Pub. Mat. UAB
Vol. 31 no 1 Abril-1987

ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL SEQUENCE OF

STRONGLY BOUNDED SUBSETS

Kazuaki Kitihara

ABSTRACT, Let E(t) be a locally convex space admitting
a fundamental sequence an} of strongly bounded subsets.

In this paper, we consider a characterization of the subspace

-] -~

éiI Bn of the completion E of E(t), where each gn
denotes the completion of Bn' As a result of this, the

© ~
space éil B, is characterized as the smallest subspace of

-~

all subspaces of E that contain E and have the property
that every closed strongly bounded subset is complete.
Furthermore, by using this result, we concretely study the LP-

spaces under some weak topologies.
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[NTRODUCTION.

Let E(t) be a locally convex space admitting a fundamental
sequence of bounded subsets {Bn}. Then many authors have
considered this space in general or under some additional condi-
tions and have obtained various important results.( for instance,

see M, De Wilde [3] and D. J. H. Garling [4].) As one of these
[=+]

results, we can give the result concerned with the subspace éil

~ -~ ~

Bn of the completion E of E(t), where each Bn is the com-

pletion of Bn in E(t). For example, if E(t) 1is distinguished,
— — ® o~
denoting by E the quasi-completion of E(t), them E = é;an.
: -~ @ ~
Furthermore in case E(t) is a (DF)-space, then E = ﬁian

But comparatively little attension has been paid to a locally
convex space F(t') admitting a fundamental sequence of strongly

bounded subsets {Cn}.

The main purpose of this paper is to consider a characteriza-
tion of the subspace §11 En of the completion F. To answer
this problem, we introduce a certain completion of a locally
convex space, which has the property that every closed strongly

bounded subset is complete. We call this completion the f-quasi-

completion. The property of the f-quasi-completion is weaker
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than that of the quasi-completion. However, as is shown later,
under an appropriate condition we can easily obtain the B-quasi-
completion(see Proposition 5.) and this completion of a non-
complete locally convex space is frequently such a delicate
subspace that is not obtained by considering the quasi-completion.
(see the results in section 4.) In these respects, the notion

of B-quasi-completion seem to be useful in application.'

Here follows explanation of each section. In section 1, we
explain some definitions and notations used through this paper.
In section 2, we introduce the B-quasi-completion of a lo;ally
convex space and, under an appropriate condition, we give a
representation of this completion. In section 3, by using the
result in section 2, we give an answer of the above problem.

In the final section, we use the results in section 3 to study
the B-quasi-completions of the Lp-spaces with some weak topolo-
gies, and give a few propositions with the Cauchy sequences in

this completion.

1. PRELIMINARIES.

Mostly we shall follow the definitions and notatioans in H.
Jarchow [6] and H. H. Schaefer [10]. Through this paper we deal
with Hausdorff locally convex spaces over the real field R.

Let E(t) be a locally convex space. We denote by E' the
topological dual of E(t) and simply call this space the dual of
E(t). Further we write Eseq(gseq)' E(t) and E(G) for the

sequential completion, the quasi-completion and the completion of

E(t) respectively. Let B be any subset of E, then to specify
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a iocaily convex topology we represent B{t] and B[t] for the
completion and the closure of B respectively. If an} is a

family of subsets of E, then we express AC(Ay) for the abso-

lutely convex cover of UAQ' As for bounded subsets in E(t),
we denote by Bst the family of all closed absolutely convex
strongly bounded subsets. If there exists a sequence Bl < B2 <

of absolutely convex bounded (strongly bounded) subsets such

that every bounded (strongly bounded) subset is contained in some
Bk’ then we call this sequence a fundamental sequence of bounded
(strongly bounded) subsets. Let (E, F) be a dual pair, then
we express <u, v>, u € E, v ¢ F for a bilinear form on E and
F. For the dual pair (E, F), we often use the following
iocally convex topologies;

6(E, F) = the topology of uniform convergence on the set of
all finite subsets of F on E,

B(E, F) = the topology of uniform convergence on the set of
all o(F, E)-bounded subsets on E and

B*(E, F) = the topology of uniform convergence on the set of
all B(F, E)-bounded éubseés on E.
Finally we give some definitions of locally convex spaces. E(t)
is said to be quasi—kb—barrelled if every bornivorous barrel in
E which can be represented as the intersection of a sequence of
closed, absolutely convex o-neighbourhoods is itself a o-
neighbourhood in E(t).(see H. Jarchow [(6].) Supposing that
every g(E', E)-bounded subset of E' 1is B(E', E)-bounded, then
we call this space W-space.(see P. K. Kamthan and M. Gupta [7].)
E(t) 1is said to be B-semi-Montel if every closed strongly

bounded subset is compact.(see K. Kitahara {81.)
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2. OM A LOCALLY CONVEX SPACE.

DerFinITION 1. A locally convex space E(t) 1is said to be a
B-~quasi-complete space if for every B(E, E')-bounded subset B,

B[t] 1is complete.

DEFINITION 2. Let E(E) be the completion of a locally
convex space E(t) and {EA}AEA the family which consists of

all the B-quasi-complete subspaces of E(E) with E < EX < E.

Then we set the linear subspace EB = {\A EA of E and call
€
this space the B-quasi-completion of E(t). We denote by EB

the induced topology from E(t) on EB. To specify a locally

convex topology, we often use the notation EB(EB) for the B~

quasi-completion of E(t).

ProPosiTION 1. The g-quasi-completion EB of a locally

convex space E(t) 1is B-quasi-complete under the topology ¢t .

=3
Proof. Let B be an arbitrary B(E , E')-bounded subset(The
dual of EB(EB) is E'.) and {EA}XEA the family in Definition

2. Since EB < EA and B(ES, E') is finer than B(E,, E') on

EB for each A e A, B is B(EA’ E')-bounded. Thus E[EB] =

E 1 0 = N E v E = g t]. Hence we obtain E t
(] 0 () = {1,(Bl¢] ) = Blt] (t]

< E

B8
REMARK 1. For a locally convex space E(t), if we set E7 =

v B[t], then it holds that

BEBSt
ECEBcEBcEc'E.

m|

Now we show that under what conditions E coincides with
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PropoSITION 2. Let E(t) be a locally convex space, then

-2 - —3 -
E” coincides with E if and only if E”(tB) is a W-space.
=8 = =8 -8 . A
Proof. If E” = E, then E"(t”) 1is a W-space from its
quasi-completeness. Conversely let EB(FB) be a W-space.

Since, in EB(EB), O(EB, E')-boundedness is identical with B(EB,
E')-boundedness, EB(EB) is a quasi-complete space. Hence we

8

obtain E° = E from Remark 1.

DEFINITION 3. Let E(t) be a locally convex space and E7

B#
the dual of E'(B%(E', E)). If for an arbitrary B(Eé*, E')-
bounded subset B of Eé%, there exists a R(E, E')-bounded
subset By <= E ruch that EO[O(EE*’ E')] = B, then E(t) 1is

said to have (¥)-property.

PROPOSITION 3. . 4 locally convex space E(t) has (*)-

property If and only if E'(B*(E', E)) 1is quasi-barrelled.

Proof. If E(t) has (¥*)-property and B 1is an arbitrary

B(Eé*r E')-bcunded subset in Eé*,

bounded subset BO in E such that EO[O(Eg*’ E')] » B. Since

then there exists a B(E, E')-

Bo[c(EE*’

Conversely»suppose that E'(B*(E', E)) 1is quasi-barrelled and B

E')] is a B*(E’', E)-equicontinuous subset, so is B.

is an arbitrary B(Eg*, E')-bounded subset. Then the polar B°

of B in E' is a B¥*(E', E)-neighbourhood of o. Hence we

take a B(E, E')-bounded subset B1 satisf&ing that the polar B?
of B1 in E' is contained in B°. Consequently the polar

of B° in Eén is contained in the polar _B?o of B? in

ET. . Thus we get the conclusion from the property of polarity.

BOO
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Using Proposition 3, first we show

LEmMmMA 4. Let E(t) be a locally convex space with (*)-

property, then the B-quasi-completion EB(O(E, E')B) of E(O(E,
E')) coincides with Eé*.
Proof. Since Eé* is the dual of E'(B*(E', E)), E%* =
oo 00

U B°°, where B° is the polar of B in E' and B is the

BEBst

polar of B® in Eg*.
oo

and o(Ey,, E')-compact, hence B = §[0(E, E')]. So EB(O(E,
B

Every B°® is equal to E[O(Eg*. E')]

E')") = EV follows from Remark 1. Let B be an arbitrary

g

B(EY E')-bounded subset, then by the assumption there exists a

g’
B(E, E')-bounded subset B0 with B < 880 < Eg*. From this
fact, we can state that Eé*(O(E"*, E')) 1is a B-quasi-complete
B3, E®) - B,

spacé, which implies
Then we prove

ProrPOSITION 5. Let E(t) be a locally convex space with
(*)-property, then the fR-quasi-completion EB(?B) of E(t)

coincides with U Bfc].

BEBSC
. Proof. Since clearly EB(FS) PR g[t], it is sufficient
BEBst
to show the converse inclusion. First we consider the identity

map i : E(t) =+ E(o(E, E")). As this map satisfies the filter
condition(see Sec. 6, N. Adasch, B Ernst and D. Keim {1].), the

-~ ~ ~ ~ ’_\/' i i
continuous extension i : Et(t) - EO(O(E. E')) of i 1is one to

~ ~

one, where Et and E0 are the completions of E(t) and of

E(o(E, E'")) respectively. Hence we regard Et as a subspace
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A=

of E . Further if we set F = ;-l(gg), where Eg

o is the B-

quasi-completion of E(o(E, E')), then the subspace F of Et
is B-quasi-complete under the induced topology from EE(E). So

we also regard the B-quasi-completion E% of E(t) as a sub-

space of Eg. Now let B be an arbitrary absolutely convex
B(E?, E')-bounded subset of EE. Since B 1is B(Eg, E')-
bounded, there exists an absolutely convex B(E, E')-bounded

subset B1 with El[o(E, E')] > B by Lemma 4. From this fact,
8

we obtain Et 0 EI[O(E, E')] = EI[O(EE, E')] o B. On the other

hand, the locally convex topologies G(EE’ E') and FB are
compatible with the dual pair (EE, E'). Hence we have EE 0N

gl[c(E, E)] = EI[EB] = §[EB] = §[€B]. This means that EE is

contained in UJ g[t].
BeB

st

By Proposition 3, every distinguished locally convex space does
not have (¥#)-property and conversely every locally convex space
with (*)-property is not distinguished. Here we give a normed

space which does not have (%#)-property by using a counterexample

in G. Kéthe [9].(see P. 435.)

ExampLE. First we use the following notations. As linear
'subspaces of RN x RN, we set
1
2= { (x; )] £ |x. ] <+ =1},
i,] i)y b
L o= | (xl,j) I osup [xl’j] < + =},
i,]
- (n)
o= (xi,j) | 1ZJ| i,j'xi,jl < + o for each n ¢ N, where
a§n2 j for i g n and a(n} for i > n } and
1,] l,J
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A= | (xi ) | there exist an n € ¥ and a ¢ > 0 such that

’

o (n) . .
xi,jl s.c a5 for (i, j) e N x N }.

Further we set

t = the locally convex topology on A generated by the semi-
- (n).
norms {pn}, where pn(x) = i?j'airj xi,jl for all (xi,j) € A

and all n g N.
Then A(t) 1is an (F)-space with its dual A'. By G. Kothe
[9], in the strong dual A'(B(A', A)) of A(t) the following

facts hold.

A

(1) For the sequence B = { (xi,j) | (xi,j) e A, Ixi,j,

ag?; for all (i, j) e N x N} n € N of the subsets of A',
{n'Bn} forms a fundamental sequence of bounded subsets.

(2) The family consisting of subsets of the form U(Cn)
(KET?;TEES)[O(A', A)], where each <, is a positive number, is
a base of neighbourhoods of o.

(3) Every o-neighbourhood U has an element u = (u, .)

[+
such that u g % and for each i € N there exists a ki e N

. I
with ui,ki 2.

(4) The subset V = AC(Z—n'Bn) is borniborous and does not
have an element satisfying the condition in (3). Hence V 1is

not a neighbourhood of o.
To give an example, we need the following two lemmas.

LEMMA 6. VI[B(A', X\)] does not have an element satisfying
the condition in (3).

Proof. By 4-(1), P. 399 in G. K&the [9]}, it is sufficient

a

to show that the algebraic hull V of V satisfies the
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conclusion. Suppose that v® has an element u satisfying

the condition in (3). Then there is a v € V with [ v , u ) <
Vv, where [ v ,u ) denotes the real line segment joining v and
u, including v and excluding wu. On the other hand, for each

element z of V it holds that |z, .| s 1 for all i 2 i,5 and

i,]
all j € N, where io is a sufficient large positive integer.

If we put w = to'v + (l—to)-u, and if to is a sufficiently

1z (e luy |- ggnlv

i, i, "

then we obtain |w, | >1 for each 1 2 i and some k., € XN,
i,k 1 i

small positive number, since |w i,
’
where i1 is sufficiently large positive integer. This contra-

dicts the fact that w belongs to V.

LemvA 7. In the dual pair (A, ), g*(L”, \) is identical

-]

with B(X's A) on £ .

Proof. It is sufficient to show that B(A, lw) is identical
with the topology ¢t. Since lm(o(lm, X)) 1is a subspace of
AT (a(x', X)), 22(a(8”, A)) admits a sequence Cnl= { (% J.) |

(xy J.) e 2, Ixi jl s a(n) } n e N such that {n‘Cn} is

i,j
fundamental in bounded subsets. On the other hand, for an

. _ (n)
arbitrary =z = (zi,j) e B = (xi,j) | Ixi,jl sa; ] for all
(i, j) ¢ N x N} and for an arbitrary y = (y; j) € A, if we set
z(k'l) = (zgkil)), where z(kiz) =z, . for i sk, js?&,

1,] i,] 1,3

zgksl) = 0 otherwise, then we have

<y, z - z(k’l)>|

I !

. oLt 2, .
s 2 }yl’J 1,]

A
=
[

g
(i,j) ¢ { (i,3) | 1

<

s z rzL
(i,3) ¢ { (i,3) | i L }Iyl’J 21,3

"N

~
—

L0

Bv the above inequality, each Cn neN is o(A', A)-dense 1in
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Bn' Hence the bipolar of Cn in A' coincides with Bn'

Since the polar of Cn in A coincides with the polar of Bn

in A, we obtain the conclusion.

I1f we consider the normed space (A, I 'I]l), where ||'||l

denotes the ll-norm, then we can establish the following

ProrosiTION 8. 'O “1) does not have (*)-property.

Proof. Since the dual of (X, {] - ”1) is lm, we need only
show that lm(B*(lm, A)) 1is not quasi-barrelled. By Lemma 7,

the family consisting of the subsets of the form U(c ) N lw,
n

where U(C ) denotes the subset in (2), forms a base of neigh-
n © ® : ©
bourhoods of o in £ (B®(2 , A)). Further every U(c ) L
n
contains an element satisfying the condition in (3). On the

other hand, V[B(A', AN] on L is a bornivorous barrel in lw(B*

«©
(2 , A)) and does not have an element satisfying the condition
e o]

in (3) by Lemma 6. Thus V[B(A", X)] n 2 is not a neighbour-

hood of o in ZQ(B*(ZQ, ).

3. ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL

SEQUENCE OF STRONGLY BOUNDED SUBSETS.

Now we draw the main theorem from the results in section 2.

THEOREM 9. Let £E(t) be a locally convex space admitting
a fundamental sequence [Bn} of strongly bounded subsets, then,
for the subspace 511 gn[t] of the completion E(E), the
following facts hold:
?8

© ~ -2
(L) L) Bn[t] coincides with E~(t7).

n=1
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o]

il Bn[t] coincides with E(t) if and only if

(=]

(2) ]

L 8
n n=1

Bn[t] is a W-space under the induced topology from E(E).

Proof. As to (1). Since E(t) admits a fundamental
sequence of strongly bounded subsets, E'(B*(E', E)) 1is quasi-
barrelled. Hence we obtain the conclusion (1) from Proposition
5.

As to (2). Bv Proposition 2 and the conclusion (1), we can

verify this.

Then we have several corollaries under the same condition as

in Theorem 9.

. =2} -~
CoroLLARY 10. sty B [(O(E, E')] = EB(G(E, E’)B) = Ega-
Proof. It is clear from Lemma 4 and Theorem 9.
COROLLARY 11. Suppose that each Bn is precompact in

e

E(t). Then, under the induced topology from E(t), ;L Bé[t]
«© -~
is B-semi-Montel. Furthermore 1, Bh[t] is semi-Montel if
® . .
and only if Ail Bn[t] is a W-space.

o0

Proof. For an arbitrary strongly bounded subset B in [/,

Bn[t], as in the proof of Proposition 5, there exists a Bno

such that B < B_ [t]. Thus the conlusion follows immediately.

CorROLLARY 12. If t 1is the finest locally convex topology
that on each Bn induces the same neighbourhoods of o as L,

then ES(ZB) coincides with E(E).

n

Proof. Noting that {2 'Bn} is also an absorbing sequence,
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from (3) and (12) of section 16 in N. Adasch, B. Ernst and D.

Keim [1], we get the conclusion.

ReMARK 2. Let E(t) be a quasi-HO—barrelled sbace admitting
a fundamental sequence {Bn} of strongly bounded subsets. If
511 gn[t] is a W-space under the induced topology from E(E),
then, by the proof of Proposition 5 and Theorem 9, 511 En[t] is a
quasi-complete and quasi-&b—barrelled space admitting a fundamen-

tal sequence {gn[t]} of bounded subsets. Thus éilﬁn[t]

coincides with E(t).

4. On THE LP-spaces.
First we prepare the notations.

NoTATION 1. (i) Let X be a set, A(X) a O-algebra of
subsets of X and W : A(X) » [0, ®] a O-finite measure. Then
we set the following function spaces on the measure space (X,
A(X), u) ; for each p with 0 < p 5 + =,

L(p)(X) = { f(x) | f: X+ R 1is an A(X)-measurable function
such that If(x)lp is uy-integrable. },

L(m)(X) ={ f(x) | f: X+ R is an A(X)-measurable function
and p-essentially bounded. },

Sim.(X) = { £(x) | £ = % ai'XEi (finite sum), where a, € R
in is a characteristic function of a subset Ei £
A(X). } and

and each
Sim.f(X) ={ f(x) | f =2 @, Xg (finite sum) and for each
i
Ei e A(X), u(Ei) is finite. }.

Furthermore we denote bv Lp(X), Lw(X), S(X) and SE(X) the
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spaces consisting of the equivalence classes of functions in the
above four function spaces respectivelv, where the equivalence
relation " means that f v g++f = g u-a.e..

(=]

(ii) For any p with 1 s p s + =, we denote by || .,lp
the usual norm on LP(X) such that, for an arbitrary f ¢ T e
LP(x),

NEN, = (g 161P awen'P for 15 p <+ = and

HEll, = ess.sup |£(x)].
x€X
Thg topology generated by the norm || - ”p is denoted by tp.

Now we consider the measure space on the set of all positive
integers N such that A(N) is the family of all subsets of
N and u 1is the counting measure. In this case, LP(N) is
identical with 2P for 0 < p S + @, Then in the dual pair
(lp, ¥), where ¥ is the space of all finite sequences,
Zp(o(lp, ¥)) 1is B-Montel for 1 S p $ + ® by Proposition 2 in
K. Kitahara [8], hence the B-quasi-completion of LPaa?, vy
is &P for 1 s P S + ®, For the B-quasi-completion of

2P (oe?, v)) 0 < p < 1, the following holds.

PrROPOSITION 13. For any p with O < p < 1, the f-quasi-

completion of 'lp(o(lp. V)) coincides with 21.

Proof. V(o(v, 2P)) admits a fundamental sequence Bn ={ x
| x € U c Zm, ”‘x|lm £n} ne N of bounded subsets. Since
=)

each B is t,-dense in { x I x € cg L, |l xll, snl,

2P(8(2P, ¥)) admits a fundamental sequence Cn ne N of

bounded subsets such that Cn = { x I x e 2P e 21, “ Xlll s}
. —8 ————8 ©
n e N, Hence by using Theorem 9, 2P (o(2P, v) ) = aly Cn[O(Qp,
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1

1 =1l
. p B
Remark 3. Let . X be a set. We put L°(X) = { () ex |
X p
Z) € R, I YA < + o} for 0 < £ 1 and (X)) = @
(Z,) 4 ex L .| P (X) = o
Rx, where each Rx = R. Then, by the similar proof of Proposi-

tion 13, we obtain lp(X)B(G(lp(X), W(X))B) = ll(X) for 0 < p <

l.

Let (X, A(X), u) be any O-finite measure space. Then in
the dual pair (LP(x), Sf(X)), 1 <p £+ o, we consider the B-

quasi-completion of Lp(X)(o(Lp(X), Sp(X))).

THEOREM 14.  For any p with 1 < p s+ @ LP(X)(a(LP(X),
Sf(X))) is B-semi-Montel, hence the B-quasi-completion of this

space is itself.

Proof. It is sufficient to show that every strongly bounded
subset is relatively compact in LP(K)(O(LP(X), Sf(X))).

Sf(X)(O(Sf(X), LP(X))) admits a fundamental sequence Bn n €N

of bounded subsets such that Bn ={ f| fc¢ Sf(X), Il f[]q s nl
n € N, where 1/p + 1/q = 1 and if p ==, thean q = 1. Since
each Bn is tq—dense in (£ ] £« Lq(X), || £ ”q snl,

LP(X)(B(LP(X), Sf(X))) admits a fundamental sequence Cn ={ f ]
£ e LPxy, |l £ “p sn} n €N of bounded subsets. Each Cn

is O(LP(X), Sf(X))—compact by the reflexivility of Lp(X)(tp)

and the fact that Lm(X) is the dual of Ll(X)(tl). Hence

LP(x)(o(LP (), $¢(X))) is B-semi-Montel.

Using Theorem 14, we obtain a corollary related with Vitali-

Hahn-Saks theorem.
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CorOLLARY 15. Let (X, A(X), W) be any finite measure space
and H the space which consists of all sequences converging to
o in Ll(X)(O(LI(X). S(X))). If {fn} is a Cauchy sequence in
LI(X)(O(LI(X), S(X))), then {fn} has a limit in LP(x), 1 < p s

+ ®, iIf and only if there exists a subsequence {fn } such that
k

inf supllf - hk II is finite. However in case g does
(n Yed « Tk p
not belong to LPex), we put Il gllp = + ®,

Proof. By Vitali-Hahn-Saks theoren, {fn} converges to an

1 p .

fg € LT(X). If £y € LP(X), then (f - £,} € H by putting £
= (fn - fo) + fO n € N. Hence the necessary condition holds.

Conversely suppose that there exist a subsequence ffnk} of

{fn} and a {hk} € H satisfying that sup i fnk - hkllp < + o,
Then the sequence {gk}, g8, = fnk -h,  keN is a Cauchy
sequence in LP(X)(O(LP(X), S(X)). Thus by Theorem 14 there
exists a g4 € LP(X) to which {gk} converges. Since {fn}

is a Cauchy sequence, [fn} and {gk} have the same limit.

Remark 4. | (1) The fact that Lm(X)(G(Lw(X), Sf(X))) is B-
semi-Montel is a generalization of bounded convergence theorem.

(2) In general since LP(x) 0 < p <1 and Sf(X) do not
form a dual pair, we can not consider the weak topology on LP(X)

by Sf(X) unlike the case of &P 0 < p < 1.

Next we consider the B-quasi-completion of Ll(X)(O(Ll(X),
s(1))) and LX) (o(Li(X), S(X))). Before giving the results,

.we need the following notations.

NOTATION 2. (i) Let (X, A(X), u) be any O-finite measure
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space and F(X) the set of real-valued functions & on A(X)
such that

(a) sup { [g()] | ae a(x)} <+ =,

(b)) &(A v B) = &(A) + E(B) for A, Be A(X) and 4 rn B =
g and

(c) €E(A) =0 if A e A(X) and u(A) = 0.

For such a g, we define |§| on A(X) by the rule

lgl(a) = sup { j21 "(ﬁg" | Aje A(X), J =1, 2,000, 0, Ay O
Aj = ¢ for i # j and ;il Aj = A }.
Then F(X) 1is a linear space and we can define a norm H'HF
such that Il €lle = 1€](X). This norm space (F(X), II']IF) is
identical with the strong duai of (LQ(X), l|'||m), where for an

arbitrary £ € F(X) and an arbitrary equivalence class IA €
Lm(X) to which Xar A € A(X), belongs, the following bilinear
form holds; <g&, IA> = £(A). (see P. 357 in E. Hewitt and K.

Stromberg [5].) Further by considering the injection map i,

Lhx)y » F(x) ; E - ¢ such that fe T and £z(4) = £, £ du(x)

for all A e A(X), (LI(X), | - “1) is a subspace of (F(X),
e g |
(ii) Under the same condition of (i), we denote by FO(X)

the set of real-valued functions n on AO(X)‘= { A ] A e A(X)
and u(A) < + » } satisfying that the conditions replaced A(X)

in (i)-(a), (b) with AO(X) and the condition (i)-(c) hold.

' n
Similarly we can define .|n|(A) = sup { jgl [n(Aj)] I Aj £
n
i = ... = i j J a. =
AO(X), i 1, 2, » M, A0 Aj ¢ for i # j and 321 AI
A} for all A ¢ AO(X). Hence if we set || nf| = sup [nf(a),
B

A€AO(

then (FO(X), II'H F ) is a normed space and identical with the
0
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strong dual of (Sf(X), -1l - For the bilinear form in

FO(X) and Sf(X), the same formula of (i) holds. Moreover
setting the injection map 12 : Ll(X) > FO(X) S ng such that
£ T and np(a) =7, £ du(x) for A e Ay(0, (Llco, Il
is a subspace of (F (X)), | - HFO).

Using these notations, we obtain

THEOREM 16. Let (X, A(X), u) be any o-finite measure

B B8

space, then LY(x)cocLtex), scx))") = trexycocttexy, scx))) =

8

8
F(X) and LY0) (ocLtx), s,000)7) = Fy(x).

Proof. First we consider the.B—quasi~completion of Ll(X)
CaLi(x), s(X))).  S(X)(o(S(X), LY(X))) admits a fundamental

sequence Bn n e N of bounded subsets such that Bn ={ £ | £

e S(X), [l£Elly,sna ) neN. Since each B is t,-dense in

(el eet™0, el sa), Lheoea), sx))) adnits a

fundamental sequence C_ = { f | £ e LI(X), || £ H1 snl} neXd
of bounded subsets. Hence the topology B*(S(X), LI(X)) is
identical with t_ on S(X)ﬁ’ Noting that (S(X), || - [ll) 1is a
dense subspace of (L™(x), - ”w), by Corollary 10 we obtain

Lo, sxn’) = F(X). Moreover since F(X)(o(F(X),

S(X))) is sequentially complete by Main Theorem in T. Ando [2],

. T,..5 T 8 1
from Proposition 2 we have L (X) (o(L (X), S(X)) ) = L (X)

(a(L (1), S(X0)).  as for LU(X)(o(LI(X), $.(0))), by the

similar argument, it holds that BN(Sf(X), Ll(X)) is identical

3
with t, on S.(X). Hence we obtain Lreo®olcn, S(X))

2]

= FO(X) bv-Corollary 10.
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In Vitali-Hahn-Saks theorem the Cauchy sequences 1in LI(X)
(G(LI(X), S(X))) are dealt with and the Cauchy sequences 1in
F(X)(O(F(X), S(X))) ére treated in Main Theorem in T. Ando [2].
Here we shall investigate the Cauchy sequences in FO(X)(O(FO(X),
Sf(X))). If, for an arbitrary §& ¢ FO(X), E denotes any
continuous extension of £ on (S(X), |l -llg) with |l € ”FO =

1l EIIF’ then we can prove

Tueorem 17 Let (X, A(X), u) be any O-finite measure space
and FO(X) the dual of (Sf(X). ||° Hw). For a Cauchy sequence
{En} in FO(X)(O(FO(X). Sf(X))) the following facts hold.

(1) {En} converges to & &g € Fo(X) if and only if

sup lim I&n(E)I < #+ o,
Eedy(x) 7 '

(2) {En} is a Cauchy sequence in F(X)(o(F(X), S(X))) 1if
and only if there exists an increésing sequence ~{En} ‘of subsets
of X such that En € AO(X) n € N and the sequence £ =
s:.ép(HEk ”FO - |g 1(E,)) n e N converges to 0. In this case,
there exists a &g € F(X) with SO(E) = lgm En(E) for all £ ¢
A(X).

(3) {En} is a Cauchy sequence and lém En € Ll(X) if and
only if there exists a sequence {En} of subsets of X satis-
fying the condition in (2) and for this sequence there is a
sequence {6n}. Gn >0 n e N such that the sequence c = sup {
lﬁm ]Ei(F)| | F e E, and u(F) < s, }) n e N converges to O,
In this case, there exists a §, € tiex) with fE £ du(x) = lém

§(E) for all E € A(X).
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Proof. As to (1). If we set £O(E) = I%m €n(E) for E €

AO(X), then EO belongs to FO(X) if and only if sup
EEAO(X)

|lim€n(E)| = sup limlin(E)l < 4+ © by Notation 2-(ii).
n Eeag(X)

As to (2). Since the measure space (X, A(X), u) 1is O-
finite, we set an increasing sequence {Xi} of subsets of X

-~

o« .

i X.) < v = X. i

with H(X;) <+ = and X X Suppose that {En} is a

Cauchy sequence. Since H En ”F = IIEn ”FO for all n € N, for

each n € N there exists an increasing sequence {an)} such
(n) ¢ | (0)y < 1/

that Y. ag(x) and || anllFo - 1g 1(¥;?’) < 1/i.  Then we

consider the following increasing sequence {Zn} ; Zl'= X v

(1) - ; (L) (2) . (1) cee
Yy, Z2 xz { Yz U Y2 , Zn = xn v Yn u u

(n) ... Y
Yn ) . Clearly each Zn € AO(X) n €N and n=lzn = ?.

For this sequence, observing that IZHI(X) - (IEnl(Zl) + kEI

lgn](z -7 < 1/j for each n € N and all j % n, it holds

k+l
~ * o
that € 1(X) = & (2 + &y 18, 1(z,; - 2) for each n e N.
On the other hand, for the sequence {Zn} and the.Cauchy sequence
{gn}’ by usiang Lemma 4 in T. And0 [2], there is a {“2} < N such
| F _ L . .

that sEp "kl(zi Zj) < 1/2 for all i, j % ng. Now we

shall show that for an arbitrary € > 0 there is a k(e) € N

with sEp IEkI(X - Zk(s)) < g, For given positive number €, if

we put & with 1/229 < €/2, then we obtain, for each k € N,

-~ 0 ~ @ ] ~

lg, J(x - zn20> - Iakl(;;%(zni+1 -2, ) - igzolskuzni+1 -2
s izlo /28 = 17280 Tt <.

Hence if we put Zk(e) = ano, then the conclusion follows.

Conversely suppose that there exists an increasing sequence
{En} satisfying the condition. For an arbitrary E € A(X) and

an arbitrary € > 0, we take an n4 € N with € < €/3 for all
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nz o, If ve set E = (E c E_) v (E nn ES ), where E° is

ng ng ng
the complement of Eno, then we obtain , for all n, m 2 ng»
|6,(E) = E(B)] 5 [E (B v L) - £.(E v E
= c = [
+ [€ (E n Eno) - &, (E n EnO)I
s g (E 0 Eno) - g (E 0 Eno)l + 2-€/3.

Hence taking an n, € N such that ny 2 g and for all n, m 2 n
€, (B 1 By ) - BB 0 Eno)l < €/3, we have |€ (E) - £ _(E)| < ¢
for 2all n, m 2 n- Clearly by Theorem 16 the Cauchy sequence ‘
{En} has a limit £y in F(X) and it holds that £o(E) = lim
£ (E) for all E e A(X).

As to (3). Suppose that {gn} has a limit in Ll(X). Then

from absolute continuity with the measure space (X, A(X), u)

and the proof of~(2), the neceséity follows.

Conversely assume that the necessary condition holds. Then
we need onlv show that €O = lim En is countably additive. For
n
an arbitrary sequence {Fn} c A(X) with Fn 0 Fm = ¢ for a #

© k ©
m, it holds that 5O(iil Fi) = iél EO(Fi) + QO({ik+l Fi) for all

k € N from its finitely additivity. For an arbitrary € > 0,
we can take an n4 € N with ¢, g < ¢/3 for all n 2 g by
. : ® c @
) . = J = \ J
the assumption. Then we set Dk (§=k+1 Fi) M Eno’ Gk = (1=k+1
F.) nn E for all k & N. Since {G,} 1is a decreasing
i ng k

sequence such that u(Gl) < + » and iﬁle = ¢, there exists a

k. € N satisfying that u(bk) < 6n0 for all k z k;. Hence

0
for each k 2 ko and all sufficiently large n which depends on
k, we obtain

lg (D) + & (G| = |g. (D] + |g, (G )]

/3 + 2-€/3 s €.

™
~~
-
n
Nt
I

A
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© - ©
= i ) s
Thus we have IEO({ik+1 Fi)l ltm Ign({=k+1 Fi)l s e for all

oo
S . . .
k 2 ky, which implies the sequence {50({ik+1 Fi)}k converges to

0. This completes the proof.

REMARK 5. (1) Let A(R) be the family of all Lebesgue
measurable subsets on R and y the Lebesgue measure on (R,
A(R)). If we consider the sequence En(E) = uy(E v [-n, n])
n e N, E € A(R), then {En} c FO(R) is a Cauchy sequence in

F (R)(0(Fn(R), S.(R))) but sup lim |E_(E)| = + =.
0 0 £ EeAg(R) n  °

(2) Let (R, A(R), u) be the same measure space in (1l).
If we consider the sequence vn(E) = y(E N [2n, 2n + 1]) n €N,
E € A(R), then {vn} < FO(R) is a Cauchy sequence converging to
o in Fy(R)(0(Fy(R), S (R))) and sup v, HFO(R) = 1. But
this sequence does not have an increasing sequence of subsets of
R in Theorem 17-(2). Thus [Gn} is not a Cauchy sequence in

F(R)(o(F(R), S(R))).

Finally we give a slight consideration on the space of all

real-valued continuous functions.

NoTaTION 3. Let X be a Hausdorff compact topological
space. Then we use‘the following notations:

B(X) = the Borel algebra of X,

u(+) = a regular measure on (X, B(X)),

C(X) = the space of all real-valued continuous functions on
X,

G(X) = the equivalence classes of C(X) with the measure
space (X, B(X), w),

I| - Il, = the uniform norm on C(X) and
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[l - |l = the essential supremum norm on C(xX).
Further in the dual pair (E(X), S(X)), we consider the bilinear
form <F, h> = IX f'h du(x) for f e f € E(X) and h E h €
S(X).

THeOREM 18.  In the space C(X)(G(C(X), S(X))). the following

facts hold;

= 8 = B @
(1) C(X) (o(C(X), S(X)) ) = L (X),

— seq = seq 1
(2) C(Xx) (c(C(X), S(X)) ) = L (X) and

(3) C(X)(O(C(X), S(X))) = F(X).

Proof. As to (1). For an arbitrary T e E(X) and an
- — n —
arbitrary h e S(X), if £ € £ and h =‘i§l a; "Xg. € h, then we
i
obtain
- - [ n n
[<E, B>l = Iy £ GiEy omxg ) duCal = | j3ye Uy £rxg, du(x)) |
n _ n
£ gy Doyl Ty £rxg du(x)| s T llor g2y logl-u(E))

n

IR eI,

By the above inequality, we can regard S(X) as a subspace of
the dual of (c(X), Il -1l )). Hence SCN(3(S(X), C(X))) admits
a fundamental sequence B = {8 | & e s, ll Hlll Snl} neXN
of bounded subsets. Since each B is t;-dense in { T | FTe¢
LI(X). HE “1 sal, E(X)(B(E(X), S(X))) admits a fundamental
sequence C_ = {glgce c(x), Hgll, sa} neN of bounded

subsets. On the other hand, since X is compact and u 1is a

-] —
regular measure, each C_  is o(L (X), S(X))-dense in { B | h €

WA

Lm(X), ”E-”m n }. Hence we get the conclusion from Theorem

14 and Corollary 10.
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As to (2). For an arbitrary f L;(X) and an arbitrary

m

positive number €, there exists a h € S(X) with ” f - HHl <

€. For h

(]

S(X), from the assumption of the measure space,

there is a € C(X) with “ 8 - Hll < e, By this, for each
8 1

oo |

fe Ll(X) we can take a sequence {En} c C(X) which converges
to £ with the topologyv O(Ll(X), S(X)). Consequently the

conclusion (2) follows from Vitali-Hahn~Saks. theorem.

= q = = seq ——
As to (3). Since C(X) ¢ C(X), we have C(X) = C(X).

Thus we obtain the conclusion (3) by Theorem 16.

A1l the propositions with minor changes in the proofs are true

for a locally convex space over the field of the complex number.
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