AN ELEMENTARY PROOF OF A LIMA'S THEOREM FOR SURFACES

F.J. Turiel

Abstract
An elementary proof of the following theorem is given:
THEOREM. Let M be a compact connected surface without boundary. Constder a C^{∞} action of $\mathbf{P}^{\prime \prime}$ on M. Then, if the Euler-Poincaré characteristic of M is not zero there exits a fixed point.

The proof given here adapts for dimension two the ideas used by P. Molino and the author in [2] and [3]. Moreover we show that the theorem remains true if R^{n} is replaced by a connected nilpotent Lie group G.

In the slightly more general case, dealt with by E.L. Lima, of a surface with boundary, it is sufficient gluing together two copies of this surface in order to obtain a surface without boundary.

1. Actions of \mathbf{R}^{n}

Let V be the Lie algebra of R^{n}. The action of R^{n} induces a Lie algebra homomorphism $v \in V \rightarrow X_{v} \in \mathcal{X}(M)$ called infnitesimal action. We recall that the infinitesimal isotropy of a point p is the set $I(p)=\left\{v \in V / X_{v}(p)=0\right\}$. As V is abelian $I(p)$ depends only on the orbit.

Denote by Σ_{k} the set of points p of M whose orbit is k-dimensional, i.e. $\operatorname{codim} I(p)=k$.

Suppose Σ_{0} empty. We will gradually arrive to a contradiction.

1) Set $C_{2}=\left\{v \in V / X_{v}(p)=0\right.$ for some $\left.p \in \Sigma_{2}\right\}$.

As there are at most countably many 2 -orbits because they are open sets, C_{2} is at most countable union of ($n-2$)-planes of V.
2) The map on the grassmanmian of ($n-1$)-planes $h: p \in \Sigma_{1} \rightarrow I(p) \in$ $g_{n-1}(V)$ is differentiable, i.e. it can be locally extended to a differentiable map.

Indeed, consider $p \in \Sigma_{1}$ and $u \in V$ such that $X_{u}(p) \neq 0$. We can find a coordinate system $(A, x), p \in A$, such that $X_{u}=\frac{\partial}{\partial x_{1}}$ and that the image of A on \mathbf{R}^{2} is a rectangle.

Let $\left\{v_{1}, \ldots v_{n-1}\right\}$ a basis of $I(p)$. Set $X_{v_{j}}=f_{j} \frac{\partial}{\partial x_{1}}+g_{j} \frac{\partial}{\partial x_{2}}$. We define the map

$$
\begin{array}{rl}
\tilde{h}: A & \longrightarrow g_{n-1}(V) \\
x & \mathrm{R}\left\{v_{1}-f_{1} u, \ldots v_{n-1}-f_{n-1} u\right\}
\end{array}
$$

whose differentiability is clear.
Note that $w \in \tilde{h}(x)$ if and only if $X_{w}(x)$ is proportional to $\frac{\partial}{\partial x_{2}}$. If $x \in$ $A \cap \Sigma_{1}$ this means that $X_{w}(x)=0$ because it is also proportional to $\frac{\partial}{\partial x_{1}}$. Then \tilde{h} is a local extension of h.
3) Let $F_{r}\left(\Sigma_{1}\right)$ be the boundary on M of Σ_{1}. Then $C_{1}=\left\{v \in V / X_{v}(p)=0\right.$ for some $\left.p \in \operatorname{Fr}\left(\Sigma_{1}\right)\right\}=\underset{p \in \operatorname{Fr}\left(\Sigma_{1}\right)}{U} I(p)$ is of the first category (i.e. it is contained in the union of a countable family of closed nowhere dense subsets of M).

Since $\operatorname{Fr}\left(\Sigma_{1}\right)$ can be covered by a finite family of coordinate systems (A, x) as in 2), it will be sufficient to prove that $\underset{p \in \operatorname{AnFr(\Sigma _{1})}}{U} I(p)$ is of the first category. Let T be a slice of A obtained by doing x_{1} constant. As the isotropy is constant on the orbits:

$$
\left.\underset{p \in \operatorname{A\cap Fr}\left(\Sigma_{1}\right)}{U} I(p)={\underset{p \in \operatorname{Ti} F r\left(\Sigma_{1}\right)}{U} I(p), ~}_{U} I()^{2}\right)
$$

Consider the vector bundle $\pi: E \rightarrow T$, subbundle of $T \times V$, given by the condition $\pi^{-1}(x)=\{x\} \times \tilde{h}(x)$. Set $\varphi:(x, v) \in E \rightarrow v \in V$.

The set $\pi^{-1}\left(\operatorname{T} \cap \operatorname{Fr}\left(\Sigma_{1}\right)\right)$ is of the first category in E because $\operatorname{T\cap } F_{r}\left(\Sigma_{1}\right)$ is of the first category in T. As φ is differentiable and E and V are manifolds of the same dimension, it follows that

$$
\varphi\left(\pi^{-1}\left(T \cap \operatorname{Fr}\left(\Sigma_{1}\right)\right)\right)=\underset{p \in \operatorname{TnFr}\left(\Sigma_{1}\right)}{U} I(p)
$$

is of the first category in V.
4) Take now $v \in\left(V-C_{1} \cup C_{2}\right)$. The set $Z\left(X_{v}\right)$ of the zeros of X_{v} is contained in Σ_{1}^{0}. On the other hand the 1 -foliations given by:
(a) X_{v} on $M-Z\left(X_{v}\right)$
(b) the action of R^{n} on $\stackrel{\theta}{1}_{1}$.
agree on ($\left.M-Z\left(X_{v}\right)\right) \cap \Sigma_{1}^{0}$. Then M admits an 1-foliation and $\mathcal{X}(M)=0$, contradiction.

2. Case of a comnected nilpotent Lie group G

It will be sufficient to adapt the proof of the abelian case. Let V be the Lie algebra of G. Since V is nilpotent every subalgebra of codimension one is an
ideal. Therefore the isotropy is constant over each 1 -orbit and C_{1} will still be of the first category.

Let B be a 2-orbit. Given $p \in B$ there always exists an ideal I of codimension one which contains $I(p)$. As B is an orbit and I an ideal then $I(q) \subset I$ for all $q \in B$. Consequently C_{2} is contained in a finite or countable union of ($n-1$)-planes of V. In particular $C_{1} \cup C_{2} \neq V$. The rest is similar.

Example 1. See $P(2, R)$ as the plane R^{2} plus the infinite points. The vector fields on $R^{2}: \frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}$ and $x_{1} \frac{\partial}{\partial x_{2}}$ can be extended, in a natural way, to $P(2, \mathbb{R})$ because they are affine. These vector fields generate an action of a 3-dimensional nilpotent group on $P(2, R)$, whose orbits are R^{2}; the set of all points of infinity except the vertical one (i.e. the point associated to the vertical direction); and the infinite vertical point, which is the only fixed point.

Example 2. Tare now $\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}$ and $-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}$. One obtains an action of a 3-dimensional solvable group with no fixed point. Their orbits are R^{2} and the set of the infinite points.

See [1] for a 2-dimensional example with no fixed point.

References

1. E.L. Lima, Common singularities of commuting vector fields on 2-manifolds, Comment. Math. Helvet. 39 (1964), 97-110.
2. P. Molino, F.J. Turiel, Une observation sur les actions de R R^{p} sur les variétés compactes de caractéristique non nulle, Comment. Math. Helvet. 61 (1986), 370-375.
3. P. Molino, F.J. Turiel, Dimension des orbites d'une action de \mathbf{R}^{p} sur une variété compacte, Comment. Math. Helvet. 63 (1988), 253-258.

Sección de Matemáticas
Facultad de Ciencias, Ap. 59
29080 Malaga. SPAIN

Rebut el 26 de Gener de 1989

