 exp(—drnllaja) a; i 1) |det al65 7 (a) d™ a.
j=1

We will use these identities after reducing Bump-Friedberg integrals to integrals
over a torus.

Proposition 7.4. Let m = EH?:l |- | be a spherical induced representation of Lang-
lands type of GL,(F) with spherical Whittaker function W2 € W(m,¢), and for
m=|2], let @y, € S (F™) be given by (5.1).

(i) For n = 2m, the Bump—Friedberg integral B(s1,s2, W2, ®y,) is equal to
_1
/ W (b) exp(—dr|ba]|*)[bibs - - 1] [b2ba - - - bu—a|™* 7165 2 1) (b) d*D.
An (F) )
(ii) For n =2m+ 1, the Bump—Friedberg integral B(s1, s2, W2, ®y,) is equal to

_1
~/An(F) Wy (b) exp(—dr|ba|*)[b1bs - - - buz|* b2ba - - - bu—1]|™* "1 65 % s (b) d*b.
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Proof: We prove this only for n = 2m; the case n = 2m + 1 follows analogously.
Exploiting the Iwasawa decomposition g = ak and ¢’ = d'k’ for N,,,(F)\ GL,,,(F), the
Bump-Friedberg integral B(si,s2, W2, ®,;) is equal to

/ / a a ))exp(_dFﬂ'”afm”2)|deta‘sl_%|deta’|82—31+%
Am (F) m(F)
Xf;];i(F)(a)@;(F)(a') d*ad*ad .

_l . .
Since |det a|~ 2 |det a’|2 6B () ( )65t (@) = 6B:(F)(J(a,a’)), this is equal to

TIL(F)
/ / J(a,a)) exp(—drrl|al,||*)|det a|** |det a'|*2 "1
Am (F) m(F)
Xél;iF)(J(m a')) d*ad”d .
The result now follows by writing a=diag(by, b3, . .., bn—1) and o’ =diag(ba, by, . . ., by)
and letting b := (by,...,b,) € A, (F). O

We are now able to prove that when 7 is a spherical induced representation of
Langlands type of GL,(F'), the spherical Whittaker function W2 € W(m,v) is a
strong test vector for the Bump-Friedberg integral.

Theorem 7.5. Let 1 = Bﬂ?zl | - |% be a spherical induced representation of Lang-
lands type of GL,,(F) with spherical Whittaker function W2 € W(m,¢), and for
m = L%J, let &, € F(F™) be given by (5.1). Then the Bump—Friedberg integral
B(s1, 82, W2, ®y;) is equal to

n

L(s1,82,m,BF) i= L(s1,m) L(s2,m, A*) = [[ Crls1 +te) [  Crlsa+t;+t).

=1 1<j<k<n

Proof: We prove this by induction. For the base case n = 2, the Bump—Friedberg
integral is

/ / wr ((Bl i)ew(—dmuaz||2>|a1\“-%|a2\”—‘“+%d*aldxaz.
FX JFX

From (7.1), this is equal to

/ / exp(—dpraz]|?)|ar | jaz |4
FX FX

></ exp(—dpr|ld’as ' |?) exp(—drr|a’ ™ ar|®)|a’|2 7" d”a’ d* a1 d™ as.
X

We interchange the order of integration and make the change of variables a; — a’a;
and a’ — da'az, yielding

/ exp(~dpra[*)]as]* 1 d* s / exp(~dpraz|*)]az|** 142 ¢ ay
X FX

) / exp(—dpa’[|*)|a| " d*d,
X

which is precisely L(s1, s2, 7, BF).

Now we proceed to the induction step. We suppose that the desired identity
holds for n = 2m — 1 and we prove this for n = 2m. We insert the recursive for-
mula for W2 (a) from Lemma 7.2 into the expression given in Proposition 7.4(i) for
the Bump-Friedberg integral B(s1,s2, W2, ®y,). We then relabel b € A, (F) with
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diag(y, b), where now y € F* and b = diag(b1,b2,...,bn—1) € A_1(F). The modu-
lus character 6];5(?) (b) is cancelled out and we arrive at

/ exp(—dpm|[bp_1|?)|b2ba - bp_o|* T |bybg - - - by |52
An_1(F)

n—1
x We (0) | [ exp(=den||065 %)
/Anl(F) 0 ]1;[1 27
n—2 1
X H eXP(—dFWHb;jrllbj”Q”det b/|7t1535,1(17)(b/)

j=1
< [ exp(-delb Pyl dy d b .
FX

We interchange the order of integration and perform the change of variables y — b}y
and b; — b;-Jrlbj for 1 < j <n — 2. The Bump-Friedberg integral B(sy,se, W2, D)
becomes

n—1

/ [T exp(=dem||b1*)[boba - - bzl brby - by |21 0
An_1(F) j=1

n—2 1
></A ( )Wﬁo(b) I I exp(—dpﬂ'Hbjb}jrllb;l\F)exp(—dpﬂan_lb;il\|2)6B7L271(F>(b')
n—1(F j

P

XDy bl - - - by |*1 Dbl - - - by o] 2T / exp(—drm|ly||®)|y|** T d*y d*b d*b.
FX

The integral over F* 3 y is simply (r(s1 +%1). We make the change of variables b; —
b;-bj and then interchange the order of the integration. This leads us to
5 /3! S —sS -1 /
Cr(s1+ tl)/ exp(—dpml[by 1 [|*)b105 - - bl 1| D] - - - by, o2 g, ()
Ap—_1(F)

n—1

X/ W2, (0'0) [T exo(—drnb]|*) exp(—drm[b5b73 30574 11%)
Anfl(F) j=1

_1
x|det b2 652 o () d¥bd* Y.

By Lemma 7.3, the integral over A, 1(F) > b is precisely L(sa + t1,mo)Wye (0).
According to Proposition 7.4(ii), we end up with

Cr(s1+t1)L(s2 + t1,m0) / / W;(J(g,gl))fpur(emg)
Ny — 1 (F)\ GLyjp — 1 (F) Ny (F)\ GLin (F)

x |det g|** [det ¢'|** " dg dg’,

from which the desired identity holds by the induction hypothesis.

The same method of proof remains valid for the induction step when n = 2m + 1,
where we suppose that the desired identity holds for n = 2m; the only difference is
that we appeal to Proposition 7.4(i) in place of Proposition 7.4(ii). O

When F = R, Theorem 7.5 recovers an earlier result of Stade [52, Theorem 3.3]
proved via different means. Invoking [51, Proposition 2.1], Stade’s method can also
be used to prove Theorem 7.5 when F' = C.
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Remark 7.6. Ishii ([26, Theorem 4.1]) has proved the existence of a strong test vector
for the Bump—Friedberg integral when F' = R and 7 is a principal series representa-
tion.

7.2. Test vectors for Bump—Friedberg integrals and Friedberg—Jacquet pe-
riods. We proceed to the more general case where m may be ramified. Our first step is
to reduce the Bump-Friedberg integral to a double integral over Ny, _1 (F')\ GLj,_1(F')
and N, (F)\ GL,,,(F) when n = 2m and over N,,,(F')\ GL,,,(F) and N,,,(F')\ GL,,,(F)
when n =2m + 1.

Proposition 7.7. Let m be an induced representation of Langlands type of GL, (F)
with Whittaker newform W2 eW(m, ). Form=|%|, let ®€.7(F™) be the Schwartz—
Bruhat function given by ®(z) = P(z) exp(—dpmz 'T), where the distinguished homo-
geneous polynomial P € Py~ o) (F™) is taken to be

™

e(m) )
em=j —
P(x) = Z (z'z)” 2 (dim 7y, ;) P2 ().

j=c(xn)
Jj=c(xr) (mod 2)

(i) Letn =2m. For R(s1) and R(sz2) sufficiently large, the Bump—Friedberg integral
B(s1, 82, W2, ®) is equal to

(7.2)  Limss,wen) / / Wa (J(g’ (f(b) (1))>>

N —1 (F)\ GLyy 1 (F) Ny (F)\ GLin (F')

x|det g|** "2 |det h']"> "1 "2 dg dh’.

(ii) Let n = 2m + 1. For R(s1) and R(s2) sufficiently large, the Bump—Friedberg
integral B(s1, so, W2, ®) is equal to

(7.3)  L(s1+msa2,wn,,) / / W (J <(g (1)) ’g/>>

N (F)\ GLyn (F)) Non (F)\ GL (F)
x|det h|** ! |det g|*2 " dhdg’.

Once more, the proof of this proceeds along similar lines to that of Proposition 5.1.

Proof: We prove this for n = 2m; the case n = 2m + 1 follows analogously. We use
the Iwasawa decomposition for Ny, (F)\ GLy,(F) 3 ¢’ to write ¢/ = (21,,,) (% 9)k’ and
then make the change of variables g — (21,,)g on the first copy of N, (F))\ GL,,(F) >
g in order to see that the Bump-Friedberg integral B(sy, s2, W2, @) is equal to

/ wr(2)|2]™2 / / |detg|517%|deth/|527517%
FX

Ny~ 1 (F)\ GLyp —1 (F)) Ny (F)\ GLi (F)

></ we (J (g, (}5 (1)) k)) D (zemk’) dk' dgdh’ d” z.
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We insert the identity (3.6) for W2 (g) with J (g, (% 9)%’) in lieu of g and then make
the change of variables k' +— k'~! and k — J(1,,,k")k. We arrive at

/ wn(2)|2] ™52 / / (det g[*1~ ¥ |det h|*2~*1~ 3
FX

Ny -1 (F)\ GLyn -1 (F)) Ny (F)\ GLi (F)

’
></ Wy (J (g, (}6 (1))) k) dimTXmC(,r)
Knp
></ P cimy(enk™ T (Lo, k') @(2emk’ ") dk" dk dg dh' d* .
Km

By the addition theorem, Proposition 3.2, the last line turns into

dim Txrre(m)

S Qulenk™) [ Qelend (Lm, k) ®(zemk ") dk,
=1

Km

where {Q/} is an orthonormal basis of H, () (F™).
Since P € Py c(x)(F™), we observe that for z € F* and k' € K,,
c(m)
O(zemk' ™) = Xx <i> 121/ exp(~dr|]|*) Yo (dimm )P, s (emk)

2] -
j=c(xx)
j=c(xx) (mod 2)

by the homogeneity of PP, as in (3.1) together with the identity (3.2). By (3.3), the
sum over j is the reproducing kernel for P, .(»)(F™), and so the integral over K,,, > &’
is simply Q¢(e,,) by (3.5). Using the addition theorem, Proposition 3.2, in reverse and
then using (3.6) to evaluate the integral over K,, 5 k, we find that the Bump-Friedberg
integral B(sq, s2, W2, ®) is equal to

—_ z c\m ms
[ e (i ) B a0 expl-apls1) a7
FX

!
x / / we (J (g,(% ?)))|detg|51*%\detg’|52*51*% dg dh'.

N — 1 (F)\ GLyp — 1 (F) Ny (F)\ GLi (F)
It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over R* > z
is L(msa,wr,,)- O

Remark 7.8. Just as for Propositions 5.1 and 6.4, the same proof remains valid in the
nonarchimedean setting.

Finally, we use Theorem 7.5 to show that when 7 is an induced representation of
Langlands type of GL,,(F), W2 is a weak test vector for the Bump-Friedberg integral.
Once more, this is proved by reducing the problem to the spherical case.

Theorem 7.9. With the notation and hypotheses of Proposition 7.7, the Bump-—
Friedberg integral

(74) B(Sl,SQ,W;‘?,@)
W2 (J(9,9)®(emg’)|det 9|t~ % |det g'[*2*1 "% dg dy’

Non (F)\ GLin (F) Non (F)\ GLi (F) forn = 2m

Wi (J(g,9)®(em+19)|det g™ [det g'|*27** dg dg’

Non (F)\ GLyn (F) Nopy 1 (F)\ GLyy 1 (F)

forn=2m+1,
is equal to L(s1, 82, Ty, BF) i= L(sy,7)L(s2, Tur, A?).
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Proof: Again, we prove this for n = 2m; the case n = 2m -1 follows analogously. Ow-
ing to Lemma 4.6 and Proposition 7.7, the Bump-Friedberg integral B(sy, s2, W2, ®)
is equal to

ey [ [ (o(e(5 1))

Ny —1(F)\ GLyy —1 (F) Ny (F)\ GL (F)
x|det g|** " 2 |det '] 5172 dg dh'.

On the other hand, the same calculation shows that this is equal to B(s1, s2, Wy, ®ur)
with @, € .(F™) given by (5.1). It remains to invoke Theorem 7.5. O

In general, the naive Bump-Friedberg L-function L(s1, s2, Ty, BF) is not equal to
L(s1, 82,7, BF). Nonetheless, these two L-functions are closely related.

Proposition 7.10. Given an induced representation of Whittaker type = of GL,,(F),
there exists a polynomial p(se) for which

L(s1, 82, Tur, BF) = p(s2)L(s1, s2, m, BF).

Proof: Tt is sufficient to show that L(s,mu, A%) = p(s)L(s,m, A?). For m = =1 75
we have that

L(s,m,\*) = [[ L(s, 75, A7) [ Lis,my x me)
Jj=1 1<j<e<r
via the local Langlands correspondence (cf. [44, §1.3]). Recalling Proposition 5.5, it
thereby suffices to consider the case where 7 is essentially square-integrable.
If F = C, so that 7 = e8| . |L, then L(s,m,A?) = L(s, Ty, A?) = 1. Similarly,
if ¥ =R and 7 = sgn®| - |k, then L(s,m,A?) = L(s, Ty, A?) = 1. Finally, if F = R
and 7 = D, ® |det|t, then since (r(s) = 7~%/2T'(s/2), and recalling the fact that
I'(s+ 1) = sT'(s), we have that for ¥’ € {0,1} satisfying x = &’ (mod 2)
Lk—r")—1
L(s,mur, A°)  Cr(s+2t+K)  _m=n'? s+ 2t + K
L(s,m, A2) 7CR(5+2t+n’)77r ’ H 2 tm)- =

m=0

When s; = 1/2 and sy = 1, the integrals appearing in (7.2) and (7.3) are known
as the Friedberg—Jacquet period [17]. In general, these integrals need not converge
at (s1,s2) = (1/2,1). When 7 is unitary, however, convergence is guaranteed by
the following lemma, whose proof we omit since it is standard [43, Propositions 3.4
and 5.1]; once more, it follows from bounds for Whittaker functions by a gauge [36,
§4 Propositions 2 and 3].

Lemma 7.11. Let w be a unitary generic irreducible Casselman—Wallach represen-
tation of GL,,(F). For any W, € W(m, 1), the integrals

o h/ 0 S,l ’ S,l !
/ / WilJ|g, 01 |det g|° " 2 |det h'|°” 2 dg dh
Ny 1 (F)\ GLyp -1 (F)) Ny (F)\ GLi (F)

for n =2m,

h 0 !/ S— /18 /
/ / Wy (J((O 1),g>>|deth| !|det ¢'|* dh dg

forn=2m+1,

converge absolutely for R(s) > 1/2.



TEST VECTORS FOR ARCHIMEDEAN PERIOD INTEGRALS 173

We associate Friedberg—Jacquet periods to certain values of Bump—Friedberg L-
functions. Indeed, the nonvanishing of these integrals is explained by Matringe [43,
Proposition 3.5].

Theorem 7.12. Let w be a unitary generic irreducible Casselman—Wallach represen-
tation of GL,,(F') with Whittaker newform W2 € W(r, ). Then the Friedberg—Jacquet

period
o0 ,
/ / Wy (J (g, (0 1))) dg dh for n=2m,
Nanl(F)\GL?nfl(F) Nm(F)\ GLm(F)

(7.5) ho 0 deth | 2
° / et 2 /
=2 1
W <J<<O 1),9 >> dotg' dhdg  for n=2m+1,
’VYL(F)\ GL"YL(F) N’!’VL(F)\ GL”YL(F)
s equal to
L(%, W)L(l, Tur, A?)
L(3,wma)
Proof: We put s; = s and s; = 2s. Then Lemma 7.11 ensures that our conclusion
can be deduced by taking s; = 1/2 and s = 1 in Proposition 7.7. O

For n = 2m, we say that 7 is Hy, », (F)-distinguished if Homy,, (r)(7,1) is non-
trivial. The following result is a weaker version of the analogous results for the Rankin—
Selberg period, Remark 5.8, and the Flicker—Rallis period, Remark 6.11.

Proposition 7.13. Let w be a unitary generic irreducible Casselman—Wallach repre-
sentation of GLay, (F) that is Hy, m (F')-distinguished. Suppose that (m,Vy) occurs as
a local component of a unitary cuspidal automorphic representation. Then the linear
functional 9*: W(r,4) — C given by

(7.6) (W) = / / Wi (J (g, (’8 (1)))) dg dn’

Nop—1 (F)\ GLyy — 1 (F) N (F)\ GLin (F)

gives rise to a nontrivial Hy, ., (F)-invariant linear functional on the Whittaker

model W(m, ).

While we expect that the assumption that (7, V) appears in the local component
of an automorphic representation is superfluous, the proof that we give under this
assumption is valid at the very least for the case of our interest, which pertains to the
global setting of period integrals of cuspidal automorphic forms. Our proof requires
a local and global argument. We therefore defer the proof to Subsection 8.3 after we
have introduced global automorphic forms. It behoves us to highlight the fact that
this global approach is overkill and indirect; one may directly prove the desired result
by using a theory of distributions [4, 39]. For the sake of brevity, we only include
this indirect approach in keeping with the spirit of [18, 59].

8. Global applications

We now consider the global analogues of the problems investigated in Sections 5,
6, and 7. These pertain to period integrals of automorphic forms on GL,(Ar),
where F is a global number field of absolute discriminant Drjq and Apr denotes
the ring of adeles of F. We denote by AL the subgroup of A} consisting of z € A}
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with |z|a, = 1. The period integrals of interest involve integration over spaces of the-
form Z(Ap)G(F)\G(AF) for various reductive groups G, where Z denotes the centre
of G. For the sake of notational brevity, we write

[G] = Z(Ar)G(F)\G(AF).

We also write K,, to denote the maximal compact subgroup of GL,,(Ar).

Let 14, denote the standard additive character of Ag that is unramified at every
place of Q. We define the additive character ¢5, of Ap by ¢a, = s, 0Tra. /s, The
conductor of 1, is the inverse different 9= of F. We choose a finite idele d €
A7 representing 97! such that vy, = X, Y3, where 1, is an unramified additive
character of F, and the twisted character 1% (z) := 1, (d,z) is of conductor d;*.

Let (, V) be a cuspidal automorphic representation of GL,, (Ar) for n > 2, where
V. is a space of automorphic forms on GL,,(Ar). We define a global Whittaker func-
tion W, associated to ¢, € V; by

We. (9) = / Or(ug)a (u) du.

Ny (F)\Np (AF)

If W, is a pure tensor, it can be decomposed as W, = [[, W, » with W =
We. v € W(m,, %), where the generic irreducible admissible smooth representa-
tion 7, is the local component of the automorphic representation 7 = @), 7.

Definition 8.1. Let (7, V) be a cuspidal automorphic representation of GL,,(Af)
with 7 = @), m,. At each place v of F, let W7 € W(my,1),) denote the local Whittaker
newform. We define the global newform . € Vi to be the decomposable vector such
that Wye =[], Wee » with We (gy) = Wy (diag(dn=t, ..., dy,1)g,) € W(my, ).

Let (m,Vy) and (o, V,) be cuspidal automorphic representations of GL,,(Ar) and
GL,(Ap) with 7 = @, 7y and 0 = @), o,,. Throughout, we will take S to be a finite
set of places such that m,, 0,, and ¥, are all unramified whenever v ¢ S. The finite
set S can vary depending on 7, o, and F', but always satisfies these properties. We
define the partial Rankin—Selberg L-function by

A (s, 7 x o) == H L(s, 7y X o)
vgS
for R(s) sufficiently large. We similarly define the partial Asai L-function A®(s, 7, As),

the partial exterior square L-function A° (s,m,A%); we also define the partial Bump—
Friedberg L-function A (s, 7, BF) to be A%(s, m)A%(2s, 7, A?).

8.1. Global Rankin—Selberg periods and the Petersson inner product. Given
a Schwartz—Bruhat function ® € .#(A%), we may form the O-series

Os(a,g) = Z ®(alg) for a € Ay and g € GL,(AF).
£eFn

Associated to this ©-series is an Eisenstein series, which is essentially the Mellin
transform of ©. To be more precise, for a (unitary) Hecke character n: F*\A% — C,
we set

(8.1) E(g,s;P,n) = \detg\gl,/ @&>(a7g)n(a)|a|f§; *a,
FX\AK

where 0% (a,g) = O¢(a,g) — ®(0). This is absolutely convergent for R(s) > 1 and
extends to a meromorphic function of s € C. The Eisenstein series E(g,s;®,n) is
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entire unless 7 is the trivial unitary Hecke character, in which case it has a simple
pole at s = 1 with residue ([33, Lemma 4.2])

vol(F*\AF)
n

(8.2) (0),

where the volume is taken with regard to the Tamagawa measure and the Fourier
transform ® on .(A%) is defined by

®(z) = / (y)Y(y =) dy.
AR

Notably, the implicit constant denoted by ¢ in [33, Lemma 4.2] is determined to be

the volume of F*\AL in [59, proof of Proposition 3.1].

Theorem 8.2 (cf. [23, Proposition 5.7]). Let (m, Vi) and (0, V,) be cuspidal automor-
phic representations of GLy,(Ap) with global newforms @2 € Vi and ¢o € V.. Then
there exists a right K, -finite Schwartz—Bruhat function ® € #(A%) such that, for
R(s) sufficiently large, the global GL,, x GL,, Rankin—Selberg integral

(8.3) 1@¢w;®=ﬂﬁ]¢@¢@wma@wwm9
GLp,

s equal, up to multiplication by a positive constant dependent only on the normalisa-
n(n—1)s

tion of the measure dg, to the product of DF/(Q? and of the global completed naive
Rankin-Selberg L-function A(s, Ty X o) =[], L(8, Ty,ur X Opur)-
Proof: This integral is Eulerian: by unfolding, I(s, p%, 92, ®) is equal, up to multipli-

cation by a positive constant dependent only on the normalisation of the measure dg,
to

H \IJ(S, W@%ﬂ” ngg.r,w ¢"u)>
provided that $(s) is sufficiently large. Upon making the change of variables
go > diag(dll,_n, cdy 1)go,

we arrive at

n(n—1)s

Dp [ ws, We, a,).
v

The result now follows from Theorem 5.3 for archimedean places and from [37, The-
orem 3.2] for nonarchimedean places. O

We turn our attention to Rankin—Selberg periods. We say that a pair of cuspidal
automorphic representations (7, Vy) and (o, V,) of GL,,(Ar) admits a Rankin-Selberg
period (or GL,(Ap)-period) if there exist cuspidal automorphic forms ¢, € V; and
ps €V, such that

/ on(9) 0o (g) dg # 0.
[GLA]

Remark 8.3. Jacquet and Shalika ([33, Lemma 4.4]; [34, Proposition 3.6]) have shown
that the partial Rankin-Selberg L-function A®°(s, 7 x ) has a pole at s = 1 if and only
if the pair of cuspidal automorphic representations (m,V;) and (o, V,) of GL,(AF)
admits a Rankin—Selberg period and w,w, is trivial. The partial Rankin—Selberg L-
function in the assertion can freely be replaced by the completed Rankin—Selberg
L-function A(s, 7 x o) by virtue of [11, Theorem 1.2].
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Based on the work of Jacquet and Shalika [34, Proposition 3.6], W. Zhang ([59,
Proposition 3.1]) compares the Petersson inner product with local Rankin—Selberg pe-
riods By, (W, , W, ) given by (5.5), which in turn have a connection with GL,, (F,)-dis-
tinguished representations m, ®c, of GL,,(F,)x GL, (F},) in the context of Remark 5.8.
We further refine this formula to relate it to the special value of the local Rankin—
Selberg L-function at s = 1.

Theorem 8.4. Let (m,Vy:) be a unitary cuspidal automorphic representation of
GL,, (Ar) with global newform 5 € Vy; let % € Vz be the corresponding global newform
of (7, Vz). Then there exists a right K, -finite Schwartz—Bruhat function ® € .7 (A%)
such that the global GL,, x GL,, Rankin—Selberg period

(8.4) /{GL | e (9)p7(9) dg

s equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measure dg, to
n(n—1)
nD

2
F/Q S ~ -
—— = Ress=1 A7 (s, 7 X7 | | L(1,y,ur X To,ur)-
3(0) vol(Fx\AL) A )ves ( )

Proof: From (8.2), the residue of I(s, @2, 92, ®) at s =1 is

vol(F*\A¥)

SER0) [ stoeo iy

The result then follows from Theorem &.2. O

Remark 8.5 (Vanishing of periods). The Rankin—Selberg period is known to vanish
unless o 2 7 according to [33, Lemma 4.4].

As before, let us now turn to the modified GL,, x GL,, Rankin—Selberg integral by
Sakellaridis.

Theorem 8.6. Let (m, V) and (0,Vy) be cuspidal automorphic representations of
GL,.(Ar) with global newforms ©2 € Vi and ¢% €V,. Then there exist a right K, -fi-
nite Schwartz—Bruhat function ® € .7 (A%) and a bi-K, -finite Schwartz—Bruhat func-
tion ®" € S (Maty,xn(AF)) such that, for R(s1) and R(sz2) sufficiently large, the global
modified GL,, X GL,, Rankin—Selberg integral by Sakellaridis

S1

det
<92 |det g1 |22 dgs dg1
Ap

det g1

(8.5) / 2 (91)¢5 (92)®' (97 92)® (engh)

P8 (F)\ GLy, (Ap)XGLy (Ap)

s equal, up to multiplication by a positive constant dependent only on the normal-
n(n—1)sg

isation of the measures dgy and dgs, to the product of DF/Q2 and of the global
completed naive L-function

A(s2, Tur X Our)A <31 — nT_17U> .

Proof: The result is a direct consequence of [23, Remark 5.10] coupled with unfold-
ing the standard global GL,, x GL,, Rankin-Selberg integral (cf. [11, Theorem 2.1])
upon making the change of variables go — g1g2. Another way to prove this is to apply
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the unfolding technique as in the proof of [49, Theorem 5.2.2]. In the domain of
convergence, (8.5) is equal to

_ det go |°* R
/ Weo (91)Wes (92) (g1 " g2)®(engr) Iot gi det g1[33, dg2 dga.
A
N9 (41)\ GL, (A )X GLn (Ap) "
To conclude, we appeal to Theorem 5.9 along with Corollary 5.12. O

A similar result holds for the modified GL,, x GL,,_; Rankin—Selberg integral by
Sakellaridis.

Theorem 8.7. Let (m,V;) and (0,V,) be cuspidal automorphic representations of
GL,(AF) and GL,_1(AF) respectively with global newforms ¢ €V, and 2 €V, and
suppose that o is everywhere unramified. Then there exists a bi-K, -finite Schwartz—
Bruhat function @ € 7 (Mat,xn(Ar)) such that, for R(s1) and R(s2) sufficiently
large, the global modified GL,, x GL,,_1 Rankin-Selberg integral by Sakellaridis

(8.6) / (%)) v

GLIE (F\\GL,,_1(Ap)XQLp—_1(AR)

det g2
det g1

s1
|det g1 |;ﬁP dgs dg1
Ap

18 equal, up to multiplication by a positive constant dependent only on the normalisa-

n(n—1)s

tion of the measures dg; and dgs, to the product of w;l(d)DF/Q2 and of the global

completed L-function
1 -2
A(82+§,7T><O')A(81 — TLT,U) .

Proof: We make the change of variables g — g2g1, then combine [23, Remark 5.10]
with [23, Proposition 5.5]. Alternatively, as we have seen in [49, Theorem 5.2.5], we
factorise (8.6) from

0 rpo—
/ Weo <901 1) W (92)®" (g1 192)

N8 (Ap)\ GL, 1 (Ap)XGL,—1(Ap)

det g2
det g1

s1
|det g1 |z\:‘; dge dgs.
Ap

Upon making the change of variables g1, + diag(di™™,...,d;!,1)g1,, the desired

s Yy

identity follows from Theorem 5.10 aligned with Corollary 5.13. 0

8.2. Global Flicker—Rallis periods. We start with the existence of a weak test
vector for the global Flicker integral.

Theorem 8.8. Let E be a quadratic extension of F, and let (7w, Vy) be a cuspidal
automorphic representation of GL,(Ag) with global newform 2 € V.. Then there
exists a right K, -finite Schwartz—Bruhat function ® € #(A%) such that, for R(s)
sufficiently large, the global GL,, Flicker integral

(8.7) I(s, 7, ®) ::/

07 (9)E(g, 5P, wx|,x ) dg
[GLy] F

18 equal, up to multiplication by a positive constant dependent only on the normali-
n(n—1)s

sation of the measure dg, to the product of DF/Q? and the global completed naive
Asai L-function A(s, my, As) =[], L(s, Ty ur, As).

Proof: This integral is Fulerian: by inserting the definition of Eisenstein series
(cf. (8.1)) and the Fourier—Whittaker expansion of ¢, and then unfolding [14, p. 303],
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we see that I(s, ¢2, ®) is equal, up to multiplication by a positive constant dependent
only on the normalisation of the measure dg, to

[T¥(s Wee o, @)

provided that $(s) is sufficiently large. Upon making the change of variables
go — diag(di™", ..., dy " 1) g,

we arrive at
n(n—1)s

Dpt [ wr,, ).

The result now follows from Theorem 6.6 for archimedean places and from [37, The-
orem 4.2] for nonarchimedean places. O

We turn our attention toward global Flicker—Rallis periods. We say that a cusp-
idal automorphic representation (m,Vy) of GL,(Ag) admits a Flicker—Rallis period
(or GL,, (Ap)-period) if there exists a cuspidal automorphic form ¢, in the space Vy
such that

/ ¢x(g)dg # 0.
[GLn]
Such a representation is said to be GL,, (Ar)-distinguished.

Remark 8.9. It is a result of [14] and [16] that the global partial Asai L-function
A®(s, 7, As) has a pole at s = 1 if and only if wﬂ\A; =1 and 7 is GL,, (A p)-distin-
guished.

W. Zhang ([59, Proposition 3.2]) expresses the global Flicker—Rallis period on
the space V;: as a product of local GL,, (F,)-distinguished linear functionals 192 given
by (6.7); the underlying idea originates from the work of Gelbart, Jacquet, and Ro-
gawski [18, pp. 184-186]. In particular, the global Flicker—Rallis period attached to
a global newform ¢ is related to the product of the special value of the local Asai
L-function at s = 1.

Theorem 8.10. Let E be a quadratic extension of F, and let (w,Vy) be a unitary
cuspidal automorphic representation of GL,(Ag) with global newform ¢S € Vi for
which the central character wy satisfies wr|,yx = 1. Then there exists a right K, -finite

Schwartz—Bruhat function ® € 7 (A%) sucthhat the global Flicker—Rallis period

(8.8) /[GL | ©7(9) dg

1s equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measure dg, to
Dn(n;n
n
% Res,y A%(s,m, As) [ L1, 7our, As).
®(0) vol(F*\AL) ves
Here we have that L(1, 7y ur, As) = L(1, Ty ur X Tyur) and L(1,m,, As) = L(1,m, X
my) if v splits in F, so that F, = F, ® F,.
Proof: From (8.2), the residue of I(s, ¢, 92, ®) at s =1 1is
vol(FX\AL) = o °
PR G0) [ st do
n [GLn]

The result then follows from Theorem 8.8. O
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8.3. Global Friedberg—Jacquet periods. Our immediate goal is to show the ex-
istence of a weak test vector for the global Bump-Friedberg integral.

Theorem 8.11. Let (m, V) be a cuspidal automorphic representation of GLy,(Ar)
with global newform @2 € V.. For m = L%J, there exists a right K, -finite Schwartz—
Bruhat function ® € (A} such that, for R(s1) and R(s2) sufficiently large,

(i) for n = 2m, the global Bump—Friedberq integral

81— %
dgdg’
Ap

det g

(9)  Zousmen)= [ g )EG st | 15

[GLym X GLy ]

s equal, up to multiplication by a positive constant dependent only on the nor-
malisation of the measures dg and dg’, to the product of D?;&171/2)+m(m71)52

and of the global completed naive Bump—Friedberg L-function A(s1, S, mur,BF) ==
HU L(Sla 7Tv,ur)L(SZ, 7Tv,ur7 /\2);
(ii) for n =2m+ 1, the global Bump—Friedberg integral

(8.10)  Z(s1,82,0%,®) = / ©x(J(9,9))E (g,

[GLp41 X GLoy]

s1 +m52;®’wﬂ)
m+1

—s1+s2

|det g'|ap ,

’ <|detg|x/<m+“ o
F

18 equal, up to multiplication by a positive constant dependent only on the
2
normalisation of the measures dg and dg’, to the product of D?f&rm 52 and

of the global completed naive Bump—Friedberg L-function A(s1, s2, Tur, BF) =
Hv L(Sla Wu,ur)L(s% Ty ,urs /\2) .

Proof: This integral is Eulerian: appealing to the standard unfolding technique due
to Matringe [43, Theorem 4.4] (cf. [8]), we see that Z(s1,s2, 92, ®) is equal, up to
multiplication by a positive constant dependent only on the normalisation of the
measures dg and dg’, to

11[3(517 82,W¢g,v, q)v)
v

provided that R(s;) and R(sy) are sufficiently large. Upon making the change of
variables g, — diag(d}™™,...,d;3,d;1)g, and ¢/, — diag(d>™,...,d; 2, 1)g, for n =

2m and g, — diag(di™",...,d;?,1)g, and g, — diag(d?™",--- ,d;3,d,')g, for n =
2m + 1, we arrive at

D?/(él*l/?)ﬁ*m(mfl)sz HB(S1, S2, W;v,@v) for n = 2m,

D?/S(é+m252HB(SlaS%W;:vaq)v) for n=2m+ 1.

The result now follows from Theorem 7.9 for archimedean places and from [46, The-
orem 5.1] for nonarchimedean places. O

We switch our attention to global Friedberg-Jacquet periods. We say that a cus-
pidal automorphic representation (m, V) of GLay,(Ar) admits a Friedberg—Jacquet
period (or Hy, ,,(Ar)-period) if there exists a cuspidal automorphic form ¢, € V,
such that

¢x(J(g,9")) dgdg’ # 0.
[GLy, X GL, ]
Such a representation is said to be Hy, p, (Ap)-distinguished.
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Remark 8.12. The main result of Matringe [43, Theorem 4.7] tells us that the partial
global Bump-Friedberg L-function A°(s, 7, BF) has a pole at s = 1/2 if and only if
wy is trivial and 7 is Hy, (A p)-distinguished.

We establish results analogous to [59, Propositions 3.1 and 3.2], which describes
the explicit decomposition of the global Friedberg—Jacquet period in terms of local
H,.m (F,)-distinguished linear functionals 9% given by (7.6) (cf. [56, Appendix A.3]).

Proposition 8.13. Let (m,V;) be a unitary cuspidal automorphic representation
of GLaoy,(Ap) with trivial central character. Then, for every pure tensor ¢ € Vi,
the global Friedberg—Jacquet period

©x(J(g,9")) dgdg’
[GLm x GLm]

18 equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measures dg and dg’, to

m

_— _12A° BF g v)-
VO](FX\A}_;‘) Ressfl/Q (S,ﬂ', ) H ﬁv(Wﬂoﬂ-, )

veS

The proof requires Proposition 7.13, which we first prove.

Proof of Proposition 7.13: The proof is inspired by work of Gelbart, Jacquet, and Ro-
gawski [18, pp. 185-186]. The result follows from the global theory. To be more precise,
we first observe that w,, must be trivial, as (m,, Vx,) is Hy, y (F} )-distinguished. The
global Bump-Friedberg integral Z(s,2s, @, ®) is Eulerian (cf. [43, Theorem 4.4]), so
that it is equal, up to multiplication by a positive constant dependent only on the
normalisation of the measures dg and dg’, to

1186 We, 0, @)

We may choose a factorisable Schwartz—Bruhat function ® € .%#(A’%) such that ®, is
the characteristic function of O} for all nonarchimedean places v ¢ S, and a fac-
torisable cuspidal automorphic form ¢, € Vi such that W, ., = W2 with respect to
the unramified character v, for all nonarchimedean places v ¢ S. Taklng (8.2) into
account, we see that by taking the residue of Z(s,2s, p,, ®) at s = 1/2,
X 1
PRS0 [ e e dgdy
[GLy, X GL, ]

(8.11)

m

=Res,—12A°(s, 7, BF) [[ B (% W o @U) .

veS

We now consider B(1/2, W,,_,,®,) for each nonarchimedean place v € S and each
archimedean place v. On the one hand, we use the Iwasawa decomposition, and then
evaluate the resulting integral over N,,(F,)\ GL,(F,) 3 g, and N, (F,)\Pm(Fy) 3
P, leading to the identity

B (é - ) / / 9 (0 (S (L KW, ) o221 d* 24
Koo
On the other hand, via the Iwasawa decomposition once more,

<I>U(0):/ Dy (xy) doy = / o(emgy) dg,, / / o(zhemkd) |2y |0t d* 2, dk,,.
iy Km,v

Pm (Fu)\ GLm (Fy)
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Comparing the integrals over K, , > ki, and F,* > z/ of both sides of (8.11), there
should be a linear functional 4# on the Whittaker model W(m,,,) such that

/ 98 (0 (T, KW ) Do (em k)| 21| d* 2, di,
K

x
m,v Y Fy

(W o) / / By (2 emb))| 2 T d* 2, dK,
v JEY

for any Whittaker function W, _ ,, € W(m,, ¥, ) and any Schwartz-Bruhat function ®,, €
L (F)). Each @, € (F)") defines a smooth function on GL,(F),), left invariant
by Py, (Fy), via g — ®(e,,g). This implies that any smooth function f on K,,, that
is invariant under P (,,,_1,1)(Fy) N Ky, o satisfies

/ / 9 (0 (T (LK) W) F (R 2 0% 21 R = 7 (Wi ) / F(K.) dK,.
Km,v FUX K,

We can move one step further to claim that the same relation holds for all smooth
functions f on K, ,, as 9% is a Pa,, (F,) N H,, m (F,)-invariant form. It follows that
74 = 6% and that 9% is invariant under {J(1,k.) : k!, € K., ,}. In summary, 9% is
invariant under H,, ,,, (F%). O
Proof of Proposition 8.13: We only deal with the case when (m,V;) affords a
Hy,,m(Ap)-period, for otherwise the desired identity is trivially true as both sides
are equal to zero. Evidently, (m,, Vz,) is Hy, m(Fy)-distinguished, which can only
occur provided that w,, is trivial. We may choose a factorisable Schwartz-Bruhat
function ® € .#(A%) such that ®, is the characteristic function of O} for all nonar-

chimedean places v ¢ S, so that @(O) = 1, and a factorisable cuspidal automor-
phic form ¢, € Vi such that W,_, = W2 with respect to the unramified charac-
ter v, for all v ¢ S. Recalling (8.11), we deduce that it is sufficient to show that

—

B(1/2,W,_ 4, ®,) = 9% (W, ,)®,(0) for each nonarchimedean place v € S and each
archimedean place v. To that end, we expand

1
B(5Wemo)= [ [ Weralou g @ulengldet gl g, g

Nm(Fv)\GLm(Fv) N’VTL(F'U)\ GL’VTL(F’U)

as a triple integral, and then rewrite it in terms of ¥% (cf. [1, §4]), yielding

Wer o (J(gu, Pogo))Po(emgy) dgo dpl, dgs,
P (Fy)\ GLn (Fu) Noyn (Fy)\Pon (Fv) Nop, (Fu)\ GL, (F)
- / 9 (70 (T (1, 60)) W )@ (€ml) dgly-

But we know from Proposition 7.13 that 9% is H,, m (F,)-invariant. Then

1 _
B (g,w%v,<1>u> — (W, ) / B (emgl) dg)y = (W )Ba(0). O
Py (Fy)\ GLn (Fy)

Remark 8.14 (Vanishing of periods). For n = 2m + 1 odd, it is straightforward that
the residue of Z(s,2s,02,®) at s =1 is

%3(0) / ©7(J(g,9") dgdg’.

[GLm+1 X GL'm]

Unfortunately, this period integral is known to vanish as a consequence of [17, §2.1
and Proposition 2.1] (cf. [43, p. 594]).
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For ¢2 the global newform, the global Friedberg-Jacquet period can be explicitly
evaluated so that it is Fulerian.

Theorem 8.15. Let (w,V;) be a unitary cuspidal automorphic representation of
GLaom (AF) with global newform ¢ € Vi for which the central character is trivial.
Then there exists a right K,,-finite Schwartz—Bruhat function ® € 7 (A%) such that
the global Friedberg—Jacquet period

(8.12) / ©7(J(g,9")) dgdg’
[GLym X GLp]

18 equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measures dg and dg’, to

m(m—1)

mD

18 Res,_y5 A (s,m,BF) [] L (1, Ty BF) .
®(0) vol(F*\Af) wes \2

Proof: From (8.2), the residue of Z(s,2s, ¢S, ®) at s =1/2 is
I(F*\AR) = o ' '
YOUEZARS) § ) / ©7(J(9,9)) dg dg’.

[GLon X GLyn]

The result then follows from Theorem 8.11(i). O

m

Remark 8.16 (Jacquet—Shalika periods). We let M,,,(F') denote the set of m x m ma-
trices and N, (F) denote the subset of upper triangular matrices. The Shalika sub-
group So,, (F) is defined to be

Som (F) = {(16” ffn) (g 2) . X € M(F), g€ GLm(F)}.

We fix a nontrivial Shalika character © on Sa,,(F') such that

(5 ) )=

We say that a cuspidal automorphic representation (m,Vy) of GLoy,(Ar) admits a
Jacquet—Shalika period (or (Sam(Ar),©)-period) [12, (11)] if there exists a cuspidal
automorphic form ¢, € V,; for which

/[GLm] / o ((16” fi) (g 2)) $(Tr X) dX dg # 0.

M (F)O\Mm (AF)

Such a representation is said to be (Sem(AF), ©)-distinguished. The celebrated result
of Jacquet and Shalika [36] shows that the partial global exterior square L-func-
tion A%(s,m,A?) has a pole at s = 1 if and only if w, is trivial and (7, V;) admits
a (Som(AR), ©)-period. For the rest of the discussion, we assume that (7, V) is uni-
tary such that (7, V) affords the (S2., (AF), ©)-period. We analogously define a local
Shalika functional 9 : W(m,,1,) — C by

N I A Gy S
N (Fo )\Pm (Fv) N (Fo)\ M (Fv)

The linear functional 9] is a priori (Pay, (F,) N Sam(F,), ©,)-quasi-invariant. Thank-
fully, it can be extended to a (So.,(Fy), ©y)-quasi-invariant functional (cf. the proof
of Proposition 7.13 and [12, Lemma 5.4]). Via unfolding [36, Proposition 6.5], the
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Eulerian factorisation of the Jacquet—Shalika period ([12, (18)]) can be deduced, with
some changes of notations, just as in the proof of Proposition 8.13

/[GLm] / o ((1(7)11 1);) (g 2)) P(Tr X) dX dg

Mo (F)\Mm (AF)

is equal, up to multiplication by a positive constant dependent only on the normali-
sation of the measures dg and dX, to

m _AS 2 i
V(P ALY Ress—1 A7 (s, 7, A )};[;%(WM),

where S contains the archimedean places. When v is an archimedean place, so that
F, € {R,C} is an archimedean local field, it is our belief that the Jacquet—Shalika
period integral involving unramified data is no longer a nonzero polynomial multiple
of the exterior square L-function L(s,m,,A?), as mentioned in Subsection 1.3. This
phenomenon can even be observed for a spherical induced representation of Langlands
type m, of GLy(F,) from the identity

o Zy 0 s X 2y 1 otice
Wy, 0 2 Dur(2v) 20|y d™ 20 = L(8, o, N°)— L(w, my) dw.
Iots N

A J o _ioo
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