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TEST VECTORS FOR ARCHIMEDEAN PERIOD INTEGRALS

Peter Humphries and Yeongseong Jo

Abstract: We study period integrals involving Whittaker functions associated to generic irreducible
Casselman–Wallach representations of GLn(F ), where F is an archimedean local field. Via the

archimedean theory of newforms for GLn developed by the first author, we prove that newforms
are weak test vectors for several period integrals, including the GLn×GLn Rankin–Selberg integral,

the Flicker integral, and the Bump–Friedberg integral. By taking special values of these period inte-

grals, we deduce that newforms are weak test vectors for Rankin–Selberg periods, Flicker–Rallis pe-
riods, and Friedberg–Jacquet periods. These results parallel analogous results in the nonarchimedean

setting proved by the second author, which use the nonarchimedean theory of newforms for GLn
developed by Jacquet, Piatetski-Shapiro, and Shalika. By combining these archimedean and nonar-
chimedean results, we prove the existence of weak test vectors for certain global period integrals of

automorphic forms.
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1. Introduction

1.1. Test vectors for GLn ×GLn Rankin–Selberg integrals. A period integral
of automorphic forms over a number field F is said to be Eulerian if it factorises
as a product of period integrals over local fields. A quintessential example is the
GLn×GLn Rankin–Selberg integral∫

Zn(AF ) GLn(F )\GLn(AF )

ϕπ(g)ϕσ(g)E(g, s; Φ, ωπωσ) dg

involving two automorphic forms ϕπ and ϕσ lying in two automorphic representa-
tions π and σ of GLn(AF ) as well as a distinguished Eisenstein series E(g, s; Φ, ωπωσ)
associated to a Schwartz–Bruhat function Φ ∈ S (AnF ) and a product ωπωσ of central
characters. If ϕπ, ϕσ, and Φ are pure tensors, then by unfolding, this global period
integral factorises as a product over all places v of F of local GLn×GLn Rankin–
Selberg integrals

Ψ(s,Wπv ,Wσv ,Φv) :=

∫
Nn(Fv)\GLn(Fv)

Wπv (gv)Wσv (gv)Φv(engv)|det gv|sv dgv,

where Wπv and Wσv are the local Whittaker functions associated to ϕπ and ϕσ.
The local period integrals Ψ(s,Wπv ,Wσv ,Φv) represent the local GLn×GLn Rank-

in–Selberg L-function L(s, πv × σv), where πv and σv are the generic irreducible
admissible smooth representations of GLn(Fv) occurring in the tensor product de-
compositions of π and σ. More precisely, if v is a nonarchimedean place with residue
field of order q, then the quotient Ψ(s,Wπv ,Wσv ,Φv)/L(s, πv × σv) is a polynomial
in qs and q−s, and in particular is entire. If v is an archimedean place, then the quo-
tient Ψ(s,Wπv ,Wσv ,Φv)/L(s, πv × σv) is entire and of finite order in vertical strips.
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While the quotient Ψ(s,Wπv ,Wσv ,Φv)/L(s, πv × σv) is always entire regardless of
the choice of Whittaker functions Wπv and Wσv and Schwartz–Bruhat function Φv,
for many applications, one requires something stronger, namely, that for particu-
lar choices of Wπv , Wσv , and Φv this quotient be nicely behaved – in particular,
nonvanishing apart from a prescribed collection of values of s ∈ C. When the repre-
sentations πv and σv are both unramified, there exists an explicit Schwartz–Bruhat
function Φv for which this quotient is exactly equal to 1 when Wπv and Wσv are
chosen to be spherical Whittaker functions. This motivates the following problem.

Strong Test Vector Problem. Given generic irreducible admissible smooth repre-
sentations πv and σv of GLn(Fv), determine the existence of Whittaker functions Wπv

and Wσv in the Whittaker models of πv and σv and a Schwartz–Bruhat function Φv ∈
S (Fnv ) for which

Ψ(s,Wπv ,Wσv ,Φv) = L(s, πv × σv).

We call such a triple (Wπv ,Wσv ,Φv) a strong test vector for the GLn×GLn
Rankin–Selberg integral. In full generality, this problem remains unresolved, though
some special cases have been settled:

• When n = 2 and Fv is nonarchimedean for several families of representations πv
and σv, by Kim [40, Chapters 4 and 5].
• When n = 2 and Fv is archimedean, by Jacquet [29, Theorem 7.2], S.-W. Zhang

[58, Proposition 2.5.2], Miyazaki [47, Theorem 6.1], and Hirano, Ishii, and
Miyazaki [21, Appendix A].
• When at least one of the two representations πv and σv is unramified, by Kim

[40, Theorem 2.1.1] for Fv nonarchimedean, and by the first author [23, Theo-
rem 4.18] for Fv archimedean.
• When both representations are principal series of prescribed forms and Fv is

archimedean, by Ishii and Miyazaki [27, Theorem 2.9].

We focus on a weaker yet more tractable problem, where we are satisfied with
finding a triple (Wπv ,Wσv ,Φv) for which Ψ(s,Wπv ,Wσv ,Φv) is an explicit polyno-
mial multiple of L(s, πv × σv). Associated to πv and σv are unramified representa-
tions πv,ur and σv,ur whose standard L-functions are such that L(s, πv,ur) = L(s, πv)
and L(s, σv,ur) = L(s, σv). We then define the näıve Rankin–Selberg L-function asso-
ciated to πv and σv to be L(s, πv,ur × σv,ur), which we show is an explicit polynomial
multiple of L(s, πv × σv).
Weak Test Vector Problem. Given generic irreducible admissible smooth repre-
sentations πv and σv of GLn(Fv), determine the existence of Whittaker functions Wπv

and Wσv in the Whittaker models of πv and σv and a Schwartz–Bruhat function Φv ∈
S (Fnv ) for which

Ψ(s,Wπv ,Wσv ,Φv) = L(s, πv,ur × σv,ur).

We call such a triple (Wπv ,Wσv ,Φv) a weak test vector for the GLn×GLn Rankin–
Selberg integral. The second author ([37, Theorem 1.1(i)]) resolved this problem when
Fv is nonarchimedean via the theory of nonarchimedean newforms due to Jacquet,
Piatetski-Shapiro, and Shalika [31]. We resolve this problem when Fv is archimedean
via the theory of archimedean newforms introduced by the first author [23].

Theorem 1.1. Let Fv be an archimedean local field and let πv and σv be generic
irreducible admissible smooth representations of GLn(Fv). Then there exist Whittaker
functions Wπv and Wσv in the Whittaker models of πv and σv and a Schwartz–Bruhat
function Φv ∈ S (Fnv ) for which

Ψ(s,Wπv ,Wσv ,Φv) = L(s, πv,ur × σv,ur).

A more precise statement of this result is given in Theorem 5.3.
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1.2. Test vectors for archimedean period integrals. Theorem 1.1 is but one
of many results that we prove pertaining to weak test vectors for archimedean pe-
riod integrals. There are many local period integrals involving integrals of Whittaker
functions that represent distinguished L-functions. As well as for the GLn×GLn
Rankin–Selberg integral, we resolve the analogue of the weak test vector problem for
the following:

• The modified GLn×GLn Rankin–Selberg integral introduced by Sakellaridis
given by (5.6). This represents L(s2, πv × σv)L

(
s1 − n−1

2 , σv
)
, the product of

the GLn×GLn Rankin–Selberg L-function, and the standard L-function. In
Theorem 5.9, we prove the existence of a weak test vector (Wπv ,Wσv ,Φv) for
which this integral is equal to L(s2, πv,ur × σv,ur)L

(
s1 − n−1

2 , σv
)
.

• The modified GLn×GLn−1 Rankin–Selberg integral introduced by Sakellaridis
given by (5.7). This represents L

(
s2 + 1

2 , πv × σv
)
L
(
s1 − n−2

2 , σv
)
, the product

of the GLn×GLn−1 Rankin–Selberg L-function, and the standard L-function.
In Theorem 5.10, we prove that when σv is unramified there exists a strong test
vector (Wπv ,Wσv ,Φv) for which this integral is equal to L

(
s2+ 1

2 , πv×σv
)
L
(
s1−

n−1
2 , σv

)
.

• The Flicker integral given by (6.5). This represents L(s, πv,As), the Asai L-func-
tion. In Theorem 6.6, we prove the existence of a weak test vector (Wπv ,Φv)
for which this integral is equal to L(s, πv,ur,As).
• The Bump–Friedberg integral given by (7.4). This represents the product
L(s1, πv)L(s2, πv,∧2) of the standard L-function and the exterior square L-func-
tion. In Theorem 7.9, we prove the existence of a weak test vector (Wπv ,Φv)
for which this integral is equal to L(s1, πv)L(s2, πv,ur,∧2).

The period integrals listed above either involve a single complex variable s or a
pair of complex variables s1, s2. In certain situations, these complex variables can be
specialised to special values, at which point these period integrals are linear functionals
for particular representations. We list below the periods of interest that arise from
specialising these complex variables.

• The GLn×GLn Rankin–Selberg period given by (5.4). When πv and σv are uni-
tary, we show in Theorem 5.7 the existence of a test vector (Wπv ,Wσv ) for which
this period is equal to the special L-value L(1, πv,ur × σv,ur)/L(n, ωπv,urωσv,ur),
where ωπv,ur and ωσv,ur denote the central characters of πv,ur and σv,ur.
• The Flicker–Rallis period given by (6.6). When πv is unitary, we show in The-

orem 6.9 the existence of a test vector Wπv for which this period is equal to the
special L-value L(1, πv,ur,As)/L(n, ωπv,ur |R×).
• The Friedberg–Jacquet period given by (7.5). When πv is unitary, we show in

Theorem 7.12 the existence of a test vector Wπv for which this period is equal
to the special L-value L

(
1
2 , πv

)
L(1, πv,ur,∧2)/L

(
n
2 , ωπv,ur

)
.

1.3. Comparisons between archimedean and nonarchimedean results. Our
results on test vectors for archimedean period integrals parallel analogous results
of the second author [37] in the nonarchimedean setting. The strategy of proof in
both settings is similar: via the Iwasawa decomposition and the fact that Whittaker
newforms transform on the right under the maximal compact subgroupKv of GLn(Fv)
in a prescribed manner, these integrals can be reduced to integrals over a diagonal
torus An(Fv).

When Fv is nonarchimedean, the behaviour of the Whittaker newform when re-
stricted to the diagonal torus has a closed form via the Casselman–Shalika–Shintani
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formula [10, 50] together with work of Matringe [42] and Miyauchi [45]. This allows
one to directly evaluate the period integrals of interest.

When Fv is archimedean, on the other hand, no such closed form exists for the
Whittaker newform when restricted to the diagonal torus. Instead, there exists a prop-
agation formula due to the first author [23, Lemmata 9.8 and 9.17] that gives a recur-
sive formula for this Whittaker newform in terms of a Whittaker newform associated
to a representation of GLn−1(Fv); for unramified representations, such an identity is
due independently to Gerasimov, Lebedev, and Oblezin [19, Proposition 4.1] and to
Ishii and Stade [28, Proposition 2.1]. In this way, the period integrals of interest can
be evaluated via induction. This approach has been previously used to successfully
solve the strong test vector problem for the unramified GLn×GLn Rankin–Selberg
integral [53, Theorem 1.1] and the unramified Bump–Friedberg integral [52, Theo-
rem 3.3]. For the modified GLn×GLn and GLn×GLn−1 Rankin–Selberg integrals
introduced by Sakellaridis and for the Flicker integral, our results are new even for
the unramified case.

Known results for weak test vectors for nonarchimedean period integrals encompass
more than just the analogues of the archimedean results listed in Subsection 1.2.
Weak test vectors have been determined for GLn×GLm Rankin–Selberg integrals
with n > m [6, Theorem 1.1], for Jacquet–Shalika integrals [46, Theorem 1.1], and for
Bump–Ginzburg integrals [37, Theorem 6.3]. In turn, these give weak test vectors for
GLn×GLm Rankin–Selberg periods, Jacquet–Shalika periods, and Bump–Ginzburg
periods.

In the archimedean setting, on the other hand, we do not expect to be able to
find such weak test vectors for these various period integrals, with the exception of
the GLn×GLn−1 Rankin–Selberg integral, if we enforce the condition that these test
vectors be right Kv-finite. Indeed, even if all representations are unramified and all
Whittaker functions are spherical, it is widely believed that these period integrals
are not a nonzero polynomial multiple of the L-function associated to such a pe-
riod integral [7, §2.6]. A prototypical example of this phenomenon is the identity for
the unramified GLn×GLn−2 archimedean Rankin–Selberg integral due to Ishii and
Stade [28, Theorem 3.2], namely,∫

Nn−2(R)\GLn−2(R)

Wπ∞

(
g∞ 0
0 12

)
Wσ∞(g∞)|det g∞|s−1

R dg∞

= L(s, π∞ × σ∞)
1

4πi

∫ σ+i∞

σ−i∞

L(w, π̃∞)

L(s+ w, σ∞)
dw.

1.4. Global applications. In conjunction with the nonarchimedean results on test
vectors in [37], our archimedean results have global applications. Each local period
integral has a global counterpart, and we are able to show the existence of weak
test vectors for these global period integrals. More precisely, we resolve the weak test
vector problem for the following:

• The global GLn×GLn Rankin–Selberg integral given by (8.3) in Theorem 8.2.
• The global modified GLn×GLn Rankin–Selberg integral introduced by Sakel-

laridis given by (8.5) in Theorem 8.6.
• The global modified GLn×GLn−1 Rankin–Selberg integral introduced by Sakel-

laridis given by (8.6) in Theorem 8.7.
• The global Flicker integral given by (8.7) in Theorem 8.8.
• The global Bump–Friedberg integral given by (8.9) and (8.10) in Theorem 8.11.
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By specialising the value of the complex variables s or s1, s2 in these period integrals,
our results give weak test vectors for certain periods:

• The global GLn×GLn Rankin–Selberg period given by (8.4) in Theorem 8.4.
• The global Flicker–Rallis period given by (8.8) in Theorem 8.10.
• The global Friedberg–Jacquet period given by (8.12) in Theorem 8.15.

2. Preliminaries

From here on, we work over an archimedean local field. Since all that follows is
local, we drop the usage of the subscript v. We list below some standard facts on the
representation theory of GLn(F ) with F archimedean. Much of this is well known
and appears elsewhere in the literature; see in particular [23, §2].

2.1. Groups and measures.

2.1.1. Local fields. Let F be an archimedean local field, so that F is either R or C.
We denote by | · |F the absolute value on F , which we normalise such that

|x|F =

{
max{x,−x} if F = R,
xx if F = C.

When the local field is clear from the context, we omit the subscript F in our notation

and simply write | · | = | · |F . We also let ‖ · ‖ := | · |1/2C denote the standard module
on C.

We fix a nontrivial additive character ψF = ψ of F . For F = R, we choose ψ(x) :=
exp(2πix), while for F = C, we choose ψ(x) := exp(2πi(x + x)); in Section 6, we
will also work with a slightly different nontrivial additive character ψC/R of C that is
trivial when restricted to R. We normalise the Haar measure dx on F so that it is
self-dual with respect to ψ. For F = R, dx is simply the Lebesgue measure, whereas
for F = C, dx is twice the Lebesgue measure. The multiplicative Haar measure d×x
on F× is ζF (1)|x|−1 dx, where

ζF (s) :=

π
− s

2 Γ
( s

2

)
if F = R,

2(2π)−sΓ(s) if F = C.

2.1.2. Groups and Haar measures. We write 1n to denote the n×n identity ma-
trix. Let {ei. : 1 ≤ i ≤ n} be the standard row basis of Fn. Let P(F ) = P(n1,...,nr)(F )
denote the standard upper parabolic subgroup of GLn(F ) of type (n1, n2, . . . , nr) with
n = n1 +n2 + · · ·+nr. This has the Levi decomposition P(F ) = NP(F )MP(F ), where
the block-diagonal Levi subgroup MP(F ) is isomorphic to GLn1

(F )× · · · ×GLnr (F ),
while the unipotent radical NP(F ) of P(F ) consists of upper triangular matrices with
block-diagonal entries (1n1

, . . . , 1nr ). When P(F ) is the standard Borel (and mini-
mal parabolic) subgroup P(1,...,1)(F ) =: Bn(F ) of upper triangular matrices, we write

NP(F ) =: Nn(F ) ∼= Fn(n−1)/2, the subgroup of unipotent upper triangular matri-
ces, and MP(F ) =: An(F ) ∼= (F×)n, the subgroup of diagonal matrices. We write
Zn(F ) ∼= F× to denote the centre consisting of scalar matrices. We define Pn(F ), the
mirabolic subgroup of GLn(F ), given by

Pn(F ) =

{(
h tx
0 1

)
: h ∈ GLn−1(F ), x ∈ Fn−1

}
.
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The modulus character of a parabolic subgroup P(F ) = P(n1,...,nr)(F ) is

δP(F )(m) =

r∏
j=1

|detmj |n−2(n1+n2+···+nj−1)−nj

for anym = blockdiag(m1, . . . ,mr) ∈ MP(F ). We letKn denote the maximal compact
subgroup of GLn(F ), unique up to conjugacy, so that

Kn =

{
O(n) if F = R,
U(n) if F = C.

We have the Iwasawa decomposition GLn(F ) = Nn(F )An(F )Kn. We normalise
the Haar measure dg on GLn(F ) 3 g via the Iwasawa decomposition g = uak with
u ∈ Nn(F ), a ∈ An(F ), and k ∈ Kn, so that

dg = δ−1
Bn(F )(a) du d×a dk.

Here du =
∏

1≤i<j≤n dui,j , where dui,j is the Haar measure on F , while d×a =∏n
j=1 d

×aj , where d×aj is the Haar measure on F×, and dk is the probability Haar

measure onKn. The modulus character of Bn(F ) is simply δBn(F )(a)=
∏n
j=1|aj |n−2j+1.

The Iwasawa decomposition also gives rise to the Haar measure on Nn(F )\GLn(F )
via dg = δ−1

Bn(F )(a) d×a dk for g = ak with a ∈ An(F ) and k ∈ Kn. There is

an alternate expression for this Haar measure via the Iwasawa decomposition g =
(z1n)( h 0

0 1 )k associated to the maximal parabolic subgroup P(n−1,1)(F ) of GLn(F )

of type (n − 1, 1). Here z ∈ F×, h ∈ Nn−1(F )\GLn−1(F ), and k ∈ Kn; the Haar
measure on Nn(F )\GLn(F ) becomes

dg = |deth|−1 d×z dh dk,

where d×z denotes the multiplicative Haar measure on F× and dh denotes the Haar
measure on Nn−1(F )\GLn−1(F ).

2.2. Representations of GLn(F ).

2.2.1. Isobaric sums. Given representations (π1, Vπ1
), . . . , (πr, Vπr ) of the linear

groups GLn1
(F ), . . . ,GLnr (F ) with n = n1 + · · · + nr, we form the representa-

tion �r
j=1 πj of MP(F ), where � denotes the outer tensor product. We then extend

this representation trivially to a representation of P(F ). We obtain a normalised
parabolically induced representation (π, Vπ) of GLn(F ) by

π := Ind
GLn(F )

P(F )

r

�
j=1

πj ,

where Vπ denotes the space of smooth functions f : GLn(F )→ Vπ1
⊗ · · · ⊗ Vπr , upon

which π on Vπ via right translation, namely, (π(h) · f)(g) := f(gh), that satisfy

f(umg) = δ
1/2

P(F )(m)

r⊗
j=1

πj(mj) · f(g),

for any u ∈ NP(F ), m = blockdiag(m1, . . . ,mr) ∈ MP(F ), and g ∈ GLn. The induced
representation π is called the isobaric sum of π1, . . . , πr, which we denote by

π :=

r

�
j=1

πj .
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2.2.2. Essentially square-integrable representations. Essentially square-inte-
grable representations of GLn(C) exist only for n = 1. An essentially square-integrable
representation of GL1(C) = C× must be a character of the form π(x) = eiκ arg(x)|x|tC
for some κ ∈ Z and t ∈ C, where ei arg(x) := x/‖x‖.

Essentially square-integrable representations of GLn(R) exist only for n ∈ {1, 2}.
An essentially square-integrable representation of GL1(R) = R× must be a character
of the form π(x) = sgn(x)κ|x|tR for some κ∈{0, 1} and t∈C, where sgn(x) := x/‖x‖.
We view GL1(C) as a subgroup of GL2(R) via the identification a + ib 7→

(
a b
−b a

)
.

For κ 6= 0, the essential discrete series representation of weight ‖κ‖+ 1,

D‖κ‖+1 ⊗ |det|tR := Ind
GL2(R)

GL1(C) e
iκ arg| · |tC ∼= Ind

GL2(R)

GL1(C) e
−iκ arg| · |tC,

is essentially square-integrable. Every essentially square-integrable representation of
GL2(R) is of the form π = Dκ ⊗ |det|tR for some integer κ ≥ 2 and t ∈ C.

2.2.3. Induced representations of Whittaker and Langlands types. A repre-
sentation π of GLn(F ) is said to be an induced representation of Whittaker type if it is
the isobaric sum of π1, π2, . . . , πr and each πj is essentially square-integrable. Such a
representation is an admissible smooth Fréchet representation of moderate growth and
of finite length. Induced representations of Whittaker type are Casselman–Wallach
representations [9, 55], which is to say admissible smooth Fréchet representations of
moderate growth and finite length. In addition, if each πj is of the form σj ⊗ |det|tj ,
where σj is irreducible, unitary, square-integrable, and <(t1) ≥ <(t2) ≥ · · · ≥ <(tr),
then π is said to be an induced representation of Langlands type.

Induced representations of Whittaker and Langlands type need not be irreducible.
Nonetheless, every generic irreducible Casselman–Wallach representation of GLn(F )
is isomorphic to some (necessarily irreducible) induced representation of Langlands
type. For this reason, we will work more generally with induced representations of
Langlands type, since this encompasses generic irreducible Casselman–Wallach rep-
resentations.

A spherical induced representation of Whittaker type of GLn(F ) is a representation
of the form π = �n

j=1 πj with each πj an unramified character of F×, namely a

character of the form πj = | · |tj with tj ∈ C. Such a representation has a Kn-fixed
vector, which is unique up to scalar multiplication; this is called the spherical vector.

2.2.4. The Whittaker model. Let (π, Vπ) be an induced representation of Whit-
taker type. We let ψn denote an additive character of Nn(F ) defined by

ψn(u) := ψ

(
n−1∑
j=1

uj,j+1

)
for all u ∈ Nn(F ). A Whittaker functional Λ: Vπ → C is a continuous linear functional
that satisfies

Λ(π(u) · v) = ψn(u)Λ(v)

for all v ∈ Vπ and u ∈ Nn(F ). If π is additionally irreducible, then the space
HomNn(F )(π, ψ) of Whittaker functionals of π is at most one-dimensional. If the space
is one-dimensional, it admits a unique functional up to scalar multiplication, and the
representation π is said to be generic.

Let W(π, ψ) denote the Whittaker model of π, which is the image of Vπ un-
der the map v 7→ Λ(π(·) · v). The Whittaker model W(π, ψ) consists of Whittaker
functions W : GLn(F ) → C of the form W (g) := Λ(π(g) · v). Every induced rep-
resentation of Langlands type is generic and isomorphic to its unique Whittaker
model W(π, ψ). Although an induced representation of Whittaker type π affords a
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one-dimensional space of Whittaker functionals, the map v 7→ Λ(π(·) · v) need not be
injective, so the Whittaker model may only be a model of a quotient of π.

Let π=�r
j=1 πj be an induced representation of Whittaker type of GLn(F ), so that

each πj is of the form eiκj arg| · |tj if F = C or either sgnκj | · |tj or Dκj ⊗ |det|tj
if F = R. The induced model of π consists of smooth functions f : GLn(F ) →⊗r

j=1 Vπj . Each Vπj may itself be identified with a space of smooth functions

from GLnj (F ) to C [23, Lemma 8.1]. Evaluating such a function at the identity 1nj
for each j ∈ {1, . . . , r}, we may thereby view an element f of the induced model Vπ
of π as a smooth function from GLn(F ) to C [23, Corollary 8.2].

Given f ∈ Vπ, we define the Jacquet integral

Wf (g) :=

∫
Nn(F )

f(wnug)ψn(u) du,

where wn := antidiag(1, . . . , 1) denotes the long Weyl element in GLn(F ). This in-
tegral converges absolutely if <(t1) > <(t2) > · · · > <(tr) and defines a Whittaker
function Wf ∈ W(π, ψ); that is, as a function of f ∈ Vπ, Λ(f) := Wf (1n) defines a
Whittaker functional, which is therefore unique up to scalar multiplication. Moreover,
the Jacquet integral provides a Whittaker functional for all induced representations
of Whittaker type, and not just those for which <(t1) > <(t2) > · · · > <(tr), via
analytic continuation in the sense of Wallach [55].

2.2.5. L-functions. We put

dF := [F : R] =

{
1 if F = R,
2 if F = C.

The integral representation of the zeta function ζF (s) is

ζF (s) =

∫
F×

exp(−dFπ‖x‖2)|x|s d×x,

which converges absolutely for <(s) > 0 and extends meromorphically to the entire
complex plane. In particular, if ω is an unramified character of F×, so that ω = | · |t
for some t ∈ C, then for <(s) > −<(t), we have that

(2.1) L(s, ω) =

∫
F×

ω(x) exp(−dFπ‖x‖2)|x|s d×x.

Given an induced representation of Whittaker type π = �r
j=1 πj of GLn(F ), the

local Langlands correspondence, as explicated by Knapp [41], gives that the standard
L-function of π [20] is

L(s, π) =

r∏
j=1

L(s, πj),

where the L-function of the essentially square-integrable representation πj is

L(s, πj) =


ζC

(
s+ tj +

‖κj‖
2

)
if F = C and πj = eiκj arg| · |tjC ,

ζR(s+ tj + κj) if F = R and πj = sgnκj | · |tjR ,

ζR

(
s+ tj +

κj − 1

2

)
ζR

(
s+ tj +

κj + 1

2

)
if F = R and πj = Dκj ⊗ |det|tjR .
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3. Archimedean newform theory

We now survey the theory of newforms for induced representations of Whittaker
type of GLn(F ) introduced by the first author [23]. While newforms over nonar-
chimedean fields are usually defined in terms of vectors fixed under certain congruence
subgroups, newforms over archimedean fields are instead defined in terms of vectors
lying in distinguished Kn-types. We first recall some properties of representations
of Kn, as well as properties of distinguished models of such representations.

3.1. Representation theory of Kn. The equivalence classes of finite-dimensional
irreducible representations of the orthogonal group

O(n) := {k ∈ Matn×n(R) : k tk = 1n}

are parametrised by the set of highest weights, which may be identified with n-tuples
of nonnegative integers of the form

µ = {µ1, . . . , µm, η, . . . , η︸ ︷︷ ︸
n− 2m times

, 0, . . . , 0︸ ︷︷ ︸
m times

} ∈ Zn,

where m ∈
{

0, . . . ,
⌊
n
2

⌋}
, µ1 ≥ · · · ≥ µm ≥ 1, and η ∈ {0, 1}.

Similarly, the equivalence classes of finite-dimensional irreducible representations
of the unitary group

U(n) := {k ∈ Matn×n(C) : k
t
k = 1n}

are parametrised by the set of highest weights, which may be identified with n-tuples
of integers µ = (µ1, . . . , µn) ∈ Zn that are nonincreasing, so that µ1 ≥ · · · ≥ µn.

In both settings, to each τ ∈ K̂n, the set of equivalence classes of irreducible
representations of Kn, one can associate a nonnegative integer deg τ called the Howe
degree of τ [22]. The Howe degree of an irreducible representation τ of highest weight µ
is

deg τ :=

n∑
j=1

‖µj‖.

When n = 1, these irreducible representations are simply characters. Characters χ
of K1 are of the form

χ(x) =

{
sgn(x)κ if K1 = O(1),

eiκ arg(x) if K1 = U(1),

where κ ∈ {0, 1} if K1 = O(1) ∼= Z/2Z and κ ∈ Z if K1 = U(1) ∼= R/Z ∼= S1. In
either case, the conductor exponent of χ is c(χ) := ‖κ‖.
3.2. Spaces of homogeneous harmonic polynomials. Let χ be a character
of O(1). We let m be a nonnegative integer for which m ≥ c(χ) and m ≡ c(χ)
(mod 2). Let Pχ,m(Rn) denote the space of degree m homogeneous polynomials with
central character χ, and let Hχ,m(Rn) denote the subspace of Pχ,m(Rn) of harmonic
homogeneous polynomials; Hχ,m(Rn) is a model for the irreducible representation
of O(n) with central character χ and highest weight (m, 0, . . . , 0), which we denote
by τχ,m.

Similarly, let χ be a character of U(1). We let m be a nonnegative integer for
which m ≥ c(χ) and m ≡ c(χ) (mod 2). Let Pχ,m(Cn) denote the space of de-
gree m homogeneous polynomials with central character χ, and let Hχ,m(Cn) denote
the subspace of Pχ,m(Cn) of harmonic homogeneous polynomials; Hχ,m(Cn) is a
model for the irreducible representation of U(n) with central character χ and high-
est weight (m1, 0, . . . , 0,−m2), which we also denote by τχ,m. The nonnegative inte-
gers m1, m2 are such that m1 +m2 = m and m1 −m2 = `, where χ = ei` arg, so that
c(χ) = max{`,−`}, and elements of Pχ,m(Cn) have bidegree (m1,m2).
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In both cases, every irreducible representation of Kn whose restriction to Kn−1

contains the trivial representation is of the form τχ,m for some character χ of K1 and
some integer m ≥ c(χ); moreover, the Howe degree deg τχ,m of τχ,m is simply the
nonnegative integer m. The action of the group Kn 3 k on the space Pχ,m(Fn) 3 P
is via right translation, namely (τχ,m(k) · P )(x) := P (xk). The homogeneity of a
polynomial P in Pχ,m(Fn) means that

(3.1) P (λx) = χ

(
λ

‖λ‖

)
‖λ‖mP (x)

for all x ∈ Fn and λ ∈ F×, while polynomials in Hχ,m(Fn) are additionally annihi-
lated by the Laplacian

∆ =



n∑
j=1

∂2

∂x2
j

if F = R,

4

n∑
i=1

∂2

∂xj∂xj
if F = C.

We record the following key properties of homogeneous polynomials in Pχ,m(Fn).

Proposition 3.1 (cf. [23, Lemmata 7.1 and 7.7]). There exists a unique Kn−1-in-
variant polynomial P ◦χ,m in Hχ,m(Fn) satisfying P ◦χ,m(en)=1, where the group Kn−1

is embedded in Kn via k′ 7→
(
k′ 0
0 1

)
. In particular, for all k ∈ Kn, we have that

(3.2) P ◦χ,m(enk) = P ◦χ,m(enk
−1).

We define an inner product on Pχ,m(Fn) 3 P,Q via

〈P,Q〉 :=

∫
Kn

P (enk)Q(enk) dk.

Our first utilisation of P ◦χ,m is the following, which is known as the addition theorem
for Hχ,m(Fn).

Proposition 3.2 (cf. [3, Theorem 2.9]). Let {Q`} be an orthonormal basis of
Hχ,m(Fn). Then, for any x ∈ Rn and k ∈ Kn, we have that

dim τχ,m∑
`=1

Q`(x)Q`(enk) = dim τχ,mP
◦
χ,m(xk−1).

We make crucial use of the fact that for all P ∈ Hχ,m(Fn) and k ∈ Kn, P (enk) is
equal to a matrix coefficient of τχ,m. This can be thought of as an explicit form of
Schur orthogonality.

Proposition 3.3 (cf. [23, Lemmata 7.5 and 7.12]). The reproducing kernel for
Hχ,m(Fn) is the homogeneous harmonic polynomial (dim τχ,m)P ◦χ,m(x), while the re-
producing kernel for Pχ,`(Fn) is the homogeneous polynomial

(3.3)
∑̀

m=c(χ)
m≡c(χ) (mod 2)

(x tx)
`−m

2 (dim τχ,m)P ◦χ,m(x),

so that for all k ∈ Kn,

P (enk)=

∫
Kn

P (enk
′k)(dim τχ,m)P ◦χ,m(enk

′) dk′ for all P ∈Hχ,m(Fn),(3.4)

P (enk)=

∫
Kn

P (enk
′k)

∑̀
m=c(χ)

m≡c(χ) (mod 2)

(dim τχ,m)P ◦χ,m(enk
′) dk′ for all P ∈Pχ,`(Fn).(3.5)
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Proof: The first assertion is justified in [23, Lemmata 7.5 and 7.12]. The second
assertion follows from the first upon recalling that every homogeneous polynomial P ∈
Pχ,`(Fn) of degree ` and central character χ admits a decomposition of the form

P (x) =
∑̀

m=c(χ)
m≡c(χ) (mod 2)

(x tx)
`−m

2 Pm(x)

for some harmonic homogeneous polynomials Pm ∈ Hχ,m(Fn) [48, Theorem 12.1.3].

3.3. Archimedean newform theory. Let (π, Vπ) be an induced representation of
Whittaker type of GLn(F ). Since π is admissible, HomKn(τ, π|Kn) is finite-dimensional
for any irreducible representation τ of Kn. We say that τ is a Kn-type of π if
HomKn(τ, π|Kn) is nontrivial, and we call dim HomKn(τ, π|Kn) the multiplicity of τ
in π. The fundamental result proved in [23] is the existence of a distinguished Kn-type
of π that occurs with multiplicity one.

Theorem 3.4 ([23, Theorem 4.7]). Let (π, Vπ) be an induced representation of Whit-
taker type of GLn(F ). Among the Kn-types τχ,m of π whose restriction to Kn−1 con-
tains the trivial representation, there exists a unique such Kn-type of minimal Howe
degree m. Furthermore, this Kn-type τχ,m occurs with multiplicity one, and the sub-
space of Vπ of τχ,m-isotypic Kn−1-invariant vectors is one-dimensional.

Remark 3.5. By considering the restrictions of π and τχ,m to the centre of Kn, we
observe that HomKn(τχ,m, π|Kn) is trivial if the central character χ of τχ,m is not
equal to

χπ := ωπ|K1 ,

the restriction of the central character ωπ of π to K1.

Definition 3.6 ([23, Definition 4.8]). Let (π, Vπ) be an induced representation of
Whittaker type of GLn(F ). We define the newform Kn-type τχπ,c(π) to be the Kn-type
of minimal Howe degree m = c(π) whose restriction to Kn−1 contains the trivial
representation. We define the conductor exponent c(π) of π to be the Howe degree of
the newform Kn-type. The nonzero τχπ,c(π)-isotypic Kn−1-invariant vector v◦ ∈ Vπ,
unique up to scalar multiplication, is called the newform of π.

Remark 3.7. As proved by the first author in [24], this definition of the conductor
exponent and the newform, as well as the existence of the newform Kn-type, is consis-
tent with the nonarchimedean definition of the conductor exponent and the newform
first introduced by Jacquet, Piatetski-Shapiro, and Shalika [31].

When Vπ is the induced model of π, we may normalise the newform v◦ ∈ Vπ as
in [23, Corollary 8.17 and Definition 9.2], which gives us a canonically normalised
newform. When π is an induced representation of Langlands type, the Whittaker
model W(π, ψ) is a model of π, which is given by the analytic continuation of the
Jacquet integral of the induced model. The image of the canonically normalised new-
form under this map is called the Whittaker newform and denoted by W ◦π [23, §9.1].
When π is unramified, the Whittaker newform W ◦π is simply the spherical Whittaker
function.

The following lemma may be thought of as the archimedean analogue of [24, The-
orem 4.16].
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Lemma 3.8 (cf. [23, Theorem 4.17]). For all g ∈ GLn(F ) and k′ ∈ Kn−1, the Whit-
taker newform W ◦π ∈ W(π, ψ) of an induced representation of Langlands type (π, Vπ)
of GLn(F ) satisfies

dim τχπ,c(π)

∫
Kn

W ◦π (gk)P ◦χπ,c(π)(enk
−1) dk = W ◦π (g),(3.6)

W ◦π

(
g

(
k′ 0
0 1

))
= W ◦π (g).(3.7)

Proof: The identity (3.7) is simply the fact that W ◦π is right Kn−1-invariant. Since
W ◦π is additionally τχπ,c(π)-isotypic, it satisfies

dim τχπ,c(π)

∫
Kn

W ◦π (gk) Tr τχπ,c(π)(k
−1) dk = W ◦π (g)

for all g ∈ GLn(F ). Upon replacing g with g
(
k′ 0
0 1

)
, integrating over Kn−1 3 k′, and

making the change of variables k′ 7→ k′−1 and k 7→
(
k′ 0
0 1

)
k, we deduce that

dim τχπ,c(π)

∫
Kn

W ◦π (gk)

∫
Kn−1

Tr τχπ,c(π)

(
k−1

(
k′ 0
0 1

))
dk′ dk = W ◦π (g).

From Proposition 3.1 and (3.4), the inner integral is equal to

〈τχπ,c(π)(k
−1) · P ◦χπ,c(π), P

◦
χπ,c(π)〉

〈P ◦χπ,c(π), P
◦
χπ,c(π)〉

= P ◦χπ,c(π)(enk
−1).

4. Langlands parameters

We now associate an induced representation of Langlands type π of GLn(F ) to
a distinguished spherical induced representation of Langlands type πur of GLn(F )
defined in terms of the Langlands parameters of π.

Definition 4.1. The Langlands parameters associated to an induced representa-
tion of Whittaker type π = �r

j=1 πj of GLn(F ) are the n-tuple of complex num-

bers (απ,1, . . . , απ,n) given by

απ,` :=



tj +
‖κj‖

2
if ` = n1 + · · ·+ nj and πj = eiκj arg| · |tjC ,

tj + κj if ` = n1 + · · ·+ nj and πj = sgnκj | · |tjR ,

tj +
κj + 1

2
if ` = n1 + · · ·+ nj − 1 and πj = Dκj ⊗ |det|tjR ,

tj +
κj − 1

2
if ` = n1 + · · ·+ nj and πj = Dκj ⊗ |det|tjR .

Proposition 4.2. Given an induced representation of Whittaker type π of GLn(F ),
there exists a spherical induced representation of Langlands type πur of GLn(F ) for
which L(s, π) = L(s, πur).

Proof: There exists a permutation σ for which the Langlands parameters of π are
such that <(απ,σ(1)) ≥ · · · ≥ <(απ,σ(n)). Let πur := �n

j=1 | · |απ,σ(j) . This isobaric
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sum of unramified characters is a spherical induced representation of Langlands type
of GLn(F ) that satisfies

L(s, πur) =

n∏
j=1

ζF (s+ απ,σ(j))

=

r∏
j=1


ζC

(
s+ tj +

‖κj‖
2

)
if πj = eiκj arg| · |tjC ,

ζR(s+ tj + κj) if πj = sgnκj | · |tjR ,

ζR

(
s+ tj +

κj − 1

2

)
ζR

(
s+ tj +

κj + 1

2

)
if πj = Dκj ⊗ |det|tjR ,

=

r∏
j=1

L(s, πj)

=L(s, π).

Remark 4.3. Proposition 4.2 ensures the existence of such a spherical representa-
tion πur of GLn(F ), but does not guarantee the uniqueness. Indeed, if there are
at least two Langlands parameters whose real parts are equal but whose imaginary
parts are not, then there exists more than one permutation σ for which the condi-
tion <(απ,σ(1)) ≥ · · · ≥ <(απ,σ(n)) is met, and hence more than one spherical induced
representation of Langlands type having the same L-function as π. Nonetheless, the
spherical Whittaker function W ◦πur

∈ W(πur, ψ) is uniquely determined, since if two
spherical induced representations of Langlands type have the same L-function, then
their spherical Whittaker functions are equal due to the Whittaker–Plancherel theo-
rem (see [23, Lemma 10.5] and Lemma 4.6).

Remark 4.4. A result analogous to Proposition 4.2 also holds in the nonarchimedean
setting. A notable difference in this setting is that if π is ramified, then πur is a
spherical representation of GLm(F ) with m < n.

The central character ωπur
of πur is closely related to the central character ωπ of π.

Lemma 4.5. Let π be an induced representation of Langlands type of GLn(F ). Then
for all z ∈ F×

ωπ(z)χπ

(
z

‖z‖

)
‖z‖c(π) = ωπur(z).

Proof: We write π = �r
j=1 πj , so that the central character of π is ωπ =

∏r
j=1 ωπj ,

where the central character ωπj of πj is

ωπj =


eiκj arg| · |tjC if πj = eiκj arg| · |tjC ,

sgnκj | · |tjR if πj = sgnκj | · |tjR ,

sgnκj (mod 2) | · |tjR if πj = Dκj ⊗ |det|tjR .

Thus for F = C, ωπ = eiκπ arg| · |tπC , where κπ :=
∑n
j=1 κj and tπ :=

∑n
j=1 tj , while

for F = R, we have that ωπ = sgnκπ |·|tπR , where κπ ∈ {0, 1} is such that κπ ≡
∑r
j=1 κj

(mod 2) and tπ :=
∑r
j=1 tj . In particular,

χπ

(
z

‖z‖

)
=

{
eiκπ arg(z) if F = C,
sgn(z)κπ if F = R.

From [23, Theorem 4.15 and Section 5.2.1], we have that c(π) =
∑r
j=1 ‖κj‖, so that

‖z‖c(π) =

{
|z|(‖κ1‖+···+‖κr‖)/2

C if F = C,
|z|κ1+···+κr

R if F = R.
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From this, we see that

ωπ(z)χπ

(
z

‖z‖

)
‖z‖c(π) = |z|(t1+···+tr)+(‖κ1‖+···+‖κr‖)/dF .

On the other hand, the central character of πur is ωπur
= |·|tπur with tπur

:=
∑r
j=1(tj+

‖κj‖/dF ). Thus

ωπur(z) = |z|(t1+···+tr)+(‖κ1‖+···+‖κr‖)/dF .

We introduce the following by now well-known lemma. Over nonarchimedean fields,
this lemma plays an important role in the proofs of the stability of γ-factors [35,
Lemma 3.2] and of the local converse theorem [57]. Our case is the archimedean
analogue (cf. [23, Lemma 10.5]) of a result of Jacquet, Piatetski-Shapiro, and Shalika
[31, Lemme (3.5)].

Lemma 4.6. Let π be an induced representation of Langlands type of GLn(F ). Then

W ◦π

(
g 0
0 1

)
= W ◦πur

(
g 0
0 1

)
for all g ∈ GLn−1(F ).

Proof: We claim that for every spherical induced representation of Langlands type σ
of GLn−1(F ) with spherical Whittaker function W ◦σ ∈ W(σ, ψ),∫

Nn−1(F )\GLn−1(F )

(
W ◦π

(
g 0
0 1

)
−W ◦πur

(
g 0
0 1

))
W ◦σ (g)|det g|s−

1
2 dg = 0

for <(s) sufficiently large; by the Whittaker–Plancherel theorem (see [23, Lem-
ma 10.5]), this implies the desired equality. Indeed, we have by [23, Theorem 4.17]
that ∫

Nn−1(F )\GLn−1(F )

W ◦π

(
g 0
0 1

)
W ◦σ (g)|det g|s−

1
2 dg = L(s, π × σ),

∫
Nn−1(F )\GLn−1(F )

W ◦πur

(
g 0
0 1

)
W ◦σ (g)|det g|s−

1
2 dg = L(s, πur × σ),

and these are equal as we can write σ = �n−1
j=1 | · |tj for some tj ∈ C, and then

L(s, π × σ) =

n−1∏
j=1

L(s+ tj , π) =

n−1∏
j=1

L(s+ tj , πur) = L(s, πur × σ).

5. Rankin–Selberg integrals

Given induced representations of Whittaker type π and σ of GLn(F ), Whittaker
functions Wπ ∈ W(π, ψ) and Wσ ∈ W(σ, ψ), and a Schwartz–Bruhat function Φ ∈
S (Fn), the GLn×GLn Rankin–Selberg integral is defined by

Ψ(s,Wπ,Wσ,Φ) :=

∫
Nn(F )\GLn(F )

Wπ(g)Wσ(g)Φ(eng)|det g|s dg.

The local Rankin–Selberg L-function L(s, π × σ) is defined via the local Langlands
correspondence as delineated in [41]. This integral converges absolutely for <(s) suffi-
ciently large and extends meromorphically to the entire complex plane. Jacquet ([30,
Theorem 2.3]) has shown that Ψ(s,Wπ,Wσ,Φ) is a holomorphic multiple of L(s, π×σ)
and that the quotient

Ψ(s,Wπ,Wσ,Φ)

L(s, π × σ)

is of finite order in vertical strips.
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5.1. Test vectors for GLn ×GLn Rankin–Selberg integrals and periods.
For x ∈ Matn×m(F ), we define the Schwartz–Bruhat function Φur ∈ S (Matn×m(F ))
by

(5.1) Φur(x) := exp(−dFπTr(x tx)) =

{
exp(−πTr(x tx)) if F = R,
exp(−2πTr(x tx) if F = C.

It is readily seen that Φur(xk) = Φur(k
′x) = Φur(x) for all k ∈ Km and k′ ∈ Kn; that

is, Φur is right Km-invariant and left Kn-invariant.
Our goal is to evaluate the GLn×GLn Rankin–Selberg integral when π and σ may be

ramified. Our first step is to reduce this integral to an integral over Nn−1(F )\GLn−1(F ).

Proposition 5.1. Let π and σ be induced representations of Langlands type of GLn(F )
with Whittaker newforms W ◦π ∈ W(π, ψ) and W ◦σ ∈ W(σ, ψ). Let Φ ∈ S (Fn) be the
right Kn-finite Schwartz–Bruhat function of the form Φ(x) = P (x) exp(−dFπx tx),
where the distinguished homogeneous polynomial P ∈ Pχπχσ,c(π)+c(σ)(F

n) is given by

(5.2) P (x) :=

c(π)+c(σ)∑
m=c(χπχσ)

m≡c(χπχσ) (mod 2)

(x tx)
c(π)+c(σ)−m

2 (dim τχπχσ,m)P ◦χπχσ,m(x).

Then the GLn×GLn Rankin–Selberg integral Ψ(s,W ◦π ,W
◦
σ ,Φ) is equal to

(5.3) L(ns, ωπurωσur)

∫
Nn−1(F )\GLn−1(F )

W ◦π

(
h 0
0 1

)
W ◦σ

(
h 0
0 1

)
|deth|s−1 dh.

Proof: The absolute convergence of the ensuing integral can be justified from [30,
Proposition 3.3 and Lemma 3.5]. By the Iwasawa decomposition g = (z1n)( h 0

0 1 )k for
Nn(F )\GLn(F ), the GLn×GLn Rankin–Selberg integral Ψ(s,W ◦π ,W

◦
σ ,Φ) is equal

to ∫
F×

ωπωσ(z)|z|ns
∫

Nn−1(F )\GLn−1(F )

|deth|s−1

×
∫
Kn

W ◦π

((
h 0
0 1

)
k

)
W ◦σ

((
h 0
0 1

)
k

)
Φ(zenk) dk dh d×z.

We now insert the identities (3.6) for both W ◦π (g) and W ◦σ (g) with g replaced by ( h 0
0 1 )k

and the variables of integration being k1 ∈ Kn for W ◦π and k2 ∈ Kn for W ◦σ . We then
interchange the order of integration and make the change of variables k 7→ k−1,
k1 7→ k−1k1, and k2 7→ k−1k2, arriving at∫
F×

ωπωσ(z)|z|ns
∫

Nn−1(F )\GLn−1(F )

|deth|s−1

∫
Kn

W ◦π

((
h 0
0 1

)
k1

)∫
Kn

W ◦σ

((
h 0
0 1

)
k2

)

×dim τχπ,c(π)dim τχσ,c(σ)

∫
Kn

P ◦χπ,c(π)(enk
−1
1 k)P ◦χσ,c(σ)(enk

−1
2 k)Φ(zenk

−1) dk dk2 dk1 dh d
×z.

By the addition theorem, Proposition 3.2, the last line is

dim τχπ,c(π)∑
`1=1

dim τχσ,c(σ)∑
`2=1

Q`1(enk
−1
1 )Q′`2(enk

−1
2 )

∫
Kn

Q`1(enk)Q′`2(enk)Φ(zenk
−1) dk,

where {Q`1} and {Q′`2} are orthonormal bases of Hχπ,c(π)(F
n) and Hχσ,c(σ)(F

n).
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To proceed further, we observe that for z ∈ F× and k ∈ Kn we have that

Φ(zenk
−1) = χπχσ

(
z

‖z‖

)
‖z‖c(π)+c(σ)e−dF π‖z‖

2

×
c(π)+c(σ)∑
m=c(χπχσ)

m≡c(χπχσ) (mod 2)

(dim τχπχσ,m)P ◦χπχσ,m(enk)

by the definition of the Schwartz–Bruhat function Φ ∈ S (Fn), the homogeneity
of P ◦χπχσ,m as in (3.1), and the identity (3.2). By (3.3), the sum over m is the reproduc-

ing kernel for Pχπχσ,c(π)+c(σ)(F
n), and so the integral over Kn 3 k is Q`1(en)Q′`2(en)

by (3.5). Using the addition theorem, Proposition 3.2, in reverse and then using (3.6)
to evaluate the integrals over Kn 3 k1 and Kn 3 k2, we find that Ψ(s,W ◦π ,W

◦
σ ,Φ) is

equal to∫
F×

ωπωσ(z)χπχσ

(
z

‖z‖

)
‖z‖c(π)+c(σ)|z|nse−dF π‖z‖

2

d×z

×
∫

Nn−1(F )\GLn−1(F )

W ◦π

(
h 0
0 1

)
W ◦σ

(
h 0
0 1

)
|deth|s−1 dh.

It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over F× 3 z
is L(ns, ωπur

ωσur
).

Remark 5.2. The same proof remains valid in the nonarchimedean setting using the
theory of the newform Kn-type and p-adic spherical harmonics [24].

With this in hand, we are now able to evaluate this Rankin–Selberg integral by
reducing to the spherical case.

Theorem 5.3. With the notation and hypotheses of Proposition 5.1, the GLn×GLn
Rankin–Selberg integral

Ψ(s,W ◦π ,W
◦
σ ,Φ)

is equal to L(s, πur × σur).

Proof: According to Lemma 4.6 and Proposition 5.1, we have the identity

Ψ(s,W ◦π ,W
◦
σ ,Φ)=L(ns, ωπurωσur)

∫
Nn−1(F )\GLn−1(F )

W ◦πur

(
h 0
0 1

)
W ◦σur

(
h 0
0 1

)
|deth|s−1 dh.

On the other hand, with Φur ∈ S (Fn) given by (5.1), the same calculation shows
that the right-hand side above is equal to Ψ(s,W ◦πur

,W ◦σur
,Φur). Stade’s formula ([53,

Theorem 1.1]) then gives the identity

Ψ(s,W ◦πur
,W ◦σur

,Φur) = L(s, πur × σur).

Remark 5.4. Stade’s formula is only proved for F = R in [53], though from [51, Propo-
sition 2.1], the same method can be used to prove this formula for F = C. Different
proofs of Stade’s formula, valid for F ∈ {R,C}, were given in more general settings
by the first author [23, Theorem 4.18] and independently by Ishii and Miyazaki [27,
Theorem 2.9]; both proofs are based on the work of Jacquet [30].

As previously highlighted, the triple (W ◦π ,W
◦
σ ,Φ) is a weak test vector, rather

than a strong test vector, for the GLn×GLn Rankin–Selberg integral, since in gen-
eral the näıve Rankin–Selberg L-function L(s, πur × σur) is not equal to L(s, π × σ).
Nonetheless, these two L-functions are closely related.
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Proposition 5.5. Given induced representations of Whittaker type π of GLn(F )
and σ of GLm(F ), there exists a polynomial p(s) for which

L(s, πur × σur) = p(s)L(s, π × σ).

Proof: For π = �r
j=1 πj and σ = �ρ

`=1 σ`, with each πj and σ` essentially square-
integrable, we have that

L(s, π × σ) =

r∏
j=1

ρ∏
`=1

L(s, πj × σ`)

via the local Langlands correspondence [41]. Thus it suffices to consider the case
where π and σ are both essentially square-integrable.

Suppose first that F = C, so that π = eiκ arg| · |tC, and σ = eiλ arg| · |uC. Then since
ζC(s) := 2(2π)−sΓ(s), and recalling the fact that Γ(s+ 1) = sΓ(s), we have that

L(s, πur × σur)

L(s, π × σ)
=
ζC
(
s+ t+ u+ ‖κ‖+‖λ‖

2

)
ζC
(
s+ t+ u+ ‖κ+λ‖

2

)

=


1 if sgn(κ) = sgn(λ),

(2π)−min{‖κ‖,‖λ‖}
min{‖κ‖,‖λ‖}−1∏

m=0

(
s+ t+ u+

‖κ+ λ‖
2

+m

)
if sgn(κ) 6= sgn(λ).

Next suppose that F = R and that π = sgnκ | · |tR, and σ = sgnλ | · |uR. Then since

ζR(s) := π−s/2Γ(s/2) we have that

L(s, πur × σur)

L(s, π × σ)
=

ζR(s+ t+ u+ κ+ λ)

ζR(s+ t+ u+ ‖κ− λ‖) =

1 if (κ, λ) 6= (1, 1),

π−1

(
s+ t+ u

2

)
if (κ, λ) = (1, 1).

If F = R, π = Dκ ⊗ |det|tR, and σ = sgnλ | · |uR, then

L(s, πur × σur)

L(s, π × σ)
=
ζR
(
s+ t+ u+ κ−1

2
+ λ

)
ζR
(
s+ t+ u+ κ+1

2
+ λ

)
ζR
(
s+ t+ u+ κ−1

2

)
ζR
(
s+ t+ u+ κ+1

2

)
=


1 if λ = 0,

π−1

(
s+ t+ u+ κ−1

2

2

)
if λ = 1.

An analogous identity holds if π = sgnκ | · |tR and σ = Dλ ⊗ |det|uR.
Finally, if F = R, π = Dκ ⊗ |det|tR, and σ = Dλ ⊗ |det|uR, then

L(s, πur × σur)

L(s, π × σ)
=
ζR
(
s+ t+ u+ κ+λ

2
− 1
)
ζR
(
s+ t+ u+ κ+λ

2

)
ζR
(
s+ t+ u+ κ+λ

2
− 1
)
ζR
(
s+ t+ u+ κ+λ

2

)
×

ζR
(
s+ t+ u+ κ+λ

2

)
ζR
(
s+ t+ u+ κ+λ

2
+ 1
)

ζR
(
s+ t+ u+ ‖κ−λ‖

2

)
ζR
(
s+ t+ u+ ‖κ−λ‖

2
+ 1
)

=π−min{κ,λ}

⌈
1
2

min{κ,λ}
⌉
−1∏

m=0

(
s+ t+ u+ ‖κ−λ‖

2

2
+m

)

×

⌊
1
2

min{κ,λ}
⌋
−1∏

m=0

(
s+ t+ u+ ‖κ−λ‖

2
+ 1

2
+m

)
.
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When s = 1, the integral appearing in (5.3) is known as the Rankin–Selberg pe-
riod. In general, this integral need not converge at s = 1. When π and σ are unitary,
however, convergence is guaranteed by the following lemma. We omit the proof of this
lemma, since it is standard [33, Proposition 3.17]; it relies upon bounds for Whittaker
functions by a gauge, namely [36, §4, Propositions 2 and 3].

Lemma 5.6. Let π and σ be unitary generic irreducible Casselman–Wallach repre-
sentations of GLn(F ). For any Wπ ∈ W(π, ψ) and Wσ ∈ W(σ, ψ), the integral∫

Nn−1(F )\GLn−1(F )

Wπ

(
h 0
0 1

)
Wσ

(
h 0
0 1

)
|deth|s−1 dh

converges absolutely for <(s) ≥ 1.

Archimedean components of cuspidal automorphic representations are unitary
generic irreducible Casselman–Wallach representations twisted by a (possibly nonuni-
tary) unramified character. In this regard, our unitary assumption is sufficient for
potential global applications therein (cf. Section 8). For σ = π̃, the Rankin–Selberg
period (in a slightly modified form as the inner product) appears in the work of
Feigon, Lapid, and Offen [13, Appendix A.1], Gelbart, Jacquet, and Rogawski [18,
Lemma 3.3], and W. Zhang [59, (3.2)]), which are all based on the pioneering re-
sult of Jacquet and Shalika [33, Proposition 3.17]. Notably, Venkatesh ([54, §7]) has
evaluated the Rankin–Selberg period for nonarchimedean F when σ = π̃ and both
Whittaker functions are newforms, so that this is simply the square of the L2-norm
of the newform. We prove an archimedean analogue.

Theorem 5.7. Let π and σ be unitary generic irreducible Casselman–Wallach rep-
resentations of GLn(F ) with Whittaker newforms W ◦π ∈ W(π, ψ) and W ◦σ ∈ W(σ, ψ).
Then the GLn×GLn Rankin–Selberg period

(5.4)
∫

Nn−1(F )\GLn−1(F )

W ◦π

(
h 0
0 1

)
W ◦σ

(
h 0
0 1

)
dh

is equal to
L(1, πur × σur)

L(n, ωπurωσur)
.

Proof: Having Lemma 5.6 in mind, we take s = 1 in Proposition 5.1 and invoke
Theorem 5.3.

We say that π⊗σ is GLn(F )-distinguished if HomGLn(F )(π⊗σ,1) is nontrivial. If
π and σ are irreducible, this condition amounts to saying that σ ' π̃.

Remark 5.8 ([4, §10]). We define a Pn(F )-invariant bilinear form β : W(π, ψ) ×
W(σ, ψ)→ C by

(5.5) β(Wπ,Wσ) :=

∫
Nn−1(F )\GLn−1(F )

Wπ

(
h 0
0 1

)
Wσ

(
h 0
0 1

)
dh.

It can be deduced from Theorem 5.7 that β is a nontrivial bilinear form. Furthermore,
Baruch ([4]) has shown that any Pn(F )-invariant pairing is GLn(F )-invariant; the
proof is purely local, whereas a local-to-global approach can be extracted from [59,
Proposition 3.1]. Thus β gives rise to a nontrivial GLn(F )-invariant bilinear form
on W(π, ψ)×W(σ, ψ).
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5.2. Modified Rankin–Selberg integrals by Sakellaridis. Sakellaridis ([49, §5])
has introduced new types of GLn×GLn and GLn×GLn−1 Rankin–Selberg inte-
grals that extend the classical theory of Rankin–Selberg integrals due to Jacquet,
Piatetski-Shapiro, and Shalika [32]. We solve the weak test vector problems for these
integrals. For these modified Rankin–Selberg integrals, we let Gdiag denote the image
of G under the diagonal embedding GLn ↪→ GLn×GLn given by g 7→ (g, g) with G
a subgroup of GLn(F ).

Theorem 5.9. Let π and σ be induced representations of Langlands type of GLn(F )
with Whittaker newforms W ◦π ∈ W(π, ψ) and W ◦σ ∈ W(σ, ψ). Let Φ ∈ S (Fn) be the
right Kn-finite Schwartz–Bruhat function of the form Φ(x) = P (x) exp(−dFπx tx),
where the distinguished homogeneous polynomial P ∈ Pχπχσ,c(π)+c(σ)(F

n) is given
by (5.2), and let Φ∗ ∈ S (Matn×n(F )) be the bi-Kn-finite Schwartz–Bruhat function of
the form Φ∗(x) = P ∗(enx) exp(−dFπTr(x tx)), where the distinguished homogeneous
polynomial P ∗ ∈ Hχσ,c(σ)(F

n) is given by

P ∗(x) := (dim τχσ,c(σ))P ◦χσ,c(σ)(x).

Then, for <(s1) and <(s2) sufficiently large, the modified GLn(F )×GLn(F ) Rankin–
Selberg integral by Sakellaridis

(5.6)
∫

N
diag
n (F )\GLn(F )×GLn(F )

W ◦π (g1)W ◦σ (g2)Φ∗(g−1
1 g2)Φ(eng1)

∣∣∣∣det g2

det g1

∣∣∣∣s1 |det g1|s2 dg2 dg1

is equal to

L(s2, πur × σur)L

(
s1 −

n− 1

2
, σ

)
.

Proof: We make the change of variables g2 7→ g1g2. The ensuing integral becomes∫
Nn(F )\GLn(F )

W ◦π (g1)Φ(eng1)|det g1|s2
∫

GLn(F )

W ◦σ (g1g2)Φ∗(g2)|det g2|s1 dg2 dg1.

The absolute convergence of the above double integral follows from [30, Lemma 3.2(ii),
Proposition 3.3, and Lemma 3.5]. Applying [23, Lemma 9.6] to the innermost integral
yields

L

(
s1 −

n− 1

2
, σ

) ∫
Nn(F )\GLn(F )

W ◦π (g1)W ◦σ (g1)Φ(eng1)|det g1|s2 dg1.

The latter is the GLn×GLn Rankin–Selberg integral, which is L(s2, πur × σur) by
Theorem 5.3.

Theorem 5.10. Let π be an induced representation of Langlands type of GLn(F ) with
Whittaker newform W ◦π ∈ W(π, ψ) and let σ be a spherical induced representation of
Langlands type of GLn−1(F ) with spherical Whittaker function W ◦σ ∈ W(σ, ψ). Then,
for <(s1) and <(s2) sufficiently large, the modified GLn(F ) × GLn−1(F ) Rankin–
Selberg integral by Sakellaridis

(5.7)
∫

N
diag
n−1(F )\GLn−1(F )×GLn−1(F )

W ◦π

(
g1 0
0 1

)
W ◦σ (g2)Φur(g

−1
1 g2)

∣∣∣∣det g2

det g1

∣∣∣∣s1 |det g1|s2 dg2 dg1

is equal to

L

(
s2 +

1

2
, π × σ

)
L

(
s1 −

n− 2

2
, σ

)
,

where the Schwartz–Bruhat function Φur ∈ S (Mat(n−1)×(n−1)(F )) is given by (5.1).
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Proof: We make the change of variables g2 7→ g1g2 in order to obtain∫
Nn−1(F )\GLn−1(F )

W ◦π

(
g1 0
0 1

)
|det g1|s2

∫
GLn−1(F )

W ◦σ (g1g2)Φur(g2)|det g2|s1 dg2 dg1.

The absolute convergence of the above double integral can be shown by [30, Lem-
ma 3.2(ii) and Section 8.3]. Then [23, Lemma 9.6] implies that this is equal to

L

(
s1 −

n− 2

2
, σ

) ∫
Nn−1(F )\GLn−1(F )

W ◦π

(
g1 0
0 1

)
W ◦σ (g1)|det g1|s2 dg1.

From [23, Theorem 4.17], the latter integral is simply L(s2 + 1/2, π × σ).

We take this occasion to complete weak test vector problems for modified Rankin–
Selberg integrals over a nonarchimedean local field F . The missing ingredient is a
convolution section identity for the Whittaker newform, namely the nonarchimedean
analogue of [23, Lemma 9.6]. The identity can be viewed as a generalisation of an
identity of Godement–Jacquet [20, Lemma 6.10] (cf. [49, (5-2)]).

Lemma 5.11. Let F be a nonarchimedean local field and let π be an induced represen-
tation of Langlands type of GLn(F ) with Whittaker newform W ◦π ∈ W(π, ψ). Then,
for all h ∈ GLn(F ) and for <(s) sufficiently large, we have that∫

GLn(F )

W ◦π (hg)Φ∗(g)|det g|s+
n−1
2 dg = L(s, π)W ◦π (h),

where Φ∗ ∈ S (Matn×n(F )) is the bi-Kn-finite Schwartz–Bruhat function

(5.8) Φ∗(x) :=



1 if c(π) = 0, x ∈ Matn×n(O),

and xn,1, . . . , xn,n ∈ O,
ω−1
π (xn,n)

vol(K0(pc(π)))
if c(π) > 0, x ∈ Matn×n(O),

xn,1, . . . , xn,n−1 ∈ pc(π), and xn,n ∈ O×,

0 otherwise.

Here O denotes the ring of integers of F , p denotes the maximal ideal of O, c(π) de-
notes the conductor exponent of π, and for m > 0, K0(pm) denotes the congruence
subgroup

K0(pm) := {k ∈ GLn(O) : kn,1, . . . , kn,n−1 ∈ pm},
which has volume q−(m−1)(n−1)(q − 1)/(qn − 1), where q := #O/p.

Proof: Let σ=�n
j=1 |·|tj and σ0 :=�n

j=2 |·|tj be induced representations of Langlands

type of GLn(F ) and GLn−1(F ) with spherical Whittaker functions W ◦σ ∈ W(σ, ψ) and
W ◦σ0

∈ W(σ0, ψ). By [40, Theorem 2.1.1], the GLn×GLn Rankin–Selberg integral

Ψ(s,W ◦π ,W
◦
σ ,Φ

◦) :=

∫
Nn(F )\GLn(F )

W ◦π (g)W ◦σ (g)Φ◦(eng)|det g|s dg

is equal to

L(s, π × σ) = L(s+ t1, π)L(s, π × σ0),

where Φ◦ ∈ S (Fn) is the Schwartz–Bruhat function

(5.9) Φ◦(x1, . . . , xn) :=


1 if c(π) = 0 and x1, . . . , xn ∈ O,

ω−1
π (xn)

vol(K0(pc(π)))
if c(π) > 0, x1, . . . , xn−1 ∈ pc(π), and xn∈O×,

0 otherwise.
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On the other hand, we may insert into the GLn×GLn Rankin–Selberg integral the
propagation formula ([25, Lemma 4.1])

W ◦σ (g) = |det g|t1+n−1
2

∫
GLn−1(F )

W ◦σ0(h)|deth|−t1−
n
2

×
∫

Mat(n−1)×1(F )

Φ′(h−1 (1n−1 v
)
g)ψ(en−1v) dv dh,

where Φ′ ∈ S (Mat(n−1)×n(F )) is the Schwartz–Bruhat function

Φ′(x) :=

{
1 if x ∈ Mat(n−1)×n(O),

0 otherwise,

unfold the integration, and make the change of variables g 7→ ( h 0
0 1 )g in order to see

that

Ψ(s,W ◦π ,W
◦
σ ,Φ

◦) =

∫
Nn−1(F )\GLn−1(F )

W ◦σ0(h)|deth|s−
1
2

×
∫

GLn(F )

W ◦π

((
h 0
0 1

)
g

)
Φ∗(g)|det g|s+t1+n−1

2 dg dh

since Φ∗(g) = Φ′(
(
1n−1 0

)
g)Φ◦(eng). So, letting W ′π ∈ W(π, ψ) be given by

W ′π(h) :=
1

L(w, π)

∫
GLn(F )

W ◦π (hg)Φ∗(g)|det g|w+n−1
2 dg

with <(w) sufficiently large, we see that for every induced representation of Langlands
type σ0 of GLn−1(F ) with spherical Whittaker function W ◦σ0

∈ W(σ0, ψ),∫
Nn−1(F )\GLn−1(F )

(
W ′π

(
h 0
0 1

)
−W ◦π

(
h 0
0 1

))
W ◦σ0(h)|deth|s−

1
2 dh = 0

for <(s) sufficiently large due to [31, Théorème (4)]. Since W ′π is right GLn−1(O)-in-
variant, as we may make the change of variables g 7→

(
k′−1 0

0 1

)
g and use the fact

that Φ is left GLn−1(O)-invariant, we therefore have that W ′π( h 0
0 1 ) = W ◦π ( h 0

0 1 ) for
all h ∈ GLn−1(F ) by [31, Lemme (3.5)]. Invoking the uniqueness of the Kirillov model
of π, we deduce that W ′π(g) = W ◦π (g) for all g ∈ GLn(F ).

We present the following consequences of the convolution section identity in
Lemma 5.11, which follow in the exact same manner as in the archimedean setting.

Corollary 5.12. Let F be a nonarchimedean local field, and let π and σ be induced
representations of Langlands type of GLn(F ) with Whittaker newforms W ◦π ∈ W(π, ψ)
and W ◦σ ∈ W(σ, ψ). Let Φ∗ ∈ S (Matn×n(F )) and Φ◦ ∈ S (Fn) be the Schwartz–
Bruhat functions given by (5.8) and (5.9). Then, for <(s1) and <(s2) sufficiently
large, the modified GLn(F )×GLn(F ) Rankin–Selberg integral by Sakellaridis∫

N
diag
n (F )\GLn(F )×GLn(F )

W ◦π (g1)W ◦σ (g2)Φ∗(g−1
1 g2)Φ◦(eng1)

∣∣∣∣det g2

det g1

∣∣∣∣s1 |det g1|s2 dg2 dg1

is equal to

L(s2, πur × σur)L

(
s1 −

n− 1

2
, σ

)
.
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Corollary 5.13. Let F be a nonarchimedean local field, let π be an induced represen-
tation of Langlands type of GLn(F ) with Whittaker newform W ◦π ∈ W(π, ψ), and let
σ be a spherical induced representation of Langlands type of GLn−1(F ) with spherical
Whittaker function W ◦σ ∈ W(σ, ψ). Then, for <(s1) and <(s2) sufficiently large, the
modified GLn(F )×GLn−1(F ) Rankin–Selberg integral by Sakellaridis∫

N
diag
n−1(F )\GLn−1(F )×GLn−1(F )

W ◦π

(
g1 0
0 1

)
W ◦σ (g2)Φur(g

−1
1 g2)

∣∣∣∣det g2

det g1

∣∣∣∣s1 |det g1|s2 dg2 dg1

is equal to

L

(
s2 +

1

2
, π × σ

)
L

(
s1 −

n− 2

2
, σ

)
,

where the Schwartz–Bruhat function Φur ∈ S (Mat(n−1)×(n−1)(F )) is given by

Φur(x) :=

{
1 if x ∈ Mat(n−1)×(n−1)(O),

0 otherwise.

For a pair of spherical induced representations of Langlands type over nonar-
chimedean local fields, such formulæ are due to Sakellaridis [49, §5].

6. Flicker integrals

We define an additive character on C by ψC/R(z) := e−2π(z−z), so that ψC/R(x +

iy) = e−4πiy for x, y ∈ R; this additive character is trivial when restricted to R. We
let

ψC/R,n(u) := ψC/R

(
n−1∑
j=1

uj,j+1

)
denote the corresponding character of Nn(C) 3 u. Given an induced representation of
Whittaker type π of GLn(C), a Whittaker function Wπ∈W(π, ψC/R), and a Schwartz–
Bruhat function Φ ∈ S (Rn), the GLn Flicker integral ([15, 16]) is defined by

Ψ(s,Wπ,Φ) :=

∫
Nn(R)\GLn(R)

Wπ(g)Φ(eng)|det g|sR dg.

Once more, this integral converges absolutely for <(s) sufficiently large and extends
meromorphically to the entire complex plane. The local Asai L-function L(s, π,As)
is defined via the local Langlands correspondence as described accurately in [5, Sec-
tion 3.2]. Beuzart-Plessis ([5, Theorem 3.5]) has shown that Ψ(s,Wπ,Φ) is a holo-
morphic multiple of L(s, π,As) and that the quotient

Ψ(s,Wπ,Φ)

L(s, π,As)

is of finite order in vertical strips.

6.1. The spherical calculation. We recall the Iwasawa decomposition

GLn(C) = Nn(C)An(C)U(n).

Since every element of An(C) may be written as the product of an element of An(R)
and of An(C) ∩U(n), we also have the Iwasawa decomposition

GLn(C) = Nn(C)An(R)U(n).

We write g = uak, where g ∈ GLn(C), u ∈ Nn(C), a = diag(a1, . . . , an) ∈ An(R),
and k ∈ U(n). The Haar measure on GLn(C) becomes

dg = 2nδ−2
Bn(R)(a) dk d×a du.
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Here the additional factor of 2n arises from the fact that the diagonal torus is chosen
to be An(R) in place of An(C), recalling that the Haar measure on C is twice the
Lebesgue measure, while for a ∈ An(R) we observe that δ−2

Bn(R)(a) = δ−1
Bn(C)(a).

We first require the following propagation formula.

Lemma 6.1. Let π = �n
j=1 | · |

tj
C and π0 := �n

j=2 | · |
tj
C be spherical induced rep-

resentations of Langlands type of GLn(C) and GLn−1(C) respectively with spheri-
cal Whittaker functions W ◦π ∈ W(π, ψC/R) and W ◦π0

∈ W(π0, ψC/R). Then for a =
diag(a1, . . . , an) ∈ An(R) we have that

(6.1) W ◦π (a) = 2n−1|det a|2t1R δBn(R)(a)

∫
An−1(R)

W ◦π0
(a′)

n−1∏
j=1

exp(−2πa′2j a
−2
j+1)

× exp(−2πa′−2
j a2

j )|det a′|−2t1
R δ−1

Bn−1(R)(a
′) d×a′.

Proof: From [23, Lemma 9.14], we have the identity

W ◦π0

(
g 0
0 an

)
= |det g|t1+n−1

2
C |an|

t1−n−1
2

C

×
∫

GLn−1(C)

W ◦π0
(h)Φ1(h−1g)Φ2(a−1

n en−1h)|deth|−t1−
n
2

+1

C dh

for g ∈ GLn(C) and an ∈ C×, where Φ1 ∈ S (Mat(n−1)×(n−1)(C)) and Φ2 ∈
S (Mat1×(n−1)(C)) are given by

Φ1(x1) := exp(−2πTr(x1
tx1)), Φ2(x2) := exp(−2πx2

tx2).

We employ the Iwasawa decomposition in order to write h = u′a′k′, where u′ ∈
Nn−1(C), a′ = diag(a′1, . . . , a

′
n−1) ∈ An−1(R), and k′ ∈ U(n − 1). As W ◦π0

(u′a′k′) =
ψC/R,n−1(u′)W ◦π0

(a′), the integral over U(n− 1) 3 k′ is trivial.

Now we specify g=diag(a1, . . . , an−1)∈An−1(R) and an∈R, so that Φ2(a−1
n en−1h)=

exp(−2πa′2n−1a
−2
n ). We make the change of variables u′ 7→ u′−1, then u′i,j 7→ a′ia

−1
j u′i,j ,

and finally evaluate the integrals over C 3 u′i,j ; they are equal to 1 if j 6= i+ 1 and to

exp(−2πa′2i a
−2
i+1) if j = i+ 1. This gives the desired identity.

We also require a convolution section identity.

Lemma 6.2. Let π = �n
j=1 | · |

tj
C be a spherical induced representation of Langlands

type of GLn(C) with spherical Whittaker functions W ◦π ∈ W(π, ψC/R). Then, for
a′ = diag(a′1, . . . , a

′
n) ∈ An(R), we have that for <(s) sufficiently large

(6.2) L(s, π)W ◦π (a′) = 2n
∫

An(R)

W ◦π (a′a)

n∏
j=1

exp(−2πa2
j )

×
n−1∏
j=1

exp(−2πa′2j a
′−2
j+1a

−2
j+1)|det a|2sR δ−1

Bn(R)(a) d×a.

Proof: From [23, Lemma 9.6] we have the identity

L(s, π)W ◦π (a′) =

∫
GLn−1(C)

W ◦π (a′h)Φur(h)|deth|s+
n−1
2

C dh,

with Φur ∈ S (Matn×n(C)) given by (5.1). We employ the Iwasawa decomposition
in order to write h = uak, where u ∈ Nn(C), a = diag(a1, . . . , an) ∈ An(R), and
k ∈ U(n). As W ◦π (a′uak) = ψC/R,n−1(a′ua′−1)W ◦π (a′a), the integral over U(n) 3 k

is trivial. We make the change of variables ui,j 7→ a−1
j ui,j , and finally evaluate the

integrals over C 3 ui,j ; they are equal to 1 if j 6= i+ 1 and to exp(−2πa′2i a
′−2
i+1a

−2
i+1) if

j = i+ 1. We arrive at the identity (6.2).
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We are now able to prove that when π is a spherical induced representation of
Langlands type of GLn(C), the spherical Whittaker function W ◦π ∈ W(π, ψC/R) is a
strong test vector for the Flicker integral.

Theorem 6.3. Let π = �n
j=1 | · |

tj
C be a spherical induced representation of Langlands

type of GLn(C) with spherical Whittaker function W ◦π ∈ W(π, ψC/R). Then, with
Φur ∈ S (Rn) given by (5.1), the Flicker integral Ψ(s,W ◦π ,Φur) is equal to

L(s, π,As) :=

n∏
j=1

ζR(s+ 2tj)
∏

1≤j<`≤n

ζC(s+ tj + t`).

Proof: We prove this by induction. The base case n = 1 is trivially true since the GL1

Flicker integral is simply∫
R×

exp(−πx2)|x|s+2t1
R d×x = ζR(s+ 2t1) = L(s, π,As).

For the general case, we shall show that if π = �n
j=1 | · |

tj
C and π0 := �n

j=2 | · |
tj
C , then

the GLn Flicker integral satisfies the identity

(6.3) Ψ(s,W ◦π ,Φur) = ζR(s+ 2t1)L(s+ t1, π0)Ψ(s,W ◦π0
,Φur),

where the GLn−1 Flicker integral on the right-hand side involves the spherical Whit-
taker function W ◦π0

∈ W(π0, ψC/R) and the Schwartz–Bruhat function Φur ∈ S (Rn−1)
given by (5.1). Since

L(s+ t1, π0) =

n∏
`=2

ζC(s+ t1 + t`),

this implies the result by the induction hypothesis.
We first note that the Ψ(s,W ◦π ,Φur) is equal to∫

An(R)

W ◦π (a) exp(−πa2
n)|det a|sRδ−1

Bn(R)(a) d×a

via the Iwasawa decomposition g = ak, since the integral over O(n) 3 k is triv-
ial. We insert the propagation formula (6.1) and relabel a = diag(a1, . . . , an) ∈ An(R)
as
(
y 0
0 a

)
, where now y ∈ R× and a = diag(a1, . . . , an−1) ∈ An−1(R). The Flicker

integral Ψ(s,W ◦π ,Φur) becomes

2n−1

∫
An−1(R)

exp(−πa2
n−1)|det a|s+2t1

R

∫
An−1(R)

W ◦π0
(a′)

n−2∏
j=1

exp(−2πa′−2
j+1a

2
j )

×
n−1∏
j=1

exp(−2πa′2j a
−2
j )|det a′|−2t1

R δ−1
Bn−1(R)(a

′)

∫
R×

exp(−2πa′−2
1 y2)|y|s+2t1

R d×y d×a′ d×a.

We make the change of variables y 7→ 2−1/2a′1y, then the change of variables a′j 7→
2−1/2a′jaj and aj 7→ 21/2a′−1

j a′j+1aj , and finally an−1 7→ 21/2an−1. We arrive at the
identity∫

R×
exp(−πy2)|y|s+2t1

R d×y

∫
An−1(R)

exp(−πa′2n−1)|det a′|sRδ−1
Bn−1(R)(a

′)

×2n−1

∫
An−1(R)

W ◦π0
(a′a)

n−1∏
j=1

exp(−2πa2
j )

n−2∏
j=1

exp(−2πa′2j a
′−2
j+1a

−2
j+1)

×|det a|2s+2t1
R δ−1

Bn−1(R)(a) d×a d×a′.
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The integral over R× 3 y is ζR(s+2t1), while the last two lines are L(s+t1, π0)W ◦π0
(a′)

by the convolution section identity (6.2). So this is

ζR(s+ 2t1)L(s+ t1, π0)

∫
An−1(R)

W ◦π0
(a′) exp(−πa′2n−1)|det a′|sRδ−1

Bn−1(R)(a
′) d×a′,

which is precisely (6.3) by the Iwasawa decomposition g = a′k′, since the integral
over O(n− 1) 3 k′ is trivial.

6.2. Test vectors for Flicker integrals and Flicker–Rallis periods. We pro-
ceed to the more general case where π may be ramified. Our first step is to reduce
the Flicker integral to an integral over Nn−1(R)\GLn−1(R).

Proposition 6.4. Let π be an induced representation of Langlands type of GLn(C)
with Whittaker newform W ◦π ∈ W(π, ψC/R). Let Φ ∈ S (Rn) be the right O(n)-finite
Schwartz–Bruhat function of the form Φ(x) = P (x) exp(−πx tx), where the distin-
guished homogeneous polynomial P ∈ Pχπ|O(1),c(π)(Rn) is given by

P (x) :=

c(π)∑
m=c(χπ|O(1))

m≡c(χπ|O(1)) (mod 2)

(x tx)
c(π)−m

2 (dim τχπ|O(1),m
)P ◦χπ|O(1),m

(x).

Then the Flicker integral Ψ(s,W ◦π ,Φ) is equal to

(6.4) L(ns, ωπur |R×)

∫
Nn−1(R)\GLn−1(R)

W ◦π

(
g 0
0 1

)
|det g|s−1

R dg.

The proof of this proceeds along similar lines to that of Proposition 5.1.

Proof: We use the Iwasawa decomposition g = (z1n)( h 0
0 1 )k for Nn(R)\GLn(R) to see

that the Flicker integral Ψ(s,W ◦π ,Φ) is equal to∫
R×

ωπ(z)|z|nsR
∫

Nn−1(R)\GLn−1(R)

|deth|s−1
R

∫
O(n)

W ◦π

((
h 0
0 1

)
k

)
Φ(zenk) dk dh d×z.

We insert the identity (3.6) for W ◦π (g) with g replaced by ( h 0
0 1 )k and the variable of

integration being k′ ∈ U(n), then interchange the order of integration and make the
change of variables k 7→ k−1 and k′ 7→ kk′. We end up with∫

R×
ωπ(z)|z|nsR

∫
Nn−1(R)\GLn−1(R)

|deth|s−1
R

∫
U(n)

W ◦π

((
h 0
0 1

)
k′
)

× dim τχπ,c(π)

∫
O(n)

P ◦χπ,c(π)(enk
′−1k−1)Φ(zenk

−1) dk dk′ dh d×z.

By the addition theorem, Proposition 3.2, the last line is
dim τχπ,c(π)∑

`=1

Q`(enk
′−1)

∫
O(n)

Q`(enk)Φ(zenk
−1) dk,

where {Q`} is an orthonormal basis of Hχπ,c(π)(Cn). By the homogeneity of Q`,
(3.1), we observe that the restrictions of these polynomials to Rn are elements of
Pχπ|O(1),c(π)(Rn).

We now use the fact that

Φ(zenk
−1) = χπ

(
z

‖z‖

)
‖z‖c(π)e−πz

2
c(π)∑

m=c(χπ|O(1))

m≡c(χπ|O(1)) (mod 2)

(dim τχπ|O(1),m
)P ◦χπ|O(1),m

(enk)
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for z ∈ R× and k ∈ O(n) by the homogeneity of P ◦χπ|O(1),m
as in (3.1) coupled with the

identity (3.2). By (3.3), the sum over m is the reproducing kernel of Pχπ|O(1),c(π)(Rn),

and so the integral over O(n) 3 k is Q`(en) by (3.5). Using the addition theorem,
Proposition 3.2, in reverse and then using (3.6) to evalute the integral over U(n) 3 k′,
we find that Ψ(s,W ◦π ,Φ) is equal to∫

R×
ωπ(z)χπ

(
z

‖z‖

)
‖z‖c(π)|z|nsR e−πz

2

d×z

∫
Nn−1(R)\GLn−1(R)

W ◦π

(
h 0
0 1

)
|deth|s−1

R dh.

It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over R× 3 z
is L(ns, ωπur

|R×).

Remark 6.5. Just as for Proposition 5.1, the same proof remains valid in the nonar-
chimedean setting.

Finally, we use Theorem 6.3 to show that when π is an induced representation
of Langlands type of GLn(C), the newform W ◦π ∈ W(π, ψC/R) is a weak test vector
for the Flicker integral. The proof proceeds by reducing the problem to the spherical
case.

Theorem 6.6. With the notation and hypotheses of Proposition 6.4, the Flicker
integral

(6.5) Ψ(s,W ◦π ,Φ)

is equal to L(s, πur,As).

Proof: By Lemma 4.6 and Proposition 6.4, we have that

Ψ(s,W ◦π ,Φ) = L(ns, ωπur |R×)

∫
Nn−1(R)\GLn−1(R)

W ◦πur

(
h 0
0 1

)
|deth|s−1

R dh.

On the other hand, the same calculation shows that the right-hand side is equal to
Ψ(s,W ◦πur

,Φur) with Φur ∈ S (Rn) given by (5.1). It remains to invoke Theorem 6.3.

In general, the näıve Asai L-function L(s, πur,As) is not equal to L(s, π,As).
Nonetheless, these two L-functions are closely related.

Proposition 6.7. Given an induced representation of Whittaker type π of GLn(C),
there exists a polynomial p(s) for which

L(s, πur,As) = p(s)L(s, π,As).

Proof: For π = �n
j=1 πj , we have that

L(s, π,As) =

n∏
j=1

L(s, πj ,As)
∏

1≤j<`≤n

L(s, πj × π`)

via the local Langlands correspondence (cf. [5, Lemma 3.2.1]). Recalling Proposi-
tion 5.5, it thereby suffices to consider the case where π is essentially square-integrable.

For π essentially square-integrable, so that π = eiκ arg| · |tC and πur = | · |t+‖κ‖/2C , the

fact that ζR(s) := π−s/2Γ(s/2) and that Γ(s + 1) = sΓ(s) means that for κ′ ∈ {0, 1}
satisfying κ ≡ κ′ (mod 2)

L(s, πur,As)

L(s, π,As)
=
ζR(s+ 2t+ ‖κ‖)
ζR(s+ 2t+ κ′)

= π−
‖κ‖−κ′

2

1
2

(‖κ‖−κ′)−1∏
m=0

(
s+ 2t+ κ′

2
+m

)
.
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When s = 1, the integral appearing in (6.4) is known as the Flicker–Rallis pe-
riod. In general, this integral need not converge at s = 1. When π is unitary, however,
convergence is guaranteed by the following lemma, whose proof we omit as it is a
standard application [39, Lemma 7.1]; [16, Proposition 1] of bounds for Whittaker
functions by a gauge [36, §4, Propositions 2 and 3].

Lemma 6.8. Let π be a unitary generic irreducible Casselman–Wallach representa-
tion of GLn(C). For any Wπ ∈ W(π, ψC/R), the integral∫

Nn−1(R)\GLn−1(R)

Wπ

(
h 0
0 1

)
|deth|s−1

R dh

converges absolutely for <(s) ≥ 1.

We explicitly evaluate the Flicker–Rallis period at the Whittaker newform. The
nonvanishing of this integral (in a slightly modified form) is implicitly described in
work of Gelbart, Jacquet, and Rogawski [18, §2], Kemarsky [38, §1]; [39, §8], and
W. Zhang [59, (3.14) and (3.21)].

Theorem 6.9. Let π be a unitary generic irreducible Casselman–Wallach represen-
tation of GLn(C) with Whittaker newform W ◦π ∈ W(π, ψC/R). Then the Flicker–Rallis
period

(6.6)
∫

Nn−1(R)\GLn−1(R)

W ◦π

(
h 0
0 1

)
dh

is equal to
L(1, πur,As)

L(n, ωπur |R×)
.

Proof: With Lemma 6.8 in hand, we take s = 1 in Proposition 6.4 and combine this
with Theorem 6.6.

Remark 6.10. The nonarchimedean analogue of this result has been resolved by Anan-
davardhanan and Matringe [2, Theorem 1.1].

We say that π is GLn(R)-distinguished if HomGLn(R)(π,1) is nontrivial.

Remark 6.11 ([39, §6]). We define ϑ[ : W(π, ψC/R) → C, the Pn(R)-invariant linear
functional, by

(6.7) ϑ[(Wπ) :=

∫
Nn−1(R)\GLn−1(R)

Wπ

(
h 0
0 1

)
dh.

Owing to Theorem 6.9, the linear functional ϑ[ is nontrivial. In addition, Kemarsky
([38, Theorem 1.1]) shows that a Pn(R)-invariant linear functional extends to a
GLn(R)-invariant linear functional in a purely local manner. Alternatively, a local-to-
global method may be adapted as in [18, pp. 185–186] (cf. [59, Proposition 3.2]). Hence
ϑ[ gives rise to a nontrivial GLn(R)-invariant linear functional on the Whittaker
model W(π, ψC/R).

7. Bump–Friedberg integrals

For n = 2m, we define the embedding J : GLm(F )×GLm(F )→ GLn(F ) by

J(g, g′)k,` :=


gi,j if k = 2i− 1 and ` = 2j − 1,

g′i,j if k = 2i and l = 2j,

0 otherwise.
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We denote by Mm,m(F ) ∼= GLm(F )×GLm(F ) the standard Levi subgroup of GLn(F )
associated to the partition (m,m). Let

wm,m :=

(
1 2 · · · m m+ 1 m+ 2 · · · 2m
1 3 · · · 2m− 1 2 4 · · · 2m

)
.

We then set

Hm,m(F ) :=wm,mMm,m(F )w−1
m,m

= {J(g, g′) = wm,m diag(g, g′)w−1
m,m : diag(g, g′) ∈ Mm,m(F )}.

Similarly, for n = 2m + 1, we define the embedding J : GLm+1(F ) × GLm(F ) →
GLn(F ) by

J(g, g′)k,` :=


gi,j if k = 2i− 1 and ` = 2j − 1,

g′i,j if k = 2i and ` = 2j,

0 otherwise.

We denote by Mm+1,m(F ) ∼= GLm+1(F ) × GLm(F ) the standard Levi subgroup as-
sociated to the partition (m+ 1,m) of 2m+ 1. Let wm+1,m := wm+1,m+1|GL2m+1(F ),
so that

wm+1,m :=

(
1 2 · · · m+ 1 m+ 2 m+ 3 · · · 2m 2m+ 1
1 3 · · · 2m+ 1 2 4 · · · 2m− 2 2m

)
,

and then set

Hm+1,m(F ) :=wm+1,mMm+1,m(F )w−1
m+1,m

= {J(g, g′) = wm+1,m diag(g, g′)w−1
m+1,m : diag(g, g′) ∈ Mm+1,m(F )}.

To make the above description much more transparent, we provide prototypical
elements in the cases of H2,2(F ) and H3,2(F ).

Example 7.1. The group H2,2(F ) consists of invertible matrices of the form

J

((
g1,1 g1,2

g2,1 g2,2

)
,

(
g′1,1 g′1,2
g′2,1 g′2,2

))
=


g1,1 0 g1,2 0
0 g′1,1 0 g′1,2
g2,1 0 g2,2 0
0 g′2,1 0 g′2,2

 .

The group H3,2(F ) consists of invertible matrices of the form

J

g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 ,

(
g′1,1 g′1,2
g′2,1 g′2,2

) =


g1,1 0 g1,2 0 g1,3

0 g′1,1 0 g′1,2 0
g2,1 0 g2,2 0 g2,3

0 g′2,1 0 g′2,2 0
g3,1 0 g3,2 0 g3,3

 .

Given an induced representation of Whittaker type π of GLn(F ), a Whittaker
function Wπ ∈ W(π, ψ), and a Schwartz–Bruhat function Φ ∈ S (Fm), where m :=⌊
n
2

⌋
, the Bump–Friedberg integral [8] is given by

B(s1, s2,Wπ,Φ)

:=



∫
Nm(F )\GLm(F )

∫
Nm(F )\GLm(F )

Wπ(J(g, g′))Φ(emg
′)|det g|s1−

1
2 |det g′|s2−s1+ 1

2 dg dg′

for n = 2m,∫
Nm(F )\GLm(F )

∫
Nm+1(F )\GLm+1(F )

Wπ(J(g, g′))Φ(em+1g)|det g|s1 |det g′|s2−s1 dg dg′

for n = 2m+ 1.
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Alternatively, one can write this as an integral over (Nn(F ) ∩ Hm,m(F ))\Hm,m(F )
for n = 2m and as an integral over (Nn(F )∩Hm+1,m(F ))\Hm+1,m(F ) for n = 2m+1
(cf. [43, 44]). The Bump–Friedberg integral converges absolutely for <(s) sufficiently
large and extends meromorphically to the entire complex plane. The local exterior
square L-function L(s, π,∧2) is defined via the local Langlands correspondence as
illustrated in [41] and [5, Section 3.2]. We take the local Bump–Friedberg L-func-
tion L(s1, s2, π,BF) to be L(s1, π)L(s2, π,∧2). For our purposes, it will often be con-
venient to write B(s,Wπ,Φ) in place of B(s, 2s,Wπ,Φ) and L(s, π,BF) in place of
L(s, π)L(2s, π,∧2) when n = 2m is even.

7.1. The spherical calculation. We summarise a propagation formula for GLn(F )
Whittaker functions in terms of GLn−1(F ) Whittaker functions and a convolution
section identity for radial parts. We omit the proofs, since they are essentially identical
to the corresponding proofs of Lemmata 6.1 and 6.2.

Lemma 7.2 (cf. Lemma 6.1). Let π = �n
j=1 |·|tj and π0 := �n

j=2 |·|tj be the spherical

induced representations of Langlands type of GLn(F ) and GLn−1(F ) respectively with
spherical Whittaker functions W ◦π ∈ W(π, ψ) and W ◦π0

∈ W(π0, ψ). Then for a =
diag(a1, . . . , an) ∈ An(F ) we have

(7.1) W ◦π (a) = |det a|t1δ1/2

Bn(F )(a)

∫
An−1(F )

W ◦π0
(a′)

n−1∏
j=1

exp(−dFπ‖a′ja−1
j+1‖

2)

× exp(−dFπ‖a′−1
j aj‖2)|det a′|−t1δ−1/2

Bn−1(F )(a
′) d×a′.

Lemma 7.3 (cf. Lemma 6.2). Let π = �n
j=1 |·|tj be a spherical induced representation

of Langlands type of GLn(F ) with spherical Whittaker function W ◦π ∈ W(π, ψ). Then
for a = diag(a1, . . . , an) ∈ An(F ) we have

L(s, π)W ◦π (a′) =

∫
An(F )

W ◦π (a′a)

n∏
j=1

exp(−dFπ‖aj‖2)

×
n−1∏
j=1

exp(−dFπ‖a′ja′−1
j+1a

−1
j+1‖

2)|det a|sF δ
−1/2

Bn(F )(a) d×a.

We will use these identities after reducing Bump–Friedberg integrals to integrals
over a torus.

Proposition 7.4. Let π = �n
j=1 | · |tj be a spherical induced representation of Lang-

lands type of GLn(F ) with spherical Whittaker function W ◦π ∈ W(π, ψ), and for
m =

⌊
n
2

⌋
, let Φur ∈ S (Fm) be given by (5.1).

(i) For n = 2m, the Bump–Friedberg integral B(s1, s2,W
◦
π ,Φur) is equal to∫

An(F )

W ◦π (b) exp(−dFπ‖bn‖2)|b1b3 · · · bn−1|s1 |b2b4 · · · bn−2|s2−s1δ
− 1

2
Bn(F )(b) d

×b.

(ii) For n = 2m+ 1, the Bump–Friedberg integral B(s1, s2,W
◦
π ,Φur) is equal to∫

An(F )

W ◦π (b) exp(−dFπ‖bn‖2)|b1b3 · · · bn−2|s1 |b2b4 · · · bn−1|s2−s1δ
− 1

2
Bn(F )(b) d

×b.
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Proof: We prove this only for n = 2m; the case n = 2m + 1 follows analogously.
Exploiting the Iwasawa decomposition g = ak and g′ = a′k′ for Nm(F )\GLm(F ), the
Bump–Friedberg integral B(s1, s2,W

◦
π ,Φur) is equal to∫

Am(F )

∫
Am(F )

W ◦π (J(a, a′)) exp(−dFπ‖a′m‖2)|det a|s1−
1
2 |det a′|s2−s1+ 1

2

×δ−1
Bm(F )(a)δ−1

Bm(F )(a
′) d×a d×a′.

Since |det a|− 1
2 |det a′| 12 δ−1

Bm(F )(a)δ−1
Bm(F )(a

′) = δ
− 1

2

Bn(F )(J(a, a′)), this is equal to∫
Am(F )

∫
Am(F )

W ◦π (J(a, a′)) exp(−dFπ‖a′m‖2)|det a|s1 |det a′|s2−s1

×δ−
1
2

Bn(F )(J(a, a′)) d×a d×a′.

The result now follows by writing a=diag(b1, b3, . . . , bn−1) and a′=diag(b2, b4, . . . , bn)
and letting b := (b1, . . . , bn) ∈ An(F ).

We are now able to prove that when π is a spherical induced representation of
Langlands type of GLn(F ), the spherical Whittaker function W ◦π ∈ W(π, ψ) is a
strong test vector for the Bump–Friedberg integral.

Theorem 7.5. Let π = �n
j=1 | · |tj be a spherical induced representation of Lang-

lands type of GLn(F ) with spherical Whittaker function W ◦π ∈ W(π, ψ), and for
m =

⌊
n
2

⌋
, let Φur ∈ S (Fm) be given by (5.1). Then the Bump–Friedberg integral

B(s1, s2,W
◦
π ,Φur) is equal to

L(s1, s2, π,BF) := L(s1, π)L(s2, π,∧2) =

n∏
`=1

ζF (s1 + t`)
∏

1≤j<k≤n

ζF (s2 + tj + tk).

Proof: We prove this by induction. For the base case n = 2, the Bump–Friedberg
integral is∫

F×

∫
F×

W ◦π

(
a1 0
0 a2

)
exp(−dFπ‖a2‖2)|a1|s1−

1
2 |a2|s2−s1+ 1

2 d×a1 d
×a2.

From (7.1), this is equal to∫
F×

∫
F×

exp(−dFπ‖a2‖2)|a1|s1+t1 |a2|s2−s1+t1

×
∫
F×

exp(−dFπ‖a′a−1
2 ‖

2) exp(−dFπ‖a′−1a1‖2)|a′|t2−t1 d×a′ d×a1 d
×a2.

We interchange the order of integration and make the change of variables a1 7→ a′a1

and a′ 7→ a′a2, yielding∫
F×

exp(−dFπ‖a1‖2)|a1|s1+t1 d×a1

∫
F×

exp(−dFπ‖a2‖2)|a2|s2+t1+t2 d×a2

×
∫
F×

exp(−dFπ‖a′‖2)|a′|s1+t2 d×a′,

which is precisely L(s1, s2, π,BF).
Now we proceed to the induction step. We suppose that the desired identity

holds for n = 2m − 1 and we prove this for n = 2m. We insert the recursive for-
mula for W ◦π (a) from Lemma 7.2 into the expression given in Proposition 7.4(i) for
the Bump–Friedberg integral B(s1, s2,W

◦
π ,Φur). We then relabel b ∈ An(F ) with



Test vectors for archimedean period integrals 169

diag(y, b), where now y ∈ F× and b = diag(b1, b2, . . . , bn−1) ∈ An−1(F ). The modu-

lus character δ
−1/2
Bn(F )(b) is cancelled out and we arrive at∫

An−1(F )

exp(−dFπ‖bn−1‖2)|b2b4 · · · bn−2|s1+t1 |b1b3 · · · bn−1|s2−s1+t1

×
∫

An−1(F )

W ◦π0
(b′)

n−1∏
j=1

exp(−dFπ‖b′jb−1
j ‖

2)

×
n−2∏
j=1

exp(−dFπ‖b′−1
j+1bj‖

2)|det b′|−t1δ−
1
2

Bn−1(F )(b
′)

×
∫
F×

exp(−dFπ‖b′−1
1 y‖2)|y|s1+t1 d×y d×b′ d×b.

We interchange the order of integration and perform the change of variables y 7→ b′1y
and bj 7→ b′j+1bj for 1 ≤ j ≤ n− 2. The Bump–Friedberg integral B(s1, s2,W

◦
π ,Φur)

becomes∫
An−1(F )

n−1∏
j=1

exp(−dFπ‖bj‖2)|b2b4 · · · bn−2|s1+t1 |b1b3 · · · bn−1|s2−s1+t1

×
∫

An−1(F )

W ◦π0
(b′)

n−2∏
j=1

exp(−dFπ‖b′jb′−1
j+1b

−1
j ‖

2) exp(−dFπ‖b′n−1b
−1
n−1‖

2)δ
− 1

2
Bn−1(F )(b

′)

×|b′1b′3 · · · b′n−1|s1 |b′2b′4 · · · b′n−2|s2−s1
∫
F×

exp(−dFπ‖y‖2)|y|s1+t1 d×y d×b′ d×b.

The integral over F× 3 y is simply ζF (s1 + t1). We make the change of variables b′j 7→
b′jbj and then interchange the order of the integration. This leads us to

ζF (s1 + t1)

∫
An−1(F )

exp(−dFπ‖b′n−1‖2)|b′1b′3 · · · b′n−1|s1 |b′2b′4 · · · b′n−2|s2−s1δ
− 1

2
Bn−1(F )(b

′)

×
∫

An−1(F )

W ◦π0
(b′b)

n−1∏
j=1

exp(−dFπ‖bj‖2) exp(−dFπ‖b′jb′−1
j+1b

−1
j+1‖

2)

×|det b|s2+tδ
− 1

2
Bn−1(F )(b) d

×b d×b′.

By Lemma 7.3, the integral over An−1(F ) 3 b is precisely L(s2 + t1, π0)W ◦π0
(b′).

According to Proposition 7.4(ii), we end up with

ζF (s1 + t1)L(s2 + t1, π0)

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦π (J(g, g′))Φur(emg)

×|det g|s1 |det g′|s2−s1 dg dg′,

from which the desired identity holds by the induction hypothesis.
The same method of proof remains valid for the induction step when n = 2m+ 1,

where we suppose that the desired identity holds for n = 2m; the only difference is
that we appeal to Proposition 7.4(i) in place of Proposition 7.4(ii).

When F = R, Theorem 7.5 recovers an earlier result of Stade [52, Theorem 3.3]
proved via different means. Invoking [51, Proposition 2.1], Stade’s method can also
be used to prove Theorem 7.5 when F = C.
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Remark 7.6. Ishii ([26, Theorem 4.1]) has proved the existence of a strong test vector
for the Bump–Friedberg integral when F = R and π is a principal series representa-
tion.

7.2. Test vectors for Bump–Friedberg integrals and Friedberg–Jacquet pe-
riods. We proceed to the more general case where π may be ramified. Our first step is
to reduce the Bump–Friedberg integral to a double integral over Nm−1(F )\GLm−1(F )
and Nm(F )\GLm(F ) when n = 2m and over Nm(F )\GLm(F ) and Nm(F )\GLm(F )
when n = 2m+ 1.

Proposition 7.7. Let π be an induced representation of Langlands type of GLn(F )
with Whittaker newform W ◦π ∈W(π, ψ). For m=

⌊
n
2

⌋
, let Φ∈S (Fm) be the Schwartz–

Bruhat function given by Φ(x) = P (x) exp(−dFπx tx), where the distinguished homo-
geneous polynomial P ∈ Pχπ,c(π)(F

m) is taken to be

P (x) :=

c(π)∑
j=c(χπ)

j≡c(χπ) (mod 2)

(x tx)
c(π)−j

2 (dim τχπ,j)P
◦
χπ,j

(x).

(i) Let n = 2m. For <(s1) and <(s2) sufficiently large, the Bump–Friedberg integral
B(s1, s2,W

◦
π ,Φ) is equal to

(7.2) L(ms2, ωπur)

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

(
g,

(
h′ 0
0 1

)))

×|det g|s1−
1
2 |deth′|s2−s1−

1
2 dg dh′.

(ii) Let n = 2m + 1. For <(s1) and <(s2) sufficiently large, the Bump–Friedberg
integral B(s1, s2,W

◦
π ,Φ) is equal to

(7.3) L(s1 +ms2, ωπur)

∫
Nm(F )\GLm(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

((
h 0
0 1

)
, g′
))

×|deth|s1−1|det g′|s2−s1 dh dg′.

Once more, the proof of this proceeds along similar lines to that of Proposition 5.1.

Proof: We prove this for n = 2m; the case n = 2m + 1 follows analogously. We use
the Iwasawa decomposition for Nm(F )\GLm(F ) 3 g′ to write g′ = (z1m)

(
h′ 0
0 1

)
k′ and

then make the change of variables g 7→ (z1m)g on the first copy of Nm(F )\GLm(F ) 3
g in order to see that the Bump–Friedberg integral B(s1, s2,W

◦
π ,Φ) is equal to

∫
F×

ωπ(z)|z|ms2
∫

Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

|det g|s1−
1
2 |deth′|s2−s1−

1
2

×
∫
Km

W ◦π

(
J

(
g,

(
h′ 0
0 1

)
k′
))

Φ(zemk
′) dk′ dg dh′ d×z.
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We insert the identity (3.6) for W ◦π (g) with J
(
g,
(
h′ 0
0 1

)
k′
)

in lieu of g and then make

the change of variables k′ 7→ k′−1 and k 7→ J(1m, k
′)k. We arrive at∫

F×
ωπ(z)|z|ms2

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

|det g|s1−
1
2 |deth′|s2−s1−

1
2

×
∫
Kn

W ◦π

(
J

(
g,

(
h′ 0
0 1

))
k

)
dim τχπ,c(π)

×
∫
Km

P ◦χπ,c(π)(enk
−1J(1m, k

′−1))Φ(zemk
′−1) dk′ dk dg dh′ d×z.

By the addition theorem, Proposition 3.2, the last line turns into

dim τχπ,c(π)∑
`=1

Q`(enk
−1)

∫
Km

Q`(enJ(1m, k
′))Φ(zemk

′−1) dk′,

where {Q`} is an orthonormal basis of Hχπ,c(π)(F
n).

Since P ∈ Pχπ,c(π)(F
m), we observe that for z ∈ F× and k′ ∈ Km

Φ(zemk
′−1) = χπ

(
z

‖z‖

)
‖z‖c(π) exp(−dFπ‖z‖2)

c(π)∑
j=c(χπ)

j≡c(χπ) (mod 2)

(dim τχπ,j)P
◦
χπ,j(emk

′)

by the homogeneity of P ◦χπ,j as in (3.1) together with the identity (3.2). By (3.3), the
sum over j is the reproducing kernel for Pχπ,c(π)(F

m), and so the integral overKm 3 k′
is simply Q`(en) by (3.5). Using the addition theorem, Proposition 3.2, in reverse and
then using (3.6) to evaluate the integral overKn 3 k, we find that the Bump–Friedberg
integral B(s1, s2,W

◦
π ,Φ) is equal to∫

F×
ωπ(z)χπ

(
z

‖z‖

)
‖z‖c(π)|z|ms2 exp(−dFπ‖z‖2) d×z

×
∫

Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

(
g,

(
h′ 0
0 1

)))
|det g|s1−

1
2 |det g′|s2−s1−

1
2 dg dh′.

It remains to recall Lemma 4.5, which, by (2.1), shows that the integral over R× 3 z
is L(ms2, ωπur

).

Remark 7.8. Just as for Propositions 5.1 and 6.4, the same proof remains valid in the
nonarchimedean setting.

Finally, we use Theorem 7.5 to show that when π is an induced representation of
Langlands type of GLn(F ), W ◦π is a weak test vector for the Bump–Friedberg integral.
Once more, this is proved by reducing the problem to the spherical case.

Theorem 7.9. With the notation and hypotheses of Proposition 7.7, the Bump–
Friedberg integral

(7.4) B(s1, s2,W
◦
π ,Φ)

:=



∫
Nm(F )\GLm(F )

∫
Nm(F )\GLm(F )

W ◦π (J(g, g′))Φ(emg
′)|det g|s1−

1
2 |det g′|s2−s1+ 1

2 dg dg′

for n = 2m,∫
Nm(F )\GLm(F )

∫
Nm+1(F )\GLm+1(F )

W ◦π (J(g, g′))Φ(em+1g)|det g|s1 |det g′|s2−s1 dg dg′

for n = 2m+ 1,

is equal to L(s1, s2, πur,BF) := L(s1, π)L(s2, πur,∧2).
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Proof: Again, we prove this for n = 2m; the case n = 2m+1 follows analogously. Ow-
ing to Lemma 4.6 and Proposition 7.7, the Bump–Friedberg integral B(s1, s2,W

◦
π ,Φ)

is equal to

L(ms2, ωπur)

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦πur

(
J

(
g,

(
h′ 0
0 1

)))

×|det g|s1−
1
2 |deth′|s2−s1−

1
2 dg dh′.

On the other hand, the same calculation shows that this is equal toB(s1, s2,W
◦
πur
,Φur)

with Φur ∈ S (Fm) given by (5.1). It remains to invoke Theorem 7.5.

In general, the näıve Bump–Friedberg L-function L(s1, s2, πur,BF) is not equal to
L(s1, s2, π,BF). Nonetheless, these two L-functions are closely related.

Proposition 7.10. Given an induced representation of Whittaker type π of GLn(F ),
there exists a polynomial p(s2) for which

L(s1, s2, πur,BF) = p(s2)L(s1, s2, π,BF).

Proof: It is sufficient to show that L(s, πur,∧2) = p(s)L(s, π,∧2). For π = �r
j=1 πj ,

we have that

L(s, π,∧2) =

r∏
j=1

L(s, πj ,∧2)
∏

1≤j<`≤r

L(s, πj × π`)

via the local Langlands correspondence (cf. [44, §1.3]). Recalling Proposition 5.5, it
thereby suffices to consider the case where π is essentially square-integrable.

If F = C, so that π = eiκ arg| · |tC, then L(s, π,∧2) = L(s, πur,∧2) = 1. Similarly,
if F = R and π = sgnκ | · |tR, then L(s, π,∧2) = L(s, πur,∧2) = 1. Finally, if F = R
and π = Dκ ⊗ |det|tR, then since ζR(s) := π−s/2Γ(s/2), and recalling the fact that
Γ(s+ 1) = sΓ(s), we have that for κ′ ∈ {0, 1} satisfying κ ≡ κ′ (mod 2)

L(s, πur,∧2)

L(s, π,∧2)
=

ζR(s+ 2t+ κ)

ζR(s+ 2t+ κ′)
= π−

κ−κ′
2

1
2

(κ−κ′)−1∏
m=0

(
s+ 2t+ κ′

2
+m

)
.

When s1 = 1/2 and s2 = 1, the integrals appearing in (7.2) and (7.3) are known
as the Friedberg–Jacquet period [17]. In general, these integrals need not converge
at (s1, s2) = (1/2, 1). When π is unitary, however, convergence is guaranteed by
the following lemma, whose proof we omit since it is standard [43, Propositions 3.4
and 5.1]; once more, it follows from bounds for Whittaker functions by a gauge [36,
§4 Propositions 2 and 3].

Lemma 7.11. Let π be a unitary generic irreducible Casselman–Wallach represen-
tation of GLn(F ). For any Wπ ∈ W(π, ψ), the integrals

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

(
g,

(
h′ 0

0 1

)))
|det g|s−

1
2 |deth′|s−

1
2 dg dh′

for n = 2m,∫
Nm(F )\GLm(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

((
h 0

0 1

)
, g′
))
|deth|s−1|det g′|s dh dg′

for n = 2m+ 1,

converge absolutely for <(s) ≥ 1/2.
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We associate Friedberg–Jacquet periods to certain values of Bump–Friedberg L-
functions. Indeed, the nonvanishing of these integrals is explained by Matringe [43,
Proposition 3.5].

Theorem 7.12. Let π be a unitary generic irreducible Casselman–Wallach represen-
tation of GLn(F ) with Whittaker newform W ◦π ∈ W(π, ψ). Then the Friedberg–Jacquet
period

(7.5)



∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

(
g,

(
h′ 0

0 1

)))
dg dh′ for n=2m,

∫
Nm(F )\GLm(F )

∫
Nm(F )\GLm(F )

W ◦π

(
J

((
h 0

0 1

)
, g′
))∣∣∣∣ deth

det g′

∣∣∣∣− 1
2

dh dg′ for n=2m+1,

is equal to

L
(

1
2
, π
)
L(1, πur,∧2)

L
(
n
2
, ωπur

) .

Proof: We put s1 = s and s2 = 2s. Then Lemma 7.11 ensures that our conclusion
can be deduced by taking s1 = 1/2 and s2 = 1 in Proposition 7.7.

For n = 2m, we say that π is Hm,m(F )-distinguished if HomHm,m(F )(π,1) is non-
trivial. The following result is a weaker version of the analogous results for the Rankin–
Selberg period, Remark 5.8, and the Flicker–Rallis period, Remark 6.11.

Proposition 7.13. Let π be a unitary generic irreducible Casselman–Wallach repre-
sentation of GL2m(F ) that is Hm,m(F )-distinguished. Suppose that (π, Vπ) occurs as
a local component of a unitary cuspidal automorphic representation. Then the linear
functional ϑ] : W(π, ψ)→ C given by

(7.6) ϑ](Wπ) :=

∫
Nm−1(F )\GLm−1(F )

∫
Nm(F )\GLm(F )

Wπ

(
J

(
g,

(
h′ 0
0 1

)))
dg dh′

gives rise to a nontrivial Hm,m(F )-invariant linear functional on the Whittaker
model W(π, ψ).

While we expect that the assumption that (π, Vπ) appears in the local component
of an automorphic representation is superfluous, the proof that we give under this
assumption is valid at the very least for the case of our interest, which pertains to the
global setting of period integrals of cuspidal automorphic forms. Our proof requires
a local and global argument. We therefore defer the proof to Subsection 8.3 after we
have introduced global automorphic forms. It behoves us to highlight the fact that
this global approach is overkill and indirect; one may directly prove the desired result
by using a theory of distributions [4, 39]. For the sake of brevity, we only include
this indirect approach in keeping with the spirit of [18, 59].

8. Global applications

We now consider the global analogues of the problems investigated in Sections 5,
6, and 7. These pertain to period integrals of automorphic forms on GLn(AF ),
where F is a global number field of absolute discriminant DF/Q and AF denotes

the ring of adèles of F . We denote by A1
F the subgroup of A×F consisting of x ∈ A×F
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with |x|AF = 1. The period integrals of interest involve integration over spaces of the-
form Z(AF )G(F )\G(AF ) for various reductive groups G, where Z denotes the centre
of G. For the sake of notational brevity, we write

[G] := Z(AF )G(F )\G(AF ).

We also write Kn to denote the maximal compact subgroup of GLn(AF ).
Let ψAQ denote the standard additive character of AQ that is unramified at every

place of Q. We define the additive character ψAF of AF by ψAF := ψAQ ◦TrAF /AQ . The

conductor of ψAF is the inverse different d−1 of F . We choose a finite idèle d ∈
A×F representing d−1 such that ψAF =

⊗
v ψ

dv
v , where ψv is an unramified additive

character of Fv and the twisted character ψdvv (x) := ψv(dvx) is of conductor d−1
v .

Let (π, Vπ) be a cuspidal automorphic representation of GLn(AF ) for n ≥ 2, where
Vπ is a space of automorphic forms on GLn(AF ). We define a global Whittaker func-
tion Wϕπ associated to ϕπ ∈ Vπ by

Wϕπ (g) :=

∫
Nn(F )\Nn(AF )

ϕπ(ug)ψAF (u) du.

If Wϕπ is a pure tensor, it can be decomposed as Wϕπ =
∏
vWϕπ,v with Wπv :=

Wϕπ,v ∈ W(πv, ψ
dv
v ), where the generic irreducible admissible smooth representa-

tion πv is the local component of the automorphic representation π =
⊗

v πv.

Definition 8.1. Let (π, Vπ) be a cuspidal automorphic representation of GLn(AF )
with π =

⊗
v πv. At each place v of F , letW ◦πv ∈ W(πv, ψv) denote the local Whittaker

newform. We define the global newform ϕ◦π ∈ Vπ to be the decomposable vector such
that Wϕ◦π

=
∏
vWϕ◦π,v

with Wϕ◦π,v
(gv) := W ◦πv (diag(dn−1

v , . . . , dv, 1)gv) ∈ W(πv, ψ
dv
v ).

Let (π, Vπ) and (σ, Vσ) be cuspidal automorphic representations of GLn(AF ) and
GLm(AF ) with π =

⊗
v πv and σ =

⊗
v σv. Throughout, we will take S to be a finite

set of places such that πv, σv, and ψv are all unramified whenever v /∈ S. The finite
set S can vary depending on π, σ, and F , but always satisfies these properties. We
define the partial Rankin–Selberg L-function by

ΛS(s, π × σ) :=
∏
v/∈S

L(s, πv × σv)

for <(s) sufficiently large. We similarly define the partial Asai L-function ΛS(s, π,As),
the partial exterior square L-function ΛS(s, π,∧2); we also define the partial Bump–
Friedberg L-function ΛS(s, π,BF) to be ΛS(s, π)ΛS(2s, π,∧2).

8.1. Global Rankin–Selberg periods and the Petersson inner product. Given
a Schwartz–Bruhat function Φ ∈ S (AnF ), we may form the Θ-series

ΘΦ(a, g) :=
∑
ξ∈Fn

Φ(aξg) for a ∈ A×F and g ∈ GLn(AF ).

Associated to this Θ-series is an Eisenstein series, which is essentially the Mellin
transform of Θ. To be more precise, for a (unitary) Hecke character η : F×\A×F → C,
we set

(8.1) E(g, s; Φ, η) := |det g|sAF
∫
F×\A×

F

Θ′Φ(a, g)η(a)|a|nsAF d
×a,

where Θ′Φ(a, g) := ΘΦ(a, g) − Φ(0). This is absolutely convergent for <(s) > 1 and
extends to a meromorphic function of s ∈ C. The Eisenstein series E(g, s; Φ, η) is
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entire unless η is the trivial unitary Hecke character, in which case it has a simple
pole at s = 1 with residue ([33, Lemma 4.2])

(8.2)
vol(F×\A1

F )

n
Φ̂(0),

where the volume is taken with regard to the Tamagawa measure and the Fourier
transform Φ̂ on S (AnF ) is defined by

Φ̂(x) :=

∫
An
F

Φ(y)ψ(y tx) dy.

Notably, the implicit constant denoted by c in [33, Lemma 4.2] is determined to be
the volume of F×\A1

F in [59, proof of Proposition 3.1].

Theorem 8.2 (cf. [23, Proposition 5.7]). Let (π, Vπ) and (σ, Vσ) be cuspidal automor-
phic representations of GLn(AF ) with global newforms ϕ◦π ∈ Vπ and ϕ◦σ ∈ Vσ. Then
there exists a right Kn-finite Schwartz–Bruhat function Φ ∈ S (AnF ) such that, for
<(s) sufficiently large, the global GLn×GLn Rankin–Selberg integral

(8.3) I(s, ϕ◦π, ϕ
◦
σ,Φ) :=

∫
[GLn]

ϕ◦π(g)ϕ◦σ(g)E(g, s; Φ, ωπωσ) dg

is equal, up to multiplication by a positive constant dependent only on the normalisa-

tion of the measure dg, to the product of D
n(n−1)s

2

F/Q and of the global completed näıve

Rankin–Selberg L-function Λ(s, πur × σur) :=
∏
v L(s, πv,ur × σv,ur).

Proof: This integral is Eulerian: by unfolding, I(s, ϕ◦π, ϕ
◦
π̃,Φ) is equal, up to multipli-

cation by a positive constant dependent only on the normalisation of the measure dg,
to ∏

v

Ψ(s,Wϕ◦π,v,Wϕ◦
π̃
,v,Φv),

provided that <(s) is sufficiently large. Upon making the change of variables

gv 7→ diag(d1−n
v , . . . , d−1

v , 1)gv,

we arrive at

D
n(n−1)s

2
F/Q

∏
v

Ψ(s,W ◦πv ,W
◦
π̃v ,Φv).

The result now follows from Theorem 5.3 for archimedean places and from [37, The-
orem 3.2] for nonarchimedean places.

We turn our attention to Rankin–Selberg periods. We say that a pair of cuspidal
automorphic representations (π, Vπ) and (σ, Vσ) of GLn(AF ) admits a Rankin–Selberg
period (or GLn(AF )-period) if there exist cuspidal automorphic forms ϕπ ∈ Vπ and
ϕσ∈Vσ such that ∫

[GLn]

ϕπ(g)ϕσ(g) dg 6= 0.

Remark 8.3. Jacquet and Shalika ([33, Lemma 4.4]; [34, Proposition 3.6]) have shown
that the partial Rankin–Selberg L-function ΛS(s, π×σ) has a pole at s = 1 if and only
if the pair of cuspidal automorphic representations (π, Vπ) and (σ, Vσ) of GLn(AF )
admits a Rankin–Selberg period and ωπωσ is trivial. The partial Rankin–Selberg L-
function in the assertion can freely be replaced by the completed Rankin–Selberg
L-function Λ(s, π × σ) by virtue of [11, Theorem 1.2].
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Based on the work of Jacquet and Shalika [34, Proposition 3.6], W. Zhang ([59,
Proposition 3.1]) compares the Petersson inner product with local Rankin–Selberg pe-
riods βv(Wπv ,Wσv ) given by (5.5), which in turn have a connection with GLn(Fv)-dis-
tinguished representations πv⊗σv of GLn(Fv)×GLn(Fv) in the context of Remark 5.8.
We further refine this formula to relate it to the special value of the local Rankin–
Selberg L-function at s = 1.

Theorem 8.4. Let (π, Vπ) be a unitary cuspidal automorphic representation of
GLn(AF ) with global newform ϕ◦π∈Vπ; let ϕ◦π̃∈Vπ̃ be the corresponding global newform
of (π̃, Vπ̃). Then there exists a right Kn-finite Schwartz–Bruhat function Φ∈S (AnF )
such that the global GLn×GLn Rankin–Selberg period

(8.4)
∫

[GLn]

ϕ◦π(g)ϕ◦π̃(g) dg

is equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measure dg, to

nD
n(n−1)

2
F/Q

Φ̂(0) vol(F×\A1
F )

Ress=1 ΛS(s, π × π̃)
∏
v∈S

L(1, πv,ur × π̃v,ur).

Proof: From (8.2), the residue of I(s, ϕ◦π, ϕ
◦
π̃,Φ) at s = 1 is

vol(F×\A1
F )

n
Φ̂(0)

∫
[GLn]

ϕ◦π(g)ϕ◦π̃(g) dg.

The result then follows from Theorem 8.2.

Remark 8.5 (Vanishing of periods). The Rankin–Selberg period is known to vanish
unless σ ∼= π̃ according to [33, Lemma 4.4].

As before, let us now turn to the modified GLn×GLn Rankin–Selberg integral by
Sakellaridis.

Theorem 8.6. Let (π, Vπ) and (σ, Vσ) be cuspidal automorphic representations of
GLn(AF ) with global newforms ϕ◦π ∈Vπ and ϕ◦σ ∈Vσ. Then there exist a right Kn-fi-
nite Schwartz–Bruhat function Φ ∈ S (AnF ) and a bi-Kn-finite Schwartz–Bruhat func-
tion Φ′ ∈ S (Matn×n(AF )) such that, for <(s1) and <(s2) sufficiently large, the global
modified GLn×GLn Rankin–Selberg integral by Sakellaridis

(8.5)
∫

P
diag
n (F )\GLn(AF )×GLn(AF )

ϕ◦π(g1)ϕ◦σ(g2)Φ′(g−1
1 g2)Φ(eng1)

∣∣∣∣det g2

det g1

∣∣∣∣s1
AF

|det g1|s2AF dg2 dg1

is equal, up to multiplication by a positive constant dependent only on the normal-

isation of the measures dg1 and dg2, to the product of D
n(n−1)s2

2

F/Q and of the global

completed näıve L-function

Λ(s2, πur × σur)Λ

(
s1 −

n− 1

2
, σ

)
.

Proof: The result is a direct consequence of [23, Remark 5.10] coupled with unfold-
ing the standard global GLn×GLn Rankin–Selberg integral (cf. [11, Theorem 2.1])
upon making the change of variables g2 7→ g1g2. Another way to prove this is to apply
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the unfolding technique as in the proof of [49, Theorem 5.2.2]. In the domain of
convergence, (8.5) is equal to∫
N

diag
n (AF )\GLn(AF )×GLn(AF )

Wϕ◦π (g1)Wϕ◦σ (g2)Φ′(g−1
1 g2)Φ(eng1)

∣∣∣∣det g2

det g1

∣∣∣∣s1
AF

|det g1|s2AF dg2 dg1.

To conclude, we appeal to Theorem 5.9 along with Corollary 5.12.

A similar result holds for the modified GLn×GLn−1 Rankin–Selberg integral by
Sakellaridis.

Theorem 8.7. Let (π, Vπ) and (σ, Vσ) be cuspidal automorphic representations of
GLn(AF ) and GLn−1(AF ) respectively with global newforms ϕ◦π∈Vπ and ϕ◦σ∈Vσ, and
suppose that σ is everywhere unramified. Then there exists a bi-Kn-finite Schwartz–
Bruhat function Φ′ ∈ S (Matn×n(AF )) such that, for <(s1) and <(s2) sufficiently
large, the global modified GLn×GLn−1 Rankin–Selberg integral by Sakellaridis

(8.6)
∫

GL
diag
n−1(F )\GLn−1(AF )×GLn−1(AF )

ϕ◦π

(
g1 0
0 1

)
ϕ◦σ(g2)Φ′(g−1

1 g2)

∣∣∣∣det g2

det g1

∣∣∣∣s1
AF

|det g1|s2AF dg2 dg1

is equal, up to multiplication by a positive constant dependent only on the normalisa-

tion of the measures dg1 and dg2, to the product of ω−1
σ (d)D

n(n−1)s2
2

F/Q and of the global

completed L-function

Λ

(
s2 +

1

2
, π × σ

)
Λ

(
s1 −

n− 2

2
, σ

)
.

Proof: We make the change of variables g2 7→ g2g1, then combine [23, Remark 5.10]
with [23, Proposition 5.5]. Alternatively, as we have seen in [49, Theorem 5.2.5], we
factorise (8.6) from∫
N

diag
n−1(AF )\GLn−1(AF )×GLn−1(AF )

Wϕ◦π

(
g1 0
0 1

)
Wϕ◦σ (g2)Φ′(g−1

1 g2)

∣∣∣∣det g2

det g1

∣∣∣∣s1
AF

|det g1|s2AF dg2 dg1.

Upon making the change of variables g1,v 7→ diag(d1−n
v , . . . , d−1

v , 1)g1,v, the desired
identity follows from Theorem 5.10 aligned with Corollary 5.13.

8.2. Global Flicker–Rallis periods. We start with the existence of a weak test
vector for the global Flicker integral.

Theorem 8.8. Let E be a quadratic extension of F , and let (π, Vπ) be a cuspidal
automorphic representation of GLn(AE) with global newform ϕ◦π ∈ Vπ. Then there
exists a right Kn-finite Schwartz–Bruhat function Φ ∈ S (AnF ) such that, for <(s)
sufficiently large, the global GLn Flicker integral

(8.7) I(s, ϕ◦π,Φ) :=

∫
[GLn]

ϕ◦π(g)E(g, s; Φ, ωπ|A×
F

) dg

is equal, up to multiplication by a positive constant dependent only on the normali-

sation of the measure dg, to the product of D
n(n−1)s

2

F/Q and the global completed näıve

Asai L-function Λ(s, πur,As) :=
∏
v L(s, πv,ur,As).

Proof: This integral is Eulerian: by inserting the definition of Eisenstein series
(cf. (8.1)) and the Fourier–Whittaker expansion of ϕπ, and then unfolding [14, p. 303],
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we see that I(s, ϕ◦π,Φ) is equal, up to multiplication by a positive constant dependent
only on the normalisation of the measure dg, to∏

v

Ψ(s,Wϕ◦π,v,Φv)

provided that <(s) is sufficiently large. Upon making the change of variables

gv 7→ diag(d1−n
v , . . . , d−1

v , 1)gv,

we arrive at

D
n(n−1)s

2
F/Q

∏
v

Ψ(s,W ◦πv ,Φv).

The result now follows from Theorem 6.6 for archimedean places and from [37, The-
orem 4.2] for nonarchimedean places.

We turn our attention toward global Flicker–Rallis periods. We say that a cusp-
idal automorphic representation (π, Vπ) of GLn(AE) admits a Flicker–Rallis period
(or GLn(AF )-period) if there exists a cuspidal automorphic form ϕπ in the space Vπ
such that ∫

[GLn]

ϕπ(g) dg 6= 0.

Such a representation is said to be GLn(AF )-distinguished.

Remark 8.9. It is a result of [14] and [16] that the global partial Asai L-function
ΛS(s, π,As) has a pole at s = 1 if and only if ωπ|A×F = 1 and π is GLn(AF )-distin-

guished.

W. Zhang ([59, Proposition 3.2]) expresses the global Flicker–Rallis period on
the space Vπ as a product of local GLn(Fv)-distinguished linear functionals ϑ[v given
by (6.7); the underlying idea originates from the work of Gelbart, Jacquet, and Ro-
gawski [18, pp. 184–186]. In particular, the global Flicker–Rallis period attached to
a global newform ϕ◦π is related to the product of the special value of the local Asai
L-function at s = 1.

Theorem 8.10. Let E be a quadratic extension of F , and let (π, Vπ) be a unitary
cuspidal automorphic representation of GLn(AE) with global newform ϕ◦π ∈ Vπ for
which the central character ωπ satisfies ωπ|A×F = 1. Then there exists a right Kn-finite

Schwartz–Bruhat function Φ ∈ S (AnF ) such that the global Flicker–Rallis period

(8.8)
∫

[GLn]

ϕ◦π(g) dg

is equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measure dg, to

nD
n(n−1)

2
F/Q

Φ̂(0) vol(F×\A1
F )

Ress=1 ΛS(s, π,As)
∏
v∈S

L(1, πv,ur,As).

Here we have that L(1, πv,ur,As) = L(1, πv,ur× πv,ur) and L(1, πv,As) = L(1, πv ×
πv) if v splits in E, so that Ev = Fv ⊕ Fv.

Proof: From (8.2), the residue of I(s, ϕ◦π, ϕ
◦
π̃,Φ) at s = 1 is

vol(F×\A1
F )

n
Φ̂(0)

∫
[GLn]

ϕ◦π(g)ϕ◦π̃(g) dg.

The result then follows from Theorem 8.8.
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8.3. Global Friedberg–Jacquet periods. Our immediate goal is to show the ex-
istence of a weak test vector for the global Bump–Friedberg integral.

Theorem 8.11. Let (π, Vπ) be a cuspidal automorphic representation of GLn(AF )
with global newform ϕ◦π ∈ Vπ. For m =

⌊
n
2

⌋
, there exists a right Kn-finite Schwartz–

Bruhat function Φ ∈ S (AmF ) such that, for <(s1) and <(s2) sufficiently large,

(i) for n = 2m, the global Bump–Friedberg integral

(8.9) Z(s1, s2, ϕ
◦
π,Φ) :=

∫
[GLm ×GLm]

ϕ◦π(J(g, g′))E(g′, s2; Φ, ωπ)

∣∣∣∣ det g

det g′

∣∣∣∣s1− 1
2

AF

dg dg′

is equal, up to multiplication by a positive constant dependent only on the nor-

malisation of the measures dg and dg′, to the product of D
m(s1−1/2)+m(m−1)s2
F/Q

and of the global completed näıve Bump–Friedberg L-function Λ(s1, s2, πur,BF):=∏
v L(s1, πv,ur)L(s2, πv,ur,∧2);

(ii) for n = 2m+ 1, the global Bump–Friedberg integral

(8.10) Z(s1, s2, ϕ
◦
π,Φ) :=

∫
[GLm+1 ×GLm]

ϕ◦π(J(g, g′))E

(
g,
s1 +ms2

m+ 1
; Φ, ωπ

)

×

(
|det g′|AF

|det g|m/(m+1)
AF

)−s1+s2

dg dg′

is equal, up to multiplication by a positive constant dependent only on the

normalisation of the measures dg and dg′, to the product of Dms1+m2s2
F/Q , and

of the global completed näıve Bump–Friedberg L-function Λ(s1, s2, πur,BF) :=∏
v L(s1, πv,ur)L(s2, πv,ur,∧2).

Proof: This integral is Eulerian: appealing to the standard unfolding technique due
to Matringe [43, Theorem 4.4] (cf. [8]), we see that Z(s1, s2, ϕ

◦
π,Φ) is equal, up to

multiplication by a positive constant dependent only on the normalisation of the
measures dg and dg′, to ∏

v

B(s1, s2,Wϕ◦π,v,Φv)

provided that <(s1) and <(s2) are sufficiently large. Upon making the change of
variables gv 7→ diag(d1−n

v , . . . , d−3
v , d−1

v )gv and g′v 7→ diag(d2−n
v , . . . , d−2

v , 1)g′v for n =
2m and gv 7→ diag(d1−n

v , . . . , d−2
v , 1)gv and g′v 7→ diag(d2−n

v , · · · , d−3
v , d−1

v )g′v for n =
2m+ 1, we arrive at

D
m(s1−1/2)+m(m−1)s2
F/Q

∏
v

B(s1, s2,W
◦
πv ,Φv) for n = 2m,

Dms1+m2s2
F/Q

∏
v

B(s1, s2,W
◦
πv ,Φv) for n = 2m+ 1.

The result now follows from Theorem 7.9 for archimedean places and from [46, The-
orem 5.1] for nonarchimedean places.

We switch our attention to global Friedberg–Jacquet periods. We say that a cus-
pidal automorphic representation (π, Vπ) of GL2m(AF ) admits a Friedberg–Jacquet
period (or Hm,m(AF )-period) if there exists a cuspidal automorphic form ϕπ ∈ Vπ
such that ∫

[GLm ×GLm]

ϕπ(J(g, g′)) dg dg′ 6= 0.

Such a representation is said to be Hm,m(AF )-distinguished.
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Remark 8.12. The main result of Matringe [43, Theorem 4.7] tells us that the partial
global Bump–Friedberg L-function ΛS(s, π,BF) has a pole at s = 1/2 if and only if
ωπ is trivial and π is Hm,m(AF )-distinguished.

We establish results analogous to [59, Propositions 3.1 and 3.2], which describes
the explicit decomposition of the global Friedberg–Jacquet period in terms of local
Hm,m(Fv)-distinguished linear functionals ϑ]v given by (7.6) (cf. [56, Appendix A.3]).

Proposition 8.13. Let (π, Vπ) be a unitary cuspidal automorphic representation
of GL2m(AF ) with trivial central character. Then, for every pure tensor ϕπ ∈ Vπ,
the global Friedberg–Jacquet period∫

[GLm ×GLm]

ϕπ(J(g, g′)) dg dg′

is equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measures dg and dg′, to

m

vol(F×\A1
F )

Ress=1/2 ΛS(s, π,BF)
∏
v∈S

ϑ]v(Wϕπ,v).

The proof requires Proposition 7.13, which we first prove.

Proof of Proposition 7.13: The proof is inspired by work of Gelbart, Jacquet, and Ro-
gawski [18, pp. 185–186]. The result follows from the global theory. To be more precise,
we first observe that ωπv must be trivial, as (πv, Vπv ) is Hm,m(Fv)-distinguished. The
global Bump–Friedberg integral Z(s, 2s, ϕπ,Φ) is Eulerian (cf. [43, Theorem 4.4]), so
that it is equal, up to multiplication by a positive constant dependent only on the
normalisation of the measures dg and dg′, to∏

v

B(s,Wϕπ,v,Φv).

We may choose a factorisable Schwartz–Bruhat function Φ ∈ S (AnF ) such that Φv is
the characteristic function of Omv for all nonarchimedean places v /∈ S, and a fac-
torisable cuspidal automorphic form ϕπ ∈ Vπ such that Wϕπ,v = W ◦πv with respect to
the unramified character ψv for all nonarchimedean places v /∈ S. Taking (8.2) into
account, we see that by taking the residue of Z(s, 2s, ϕπ,Φ) at s = 1/2,

(8.11)
vol(F×\A1

F )

m
Φ̂(0)

∫
[GLm ×GLm]

ϕπ(J(g, g′)) dg dg′

= Ress=1/2 ΛS(s, π,BF)
∏
v∈S

B

(
1

2
,Wϕπ,v,Φv

)
.

We now consider B(1/2,Wϕπ,v,Φv) for each nonarchimedean place v ∈ S and each
archimedean place v. On the one hand, we use the Iwasawa decomposition, and then
evaluate the resulting integral over Nm(Fv)\GLm(Fv) 3 gv and Nm(Fv)\Pm(Fv) 3
p′v, leading to the identity

B

(
1

2
,Wϕπ,v,Φv

)
=

∫
Km,v

∫
F×v

ϑ]v(πv(J(1, k′v))Wϕπ,v)Φv(z′vemk
′
v)|z′v|mv d×z′v dk′v.

On the other hand, via the Iwasawa decomposition once more,

Φ̂v(0)=

∫
Fnv

Φv(xv) dxv=

∫
Pm(Fv)\GLm(Fv)

Φv(emg
′
v) dg′v=

∫
Km,v

∫
F×v

Φv(z′vemk
′
v)|z′v|mv d×z′v dk′v.
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Comparing the integrals over Km,v 3 k′v and F×v 3 z′v of both sides of (8.11), there
should be a linear functional γ] on the Whittaker model W(πv, ψv) such that∫

Km,v

∫
F×v

ϑ]v(πv(J(1, k′v))Wϕπ,v)Φv(z′vemk
′
v)|z′v|mv d×z′v dk′v

= γ]v(Wϕπ,v)

∫
Kv

∫
F×v

Φv(z′vemk
′
v)|z′v|mv d×z′v dk′v

for any Whittaker functionWϕπ,v∈W(πv, ψv) and any Schwartz–Bruhat function Φv∈
S (Fmv ). Each Φv ∈ S (Fmv ) defines a smooth function on GLn(Fv), left invariant
by Pm(Fv), via g 7→ Φ(emg). This implies that any smooth function f on Km,v that
is invariant under P(m−1,1)(Fv) ∩Km,v satisfies∫

Km,v

∫
F×v

ϑ]v(πv(J(1, k′v))Wϕπ,v)f(k′v)|z′v|mv d×z′v dk′v = γ]v(Wϕπ,v)

∫
Km,v

f(k′v) dk′v.

We can move one step further to claim that the same relation holds for all smooth
functions f on Km,v, as ϑ]v is a P2m(Fv) ∩ Hm,m(Fv)-invariant form. It follows that
γ]v = θ]v and that ϑ]v is invariant under {J(1, k′v) : k′v ∈ Km,v}. In summary, ϑ]v is
invariant under Hm,m(Fv).

Proof of Proposition 8.13: We only deal with the case when (π, Vπ) affords a
Hm,m(AF )-period, for otherwise the desired identity is trivially true as both sides
are equal to zero. Evidently, (πv, Vπv ) is Hm,m(Fv)-distinguished, which can only
occur provided that ωπv is trivial. We may choose a factorisable Schwartz–Bruhat
function Φ ∈ S (AnF ) such that Φv is the characteristic function of Omv for all nonar-

chimedean places v /∈ S, so that Φ̂v(0) = 1, and a factorisable cuspidal automor-
phic form ϕπ ∈ Vπ such that Wϕπ,v = W ◦πv with respect to the unramified charac-
ter ψv for all v /∈ S. Recalling (8.11), we deduce that it is sufficient to show that

B(1/2,Wϕπ,v,Φv) = ϑ]v(Wϕπ,v)Φ̂v(0) for each nonarchimedean place v ∈ S and each
archimedean place v. To that end, we expand

B

(
1

2
,Wϕπ,v,Φv

)
=

∫
Nm(Fv)\GLm(Fv)

∫
Nm(Fv)\GLm(Fv)

Wϕπ,v(J(gv, g
′
v))Φv(emg

′
v)|det g′v|v dgv dg′v

as a triple integral, and then rewrite it in terms of ϑ]v (cf. [1, §4]), yielding∫
Pm(Fv)\GLm(Fv)

∫
Nm(Fv)\Pm(Fv)

∫
Nm(Fv)\GLm(Fv)

Wϕπ,v(J(gv, p
′
vg
′
v))Φv(emg

′
v) dgv dp

′
v dg

′
v

=

∫
Pm(Fv)\GLm(Fv)

ϑ]v(πv(J(1, g′v))Wϕπ,v)Φv(emg
′
v) dg′v.

But we know from Proposition 7.13 that ϑ]v is Hm,m(Fv)-invariant. Then

B

(
1

2
,Wϕπ,v,Φv

)
= ϑ]v(Wϕπ,v)

∫
Pm(Fv)\GLm(Fv)

Φv(emg
′
v) dg′v = ϑ]v(Wϕπ,v)Φ̂v(0).

Remark 8.14 (Vanishing of periods). For n = 2m+ 1 odd, it is straightforward that
the residue of Z(s, 2s, ϕ◦π,Φ) at s = 1 is

vol(F×\A1
F )

m+ 1
Φ̂(0)

∫
[GLm+1 ×GLm]

ϕ◦π(J(g, g′)) dg dg′.

Unfortunately, this period integral is known to vanish as a consequence of [17, §2.1
and Proposition 2.1] (cf. [43, p. 594]).
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For ϕ◦π the global newform, the global Friedberg–Jacquet period can be explicitly
evaluated so that it is Eulerian.

Theorem 8.15. Let (π, Vπ) be a unitary cuspidal automorphic representation of
GL2m(AF ) with global newform ϕ◦π ∈ Vπ for which the central character is trivial.
Then there exists a right Km-finite Schwartz–Bruhat function Φ ∈ S (AmF ) such that
the global Friedberg–Jacquet period

(8.12)
∫

[GLm ×GLm]

ϕ◦π(J(g, g′)) dg dg′

is equal, up to multiplication by a positive constant dependent only on the normalisa-
tion of the measures dg and dg′, to

mD
m(m−1)

F/Q

Φ̂(0) vol(F×\A1
F )

Ress=1/2 ΛS(s, π,BF)
∏
v∈S

L

(
1

2
, πv,ur,BF

)
.

Proof: From (8.2), the residue of Z(s, 2s, ϕ◦π,Φ) at s = 1/2 is

vol(F×\A1
F )

m
Φ̂(0)

∫
[GLm ×GLm]

ϕ◦π(J(g, g′)) dg dg′.

The result then follows from Theorem 8.11(i).

Remark 8.16 (Jacquet–Shalika periods). We letMm(F ) denote the set of m×m ma-
trices and Nm(F ) denote the subset of upper triangular matrices. The Shalika sub-
group S2m(F ) is defined to be

S2m(F ) :=

{(
1m X
0 1m

)(
g 0
0 g

)
: X ∈Mm(F ), g ∈ GLm(F )

}
.

We fix a nontrivial Shalika character Θ on S2m(F ) such that

Θ

((
1m X
0 1m

)(
g 0
0 g

))
:= ψ(TrX).

We say that a cuspidal automorphic representation (π, Vπ) of GL2m(AF ) admits a
Jacquet–Shalika period (or (S2m(AF ),Θ)-period) [12, (11)] if there exists a cuspidal
automorphic form ϕπ ∈ Vπ for which∫

[GLm]

∫
Mm(F )\Mm(AF )

ϕπ

((
1m X
0 1m

)(
g 0
0 g

))
ψ(TrX) dX dg 6= 0.

Such a representation is said to be (S2m(AF ),Θ)-distinguished. The celebrated result
of Jacquet and Shalika [36] shows that the partial global exterior square L-func-
tion ΛS(s, π,∧2) has a pole at s = 1 if and only if ωπ is trivial and (π, Vπ) admits
a (S2m(AF ),Θ)-period. For the rest of the discussion, we assume that (π, Vπ) is uni-
tary such that (π, Vπ) affords the (S2m(AF ),Θ)-period. We analogously define a local
Shalika functional ϑ†v : W(πv, ψv)→ C by

ϑ†v(Wπv ) :=

∫
Nm(Fv)\Pm(Fv)

∫
Nm(Fv)\Mm(Fv)

Wπv

(
wm,m

(
1m Xv
0 1m

)(
pv 0
0 pv

))
ψ(TrXv) dXv dpv.

The linear functional ϑ†v is a priori (P2m(Fv)∩ S2m(Fv),Θv)-quasi-invariant. Thank-
fully, it can be extended to a (S2m(Fv),Θv)-quasi-invariant functional (cf. the proof
of Proposition 7.13 and [12, Lemma 5.4]). Via unfolding [36, Proposition 6.5], the
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Eulerian factorisation of the Jacquet–Shalika period ([12, (18)]) can be deduced, with
some changes of notations, just as in the proof of Proposition 8.13∫

[GLm]

∫
Mm(F )\Mm(AF )

ϕπ

((
1m X
0 1m

)(
g 0
0 g

))
ψ(TrX) dX dg

is equal, up to multiplication by a positive constant dependent only on the normali-
sation of the measures dg and dX, to

m

vol(F×\A1
F )

Ress=1 ΛS(s, π,∧2)
∏
v∈S

ϑ†v(Wπv ),

where S contains the archimedean places. When v is an archimedean place, so that
Fv ∈ {R,C} is an archimedean local field, it is our belief that the Jacquet–Shalika
period integral involving unramified data is no longer a nonzero polynomial multiple
of the exterior square L-function L(s, πv,∧2), as mentioned in Subsection 1.3. This
phenomenon can even be observed for a spherical induced representation of Langlands
type πv of GL2(Fv) from the identity∫

F×v

W ◦πv

(
zv 0
0 zv

)
Φur(zv)|zv|sv d×zv = L(s, πv,∧2)

1

4πi

∫ σ+i∞

σ−i∞
L(w, πv) dw.
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