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BASICS OF LAGRANGIAN FOLIATIONS

I. VAISMAN

Abstract

The paper is an exposition of basic known local and global results on
Lagrangian foliations such as the theorems of Darboux-Lie, Weinstein,
Arnold-Licuville, a global characterization of cotangent bundles, higher
order Maslov classes, etc.

The notion of a Lagrangian foliation is a basic one in symplectic geometry
and, thereby, in theoretical physics, and still presents many open interesting
problems. In the present paper, we want to review some of the basic known re-
sults for the benefit of readers who are well aquainted with foliations theory but
are less familiar with symplectic geometry, and, also, to present some personal
(already published [V2]-[V 5]} results.

Our review covers: the Darboux-Lie theorem which gives the local structure
of the foliation, and the affine structure of the leaves, Weinstein’s theorem of
tubular equivalence with a cotangent bundle, the Arnold-Licuville theorem on
action-angle coordinates, a global characterization of cotangent bundles, and
a few other simple global results, secondary characteristic classes of pairs of
Lagrangian foliations, etc.

Details may be found in references such as [LM], [W], [D], [AG], [GS2],
[V3], [V4], etc. Everything in the paper is in the C®—category.

1. Local Structure Theorems

Let us recall (see for instance, [LM]} that a symplectic manifold is a manifold
AM?® endowed with a closed everywhere nondegenerate 2—form w, and that a
text—book theorem of Darbouz then yields a canonicel atlas {{¢*,p:} on M
which is characterized by

(1.1) w=d¢ Adp;, (i=1,...,n)
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{The Einstein sumimation convention is used.)

On a symplectic manifold, every function f has an associated Hamilionian
vector field Xy characterized by (X s} = df, and two functions fy, fo are said
to be in involution if their Poisson bracket

(12) {flafﬂ} = *w(Xh:sz):Xfle = 0.

All such fields X; are infinitesimal automaorphisms of w (Le. Lx,w = 0), and
every infinitesimal automorphism is a locally Hamiltonian vector field. Notice
also that [X 5, Xp] = Xyp 0y

An n—dimensional submanifold L of M where w = 0 (or, equivalently, which
is locally the set of zeroes of n functions pairwise in involution} is called a
Lagrangian submanifold, and a foliation of M whose leaves are Lagrangian
submanifolds is called a Lagrengien foliation. '

Example 1. M = T"N" = the cotangent bundle of a manifold NV, with w
given by (1.1} where ¢ are local coordinates on N, and p; are corresponding
covector coordinates, is always a symplectic manifold, and the veriice! foliation
by fibers ¢! = const. is a Lagrangian foliation. Particular case: M = R?™ =
T*R™. In this case p, = const. also define a horizonta! Lagrangian foliation.

Examiple 2. The torus M = 72" with cartesian coordinates {¢*,p;) also
has the symplectic structure {1.1), and the equations p; — a'¢’ = const. (i =
1,...,7n; no sum on i) define a Lagrangian foliation of slopes o' € R. If all ot
are irrational numbers the leaves are dense in T2%,

Example 3. [V4]. The same form (1.1) yields a symplectic structure on the
manifold

My = [(R™\{0}) x (R"\{O)]/k, = $™7" x 5% x §*7% x R,

where ¢°, p; are cartesian coordinates on the two copies of R, respectively, K
is the group generated by the transformation ¢' = A¢%, p; = (1/M)p; {0 <
A = const. < 1), and the last diffeomorphism is (g,p2) — (¢/|lall, I=ligll, p/il2ll,
Iafligll - iz}, On M., we have again two Lagrangian foliations respectively
given by ¢' = const., p; =const. Their leaves are diffeomorphic to S*~1 x R,
As a matter of fact, My is T*{$"~! x §1) with the zero section removed. If,
following a remark by G. Hector, we keep the zero section, it will belong to one
of the foliations, and the latter will have cne compact leaf, while all the other
leaves are non compact.

Various other examples are also known (e.g., [V4]). However, it would be
interesting to find more examples which would be significant from various view-
points, particularly from that of foliation theory. The following problem is also
open: any Kahler manifold has a symplectic structure given by its Kéhler form,;
find examples (if possible) of Lagrangian foliations on compact Kahler mani-
folds A which are not complex tori. This problem is difficult for the following
reason: the existence of a Lagrangian distribution on M reduces the structure
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group of TM from U{n) to O(n), and, consequently, all the odd Chern classes
of M vanish. (See, for instance, [Bv] for the classification of compact Kéhler
manifolds with a vanishing first Chern class.) If the strong hypothesis that the
foliation be parallel is added, M must be a complex torus {[V3]).

The first basic result about Lagrangian foliations is that, in the same dimen-
sion, all such foliations are locally equivalent. This follows from a particular
case of a theorem which goes back to 5. Lie namely.

Theorem 1.1. (Theorem of Darbouz—Lie.) If L is a Lagrangian foliation of
e symplectic manifold (M?",w), the latier can be covered by a canonical atlas
{{¢",p)} (i = 1,...,n) such that L has the local equations ¢' = const., and w
is given by (1.1).

Proof: We start by taking local independent first integrals ¢! of L( = 1,...,
n), in convenient neighbourhoods. Then L has equations ¢' = const., and
since £ is Lagrangian, the Hamiltonian vector fields ~X,: are tangent to L,
and [Xg,Xp] = Xgi gy = 0. Now, it is classical that one can find local
coordinates p} such that X = 8/8p;, and we see that w takes the form

. ] . .
(13) W= dq' A} dp: -+ 55.‘56@‘ A dqj.

Since w 15 closed, the last term of (1.3) is closed as well, whence f§;; depend lo-
cally on ¢* alone, and the mentioned term equals, say d{};{¢)dg*). Accordingly,
if we take the new local coordinates p; = pi — A;(g), we are done. W

Coordinates such that (1.3}, but not necessarilly (1.1), holds are cailed sema-
canonical, and it is mainly such coordinates which we shall use in the sequel.
An easy computation shows that the transition functions of semicanonical coor-
dinates defined on domains Uy, Uy are locally of the form

I
L ag* B
(1.4) ah = ahlal), pF = a“—q? P+ 02,
k=1 8

which proves {e.g., [W])

Theorem 1.2,

(i) The mapping df — — Xy restricted lo germs of projectable functions f
defines an isemorphism VL = TL, where TL 15 the tangent bundle, and VL
is the transversal bundle TM|TL of L.

(1) The leaves of L are affine manifolds such that the Hamillonian fields
of prajectable functions are the parallel vector fields of the corresponding tor-

o
stonless flat connection V of {he leaves.

It is interesting that (by {1) above) T'L has a canonical structure of a projecta-
ble vector bundle, since VL has such a structure (as for an arbitrary foliation).
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Furthermore a choice of a transversal distribution T1L = VL of TL yields a
projectable structure of TM, which is noncanonical, but useful however.

Concerning (ii) of Theorem 1.2, if the restriction of V to each leaf is geode-
sically complete, the foliation £ is said to be complete. Since compact affine
manifolds may be noncomplete, it is difficult to give completeness results for
Lagrangian foliations. For instance, all the leaves of the two Lagrangian fo-
liations of Example 3 are noncomplete {even the compact one if added), since
they are affinely covered by R®\{0}. We quote also the following open pro-
blem: assume that the Lagrangian foliation £ has a complete leaf Lg; which
hypotheses would ensure that Ly has a saturated neighbourhood conszstmg of
complete leaves?

The ideas which led to (1.3) can also give a more general result namely.

Theorem 1.3. {([W]} Let £ be a Lagrangian foliation of {M,w), and let
N be an n-dimensionael embedded submanifold of M whick 13 transversal to
the leaves of L. Then, theve is an open neighbourhood U of N in M suck that
(U,w/uy, L]y} 15 equivalent with a neighbourkood V of N seen as the zero section
of s colangent bundle T* N, where T*N is endowed with ¢ symplectic form of
the semicanonical type (1.5). Moreover if N 1s o Legrangion submanifold, V is
io be taken wnth the cononical symplectic structuve (1.1}

Proof: Let U be a tubular neighbourhood of ¥ such that £/ is a simple
foliation {every leaf of £/ has one and only are intersection point with N).
Then the local coordinates ¢ of N{z = 1,...,n)} are first integrals of L£/y,
and they may be used to put w in the local form (1.3), while, also, p| = 0
are the local equations of N, This last condition is obtained after performing a
“translation on the P}, if necessary. This may prevent us from making afterwards
the cother translation indicated at the end of the proof of Theorem 1.1, and,
hence, from reaching the canonical form (1.1).

Now, since p} = U have a geometric meaning, the form (1.4) of the transition
functions reduces to

(1.5) gh = g E aqa o

which are precisely the transition functlons of the cotangent bundle T*N. This
proves our assertion. H N is Lagrangian p| are involutive functions, and (1.3)
reduces to (1.1} B '

A very important local structure theorem of a different kind is the Arnold-
Liouville theorem. In order to formulate it let us consider the torus 7™, and its
cotangent bundle T*T™ with the canonical symplectic structure (1.1), where q
are cartesian coordinates on T". Then p; = const. is a Lagrangian foliation of
T*T7" which is transversal to the foliation by fibers, and whose leaves are the
orbits of the natural free action of T™ on T*T™. We call this the horizontal
foliation of T*T™, ' .
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Theorem 1.4. (Liouwille, Arnold) Lei L be a Lugrangian folistion of (M,w),
and Ly be a leaf of £ which is compact and has a triviel holonomy. Then Ly has
an open L-saturated neighbourhood U in M such thet (U w/y,L]y) is equiva-
lent to the horizontal foliation of T*T™ in a neighbourhood of the zero section,
the latter being the image of Ly by the mentioned equivalence. Particularly,
L}y consists of the orbits of & free action of T™ by symplectic equivalences of

U

Proof: See for instance [D]. As a consequence of the well known local stability
theorem, under the given hypotheses Lqy has an open saturated neighbourhood
U which is diffeomorphic to ¥V x Ly, for some open disk V of R" centered at the
origin, and such that the leaves of £/y are the fibers of the projecticn onto V, Ly
corresponding to the origin. Hence £/y may be seen as the foliation defined by
equations f; = const., where f; (the cartesian coordinates in V') are functions
on U, which are functionally independent and pairwise in nvolution. The
Hamiltonian vector fields X, are globally defined and everywhere independent
on the leaves of £/y, and, since the leaves are compact, Xy, are complete
vector fields. They also commute {({f;, f;} = 0 = (X5, Xy | = Xyp,57 = 0)
and, hence their flows define symplectomorphisms of I/ which yield a fransitive
and locally free action of R® on the leaves of £/ with the discrete isotropy
subproups G, C R™, where zg runs on a cross section of I/ over V.

Accordingly, the leaves of £/y are tori R" /G, and have angular coordinates
" € [0,2r] such that

d .
(1.6) dp't *;@AI;'

where & = &(fi), det (¢]) # 0, and the flows of 8/0¢" are symplecto-
morphisms of ¥/. Since our functions are defined locally, these properties
imply that a local change of coordinates s; = s;{fr) can be done such that
Aoy = _(a/a(p’i)'

The local coordinates (", s;) satisfy
(17) {s1,87} =0, {o" s} =48],

Hence, they are semicanonical coordinates for w/fy, and, like in the proof of
Theorem 1.1, translations

(1.8) <pi = 99“ +¢.1’(s)

can be found such that (3;,(;)“") be canonical coordinates of w/y (l.e., besides
{(1.7) also {@*, @’} = 0 holds, and w/y = dp’ A ds;).

Clearly ' are also angular cosrdinates on the tori-leaves of L/y, while (in
view of a mechanical interpretation) s; are called action coordinates. If, with
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reference to the identification Ly a2 T, we define the mapping U — T*T™ given
by ¢* = ', p; = s;, we get exactly the equivalence announced by Theorem
14 8

The existence of action angle coordinates is very important for the integration
of Hamiltonian dynamical systems (e.g., [LM]).

A globalization of Thebrem 1.4 for locally trivial fibrer bundles with La-
grangian fibre was given by Duistermaat [D]. Generalizations from T to non-
commutative Lie groups G where given by Dazord and Delzant [DD), (Dz].

2. Simple Global Results

In view of the local results of Section 1, it is natural to ask for conditions
of global equivalence of a Lagrangian foliation with the fiber foliation of a
cotangent bundle. In order to formulate an answer, we define first a certain
cohomelogical obstruction [V4)].

Let {Us;{gh,P¥)}aca be an atlas of semicanonical coordinates of the sym-
plectic manifold (M,w) with respect to its Lagrangian foliation £. Hence,
formulas {1.3) and (1.4) hold good. Then, we define the local Euler vector
Felds

~ i)
(2.1) Eq = ZP?a—;
=1 ¥

on ., and notice that (1.4) implies

9

— - aff
{2.2) Ep— Eo = Z‘Pi (‘?a)apf-

=1
Accordingly, {Eg — E,} define a 1-cocycle of M with coefficients in the sheaf
TL of germs of projectable sections of the tangent bundle of £. (Remember

that Theorem 1.2. (i) gave us a projectable structure on 7L}, and we get a
corresponding cohomology class
(23) E(L) € HY(M,TL),

which we call the Fuler obstruction of L.

Theorem 2.1. (V4] The triple {M,w, L)} 13 globally equivalent to a cotangent
bundle T* N endowed with e semicanonical symplectic form iff: 1) L is complete;
i1} the leaves of L are simply connected, i1i) £(L) =0,

Proof: 1), i), and 111} are obviously necessary conditions for the fiber foliation
of a cotangent bundle. Particularly, iii} follows since, in this case, (,c:‘:-"ﬁ =0in

(1.4).
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Conversely, by (2.2}, £(£} = 0 means

8 g 3
Bla ) — = (a5} — — (g, ) ——
(;9; (90) ap? ’zpt (qg)ap;g ?p: (90)6}0? *

where we have summation on 1, and Z¢®(q,) (8/0p?) define a 0—cochain in
TL. Then
95 =6 Po=Ph— ¥4}
give a semi-canonical atlas with vanishing terms (p?‘s in (1.4). For this new
atlas, {2.1) yields a global Fuler vector field E.
Hypotheses i), ii) show that the leaves of £ are affinely equal to R®. Let L
be one such leaf, 2y € LN U,, and £F be the global affine coordinates defined

on L by the exponential mapping of the leafwise flat connection V (Theorem
1.2, (i)} at zo. It follows easily that ¢ = p% — p%(zg) on LN U,, and

B = 3R+ P )

Z o
Hence E has one ahd only one vanishing point z(L) on cach leaf L, and if 2(L)
belongs to some U,, the locus N of 2(L), L € £, has equations p? = 0 in U,,.

It follows that N is a differentiable manifold with the local coordinates a7,

and the local coordinates (4%,€F) yield the equivalence of (M, w, L) with the
fiber foliation of T"/N. Notice that the canonical form is obtained on T*N by
the construction above iff N is a Lagrangian submanifold of M.

The previous result may be completed by

Theorem 2.2. Let (M, ,w,,L,) {a = 1,2) be two Lagrangianly foliated ma-
nifolds which satisfy the conditions of Theorem 2.1. Then, they are equiva-
lent iff there exists ¢ foliation equivalence F : (M), L1} - (My, L) such that

Wy — F ws ¥s o projectebly ezact form.

Proof: If the equivalence requested exists we may use it as F', and then

- F“wg = 9.

Conversely, if F exists, the construction of Theorem 2.1 yields two differen-
tiably equivalent cotangent bundles T*N, (¢ = 1,2) with local coordinates
(g%,€2), and with two symplectic forms

(2.4) wa = dg, AdEL + B,

where 3, are closed projectable 2-forms.
The equations of F must have the local form

(2.5) =1, =823,
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such that wy — Fwy = dA, where A = /\,-{'(H Jdgi. The lattest condition
immediately implies that the second equation (2.5) must be of the form £ =
= £} + a,{q]), and that the mapping § : My — M> defined by

(20) BT =g e

{which has a global meaning) is an equivalence {M;,w;, L1} & (M, we, £2). B

Remarks.

1) For simple Lagrangian foliations £ it suffices to assume only hypotheses
1) and 11) in Theorem 2.1, and the results of Theorems 2.1 and 2.2 are contained
in [AG].

2) Example 3 of Section 1 gives a Lagrangian foliation £ with non simply
connected leaves, and £(L) = 0.

3) £(L) = 0 is equivalent with the existence of a 1-form ) = p;d¢’, where
dg' = 0 defines £, such that w — d) is projectable. Indeed, then {{¢*,p;}} is
a semicanonical atlas with vanishing terms cpf’g in (1.4). From this, it follows
that £(L) never vanishes on a compact manifold M since w™ = (dA)".

4) A similar cohomology class like £(L) appeared in the theory of affine
manifolds, namely the rediance obstruction |[GH).

Another interesting question is that of the global rigidity of a Lagrangian
foliation. To be more precise, the existence of the local canonical coordinates of
Theorem 1.1 for a triple (M,w, L) means that M is endowed with some pseu-
dogroup structure, and we should study the deformations of this pseudogroup
structure (e.g., [GS1]). Following is one simple result in this direction.

Theorem 2.3. Let N™ be a manifold such that H}(N,R) = H}(N,R) = C.
Then the fiber foliation of T™ N is infinitesimelly rigid a3 & Legrangian foligtion.

Proof: Infinitesimal rigidity of our pseudogroup structure holds if
HYT*N,Z) = 0, where = is the sheaf of germs of infinitesimal automorphisms
of the structure [GS1). For any (M,w,L), a germ of = is represented by a
vector field which preserves £ and w, and this means

- a 8
(2.7) X = f'(?)a—q,- + 7ilp, q)a—p_,

where (¢*, p;} are canonical coordinates, and

Oy O Oy Oy

2, S /L
(28) dp; d¢'’ 8¢ O¢’

For X of (2.7), if we write down (X Jw in canonical coordinates, we see
that 4(X Jw = df for 2 germ of a certain function f of the form a'{¢)p; + 8{¢),
and if we denote by A the sheaf of germs of such affine functions, we get an
isomorphism = = dA, and an exact sequence of sheaves

(2.9) 0—R— AL (dAxE) 0.
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Accordingly, under the hypotheses of Theorem 2.3, we get HY(T"N,Z) =
HYT"N,A).

But the cohomology of A can be computed. Indeed, for any {M, £,w), if
® denotes the sheaf of germs of projectable functions, A is a locally free &-
module sheaf generated by {p;,1}. Hence A is the sheaf of germs of projectable
sections in a certain projectable vector bundle, and we have [V1]

ker{d; : T(A ®¢ A" L) — I'(A Qe A®**1L)}
im{d; : T(A Qs AVF1L) - T(A @y ARL)}’

(2.10) HYM, A) =

where d; is the exterior differential along the leaves, I' denotes global section
spaces, and A% is the sheaf of germs of diferential k—forms containing only
differentials of transversal coordinates of £

In our case M = T*N, and H*(T*N, A) is the limit of a spectral sequence
with B2 = HAMN, H*("F", A)), where H*(" F, A} is the sheaf defined by U C
N H¥(x=Y(U), A) (U is open, and 7 : T*N — N is the natural projection).
From (2.10), and since the fibers of = are contractible, we get H*("F”, A) = 0
for k> 1, H(= "} (U}, A) = [C(U)]**2. This implies E3* =0 for k > 1, and
for k =0,k > 1. Therefore H*(T*N, A) = 0 for k > 1, and we are done. W

Another important global question is that of the existence of a transver-
sal projectable connection for a Lagrangian foliation £. It turns out that this
question is related to the interesting notion of an affine transversal distribuiton
[M1], which is defined as a transversal distribution 7L of £ such that the natu-
ral process of lifting paths from a transversal submanifold of £ to paths tangent
to 7L yields affine mappings between the leaves of £. Such a distribution has
local equations of the form

(2.11) 8; = dp; + ti;(p,q)dg’ =0,

where {¢*,p;) are semicanonical coordinates and t;; are affine functions. The
existence of an affine transversal distribution is characterized by the vanishing
of a certain cohomological obstruction which we shall not describe here [M 2],
[V4]. But we give

Theorem 2.4. [V4] If £ has an affine transversal disiribution, the tran-
sversal bundle VL has o projecioble connection. The converse alse holds if
E(LYy=0.

Proof: Since VL == T*L (theorem 1.1, 1)) it suffices to prove the results
of Theorem 2.4 for the tangent bundle TL instead of VL. On TL, for any

transversal distribution 7L, we may extend the flat partial connection V along
the leaves {Theorem 1.2, ii}) to a full connection by adding to it

VxY = proclX, Y], VXerL, YeTL
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i I?Z denotes the curvature operator of this connection V, we cbviously have
R(W,Y2)Y =0 for all Y1,Y2,Y € TL, and the connection will be projectable

if RIX,Yh)Y =0for X € 7L, 11,Y € TL [M1).
By definition, 7L is affine iff for every foliation preserving infinitesimal
transformation X € 7., and every parallel field ¥ € T£, [X,¥] is again =

paralle] field. In the computation of }?{{X , Y1)Y, we may always assume that X
is leaf preserving and Y,V are parallel (since the result depends only on the

point—values of these vector fields). By doing this, we get easily R(X, ¥1)Y = 0.

Conversely, assume that TL has a projectable connection, and £{L) =
= 0. Then a germ of M may be seen as a germ of the cotangent bundle of a
transversal submanifold of £, and the projectable connection of T'£ induces a
connection V in this cotangent bundle. Locally (and if {¢*,p;) are again the
canonical coordinates of a cotangent bundle}, V may be written as

Viosog(de’) = %P?;(q)(dq“)

(Here (dg’} is seen as the basis of the fibers of the cotangent bundle.) The
tangent vector of the paths of V-parallelism satisfy

dpy + ‘%Ffj(Q)Pi d¢! =0,

and we see that they define an affine transversal distribution 7£. (See details
in [V4]). =

3. Pairs of Lagrangian Foliations

This is again an important configuration for physical interpretations (par-
ticularly for quantum physics). Such pairs appear in R®®. Other examples are
offered by Examples 2,3 of Section 1.

A geometrically simple but rarely appearing case is that of a pair (£, £3) of
everywhere transversal Lagrangian foliations on a symplectic manifold {M,w).
Such a system (M,w, £y, L;) can be called a bilagrangian manifold.

Theorem 3.1. A bilagrangian manifold has a cenonical forsionless sym-
plectic connection V which preserves L4, L,. V has zero curveture iff either
i) the manifold is locally equivalent to R®™ with the horizontel and vertical fo-
bations, or #1) TLy is an affine transversal distribution of £;.

Proof: (E.g., [V2], [V4]} We shall denote by indices a = 1,2 the compo-
nents along £;, £y, and define V as a sum of connections. Start by

(3.1) Vx, Y2 = [X1, Va2, Vx, Y1 = [Xo, Yi)s.
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Then ask Vw = (¢ which yields

w(Vlel,Zl) = 0, w(VXQYQ,Zg) = 0
(3.2) w(Vx, Y1, Z2) = X1{w(V1, Z2)) — w(¥4,[ X1, Z2)2),
WV x, Y2, Zs) = Xo(w(Yz, Z1)) — w(Y2,[ X2, Z:]1).

¥ is thereby determined, and the computation of its torsion gives 0 in view of
the integrability of £;, L.

Now, V can be seen as a connection on the principal bundle of frames
(Ei, Biyn) (1 = 1,...,n) which put w in the canonical form (i.e., w(E:, Ej4n) =
= —w(Eipn, B} = 6;5), and E; € TL,, Eipn € TLy. It follows that V has zero
curvature iff there are local paraliel frame fields of this type. Moreover, since V
has no torsion the corresponding parallel vector fields £y, E, 4, commute, and
we may define B; = 8/8¢*, E; 1 = 8/8p;. The local coordiates {¢*, p;) show
the local equivalence with R?™.

Finally, in R?®, T'L; is of course affine for £;. To get the converse result,
let (g*,p.) be canonical coordinates for £; (particularly, dg' = 0 defines £,),
and let then £; be spanned by @; = (8/8¢') — t(8/8p;). Then (3.1}, (3.2)
vield the following local equations of V

Vasor (8/8p;) = 9,90.(8/8p;) = Li_, 5. o2,

(3:3) at]
va}ap,- Q} = 0, VQ.- Qj = Zkzl Be 5.
The integrability condition of £; is

oth Bt" e
dxd 81‘ = 6 Z’aps 0,

Tijh =
and using this, the only perhaps nonvanishing parts of the curvature of V will
be

i a?zh a
( ‘_,Q, 3pk Z

ap; ap 6p.sl
2

3 n

.t;»
Ph

Hence V = 0 iff # are affine functions. M
1

{See [V4] for other results about the curvature of bilagrangian manifolds.)

" More often, pairs of Lagrangian manifolds will have a certain nontransver-
sality set § C M. Nontransversality leads to the existence of some interesting
secondary characteristic classes which, in fact, appear in the more general si-
tuation of a pair of Lagrangian subbundles L,, L, of a symplectic vector bundle
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7 : B — M ie, a bundle with 2n-dimensional fibres, and endowed with an
everywhere nondegenerate cross-section w of A2E. A Lagrangian subbundle is
defined in the same way as a Lagrangian submanifold. The simplest such class
in the famous Maslov cless of the asymptotic analysis of the partial differen-
tial equations of quantum physics {GS2]. We give a short description of these
characteristic classes, while refering the interested reader to {V3] for details.

Since the unitary group U{n} is a compact maximal subgroup of the
symplectic group Sp(n,R), the structure group of & symplectic vector bun-
die B — M is reducible to U{n}, and, in fact, there is 2 homotopy class of such
reductions. Let us fix one such reduction, and let J be the corresponding com-
plex structure tensor of E. Let us look at the principal bundle Z{(E,J) — M
of the unitary frames {e;, Je;) ({ = 1,...,n), or in the complex form

(3.4) € = 71-5(65 s \/—_lJe,'),

of the reduced structure. Then a connection § on U(E, J) has local equations
(3.5) Ve; = ble;,

and curvature forms

(3.6) o) = d&? - g? Aéf,

where § and © take values in the unitary Lie algebra u(n).

Accordingly, we get the real Chern classes c,{E) (k = 1,...,n) which
do not depend on the choice of J (since two such choices are homotopically
related), and they are represented by the differential forms

(_1)k - Fk gy it ty
(3.7 L(8)er = m‘sfl_.f: O} A~ ABY,

where ¢, are the Chern polyncomials

-1

2m/—1

and A(#) is the classical Chern—Weil homomorphism.

A Lagrangian subbundle L of £ is equivalent to a further reduction of
the structure group of E from U(n} to O(n). The corresponding principal
subbundle of frames U{F, J, L) consists of unitary frames (3.4) where ¢; € L,
and corresponding connections (3.5) will have antisymmetric matrices 4, 0.
Such connections will be called L-orthogonal unitary connections, if seen on

U(E, T}, and for them we obviously have A(8)cpp—; =0 (h =1,2,...).

‘
(3.8) e A) = ( ) tr AN A (4 €uln),
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Now, let Ly{a = 1,2) be two Lagrangian subbundles of E, and 4, be L,-
orthogonal unitary connections. Let A(#,, 62} denote the comparison mapping
defined by the two connections {e.g., [V3]). The classical formula

(3.9) Allr)er — Dby )er = dA(81,6 )ck

shows that A(#;,8;)czs.; are closed forms, and, therefore, define cohomology
classes

(3-10) #h(EpLhLz) = [A(91y82)62&—l] € H“’_s(M,H)-

We call uyp the h** Maslov class since p,; coincides {up to a constant factor)
with the original Maslov class.

The explicitation of (3.10) is as follows. Express both connections 8, by
using some common local unitary bases {¢;), and let {¥.) be the corresponding
connection matrices. { They take values in u{n) and not in }(n) = the orthogonal
Lie algebra, in general.) Put

ol =vi—vy v=m+te, 0<t<U,
and let G, be the curvature matrix of 4;. Then

_ /=
A(@g?ﬁ';).cu_l = (—1}“1(2"):!«—?(12&“2)!-
j: {5_.;1..._.}215—1&;_11 A @:;2 A A @!2_!;-1 }dt

LIS T tizn—1

(3.11)

The general construction of secondary characteristic classes, analogous to
the one in foliation theory (e.g., [L1]) amounts to the following. Take the
differential graded algebra

WLn = R[C;s C;, ey cé[n;’?]]®
(3.12) ®R[C§vcir-"?c§[n,{2]]®
® Aug,uz,. .., U},
where cip, ¢l ¢ Us are generators of degrees 4p,4q,2t — 1 respectively, and

1 _ 22 _ _ 2 1
deg, = dezy =0, dugs—y =0, duys =6, ~ 65,

Define p: WL, — AM by

P(C%P) = A(Bl )CEP) p(c%q) = L\(g? )Czqr
plus} = {8y, 8)cs,

where ¢ are the Chern polynomials and §, are L,~orthogonal unitary connec-
tions (a = 1,2). pinduces p* : H*(WL,) —» H*(M,R) and the classes of i m p*
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which are not primary characteristic classes are the secondary characterisiic
classes of (E, Ly, Ly).
A computation similar to one in [L1] (see [V3]) gives

H*(WLn)= WLy = Ric},cl, ., 3 1®
(313) & R[Cé}a Cgs EREE | c‘%[ﬁ,,{z]] by A(uls Uz, - ;uz[nf2]+(—1)"-1 )s

and the conclusion is that the secondary characteristic classes are algebraic
combinations of the Pontrijagin classes of Ly, L; and of the Maslov classes
(3.10) [V3).

Therefore, only the Maslov classes are of interest. One has

Theorem 3.2. The Maslov classes up{E,L;, Ly} de not depend on the
chotce of the L,-orihogonal unitary connections 8,(a = 0,1), as well as on the
choice of the unitary reduction of the struciure group of E (ie., oén J). They
only depend on the homotopy classes (vie Lagrangian subbundles) of Ly, Ls,
and vantsh if Ly, Ly are homotopic Lo transversal Dagrangian subbundles.

Proof: Except for the last assertion, the results follows by rather clear
homotopy arguments. If L;, L, are transversal we may choose J such that
L, = JLy, and then use §; = #3. By (3.11), we shall obtain pgp—; =0 W

We refer the reader to [V3] for concrete computations of Maslov classes,
and we shall finish here by indicating another interesting feature namely, the
residual character of the Maslov classes. .

Let us first generalize the definition of residues as given in [BB]. Let M™
be an oriented differentiable manifold, and § a compact subset of M whose
connected components Sp{h = 1,...,p) have disjoint tubular neighbourhoods
Uy with projections m, : Uy — Sy, and U = US_ U,. Then, a cohomology
class u € H¥(M,R) is said to be S-residual if for every U as above there are
canonically (but not necessarily uniquely) defined k—forms Ay with a compact
support included in U which represent u, and such that if U C U, Ay, =
= Ay + dp, where supp u = compact C U.

If this happens, and if A, = Ay/y,, Poincaré duabity provides us with a
class ap € Hp_ i (Un, R} characterized by

(3.14) Je=[mne toermtvi,dp=0),
Uy

and the homology class
(3.15) res 5,4 = (Th Jath € Ho1{Si, R),

is called the residue of u along S,. By the last condition in the definition of
S-residuality, the residues do not depend on the choice of U. Furthermore, if
M is compact it follows obviously that the following residues thesrem holds

»
(3.16) u = Z'PM(z'f;f), resg, u,
h=1 : ’
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where Py denotes Poincaré duality on M, and iﬁ, is the inclusion S5, C M.
The simplest situation is when S, are submanifolds. For residue theories
where § is a stratified set see the recent work of D. Lehmann [L2]. (See
also [G1], [G2].) At our knowledge the residual classes studied until now
were primary characteristic classes (e.g., Chern classes [BB]). We can prove
that the Maslov classes , which are secondary characteristic classes, also have
an S-residual character along the nontransversality set § of the Lagrangian
subbundles Ly, Ly. Therefore, by the residues theorem (3.18) these classes are
determined by local information around S, at least if § is nice enough as above.
To show the residual character of pﬁ(E L1, L3}, we start with a umtary re-

duction associated to a complex structure J on E/an s such that Ly = JLI J
exists because Ly, L, are transversal along M\ 5. Then, we construct a unitary

reduction of E/a by a complex structure J which equals J outside a tubu-
lar neighbourhood V such that V = compact C U (the U of the residuality
definition). (J may be obtained by a convenient partition of unily argument,
see details in [V5]). Furthermore, we take §; to be a Ly-orthogonal J- unitary
connection. Qver A\S, 6; is also Ly-orthoponal, and we can construct an
L,-orthogonal J-unitary connection &, over M which equals &; outside the
neighbourhood V introduced above. {Use again the partition of unity argu-
ment.) Then, by (3.11) the form A(#;,82)can—1 has a compact support in-
cluded in U, and it yields the form Ay of the definition of S-residuality. If
U' C U, a technical analysis [V3] shows that /A(fg, 8, )¢z, is "homotopically
deformed” to A(8}, 6} )ezn— via forms with compact support in U.
This justifies the residual character of the Maslov classes.



574 I. VAISMAN

References

[AG] V.I. ARNOLD, A.B. GIVENTAL, Symplectic Geometry, Dynamical
Systems—4, Hogy Nauvki 1 Tehniks (1985), 7-139, Viniti, Moskwa.

[BB] P. BAUM, R. BOTT, Singularities of holomorphic foliations, J. Diff.
Geom. T (1972), 279-342.

[Bv] A. BEAUVILLE, Variétés kahlériennes dont la premiere classe de Chern
est nulle, J. Diff. Geom. 18 (1983), 755-782.

[D] J.J. DUISTERMAAT, On global action angle coordinates, Comm. Pure
Appl. Math. 33 (1980), 687-706.

[DD] P. DaZORD, TH. DELZANT, Le probleme général des variables ac-
tions-angles, J. Diff. Geom. 26 (1987), 223-251.

[Dz] TH. DELZANT, Variables actions—angles non commutatives et examples
d’images convexes de application morment, Theése de Doctorat de I'Univ.
Pierre et Mavie Curie (1888), Paris.

[GH} W. GoOLDMAN, M.W. HIRSCH, The radiance obstruction and pa-
rallel forms on affine manifolds, Transactions American Math. Soc. 286
(1984), 629-649.

[G1] F. GOMEZ, A residue formula for characteristic classes, Topology 21
(1982), 101-124.

[G2] F. GoMEZ, De Rham homology for networks of manifolds, Fsrael J.
Math. 54 (1986), 110-128.

[GS1] V. GUILLEMIN, SH. STERNBERG, Deformation theory of pseudo:
group structures, Memoirs AMS 64 (1966}, Providence R.I..

[GS2] V. GUILLEMIN, SH. STERNBERG, Ceometric Asymptotics, Math.
Surveys, Amertcan Math. Soc. 14 (1977}, Providence R.I..

[L1] D. LEBMANN, Classes caractéristiques et J—connexité des espaces de
connexions, Ann. Inst. Fourier Grenoble 24(3) (1974), 267-306.

[L2] D. LEHMANN, Intégration sur les variétés stratifiées, C.R. Acad. Sei.
Paris Série I, 307 {1988), 603-606.

[LM] P. LIBERMANN ET CH. M. MARLE, Symplectic geometry and analy-
tical mechanics, D). Reidel Publ. Comp. (1987), Dordrecht.

[M1] P. MOLINO, Propriéiés cohomologiques et propriétés topologiques
des feuilletages & connexion iransverse projetable, Toepology 12 (1973),
317-325.

[M2] P. MOLINO, Géométrie des polarisations, In: Feuilletages et quanti-
fication géométrique, Sém. Sud-Rhodanien de Geom. II (P. Dazord, N.
Desolneuz-Mouhs, eds. ). Collection Travauz en Cours, Hermann (1984),
37-54, Paris.

[V1] I. VAISMAN, Cohomology and differential forms, M. Dekker, Inc. (1973),
New York.

[V2] I. VAISMAN, Symplectic curvature tensors, Monetshefte fir Math. 100
(1985), 269-327.



BasiCS OF LAGRANGIAN FOLIATIONS 975

(V3] I. VaIsMaN, Symplectic Geometry and secondary characteristic classes,
Progress in Maih. T2 (1987), Birkhduser—Boston.,

(V4] I. VAISMAN, d;—Cohomeology of Lagrangian Foliations, Monatshefts fir
Math. 106 {1988), 221-244.

[V5] I. VAISMAN, Residues of Chern and Maslov classes, Preprint (1987).

[W] A. WEINSTEIN, Symplectic manifolds and their Lagrangian submani-
folds, Advances in Math. 6 (1971), 320-346.

Department of Mathematics
University of Haifa
ISRAEL

Rebut el 3 de Novernbye de 1688





