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TOPICS IN ANALYSIS

Daniel B. Henry

The gollouing brief {nvestigations in analysis were discussed in
seminans (on Less fonmally) duning my visit to the Universitat Auténoma de
Barcelona and the Centre de Recerca Matemitica, ITnstitut d'Estudis Catalans.
Some (2,3,4) were initiated hene; others were (nitiated in Sao Paulo; and
ATULL others werne initiated herne but are not yet complete. 1 am grateful Zo
Professons Carfes Perells, Xaviern Mora and Joan Sold-Monales for making my
stay beth pleasant and instructive.
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2. Non-decay of thermoelastic vibrations in dimension 23.

3. On some non-linear integral inequalities of Kielh&fer
and Caffarellij.

4. An example in the spectral theory of semigroups.

5. A préperty of the exponential function.

6. Asymptotic behavior of some scalar ODEs and an

elementary example of non-minimal w-limit sets.



1. Examples on propagation of singularities in the wave equation

1.0. Introduction
The following study arose from an attempt,:in an
introductory graduate course in PDEs, to describe (without proof)
the general propagation of singularities theorem of Lax and
" Hérmander. The customary catch-phrase
"singulanities propagate along bicharacteristics”
is, at best, misleading - not all bicharacteristics carry
singularities. The more exact version
"micrno-Local singularities propagate along the cortresponding
bicharactenistics”
requires substantial explanation, but this effort is repaid by
a more complete understanding as shown in the examples below.
We first describe our examples. Then we define
characteristics and the wave-front set, state the propagation
of singularities theorem, and use it to interpret the examples.
‘Finally we give details of the calculation of the wave-front
set for the example of Fritz John [2] (ex. 2). Taylor's article
[5] describes also reflection and diffraction of singularities
in boundary'value problems. Mathematical details of the theorem
(and generalizations) may be found in, for example, the books
of Taylor [ 6] or Hé6rmander [4}.

1.1. The examples

Example 1 Consider tempered distributions E, E,, E_ on

R, x:mg defined by E(t,§{) = IEI—lsintIEf (Fourier

transformation in x),



E(t,¢), t >0 0, t>0
| E,(t,£) = , E_(t,§) =
| -
| 0 rt<0 . —E(tIE)I t<0-
Then as distributions on IR x IRn,
(32702 - AJE(t,x) = 0

(227062 - A B, (£,x) = 5, (t,%)

and the singular support (outside which they are Cm) is

shown in Fig. 1
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l‘ = t‘, t0 # 0; only one

of the bicharacteristic rays through this point carries

Consider a point (t,,x,) of Ix

singularities of E. No ray through (t,x9), ti # lelz,

Fig. 2

carries sinqularities of E; though they all pass through the
singular support of E. (See Fig. 2).

Example 2 (F. John [2], p. 572-574)

Imagine a vast and troubled sea; and in the midst of the
sea, a circle; and inside the circle, everything is calm. There
are no special forces acting. The circle is not a physical
barrier. But the region of quiet continues, neither expanding
nor contracting, while the storm rages without.

Sound impossible?

For any positive integer k, 1if Jk is the kEE orderxr

. ik (£+6
Bessel function; J, (kr) eik(t+8) .o, smooth solution (using plane

: ) . - +
polar coordinates) of the wave equation Uy, U, uyy on
R X®R? so
u = s k_k Jy (kr) eik(t+0) [ sum over powers of 2]

k = Zint'> 2



is also a distribution solution when A > 0. Taking X = m+3/5,

m = integer > 0, u is a c™ function on W, X IR?

t (x,y)"'

which is analytic inside the cylinder {x2 + y2 <1t érbitrary},
Cm+l in the exterior {x2 + y2 > 1}, not Cm+2 on any open
set which meets {x2 + y2 > 1} ana not Cm+l on any open set
which meets {x2 + y2 =1l}. If m=>2, 'u is a classical
solution.

The singular support of u is {x2 + y2 =21, t
arbitrary} but the boundary {x2 + y2 = 1} is nowhere

characteristic. There are many bicharacteristic rays linking the

regular {xz + y2 < 1} and singular {x2 + y2 2 1} regions,

but these do not carry singularities from one region to the

other (See Fig 3).

\\\\\ ; ,regular singular

x2+ y2= 1

e —T =~
~—
Fig. 3
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Not all rays carry singularities. (We show later, for

this example, that at most 4 bicharacteristic rays, through
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any given point outside the cylinder, can carry singularities _—
they are the rays tangent to the cylinder).

1.2. Characteristics and wave-front sets

Let P(x,t) = Z QX(X)Ea be a polynomial in § € r"
o lal <m
with C coefficients, and supnose the principal part

Pm(x,g) = z Rx(x)za is real-valued and the real characteris
| al =m
tics are simple: § € IRn, P_(x,£) =0, 2 P (x,6) =0 for
. m an m

j=1l,...,n imply £ = 0.

As is well—knowﬁ, if u 1is a ‘Cr solution of P(x,é%)u=0

{(r > m) which is Cr+l on either side of a smooth hypersurface

S, but is not Cr+1 everywhere since the (r+l)-order
derivatives have a jump discontinuity across S, then S must be
a characteristic surface: Pm(x,N(x)) = 0 when x € 5, N(x)

is normal to S§ at x, and u is not Cr+l on any

neighborhood of x. Such a surface S may be represented as

{x : p(x) = 0} where ¢ 1is a smooth function with ¢ (x) * 0
{in the region of interest) and Pm(x,vw(x)) = 0 where
p(x) = 0. We'may solve (locally) the characteristic equation

Pm(x,Vw(x)) = 0 by solving the Hamiltonian system |

dX/d)\ = aPm/aE (XIE)I dE/ak == aPm/aX(XIE)
for appropriate initial values with Pm(x,E) = 0, and then
p(x(\)) = constant, yeg(x(A)) = E{\) along such integral curves.

{This construction is classical, and more details may be found
(for example) in Courant— Hilbert [1], vol. 2). The resulting

curves A — (x(\), £(A)) are termed bicharacteristic strips

and their projections A — x(X) bicharacteristic curves or

34



rays. The characteristic surface {¢ = 0} is then fibered by
such rays, and Lax[ 3] proved the magnitude of the jump in the
(r+l)-derivative across S satisfies a first-order linear ODE
along such a ray, so it is either zero everywhere or non—zéro
at every point of such a ray. In this sense, such "Jump"
singularities propagate along the bicharacteristic rays. Taking
this as representative of other singularities, the solutions of
the wave equation in example 1 behave more-or-less as expected,
though it is not clear why some rays through a singular point
do not "propagate" the singularity. But F. John's example (ex.2)’
remains completely mysterions - the boundary of the regular
region is a cylinder {x2 + y2 = 1, t arbitrary} which is
nowhere characteristic. Of course, there is no contradiction
- we are not dealing with a jump discontinuity - but it shows
that propagation of singularities is a more complicated
phenomenon than the classical treatment {(or Lax's theorem)
suggests.

For a more precise formulation, we must go beyond local
analysis ("near a point") to micro-local analysis ("near a
point, looking only in certain directions”).

Definition Let A C R"™ be an open set and u a

distribution on A (u € P'(A)). The wave-front set of u,
WF(u), is a subset of AX(IR®-{0}), which we define by exclu-
sion: (XO,EO) €aX URn—O) is outside WF(u),if and only if

there exist ¢ € C:(A), w(xo) # 0, " and an open cone K C r" -0

containing EO' such that the Fourier transform

N) as £§ —> o~ in K

(p.u)” (§) = o(l ¢l
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for every N =1,2,...

Note We localize u near x by multiplying by a cut-off

0
function ¢ with small support including Xqyi then we localize

the "direction" near ¢ by choice of the cone K. In fact,

0
we should consider £ a co-vector or co-direction, the impor-
tant thing being the corresponding hyperplanes {{.x = const}.

After multiplication by ¢, we may suppose ¢.u is
defined and equal to zero outside supp ¥, so (v.u)” is well-
defined.

WF (u} is a conical set closed in the relative topology

of AX(R" - 0).

§—
n

Exam;g =

(1) If ¢ € C (A), WF(p) is empty.
(2) 1If 50 is Dirac's delta, < 80,¢ > = ¢(0) for
p € c‘: (R™), then WF(5y) = (0,§)I¢ # 0} and

WF(ajso) = WF(8,), j = 1,2,...,n.

(3) If 2C R® is an open set and 32 is a C
hypersuface (with £ on.only one side), Xp =1

in £ and Xq = 0 outside Q, then

WF(XQ) ='{(x,E)|x € 9, # 0 is normal to 99 at x}

{4) HSrmander [4,v.l] shows, for each £0 # 0 in Hin,

there exists u € c? (R™ nc”(R™ \{0}) such that

WF(u) = {O,tfo) : t >0}
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(6)

(7)

Note that the direction —EO is not included:
WF(u) need not be a "double" cone.

Let g : A— R be C  with yg(x) # 0 on A&,
and suppose f € CO(HU is not c”; then for the

composition we have

WF(fog) = {(x,§)IXxEA, f is not C_ on any nbd-, of g(x),

¢ 1is a non-zero multiple of yg(x)}

WE(p.u) C WF(u) for any cm function v, and
WF(aju) CWF(u) for j =1,2,...,n

WF(u + v) C WF(u) Y WF(v)

The proofs of (1), (2), (6), (7) are easily supplied,

while the others are in HS6rmander {4, vol. 1], for example.

We only prove a special case of (5): A = IR , g(x) =x_,

f£(t) =1

(v.f0 g) " (§)

where

for t >a, f(t) =0 for t <a. Then if wec:(m

n
n
n

)

-i &'.x' -if_x
e noa W(x:xn)dx’ dxn

{xn >a}l

-iaf . -if 7 _
=e "Jyge T yE atnar,

~ - -i¢t'.x!
lﬁ(f,xn) - I]Rn_l

Integration by parts shows (for any N)
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-iaEn
Wgo9) ) =Sr— Tits a) ¢ o Farie)™

N

=0 ) THar e as TEl — e,

If yY(-,a) #0 and En ——> too with §¢' bounded, the transform

does not go to zero rapidly (merely O(IEi—l)). But if & — o
in such a way that |E&'l/I&l =2 const., > 0, 1i.e. excluding some
conical neighborhood of the En—axis, then (¥.fog) () =

ot ™M =oqg 7V

). Thus, for this example, WF(f.g) =

fi

{{x,E) X = a, £ = (0,...,0,£n) # 0}, in agreement with (5).
Now we state the general propagation of singularities

theorem of Lax and Hormander:

Theorem. Let P(x,f%) be an m-order scalar differential operator
with €~ coefficients whose principal part P is real and has

its real characteristics simple. If u € D'(A), A dpen, A C R",

WF(Pu) C WF(u) C WF(Pu) U Char P

where Char P = {(x,§)l§ # 0, P (x,§) = 0}

and WF(u) \ WF(Pu) is a subset of Char P which is invariant

under the Hamiltonian flow
x' = aPn/aE(x,E), £' = - aPn/ax(x,E)

until X reaches 9A or (x,§) reaches WF(Pu).

Returning to the functions E, B, , E_ of examnle 1, ve
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now see more clearly their signifance. With (O = a2/at2 -8

OE(t,x) = 0 on all IR X IR' so given any point (to,xo;TO,EO)
of WF(E) C CharQ, rg =| Ebl 2 # 0, the entire bicharacteristic

. . _ . - < <
through this point (t, + A7, X, )‘EO’ Tor Eo) o A < e,
must lie in WF(E). Since E(t,x) 1is invariant with respect to
rotation in the x-variables, the same is true for WF(E).

Analogous conclusions hold for E but WF@OE,) = WF(SO) =

v
= {(O,O;TO,EO)I (TO,EO) # (0,0)}, so we can only follow the
bicharacteristics in WF(E+) until X reaches the origin, and
can draw no conclusion about the other half-line.

We prove in the next section that, for John's example 2,

2

WF(UI 2 2 ) C o= {(t:XrY; T:fﬂ?)l x2+y >1 and

x“+y  >1

(r,£,m) 1is a non-zero multiple of either

V(t+0-COS—1 %—rz) or ¢(t+f+Cos T —ll;+r2)}
using plane polar coordinates (x,y) = r{cos 0, sin 8).

The corresponding bicharacteristic curves-the only ones

that can carry singularities-are

’

2 . 2
(T,X,Y) = (t,r cosf,r sinf) +)\(il,c‘A‘r’lcose- 51:9 ,U\Ar-lsinﬁ +_c_9;sg)

- 0w <A <w ywhere 0 =%1, so

x2 +Y2 =‘r2 + 2X\o \/rz-l +>\2=1 + ()\+o\/r2—1)2
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and such rays are tangent to the unit cylinder. No ray carrying
singularities passes from the regular to the singular region.
The cylinder (x> + y2 = 1} 4is the envelope of rays carrying
singularities, which may {(plausibly) be related to the

additional "roughness" on the cylinder, compared to the exterior.

1.3. The wave-front set for F. John's example.

Let Q be the closed conic set defined at the end of the

last section. We show, for every positive integer N,

U=-uN+RN with WF(UN x2+y2>l) cQ

is of class CP(N), p{(N) —> ® as N —* o,

and i
PNI 2 ay2s] :

Given a point of ({x +y23>l} X (323—0) outside Q and any

positive integer N,, choose N so large that p(N) >N,
and then (after micro-localization) the Fourier transform of

_NO

(cut-off).u is O(] ¢! ) in an appropriate cone; thus

" WF (u] - ) C€q.
W2ey?>)

By the method of stationary phase,

I M=

Tl secp) = T kTITHZ (al(p)etKIP) 4 aT(pe TSN,

j=0

+ Ry (k,p)

+
where g(p) = tan p - p, ag (p) and Ry(k,p) are analytic
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in p on 0<p<n/2 (su sec P> 1) and

9 -N-3/2+
3,)° Rylk,p) = o™ 28, 4s k — +,
uniformly for p in compact sets of (0, n/2). For example

(with N=0)
- 2 _ -3/2
Jk(k sec p) = v/%_EEE; cos(kg(p)-m/4) +0(k ),

as proved in Courant-Hilbert [1, vol. 1], and more details may
be found in Watson {7].

Now defining
-A-3-1/2 _iks

fj(s) = z k (A=m+3/5)

k=21"t" 22

we see fj is 2m-periodic and Cm+J+l but the (m+j+2)-order
distributional derivative is nowhere locally integrable. We
have

N

+ -
=z i . +0) + a. £, (- +t+0 + t,p,0
u i {aj(P) fj(g(P)+t ) aj(p) J( g(p) )} Ry(t,p,0)

(t, sec p cos 8, sec p sin 8)

= UN + RN at '(t,x,y)

ik (£40)

where - RN(t,p,H) = k-k RN(k,p)e is of class

_Eint . >
N+m+2 k=2 =2 )
c , and (by examples (5), (6) and (7) of wave-front sets

above)

4]



WF (u ) © Q for each N,

N x2+y2>l
SO WF(u )C Q.
X2+Y2 >1
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2. Non-decay of thermoelastic vibrations in dimension = 3

Dafermos [1] showed the equations of linear thermoelas-

ticity

pi=alA u + (@+f) ¢ (div u) - u 9 @

pCD§+udi_vu=nA6 in 8¢ ®?

for an isotropic homogeneous material (p,a, 2a+B,CD, K positive

constants, and u constant # 0), with boundary condition

(u = 0 or stress = 0

g =0 or x 08 /8N + 6 = 0 on a4,

define a semigroup of contractions in an appropriate Hilbert

space X with norm

{ o 2

w6003 = | (e = Gu/ax)? + @) (@ivu)? + ol

L9} i,j

2
+ }
pCD "]

(In fact, he treats a much more general situation.) He also
showed (under plausible hypotheses on {}) that every solution
tends to zero in X as t — oo,

- More recently, Orlando Lopes and Anizio Perissinotto, Jr.
(Univ. Estadual de Campinas, S.P.,Brasil) showed, for the case
n = 1, that the solutions thend to zero exponentially.

It is easy to show that, if n 2 2 and_we use spatial

periodicity in place of the boundary conditions, there are
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solutions which do not decay =in fact 0 =0, pii = a A u,

div u =0, but u ¥ 0. Dafermos showed there are no such
solutions satisfying the boundary conditions, for most regions N
But if the boundary has opposing "flat spots" (described below)
and n = 3, we show there are solutions almost of this kind, so

there are solutions which dacay arbitrarily slowly. In fact if

{eAt, t 2 0} is the semigroup, we have
At - At, _ At, _
i =r(e ") =r (e =1
el x) ( ess )
for all t > 0, where r{(.), ress(') denote the spectral

radius and essential spectral radius.
Specifically assume (after appropriate rigid motions)
there is a cylinder {(i,xn) Ixl <8, 0 < x, < £} in O whose

ends (xn = 0,£) are in 38 (see figure). Then given any

&\\\\\\\\,

b
L}
[=]

€ > 0, there is a C°° function v : R® X R — =" with

div v =0, Ipvtt - a A vl <e satisfying the boundary

conditions at the ends of the cylinder and vanishing whenever

| x| 8. Further | (v,v 0l = 1.

t,
If T >0 is given with +&/p T/f rational, we may

choose v to be T-periodic in time. If follows that the
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solution u,§ of the thermolasticity equations with initial
o

values u = v, u = Vs 0 =0 (at t = 0) satisfy

I (u-v, u-v,, 8)ll, = 0(e)

t

uniformly on 0 < t < T. Thus

AT ] o
I (e™ " ~I)(v,v,0) o Ny = O(e), M(v,v,0)lI, =1,
AT °
so l&€o(e ). In fact (v,v,0)| £=0 tends weakly to zero as
¢ — 0, so it cannot have a strongly convergent subsequence,
AT
hence 1 € oess(e ).
AT AT AT
> > =
We already know 1 iie H£ (X) r(ie ") ress(e ), so

in fact we have equality.
It only remains to construct v, which is embarrassingly
easy. Let ¢ =+o/p (the speed of transverse shear waves).
n-1 n-1 o .
Choose ¢ : IR — IR of class C , supported in

|kl <8, with div ¢ = 0; for example

spl(X) = q (xl)ﬁ ! (x2)7(x3. "xn—l)
“’2(") = -g (xl)ﬁ (xz)v(x3,,,xn_l)
wj(x)=0 for 2< j <€ n-1

where «,3, v are ¢’ real-valued functions with small support.

(if n=3,v=1). Let v(t,x) = e ¥*n 9°S—‘fﬁ(w(>‘c)i0), w>0,

where we use Rev if the boundary condition at X, = 0 (in
the cylinder) is stress = 0, and Im v if the condition is

u = 0. It follows easily that div v = 0 and
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PV, ~a Avy = o(afl

w— +
tt ) as oo,

uniformly in (t,x). Since v is 27 /w-periodic in X s we
may choose arbitrarily large & such that Rev or Imv also
satisfies the appropriate boundary condition on {xn =2}
in the cylinder. Also note (if v is either the real or

imaginary part of the v above)

2 _ 2 2
Ii (v,vt,mnx = Jﬂ plvtl +al P

2, o(w ) as w —ree,

=at S . vl
I x| <8
Multiplication by an éppropriate constant gives a solution with
norm 1.

Finally if c¢T/4 is rational, we may choose arbitrarily
large w so, not only is the boundary condition at {xn =L}
satisfied, but v is T-periodic (since wcT/27 is an integer).

Two obvious questions:

1) Does the boundary really need to be flat?

2) What happens for n = 2?

I don't know the answer to either, but will say the little I
know or speculate.

The construction is, of course, modeled on geometric
optics which does not require flat boundaries (for example,
Ralston's "solutions with localized energy"); but which beco-
mes much more complicated when the boundary is curved. We want

a solutions with div u = 0 (or div u, 3,div u, 3 divu
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uniformly small), which is still true after many reflections at
the boundary. It may be possible to achieve this when the

"flat spots" reduce to points where the tangent planes are
parallel. This last condition is easily satisfied in a smooth
bounded convex domain Q:-maximize Ilp -gl with p,g in 9.
The problem does not look impossible - merely difficult.

0

Wi

When n = 2 the above construction fails (div ¢
implies ¢ = constant). There are analogous solutions between

"infinite parallel planes {x, =0} and {x, =1}, but I am

2
not able to localize these. Consideration of non-normal reflec-
tions does not appear promising. Reflection at a plane boundary
always generates dissipative "waves"™, except at normal incidence.
I incline (weakly) to the view that n = 2 will be like the

case n = 3, rather than n = 1.

Reference

C. Dafermos, On the existence and asymptotic stability of

solutions to the equations of linear thermoelasticity.

Arch. Rational Mech. Anal. 29(1968) pp. 241-271.
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3. On_some non-linear integral inequalities of Kielh&fer and

Caffarelli.

Certain integral inequalities from Kielh&fer's article
[1] have proved to be useful in the study of parabolic partial
differential equations. One of these (lemma A.l from the appen-
dix to [1], p. 218), sometimes cited as "Kielh#dfer's lemma",
though Kielh8fer attributes the argument to L. Caffarelli,
appears to be incorrect -at least the proof contains a grave
error. (I suspect the estimate itself is wrong, but have no
counter-example).

We will correct the proof and generalize the results.,
Aside from this correction, our arguments are only mild variants
of those of Kielh&fer and Caffarelli. The resulting inequality
(Theorem 2 below) is significantly weaker than lemma A.1[1],
for application to uniform (in time) estimation of solutions,
and we may hope Theorem 2 is not the best possible result.

Our first result is a generalization of [1l], lemma 1.2

(p. 205 and 218).

Theorem 1 Let «,p,q be positive constants with
1<p<1+ag. Suppose A,B,C are non-negative constants,

0 <T<>® and ¢ : [0,T) — R, is continuous with
5 el <o

and 0 € ¢(t) <A w(to) + B + sz (t—s)o‘"l w(s)pds for all
’ 0

0 < t0 <t <T.
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Then ¢ 1is bounded on {0,T) and there exists ty in

(0,T) such that
v (t) < Max(l, 4B, 2A<p(tl)) on tl <t <7,

Proof fg wq_< o implies 1lim inf (T—t)sa(t)q = 0. Thus for
. t— T- )
any positive ¢€,,e, there exists t, in T-e, < ty < T such

- 9 g
that (T tl)w(tl) €, -
Assuming C > 0, to avoid trivialities, we first

suppose B < 1/4. Choose €, >0 so small that éCéz < %,

and €11 €, so small that

Q—l o _pb~1
q a
) <

N

1ceaPle
[04

Then choose t1 in [T-EZ,T) as above and apply the inequality
on the largest interval [tl, t2) C [tl,T) where

¢o(t) <L = max {I,ZAw(tl)}.

If t2 < T then
ol(t.) <ap(ty) + B+ ctP & (t-)%7! as
2 1 t)
- 1 Prmoy &
= Aw(tl) +B+CL (T tl) .
If 2A¢(tl) €1, then L =1 and
1 1 1 o _
*P(t2)<'2-+z+-&C62<l—L.
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Otherwise L = 2A¢(tl) > 1 and

w(tz)
L

1,1 P~Llip ¢ )™
< 3 + i CL (T tl)

<_ + -
] C(ZA) 61 €2 <l.

In either case ¢(t2) <L, so t2 cannot be maximal unless

Now suppose B > 1/4 and let ¥(t) = ¢(t)/4B. Then V¥
satisfies the hypotheses of the previous case so, for some

ty < T, ¢(t) < max (1,2A¢(tl)) on t, St <T hence

1
¢ (t) < max (4B, 2A¢(tl)) on [tl,T):

1

Remark KielhSfer [1] treats the case q =2, A=C =1,
p=1+aqg, 0<u« S,% . In place of "B", he allows a function

of (t,to), whose important feature is that it is bounded.

Example If p > 1 + agq, we show there is an unbounded
continuous ¢ : [0,T) — IR+,. satisfying the other hypotheses.
In fact let 6 > 0 be defined by p =1+ a/f, so 0 < g <1,

8

and let o(t) = M(T-t)"%, M > 0. Then f'gqu < o and (with

A>1l,C>0,B=0 and M sufficiently large)

L<aaan ™ samP™ /N 0% h146)7% 40 for a11 w > 0.
On change of variables (N = (t-to)/(T-t), we see ¢

_satisfies the inequality of Theorem 1 for all 0 < ty <t <T.

Theorem 2 Let «o,p,q be positive with p € 1 + ag, a < 1.
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There is a continuous function L on [0,“)3, increasing
in each argument (depending also on «,p, which are kept fixed),
such that:
for any 0 < T < e, non-negative a,b,J,K, and continuous
v : [0, T) — R, with

1

(i) 0<g(t) <a+b f'g (t-5)%L v(s)Pas on 0<t< T,

(ii) fgwq < J and

p< K,
Fo,my nge < 13%

we have ¢ bounded and in fact
¢(t) € L(a,bd”, bk*) <% on 0 <t <T.

If p=> g we may suppose K < J. The function L is given

explicitly below (at the end of the proof).

Example If p > 1 + «g and a,b,x,q are positive, let
p=1+ua/, ¢(t) = M(T—t)_a. If M,T are sufficiently large,
¥ 1is an unbounded function satisfying (i) and (ii) of the

theoren.

Remark The error in the argument of [1, p. 219-220]-aside
from irritating misprints - is disregard of the set of t
where ¢ (t) < 1, so there is no dependence on K. (The proof
is wrong; it is not known whefher the inequality claimed is

false). After correcting this point, we follow fairly closely
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the argument of Kielh&fer and Caffarelli.

The form given above is independent of rescaling of time
(4t in place of t, for any constant &k > 0). The corollary
below gives a form also independent of rescaling of ¢ (Qy in
place of ¢, for any constant Q > 0).

L is also an increasing continuous function of p and

l/a.

Proof Define A, = {t € (0,7)] 25 < o (t) < 2¥"L

k
k>0 and A* = {t € (0,T) ¢(t) < 1}. Then (0,T) is the

} for integers

disjoint union of A* and the Ak’ k 20, and (with!A| =

= measure of A)
k T
q q q <
Jpre +>glAkI2 <Jg¥ J.

For certain A > 0 and integer M > 1, depending only

T

on «,p, a,b, J,K (chosen below), we will prove ¢ (t) <2 J)

on 0 <t <T. (To avoid trivialities, we suppose a,b,J,K gre
all positive; the final estimates are continuous when one or
more of these tends to zero.

kqlAkl

A be the set of integers k 20 so 2 > A

Let I
This is a finite set and in fact

<217,

_, kg A/l
1 5 k
For large integers v =0, [vM,(v+1)M] does not meet Ik'

and we let Yo 2 0 be the smallest such integer. For each v



in 0 <v < VO - 1, there is a corresponding point of I

and allowing for possible double-counting of end points,

xl

-1 1
= I == -1

SO

0<v, <1+ a~l g,

if ZM > a, as we assume, then (since ¢(0) < a)

2M(1+V0)

p(t) < M < for small positive t. Let t be the

largest number in (0,T] such that

p(t) < Mol of o << t;-

We show (for appropriate choices of X,M) that t; = T. This

-1

says ¢(t) < 22M(1+k J) on 0 <t <T, as desired.

Suppose for contradiction t1 <T, so w(tl) = ZM(1+VO),
Then

M(14v ) € a-1 P
2 07 = p(t)) Sa+b [y (t;-s)" " els) ds
M(v0+1)
: __a-1 P _@=l. _kp

Sa+bf (5 gynpr(tyms)” T e (s) +2Pp 2 f(O,tl)ﬂAk(tl s) “ds 2°T.

Now 0 <y <1 on A* so forany h in 0 <h <s<t,

t

a-1 p a-1 p 1 el
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Choose h = K when 0 <k < ty, and h = t; when K > tyi
in either case we obtain an upper bound (1 + %)Ka. Thus

MIwo) oo, (1+o—f)bx°‘ + 2k

Now lAk[ <J 2.kq for every k 2> 0, but we use thic estimate
only for 0 <k < Mv [MzJ,M(u +l)] is disjoint from I,
and for k in this interval, IAk] <A 2-kq. Substituting

these estimates

My -
0
M (14 ) 1, .« . 2Ppg® k (p-qa)
2 < a+ (1+a)bK + p kgo 2
M(p ,+1)
0
L N ok (p-qa)
« k=Mu0
Recalling p-qx <1, we find
M(L+pg) 1, .2, 2Ppg® W
2 0 < a+(l+(—x-)bK + —-&-— 2
+1 x
. 2P M o+l)
a
This is contradictory if 2 P+l bka/a = %,
a + (1+3)pk® < 3.2%, 2Pos%/a < .2,

M (1+rg) <-§ M(1+vg) (Recall we assumed

since it says
earlier that a < ZM).

Thus choosing A as above, let M be the first positive
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integer > M where M0 is defined by

O'

My = max{0, log,(2P*?b3"/a), log, (sa+a(1+d)px™)},

. . . . a «
an increaging continuous function of a,bJ and DbK . We have
M.o<MgH 2+ 1 and

v v

1

At a = (2P*3 pg® e

SO
log,L (a,b3*, bK*) =
= 20,+1) (1+ (2P 2p5% /ey /)
is the desired zound:
log, ¢(t) < M(L+v ) < 2(M0+1)(1+A-1J) = log,L.

Remark
In the proof of Theorem 2. we used the following simple result:
If 0<a <1 and A 1is any measurable subset of IR,

a-1

1 [s3
(tl-s) ds < EIAI .

S
(0,ty) NA

This is clear if A is a finite union of intervals in

(0,ty); s — (tl-s)m—l is increasing, so by moving the
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interval to the right we preserve | Al while increasing the

t

a- a .

integral to J l_ (t,-s) 1_1 lAl”. Any open A is a

t fal *~1 « ]
countable union of open intervals, and the result for open A
follows by taking limits of incrasing unions of finite inter-
vals. Finally, any measurable A may be approximated in
measure, from the outside, by open sets, so we get the general

case.

Corollary We use the notation and hupotheses of Theorem 2, but

also, for some Q > 0 and KQ > 0, suppose ¢ satisfies

p
LO,T)n {p <0y < Xq-

Thenon 0<t<T,
#(£) < Q.L(a/g, bs® @PTI*7h, py& gPll=e)=1)
The last argument on the right-hand side may also be written
b3% QPTH7L (x 07P/3Q™N %,

Note the simplification in the extreme case p =1 +a q.

Proof Define ¢ : [0,T) — R, by ¥(t) = ¢(t)/Q, and

apply the theorem to ¢¥. Returning to ¢ = Q.¥ gives the

corollary.
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4. An example in the spectral theory of semigroups

4.1. Introduction

If A€ L(X) 1is a continuous linear operator, the

At) - etO(A).

spectral mapping theorem says o (e In general,

the generator A of a strongly continuous semigroup
{eAt, t 2 0} is not bounded, and the most one can assert
(without further hypotheses) is that

At

o(e” ") D eto(A)

for t =20,

and in more detail ([3], Th.16.7.1,2,3,4)

etPo(A) etRcr(A)

Pa(eAt)\{O} = , Ra(eAt)\{O} =

and CO(eAt) D_etCG(A)

(note 0 does not belong to the image of the exponential
function, though it may be in the spectrum of the semigroup).
A remarkable example is given in Hille and Phillips
([3], sec.23.16) of a strongly continuous group of operators
{éAt, -0 < t < oo} on the Hilbert space L2(0,1), whose

generator A has no spectrum, while for any real t # 0

~ltln/2 | tl 1r/2}

At) = Ca(eAt) ={z : e <lzl <e

o (e

The spectrum of this semigroup bears no relation to o (A),
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since o0 (A) is empty; but a recent theorem of Gearhart and

Herbst [1,2] shows spectrum may also arise from lines

Re A = constant where the resolvent ()\--A)"l is unbounded. We
prove |
.H()-A)-lﬂ_is bounded on-any line Re A = constant € [- %, % 1.,

1

I (A-A)" "Il is bounded as ImA — +% on Re A = constant € —%, %)

but is unbounded as ImA — - oo,
in accordance with this theorem.
We will review the entire example, since certain details

are treated differently than in [3], and other details are

supplied that are omitted from [ 3].

4.2 The example ,

Given continuous f : [0, —> € and t > 0, define
t-1
(1) s*ex = sy HB— £ay, x > 0.
+
For any positive ‘t,s, we have Jt(Jsf) = Jt S,

s-1
it 0 = oy B — ay rf B2 f2)az
t-1 s=-1
=y (x=y) (y-2) dy} £(z)dz
z T(t) T'(s)
_ox (x_z)s+t-l
= fC =2 f(z)dz .

0 I'(t+s)
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Further, if £ 1is continuously differentiable,

t-1

£x) + g B (g y)-£0x0)ay

t X
ITE(X) = T

t
X - _ t X, vt E(x)=-£f(y)
£+ {ppry - YE® - mrgry Joy) T ST dy

—> f£(x) as t — 0+,

Defining Jof = £, we have (at least formally) a semigroup of

operators, ;he fractional integration semigroup, such that

Jlex) = [¥€(y)dy and g%(th(x)) =3 lex), £ > 1.

{We estimate norms below to show this is strongly continuous

on L2(0,l).)

In fact, the definition (1) makes sense for complex ¢t

in Ret> o0, t — It is analytic in Re t> 0 and

5 3%) = a**Sf for Re t> 0, Res> 0, by analytic continua-

tion. If f € C: (B{+), t — Jt f(x) extends to be an
a™f (x)

dxm
t=z -m (m =20,1,2,...), as may be seen from the formula

entire analytic function with th(x) = when

e x (x=y)*71 > j
TE(x) = Sy g (£ - R S DR
J=
S Y j t+)
+ 2 £ 77350 0 DT T/ e T ).
j=0
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Note 1/T(t) and 1/((t+j)T(t)) may be considered
entire analytic functions of t, for any integer j 2 0,

We will work only in the half-plane {Re t =2 0}, and we

show
(2) 13t < B(t) Il £l £ e c”
L2(0,l) < B(t) |L2(0,1) or all £ CC(O,l),
1
= — <

where B(t) Ret T(T) for Ret> 0, or for O Ret< 1/2 we
may take

B(t) = e /(1-2 Re t)

Note, on Ret =0 > 0, Stirling's formula gives

T
_ 5| Imtl.
= —1 | Imt] o4/2,2 {1+O(——I 1 l)} as Imt—> %,
o\/27 Im

1
Ret| ['(t)]

so our bounds for the norm are not too far apart. In fact, by
the maximum principle, we have |l gt < 1.1202 &7/2 FIm el gor
0 SRet< 1l/2.
For the first estimate, define
ut-l/I‘(t) when u > 0

K, (u) =
0 when u <0,

soon 0 <x<1l, Ret>0, supp £ C (0,1),

1

195l =1 I R (x=y)E(y)dyl = | [g K (x-y) £ (y) dy | <
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< Ug 1K tx=y) a2 1k (x-p)| 12(x)1 2 ay) 172

so féIth(x)Izdx < sl

1 .
L 1K, (wldu I gl R (x=y)l ax} £(y)l 2ay

<l tkgaw?na? oo
217

Thus we may take

Re t-1

_ 1 - _ 1 u = 1
B(t) = f_[IK (Wldu = [, T T ReE TT(OT

Before proving the other estimate, we note that this
alredy shows t —> th € L2(O,1) is continuous (and even
analytic) in Re t > 0, for any f € L2(0,1), and it is also
continuous as t — 0 in any sector {largtl< #/2 - € <#n/2}
strictly in the right half-plane.

Thus we have a strongly continuous semigroup in Re t > 0,
and in particular on the real axis {t > 0}.

Let A denote the generator of {Jt, t 2 0}C £(L2(O,l)},

SO Jt = eAt, t 2 0. Now the spectral radius
r(Jt) = lim "Jnt" 1/n < lim —1—175 = 0.
n* o £(L2) n*e I'(nt+l)
for any £t > 0, so o(dt) = {0}for t > 0. It is also known that

{0} = U(QtA) 5> et ) . byt 0 is not in the image of the
exponential function, and any point of o0(A) would give a

etA) for any t > 0; so 0(A) is empty.

non-zero point of ¢ (
(0Of course a bounded operator always has spectrum, but A is

unbounded) .
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Now we obtain the other estimate, which shows the semigroup
may be defined (and is strongly continuous) in the closed half-
plane {Ret > 0 }. For £ € CJ(0,1), J% is well-defined for all
complex t, and we consider in particular the strip 0 < Ret < 1/2,

because then

1 Ret-1
X

135001 = 1) ST E(y) 7 Tee) = o )

for x> 1, so f3%(x)1%ax < = .Define JTE(x) = 0 for x < 0;
0

we compute the Fourier transform when 0< Ret < 1/2

-1§x

lim nge th(x)dx

R+ oo

wte ()

= lim fg e_ls X th(x)dx

Ryoo

= lim f dy (/§ ¥ wtle %0 ey e Ve (y) .

R+oo

Rotation of the line of integration to the negative (or positive)

imaginary axis when § >0 (or £<0) shows

(atey~(k) = 1&I7E FIT/2 2 1y (1= -sgn §).
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Then

1l oo -2Ret ei'TrImt

2 2
pi |E(e)1® at

o _t_ 2
To1IE

eI ImEly ooy | T2REE | £ (12 g

N

1
Zn

N e T L N T S PRI (T

A

1
2n

For the second integral, recall supp £ C (0,1) so| £(f) < Ufan(O 1)
4

for all real §;Thus when 0 < Ret < 1/2.

2 2 Ret )

w-trn2 _ 1 5t =
1ot fo [ J7£] 7 1-2Ret

< grate? <™ g ? 1y
which gives the desired estimate.

Now we have a semigroup in (Ret > 0), and we will examine
in particular the behavior on the imaginary axis. First, a technical

point: determining the domain of the generator.

Lemma ([3]) , Th.23.16.1)

Let £ € Lz((O,l), €) and define
F(x) = [ log(x-y) £(y) dy, 0 S x <1 ;
the integral converges absolutely (Cauchy inedquality) and

F(x) » 0 as x » 0.

(i) if w # 0 is any complex number with Rew > 0, and if
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lim % (3“Ff-f) = g exists as a limit in L,(0,1), then F is

t
t>0
absolutely continuous with derivate F' in L2(i.e. F € Hl(o,l))

and g = w(F' + v£), where vy =-T'(1) = lim ( Z % - log N) =
N»oo 1

= Buler's Constant = 0,5772... .

(1i) if F € H'(0,1) then as t =0 in Ret >0,

(3%6-£) > F' + 7£ in 1,(0,1).

=

Thus wheter we consider (t - Jt) as a semigroup in (Ret > 0)
or in {t 2> 0, Imt = 0}, or on any ray or sector in the closed

right half-plane, we always obtain the same generator A:

D(A) = {f € L, | F € u'} ana

for £ € D(A), Af = F'+ vf.

Proof: It is convenient to do our calculations on th when
Ret > 0, and Ret may be chosen to be large to improve smoothness.
Then we extend results by analytic continuation to the open

half-plane Ret > 0, and to Ret = 0 by continuity.

(1) For Re > 0, 't = s1(fe) or I e =gk S epray =

= 1 : §
= Ty S o (x-y)° £(y)dy.

Taking ¢ =wt with t > 0 (Rew > 0, @ # 0) we find
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X

oy Wt
T Eyeyay =S o { ragh- - 1) £(nay.

s :% (3

By our hypothesis, the limit t — 0+ is

r‘l
S5 glyay = 1% {log(x-y) - F"(;_,l)f} £(y)dy

F(x) + v [} £,

so F 1is absolutely continuous with derivate F' = é g - 7f in

L2(0,1), as claimed.

(ii) Now assume F € Hl, with F(0) = 0 as noted above, so

F =0 anda F7r) = Fr for Re! > 1. We show Ji(F') =

= {% ¥£) - 8¢,

In fact, for Re!f > 1,

- A N
FEy =3 NE) x) = I -1‘4-’(5?1_%-— log(y-z)dy} f(z)dz

§-1
_ X (x-2) oy L'(1) _T'()
=1y T {log (x-2) D) rey | f(z)dz.
(The inner-integral was evaluated as 9/d€ le = g ©of the identy
§-2 $~1l+e
X (x-y) € _ {x-2) (l+e)
Iz -y (y72)° dy = T (¢ +¢) )-
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This for Rex > 1, Ref > 1,

Pe-3 =1 il oa - P vna
But the final equation holds (by continuity and analytic

continuation) in Rex > 0, Ref > 0. Allowing a - 0,

1 (Beg =

3 ng§ (F'+vy£)df, Ref > 0,

R

and then we see this converges to F' +vf(in L2) as B =0 with

Ref > 0, completing the proof.
Now we are ready to close the trap!
The strongly-continuous' group (38 o <t <}

of operators on L2(0,1) satisfies

1 alty < Ctl7/2
£(L2)

Now gt has spectrum -as does any bounded linear operator-

and the spectral radius

it it < | tln/2
r(J"") <.|Ig "£(L2) e

while the inverse of -Jlt is J’lt, SO

O(Jit) C {z: ol El7/2 <zl < e|t:|w/2 }
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(We see below that these sets are equal whenever t # 0.But the
generator of this group 1s iA, where A is the generator of
{Jt,t = 0} (see the lemma if you don't believe me); and o(A) is
empty, so g(iA) is empty. |

Just to make the situation definite, 'we show every z in
e_'tl‘"/2 <lz]| < eltl”/z is in o(Jit). Since the spectrum is
always a closed sef, this holds egnalty for the closed annu;us,
when t # 0- (Hille and Phillips [3,23,16] give as an open problem
whether the interior of the annulus is in the spectrum; it is,
as we show).

For any complex p with Rep > 0 define

gp(x) = xP V2Rep 1 , 0 €£x <1,

_ s it
Te) ”gp”Lj(O,l)—l' By the definition of J°~, we may compute

Jitgp to find

it T(p+l) _ Diptl) it
J 9p T T(p+i+ity 9p ° TTET%$IET_ (x™7=1) gp(x).

lt—ll

Now fé | x 2Igp(x)lzdx-->0 as Rep - +», for any real-t; and

we choose p with arg p fixed in (-7/2, w/2) and |pl = o, say

p=R_ e

(-m/2 < 8 < =w/2, R = exp {a+27n/lt] ) @ and 8 fixed)

68



Then T'(p+1)/T(p+l+it) = p—lt (1+O(|PI_1))
__-it -t# -1
= Rn e (l+O(Rn ))
- e—te-lta(l+o(R;l))
so with 2z = exp (- (tf+ita)),
b gi®g -zg . = 0, U gl. =1
9% 'L, "' " 9L, T

Any such z 1is in G(Jlt), and (6,x) may be chosen freely in
(-n/2, #/2) X R, so the interior of the annulus above is in the

spectrum, as claimed.

4.3. Interpretation

From 1948 (in the first edition of [3]) until 1978, this
example was complately mysterious and outside the theoretical
.structure of spectral theory. Even after 1978, the theorem of
Gearhart [ 1] -extended and simplified by Herbst [ 2] in 1983-
was not applied to this example. We will apply it, and then see
it more as an example than a counter-example.

tA
The theorem of Gearhart and Herbst says: if {e™,

t =0}
is any strongly continuous semigroup of linear operators on a
Hilbert space, then for any t > 0, z €C,

27i,

e?t € U(eAt)l if and only if either 2z € o(A), mod T

or z+2”:n &€ o(A) for all integers n but the resolvent
(z + 2%&2 - 1—\)-'1 is not uniformly bounded as n = %o,
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(No comparable result is known for Banach space semigroups).

We compute and estimate the resolvent of the generator iA
oL iJit, t 20} on lines Re 2 = constant, or -what is the same
thing~ consider (z-A)_l on lines Imz = constant.

First recall

(Z"A)—l - foo -zt t

for Rez large =-and in fact, for all complex z, since both sides

are entire. Thus

(2~ -1 = [zt X (x—x)t_l
z-A) "f(x) = [, e "Tat fO (e f(y)dy
= f>0< E(x-y;z) £(y)dy, 0<x<1,
where E(u;z) = % at e 2% ¥4 (e for u > 0.
0
As before
I (z-a) " < iE(uiz)lau g

L2(0,l) 0 ! Lz(O{l)
so | (z=a) 7Yy < Y E(u;2) du.

£(Ly(0,1))S Jol BlWS

There is no difficulty when Rez = Const.> - oo,
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For example, if Rez =2 -1,

-tRez t-1
u

f3du IE(uiz)] < fgdu foat e /T (e)

-tRez

< f‘;’dt e JT(t+l) < C/(Rez+2)

where C = max e2t/F(f+l) ~ 235,83.
t=0

In fact, by rotating the line of integration, we may
estimate E(u;z) also in the left-half plane, provided
| Imz| > 7/2. Since E(u;z) = E(u;z), it suffices to treat the
case Imz = n 2> #/2. Stirling's approximation shows we wav

rotate the line of integration to the negative imaginary axis,

and then.
. . -™n
. -i o _iT (E-logu) e
Eluig+in) = =7 [ e e &

for 0 <u <1, 7 > /2. Note |[(-in)i=+ zg e-‘m/2 as T — 4eo

-T R
but the integral converges since > @/2. In fact 7 ~ e 'n/F(lf),
along with its derivates,K tends to zero exponentially as 7 - 4co,

s0 we may integrate by parts twice to obtain

1 = ir(E-logu) 3 M ar)
E(u;E+in) = ————— {1 +if e - — (8-> )dr
u(E-logu)z 0 812 r{-ir)

This shows, when |{-logui= 1,
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|E (uié+in)| <C/ (ul £E-logul %)

for a constant C depending only on 7. In case|lf(-logul <1, we

use the earlier representation:
|E(wit+in)l <3 [oarie” (=it} = ¢ /u,

where < depends only on 7.

Now for n >mn/2 fixed and ¢< -1 (we estimated & >-1 above)

£-1 L E+l
[iau [E(usgsin)) = ([° +Ie 1 el au
0 es-l_; e‘{’”rl
<c+2c, +C (1 - ?l)s 2(c+c,) .

Thus || (¢ +in=A)~ is uniformly bounded on - o < § < o

Y

£{L>y)
provided 1>n/2 or 7 < -n/2. For any 7, it is bounded as § =+
but we prove it is unbounded when § =0, for -m/2 <7 < u/2.

In fact given any g € L2(0,1)

. -1 .
e *in=2) "N gy 2 gy, /1 (Erin-niglp,.

We choose, of course, g = gp(x) = xP /2Rep+l , with Rep 54 e

arg p = constant, as before. Thenugp ||L2=l and

t
(th ) (x) = g_(x) x I (p+l)
P I (p+l4t)



so differentiating with respect to t,

' (p+1)

qu(X) = gp(x) {log x - proiyy
[''(ptl) _

But ng(x)log XHLz(O,l) - 0 as Rep — +< and T(ptl)
= log p +o(T€§0 so we may choose

b = o~ (E+in)

then argp = -n is fixed in (-7/2, 7/2), 1 pl = e * & 4= and
Rep— +o° as £ -0, and “Agp— (E+1n)gp"L2 - 0, "gp” Lo =1, soO

I (g +in-2) "

7

(ST

i T -
L(n)~ *° - In fact, uniformly on |n|< 3-8<

Il G+in-A) ">+ as E— o
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5. A property of the exponential function

Thecrem Let Q be any subset of the complex plane, and define
X ={ X € Rl 7 sequence z, € Q with Rez >x, [Imz, | > 400 }-

0f course, X may be empty; but if-not, it is a closed subset of
IR and we set 2 =X + iIR={ z € C: Rez € X}. For any real t,
et? s a(relatively closed)collection of circles or annuli in
c\{o0}.

For almost all real t,

et? ¢ Closure etQ

and in fact

et? = N cClosure et {0}
N 21
where QN = { z € Q: | Imz| > N} . The excluded set of t 1is of

measure zero and also meager (=Baire category I). If X is empty

and Q is closad, then etQ is closed in €\{0}for every real t.
Example Let Q = {0, i, +2i,%3i,...}. so X = {0} and e®? is

t . . .
the unit circle for t # 0. Then e Q is dense in the unit circle

if and only if t/m 1is irrational.
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Proof It is sufficient to treat the case when Q *lis *contained

B -
in the imaginary axis and X = {0}. There is a sequenhce- * 3Isl
. =
M
{iw} >, in Q , with |mn|‘> o, and for definiteness.write2
suppose wn —> 400, o ) el : +

L
For any real « and any 8 in 0 <§ <m,.-define "¢ 10

n 0
&)

Sa(ﬁ) = {t € R | for some integers j,k, wj, t-a-27khk §}.
Note dist (el¥; e?%) < 2 sin 6/2 when t € S (8)is:Glea®ly 2
Sa(S) is open; we prove its (closed) complement has measure

zero, hence also has no interior. To do this, we estimate the
= 3 a3lw

density of Sa(ﬁ) .

Recall the density of Sa(ﬁ) at t € R 1is

lim 715 meas {S_(8) N (t-e, t+e) )}, - TEiW
€0+

Y

which exists for almost every t, equals 1 a.e. in'? §§x§(?5:)‘,“ dndi+
Xz

n™ e = ixt

equals zero a.e. outside Sa(é).
Now any real interval of length > 1 contains Hh Ghntéger 2

so for any real t and positive integer Jj, there is an integer

- (RN

k in the open interval of length 2 centered at (wjf—&-‘)"‘iyisz%‘-‘-o-*
Let t* = (2rk+a/w; then |t-t*| < 2m/w, and (sincgd & <Hy ST
coblegsieenla
§ - ) 3w 3w
* * - - =22
(t oo vt w_) C Sa(s) n (t oo &t w.)
3 3 J J
1 ) _ 3wl evorw
so i, Meas {sa(ﬁ) N (t-e, t+e)} 23? when € = o -
: J Elh S g-tet

Thus the density of Sa(5) at t is = 8/37 > 0, and is never
zero. But it is zero a.e. outside Sa(S). We conclude™that a.e.

t is inside Sa(é).

~J
Cn

-}




Let {al ,az,...} be a dense sequence in [0,27] and
let g = Ell IR\Sa;i). g is a meager set of measure zero,
since thig,i; true for each IR\S&l (%). If t € R\S, then
t € Sa.(%) for all j,k, so {eiaj,Jj 2 1} 1is in the closure
of etQ? so the whole unit circle is in. the closure of etQ.

For each N = 1,2,... , there is a meagef null-set

'§N C IR such that

Closure etQN D unit circle

when t € IR\S._. Then for t € I}R\S, S = U SN,
N >
N=1

closure etQN 2 unit circle.

N
N =1
When Q 1is an arbitrary subset of €, we choose a
countable dense sequence {xn} in X, and for eaéh n there
is a meager null set En such that Clousure etQ contains
{1zl = e™n} for te IR\EQ. Then for t € IR\UV gﬁ, Closure

n=1
etQ contains etz.

Corollary 1 Let &« <f and suppose h(z) is an analytic
function in the strip o« <Rez<:/f which is asymptotically

almost-periodic, i.e.

h (z) - hy(z) >0 as Imz > ¥~ with « < Rez <8
where h,(.) are analytic almost-periodic functions in the strip.
Define

Xg = {Rez| ha(z) =0, a <Rez <f}, 0 =t
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and let

Z ={z € €| Rez € Closure Xo}

Then for a .e. real t

Closure {e’t | a < ReA< 8 , B(A) = 0} D etZ+ y e®2-.

Remark In applications to difference equations, functional
differential equations of neutral type [1] , hyperbolic
systems in one space dimension with general boundary conditions,
and some other problems, we have a "characteristic equation"
(h{X) = 0) given by an asymptotically almost-periodic analytic
function h (.), such that there are nontrivial solutions

with exponential time-dependence et if and only if h(A) = 0.
The set {etx | h(x) = 0} is contained in the spectrum of the
corresponding semigroup.

Proof of Cor.l Basic properties of analytic almost-periodic

functions are described in [1, lemma 3.1-3.3] . One of these

[1, lemma 3.2 ] is:
If hy (ll) =0, a< Re)\l < B, there exist kz, K3,... with
hg (A ) = 0, Re\_ > Rel, and o Im\_ - +o,
n n n
Using Rouche's theorem, we find:

if hy(Ay) =0, a <Reh <§, there exist &', A'3,... with

h(x'n) = 0, Re)\'n - Re)\l, and O.Imk'n -+ oo

77 .



It follows that the set X of the thecrem, corresponding to

0 = h"t(0), is the closure of X,U X_, and the Corollary is
proved.

In the spectral theocry of [1, th, 4.1.}; the only
point left open is wheter the set 6f circles (etz, in our

notation above) is contained in the spectrum of the semigroup.

This is proved by Cor.l for a.e. t.Z 0 so we have:

t

Corollary 2. If { &P , £t 20} is the semigroup of [ 1] with

generatocr A, then for a.e. t =2 0

o e\ [0} = closure et @)\ (0}

Remark. Corollary 2, as you may have guessed, was the original
motive for this investigation. I tried to'prove this about 1971,
and failed. In 1981, I found approximately the above argument
but concluded only meagerness, not realizing it proved measure
zero until 1984. Which shows sufficient patience may compensate

a lack of brilliance.
Reference
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6.Asymptotic behavior of some scalar ODEs and an elementary

example of non-minimal w-limit sets.

A bounded positive-semiorbit of a finite-dimensional
autonomous ordinary differential equation (and some infinite
-dimensional equations) has a nonempty compact connected
invariant w-limit set. "Invariance" means the w-limit set is
composed of solutions of the equation, but it need not be a
single solution. Correcting an example in Hale's book [ 11 , and
also in Coleman's article [2] , we show the 2-dimensional system
(in polar coordinates)

rf=r (l-rz)3 , 0 = rzsin2 0 +'(l-r2)2

has solutions r(t), 0 (t) with r(t)—> 1 and 0 (t)—=>+ as t=>+> .
Thus the w-1imit set is the unit circle, which consist of four
solutions : the equilibrium points (r,9) = (1,0) and (1,7} ,
and the two orbits joining these. In the version given by Hale
and Coleman, the first equation is r = r(l-rz); but this
implies r(t)- 1 exponentially and 6(t) has a finite limit
( = 0, mod 7), so every solution approaches an equilibrium.
More generally, we stuéy the asymptotic behavior of

solutions of the scalar equation

(1) G= £(e,u) = £(8) + £ ()u+ fz(t,u)uz

where

fo(t) - 0, £,(t) - 0 and fz(t,O) > a#0
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as t™**®, and give conditions for the existence or nonexistence

of solutions tending to zero as t—+= .

Theorem 1 Assume f(t,u) and its partial derivate fu(t,u) are

continuous on {to < t £ o, -I, < u < ro} and

l£lt,u)~£f _(t)-£, (t)ul £ (t,u)-£, (t) !
m (o] 1 <|a| , l_lm u ! 1 < 2|a| .
> > w2 t o0 I ul
u=> 0 u-0
Also assume m = lim t2 £ (&), m, = lim tlfl(t)l are finite,
R ° £ =>too

< < (m,-1)2
my 1 and m, (m1 1)° /4lal.
Then there exists a solution u(t) (for t sufficiently large) of

@ = £(t,u) which tends to zero as t = + *; in fact,

fu(t)l = 0(t~t) as t = o,

Remark Many variations are possible by change of variable, for

. = v t
example u = v a fl(t) Oor u = v exp (fo fl)’- It seems

desirable to reduce or eliminate fl’

Proof The function r —*Ino+(ml-l)r+lalr2 has a minimum at

Loin = (l-ml)/zlal > 0, where it is negative, by our

assumptions. We may choose r > 0 slighthy less than Toin ’

so that

2

m, + m.r + |al r < r

0 1

and

m; + 2lal r < 1.
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Fix such r, and let € >0 be sufficiently small that these

inequalities remain true when mg, ml,lal are increased by €.

For sufficiently large A > 0 we have

| £(t,0)-£,(0)-£, (0)ul < (labe ) u?
| £, (6, 0)=£ (1) | < 2(lal+e )1 ul

[ fo(t)l < (mo+e )/t2 . £(8) ] < (mp €)/t

on the set

{(tybu) : t=a, lul< r/a}

P

Now define

Sp ={{fontinuous u: {A,) >R | tiu(t)IS< r for t=Aa}

a complete metric space with the cCistance dA

dA(u,TJ)= sup tl u(t) - u ().

t2A
Also define D : Sp ™ C({Aa,o,R ) by
® (u) (t) = -f 7 £(s,u(s))ds, t> A,

It is easily verified that cI»(SA) C S, and

d, (o (u), ®(Q)) <

A (ml+e+ 2r(lal+ € ))dA(n,'ﬁ)

For u,u in SA’ so there is a unique fixed point which is the

desired soclution.
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Theorem 2 Suppose a >0, m, > 0, m0> (mli' 1)2/4a and
£, (£) |<m;/t for large t. Then no solution u(.) of
a =Za u2 +m0/t:2 + fl(t)u tends to zero as t=>%; in fact,

every solution blows up {(to +®) in finite time.

‘tu(t); then

ty = tzﬁ + tu=> m0+v-ml|v|+ av

Proof Let v(t)
2

>a\(v+(lim1)/2a)2 + mo-(liml)2/4a
2 constant > 0

so v(t) = (Constant) logt > 0, for'large .

Choose C, > 0 such that

a 2
v tv

a(v+(li'm1)/2a)2 +m, - (li’ml)z/Za = 3

0

whenever v 2 Cl' Now v = C1 for large t, say t = tl' hence
tﬁ?%v2+v and so u >0 and 0@ > 2 u® for t >t;, so
2

u blows up.

Returning to our example

t=gfr) , 0 = £2 sin20+(1-r%)2

’
ith _ 2,3 2 . .
wi g(r) = r(l-r") or r(l+r”) (or something similar). We study
a solution «r(t) = 1 as t = + o .,
We apply the theorem with

£(6,0) = r(t)2 sin0 + (1-r(£)%)?2,

say £,(t) = (1-r () 2) 2, £, (£)=0, and a = 1.



By Theorem 1, there exists a solution 8(t) =0 as t 2>+

provided lim (1-r(t)2)2 t2 < 1/4, which certainly holds if
t—’rco
g(r) = r(l—rz), since r(t)—+ 1 exponentially. Since 0 (t)+ k=

is also a solution for any integer k, it follows that every
solution 6 (t) is bounded. The solutions are monotonic so they
have limits, necessarily = 0 (mod 7). Thus in the examples of
( 1,2 ], the w-limit set is always a single point.

2.3

Suppose instead that g(r) = r(l-r“)°, then every solution

r#0 satisfies -r(t)+ 1~ 1/(4/T)so tig (t) = t2(1-r()®)?
‘4~ t/4 as t~ +* and by Theorem 2,there is no solution & (t) which
ténds to zero as t=* *°°, This means there is no bounded solution.
A bounded solution has a limit which {after possible shifting,
> 0+ k ) we may assume to be zero; which is impossible. This
is the desired example of a non-minimal w-limit set.

A more delicate example is obtained when g(r) =-r (1-r2)2.
Then tz(l-r(t)z)2 -+ 1/4 as t™ +° (assuming r(t) > 1, so r(t)~ 1

as t— + o). Thus if | Al <1,any solution (r,f) of
r = —r(l-rz)2 , § = 2 sin2 6 + A(l-rz)z

with r> 1 tends to an equilibrium [ (x,8) = (1,0) or (1,7)] as

t— +oo: put for A>l, r(t)-=1 while #(t)~ ¥ and the w-limit set
is the whole circle {r=1} . All these examples may be written as
polynomial systems in the plane: the last case, for instance, is

—x1-x2-y9) 2 oy (v3+ A-x2-yDH 2

X

-y(l-—xz-yz)2 +x(y2+ K(l-xz-yz)z),

Y
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