ON THE JACOBSON RADICAL AND UNIT GROUPS OF GROUP ALGEBRAS

Meena Sahai

Abstract

In this paper, we study the situation as to when the unit group $U(K G)$ of a group algebra $K G$ equals $K^{*} G(1+J(K G))$, where K is a field of characteristic $p>0$ and G is a finite group.

1. Introduction

Let R be any associative ring with identity $1 \neq 0$. Then R may be treated as a Lie ring under the Lie multiplication $[x, y]=x y-y x$, $x, y \in R$. The Lie ring thus obtained is denoted by $L(R)$ and is called the associated Lie ring of R. The lower central chain $\left\{\gamma_{n}(L(R)) \mid n=\right.$ $1,2, \ldots\}$ and the derived chain $\left\{\delta^{n}(L(R)) \mid n=0,1,2, \ldots\right\}$ of $L(R)$ are defined inductively as follows:

$$
\begin{aligned}
\gamma_{1}(L(R)) & =\delta^{0}(L(R))=L(R) \\
\gamma_{n+1}(L(R)) & =\left[\gamma_{n}(L(R)), L(R)\right], \\
\delta^{n}(L(R)) & =\left[\delta^{n-1}(L(R)), \delta^{n-1}(L(R))\right] .
\end{aligned}
$$

The Lie ring $L(R)$ is solvable of length n if $\delta^{n}(L(R))=(0)$ but $\delta^{n-1}(L(R)) \neq(0)$. Let $J(R)$ denote the Jacobson radical of R. Then $1+J(R)$ is a normal subgroup of the unit group $U(R)$ and we have the exact sequence of groups

$$
1 \rightarrow 1+J(R) \rightarrow U(R) \rightarrow U(R / J(R)) \rightarrow 1
$$

Keywords. Solvable group, p-solvable group, locally finite group. 1991 Mathematics subject classifications: 16N20, 16S34, 16U60.

Thus $U(R) /(1+J(R)) \cong U(R / J(R))$. If further 2 and 3 are invertible in R and the associated Lie ring $L(R)$ is solvable, then $\gamma_{2}(L(R)) R=$ $\delta^{1}(L(R)) R$ is a nil ideal of R by Sharma and Srivastava [7, Theorem 2.4]. Since nil ideals are always contained in the Jacobson radical, we have, in this situation, $\gamma_{2}(L(R)) R \subseteq J(R)$ and thus $R / J(R)$ is commutative. Thus the commutator subgroup $U(R)^{\prime}$ of $U(R)$ is contained in $1+J(R)$. If $J(R)$ is nilpotent as an ideal, then $1+J(R)$ is nilpotent as a group and so $U(R)$ is solvable. In particular, in the above situation, if $(J(R))^{2}=0$, then $U(R)$ is metabelian.
We wish to study, in this paper, some connections in the above direction when $R=K G$ is the group algebra of the group G over the field K, where Char $K=p>0$ and G is finite. Throughout the paper, Z_{p} denotes the field with p elements.

2. Preliminaries

Let $K G$ be the group algebra of the group G over the field K. We denote by $\Delta(G)$, the augmentation ideal of $K G$. Clearly $1+J(K G)$ defines a normal subgroup of the unit group $U(K G)$. Also there are the trivial units of the form $k g, 0 \neq k \in K, g \in G$, in $U(K G)$. Our aim, in this paper, is to investigate situations where $U(K G)=K^{*} G(1+J(K G))$, $K^{*}=K \backslash\{0\}$. Obviously $U(K G)$ can not be smaller than this as the right hand side is always contained in $U(K G)$.

Almost in all the known cases the Jacobson radical $J(K G)$ of a group algebra $K G$ is a nil ideal; (see Passman [5, Chap. 8]), and at least, for sure, this is the case for the class of solvable, linear and locally finite groups. Suppose Char $K=p, p>0$ and $J(K G)$ is nil. Then for any $\alpha \in J(K G), \alpha^{p^{n}}=0$ for some $n \geq 0$ and thus $(1+\alpha)^{p^{n}}=1+\alpha^{p^{n}}=1$. This shows that $1+J(K G)$ is a normal p-subgroup of $U(K G)$ if $J(K G)$ is a nil ideal.
We make the following observations.

Lemma 2.1. Let K be a field with Char $K=p>0$ and let G be a group. Then $G \cap\{1+J(K G)\}$ is a normal p-subgroup of G. Further if G is locally finite, then $O_{p}(G)=G \cap\{1+J(K G)\}$.

Proof: Clearly $G \cap\{1+J(K G)\}$ is a normal subgroup of G. Let $1 \neq$ $x \in G \cap\{1+J(K G)\}$. Then $x-1 \in J(K G)$ and $\Delta(\langle x\rangle)=(x-1) K\langle x\rangle \subseteq$ $J(K\langle x\rangle)$. Thus $J(K\langle x\rangle) \neq 0$ and so $\langle x\rangle$ is finite. Also $J(K\langle x\rangle) \supseteq \Delta(\langle x\rangle)$ is nilpotent, since $K\langle x\rangle$ is Artinian. Hence $\langle x\rangle$ is a finite p-group and $G \cap\{1+J(K G)\}$ is a normal p-subgroup.

If G is locally finite, then $O_{p}(G)$ is a locally finite normal p-subgroup and so $\Delta\left(O_{p}(G)\right)=J\left(K O_{p}(G)\right) \subseteq J(K G)$. Thus $O_{p}(G) \subseteq G \cap\{1+$ $J(K G)\}$ and by the first part, we get $G \cap\{1+J(K G)\}=O_{p}(G)$, as desired.

This result easily yields

Corollary 2.2. If G is locally finite and Char $K=p>0$, then $\Delta(N) K G \subseteq J(K G)$ for every normal p-subgroup N of G and equality holds if N is a normal Sylow p-subgroup of G.

It may be noted that $\Delta(G)=J(K G)$ for any locally finite p-group G if Char $K=p>0$ (Passman [5, Chap. 8]).

3. Main results

Now we start our study of the problem: When is $U(K G)=K^{*} G(1+$ $J(K G))$?

Proposition 3.1. Let K be a field with Char $K=p>0$ and let G be a locally finite group having a normal Sylow p-subgroup P. Then $U(K G)=K^{*} G(1+J(K G))$ if and only if one of the following holds:
(i) $G=P$;
(ii) $K=Z_{2}$ and $G / P \cong C_{3}$;
(iii) $K=Z_{3}$ and $G / P \cong C_{2}$.

Proof: First suppose that $U(K G)=K^{*} G(1+J(K G))$. By Corollary 2.2, $J(K G)=\Delta(P) K G$ and $K G / J(K G) \cong K G / P$. Further $U(K G / J(K G)) \cong U(K G) /(1+J(K G))=K^{*} G(1+J(K G)) /(1+J(K G))$. So $U(K G / J(K G)) \cong K^{*} G /(G \cap\{1+J(K G)\})$. Also $U(K G / J(K G)) \cong$ $U(K G / P)$. Since by Lemma 2.1, $G \cap\{1+J(K G)\}=O_{p}(G)=P$, we see that $U(K G / P)=K^{*} \cdot G / P$ using the natural epimorphism $U(K G) \rightarrow U(K G / P)$. Thus the group algebra $K G / P$ has only trivial units. So by Passman [5, Lemma 13.1.1], either G / P is trivial, that is, $G=P$ or $K=Z_{2}$ and $G / P \cong C_{3}$ since G / P is a p^{\prime}-group or $K=Z_{3}$ and $G / P \cong C_{2}$.
Conversely if $G=P$, then $J(K G)=\Delta(G)$ and we are through as $U(K G)=K^{*}(1+J(K G))$. In the other two cases, the units of $K G / P$ are trivial, $J(K G)=\Delta(P) K G$ and $G \cap\{1+J(K G)\}=P$. Hence clearly $U(K G)=K^{*} G(1+J(K G))$.

In fact, $1 \neq G / P=G /(G \cap\{1+J(K G)\}) \cong G(1+J(K G)) /(1+J(K G))$ and this is a subgroup of $U(K G) /(1+J(K G)) \cong U(K G / J(K G))=$ $U(K G / \Delta(P) K G) \cong U(K G / P)$. But $U\left(Z_{2} C_{3}\right)=C_{3}$ and $U\left(Z_{3} C_{2}\right)=$ $\pm C_{2}$, hence the result.

Now we turn to finite groups. If Char $K=p>0$ and G has no p elements, then $J(K G)=0$, so our problem $U(K G)=K^{*} G(1+J(K G))$ reduces to $U(K G)=K^{*} G$. This is the case of trivial units. So we assume that G is finite, it has p-elements and hence $J(K G) \neq 0$. Also if G is a finite p-group or G has a normal Sylow p-subgroup, then Proposition 3.1 above gives the answer.

Theorem 3.2. If Char $K=p>0$ and G is a finite solvable group having no normal Sylow p-subgroup, then $U(K G)=K^{*} G(1+J(K G))$ if and only if $K=Z_{2}$ and $G / O_{2}(G) \cong S_{3}$.

Proof: Suppose $U(K G)=K^{*} G(1+J(K G))$. Then $U(K G)$ is solvable. Further $G / O_{p}(G)$ is not abelian, otherwise Sylow p-subgroup will be normal. By Passman's Theorem (see Karpilovsky [4, Theorem 3.8.9] or Bateman [2, Theorem 5]), $K=Z_{2}$ or Z_{3}. But $K=Z_{3}$ case gives that $G / O_{3}(G)$ is a 2 -group, so Sylow 3 -subgroup is normal. Hence we are left with only one case when $K=Z_{2}$ and $G / O_{2}(G)=A\langle x\rangle$, where A is an elementary abelian 3 -group and x is an element of order 2 such that $x^{-1} a x=a^{-1}$ for all $a \in A$. We wish to show that $A=C_{3}$. Now

$$
\begin{aligned}
U(K G / J(K G)) \cong \frac{U(K G)}{1+J(K G)} & =\frac{K^{*} G(1+J(K G))}{1+J(K G)} \\
\cong \frac{K^{*} G}{K^{*} G \cap(1+J(K G))} & =\frac{G}{G \cap(1+J(K G))} \\
& =\frac{G}{O_{2}(G)}=A\langle x\rangle .
\end{aligned}
$$

Here $K=Z_{2}$, so if $K G / J(K G) \cong \prod_{i=1}^{r} M_{n_{i}}\left(D_{i}\right)$, by Bateman [2, Theorem 5], $U(K G / J(K G)) \cong \prod_{i=0}^{s} K_{i}^{*} \times \prod_{j=1}^{t} G L_{2}\left(Z_{2}\right)$, where K_{i} are finite fields of characteristic 2 and second term is a direct product of t-copies of $G L_{2}\left(Z_{2}\right) \cong S_{3}$. Also $|U(K G / J(K G))|=\left|G / O_{2}(G)\right|=$ $|A||\langle x\rangle|=3^{m} \cdot 2$ where $A=C_{3} \times C_{3} \times \cdots \times C_{3}$ (m-copies). Thus clearly $t=1$. Also $\left|K_{i}\right|=2^{n_{i}}$ for some n_{i}, so $\left|K_{i}^{*}\right|=2^{n_{i}}-1$ for $i=0,1,2, \ldots, s$. Thus $n_{i}=2$ for every i. We show that $s=0$ and $U(K G / J(K G)) \cong G / O_{2}(G) \cong G L_{2}\left(Z_{2}\right) \cong S_{3}$.

Suppose $|A|=3^{m}$ and $m>1$. Then there exist $a, b \in A$ such that $\langle a\rangle \times\langle b\rangle \subseteq A, a^{3}=b^{3}=1, x^{-1} a x=a^{-1}, x^{-1} b x=b^{-1}$. We have $A\langle x\rangle=G / O_{2}(G) \cong \prod_{i=0}^{s} K_{i}^{*} \times G L_{2}\left(Z_{2}\right)$ and denote by ϕ the isomorphism. Then $\phi(a)=\left(\prod_{i=0}^{s} k_{i}, g_{1}\right), \phi(b)=\left(\prod_{i=0}^{s} k_{i}^{\prime}, g_{2}\right), a, b$ noncentral implies $g_{1} \neq 1, g_{2} \neq 1$. Also $a^{3}=b^{3}=1$ gives $g_{1}^{3}=g_{2}^{3}=1$. In $G L_{2}\left(Z_{2}\right) \cong S_{3}$, either $g_{1}=g_{2}$ or $g_{2}=g_{1}^{-1}=g_{1}^{2}$. If $g_{1}=g_{2}$, then $\phi\left(a^{2} b\right)$ is central and so $a^{2} b$ is central. But $x^{-1} a^{2} b x=\left(a^{2} b\right)^{-1}$, so $\left(a^{2} b\right)^{-1}=a^{2} b$ and we get $a=b$. If $g_{2}=g_{1}^{-1}$, then $\phi(a b)$ is central, so $a b$ is central and $x^{-1} a b x=(a b)^{-1}=a b$. Thus $a=b^{-1}$. In both cases we get a contradiction, since $\langle a\rangle \cap\langle b\rangle=1$. Thus $A=\langle a\rangle=C_{3}$ and $G / O_{2}(G)=$ $G L_{2}\left(Z_{2}\right) \cong S_{3}$, as desired.

Conversely, let $K=Z_{2}$ and $G / O_{2}(G) \cong S_{3}$. By [6, 6.2, p. 215]

$$
\left|\frac{U\left(Z_{2} G\right)}{1+\Delta\left(O_{2}(G)\right) Z_{2} G}\right|=\left|U\left(Z_{2} G / O_{2}(G)\right)\right|=\left|U\left(Z_{2} S_{3}\right)\right|=12
$$

Also

$$
\frac{U\left(Z_{2} G\right)}{1+J\left(Z_{2} G\right)} \cong \frac{U\left(Z_{2} G\right) /\left\{1+\Delta\left(O_{2}(G)\right) Z_{2} G\right\}}{\left\{1+J\left(Z_{2} G\right)\right\} /\left\{1+\Delta\left(O_{2}(G)\right) Z_{2} G\right\}}
$$

and so

$$
\left|\frac{U\left(Z_{2} G\right)}{1+J\left(Z_{2} G\right)}\right|=\frac{12}{\left|\left\{1+J\left(Z_{2} G\right)\right\} /\left\{1+\Delta\left(O_{2}(G)\right) Z_{2} G\right\}\right|}
$$

Since the Sylow 2-subgroups are not normal, $G / O_{2}(G)$ contains 2-elements and $J\left(Z_{2} G\right) \supset \Delta\left(O_{2}(G)\right) Z_{2} G$. Further

$$
\begin{aligned}
& \frac{U\left(Z_{2} G\right)}{1+J\left(Z_{2} G\right)} \cong U\left(\frac{Z_{2} G}{J\left(Z_{2} G\right)}\right) \\
&=G L_{2}\left(Z_{2}\right) \times \prod_{i=0}^{s} K_{i}^{*}, \quad K_{i}=2^{n_{i}}, \quad K^{*}=K \backslash\{0\}
\end{aligned}
$$

since $U\left(Z_{2} G\right)$ is solvable and $U\left(Z_{2} G / J\left(Z_{2} G\right)\right)$ is non-abelian, otherwise $G^{\prime} \subseteq G \cap\left\{1+J\left(Z_{2} G\right)\right\}=O_{2}(G)$ implies that a Sylow 2-subgroup is normal. All this forces $\left|\left(1+J\left(Z_{2} G\right)\right) /\left\{1+\Delta\left(O_{2}(G)\right) Z_{2} G\right\}\right|=2$ and $\frac{U\left(Z_{2} G\right)}{1+J\left(Z_{2} G\right)} \cong G L_{2}\left(Z_{2}\right) \cong S_{3} \cong G / O_{2}(G)=\frac{G}{G \cap\left(1+J\left(Z_{2} G\right)\right)}$. Thus $U\left(Z_{2} G\right)=G\left(1+J\left(Z_{2} G\right)\right)$, as desired.

In general if G is a finite group and K is a field with Char $K=p$ such that $U(K G)=K^{*} G(1+J(K G))$, then $U(K G)^{n} \subseteq \zeta(U(K G))$, the center of $U(K G)$, for some fixed n. This can be seen as follows. Since $J(K G)$ is nilpotent, we have $J(K G)^{p^{l}}=0$ for some fixed l. Now let $u \in U(K G)$, then $u=k g(1+\alpha)$ for some $k \in K^{*}, g \in G, \alpha \in J(K G)$.

It is easy to see that for all m, we have

$$
u^{m}=k^{m} g^{m}\left(1+\alpha^{g^{m-1}}\right)\left(1+\alpha^{g^{m-2}}\right) \ldots\left(1+\alpha^{g}\right)(1+\alpha)
$$

Thus if $n_{0}=|G|$, then $u^{n_{0}}=k^{n_{0}}(1+\beta)$, for some $\beta \in J(K G)$. Furthermore $u^{n_{0} p^{l}}=k^{n_{0} p^{l}}$ and thus if $n=n_{0} p^{l}$, then u^{n} is central. Thus $U(K G)^{n} \subseteq \zeta(U(K G))$ and we can use Coelho [3, Lemma 1.1].

Let $A=\left\{g \in G \mid g\right.$ is a p^{\prime}-element $\}$. If A consists of central elements alone, then A is a normal subgroup of G and $G=A P$ for any Sylow p-subgroup P of G. Clearly then $P \triangleleft G$ and Proposition 3.1 handles the situation $U(K G)=K^{*} G(1+J(K G))$. We wish to tackle, now, the case when G has a non-central p^{\prime}-element. By Coelho [3, Lemma 1.1] and the above discussion we must have that K is a finite field.

Lemma 3.3. Let G be a finite group and let Char $K_{-}=p>0$ such that $U(K G)=K^{*} G(1+J(K G))$. Then $U(K \bar{G})=K^{*} \bar{G}(1+J(K \bar{G}))$, where $\bar{G}=G / O_{p}(G)$.

Proof: Since

$$
\begin{gathered}
\Delta\left(O_{p}(G)\right) K G \subseteq J(K G), \\
U(K G / J(K G)) \cong U(K \bar{G} / J(K \bar{G}))
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\frac{U(K G)}{1+J(K G)} & =\frac{K^{*} G(1+J(K G))}{1+J(K G)} \cong \frac{K^{*} G}{G \cap(1+J(K G))} \\
& =\frac{K^{*} G}{O_{p}(G)} \cong \frac{U(K \bar{G})}{1+J(K \bar{G})}
\end{aligned}
$$

This clearly shows that $U(K \bar{G})=K^{*} \bar{G}(1+J(K \bar{G}))$.
When p^{\prime}-elements are not central, A need not form a subgroup. Even when A forms a subgroup, Sylow p-subgroup need not be normal. However, we have the following.

Theorem 3.4. Let G be a finite group such that A forms a non-central subgroup and Char $K=P>0$. If $U(K G)=K^{*} G(1+J(K G))$ then G is solvable and K is finite.

Proof: Since $U(K G)=K^{*} G(1+J(K G))$ and G is finite, K is a finite field. Hence in the decomposition $K G / J(K G) \cong \prod_{i=1}^{r} M_{n_{i}}\left(D_{i}\right)$, each $D_{i}=K_{i}$ is a field, being finite division rings. Thus $U(K G / J(K G)) \cong$ $\prod_{i=1}^{r} G L_{n_{i}}\left(K_{i}\right), K_{i}$ finite, Char $K_{i}=p$. If $\bar{G}=G / O_{p}(G)$ is solvable, then clearly G is solvable. In view of Lemma 3.3, we can assume that $O_{p}(G)=1$.

Now

$$
U\left(\frac{K G}{J(K G)}\right) \cong \frac{U(K G)}{1+J(K G)} \cong \frac{K^{*} G}{G \cap\{1+J(K G)\}}=K^{*} G
$$

Let A_{i} denote the set of p^{\prime}-elements of $G L_{n_{i}}\left(K_{i}\right)$ for all $i=1,2, \ldots, r$. Clearly, A_{i} is a subgroup of $G L_{n_{i}}\left(K_{i}\right)$ for all $i=1,2, \ldots, r$. Also A_{i} is non-central in $G L_{n_{i}}\left(K_{i}\right)$, if $n_{i}>1$. Therefore, $n_{i}=1$ or 2 and $K_{i} \cong K$ if $n_{i}=2$, where $K=Z_{2}$ or Z_{3} (see Artin [1, p. 165]). Since both $G L_{2}\left(Z_{2}\right)$ and $G L_{2}\left(Z_{3}\right)$ are solvable, $U(K G / J(K G))$ is solvable and so $G \leq U(K G)$ is solvable, as desired.

We now discuss finite p-solvable groups:
Let K be a field with Char $K=p>0$ and G a finite group such that $U(K G)$ is p-solvable. Then $U\left(Z_{p} G\right)$ is p-solvable and hence $U\left(Z_{p} G / J\left(Z_{p} G\right)\right)$ is p-solvable. But $U\left(Z_{p} G / J\left(Z_{p} G\right)\right)=\prod_{i=1}^{r} G L_{n_{i}}\left(D_{i}\right)$, so each D_{i} is a field, being a finite division ring. Thus for each i, $G L_{n_{i}}\left(D_{i}\right)=G L_{n_{i}}\left(G F\left(q_{i}\right)\right), q_{i}=p^{n_{i}}$ and p-solvabiblity forces each $n_{i}=1$ or $n_{i}=2, q_{i}=p, p=2$ or 3 . But $G L_{2}\left(Z_{2}\right)$ and $G L_{2}\left(Z_{3}\right)$ are solvable. Thus $U\left(Z_{p} G / J\left(Z_{p} G\right)\right)$ is solvable and therefore, $U\left(Z_{p} G\right)$ is solvable. This gives that G is solvable. Thus $U(K G)$ is p-solvable implies G is solvable. In particular, we have

Theorem 3.5. If Char $K=p>0$ and G is a p-solvable group such that $U(K G)=K^{*} G(1+J(K G))$, then G is solvable.

Proof: Clearly $U(K G)$ is p-solvable. Rest follows from the above discussion.

4. Conclusion

We have covered most of the cases for finite groups except for finite groups which are not p-solvable, in which the p^{\prime}-elements are non-central and do not form a subgroup. This problem is still open. Some preliminary results have been obtained in this direction by the author and will be taken up separately in a subsequent paper.

References

1. E. Artin, "Geometric Algebra," Interscience, New York, 1957.
2. J. M. Bateman, On the solvability of unit groups of group algebras, Trans. Amer. Math. Soc. 157 (1971), 73-86.
3. S. P. Coelho, Group rings with units of bounded exponent over the center, Canad. J. Math. 34 (1982), 1349-1364.
4. G. Karpilovsky, "Unit Groups of Group Rings," Wiley Interscience, New York, 1989.
5. D. S. Passman, "The Algebraic Structure of Group Rings," Wiley Interscience, New York, 1977.
6. S. K. Sehgal, "Topics in Groups Rings," Marcel Dekker, New York, 1978.
7. R. K. Sharma and J. B. Srivastava, Lie solvable rings, Proc. Amer. Math. Soc. 94 (1985), 1-8.

Department of Mathematics and Astronomy
Lucknow University
Lucknow - 226007
INDIA
e-mail: lutl@lw1.vsnl.net.in

Primera versió rebuda el 8 d'abril de 1997, darrera versió rebuda el 16 de febrer de 1998

