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ON THE LIE ALGEBRA OF A TRANSVERSALLY

COMPLETE FOLIATION

Tomasz Rybicki

In this short note we consider the Lie algebra of all
vector fields which preserve a transversally complete foliation.
Our considerations are based on the structural theorem for a
transversally complete foliation which was proved by Molino in
[4]. The class of transversally complete foliations contains
other important classes: fibrations with compact fibers and
transversally oriented codimension one foliations without
holonomy on compact manifolds (cf.[7], theorem 1.3). In [5],
Omori gives an analogue of the classical theorem of Pursell
and Shanks (cf.[6]) for a fibration with compact fibers. Recently
Fukui and Tomita { 2] proved another such an analogue for a
transversally oriented codimension one foliation without holonomy.
Our theorem 6 can be viewed as a generalization of the both
above results.

In this note all objects are of class c”. The manifolds

are connected, Hausdorff and second countable.




§.1. The theorem of Amemiya for foliations.

For any manifold M -we denote by % (M) the Lie algebra
of all vector fields on M. Let (M,F) be a foliated manifold
and let J(M) be the Lie algebra of all leaf preserving vector
fields on M, i.e. vector fields which are tangent to the leaves
of F. Let n =dim M and g = codim F. A local coordinate system
w, xb, .. ,x™ 9yl 00,99 is said to be distinguished by the

foliation F , if for fixed yl,...,yq the coordinates xl,.'..,xn.q

are coordinates of a leaf. Let us denote x = (xl,...,xn—q),
y = (yl,...,yq). The proof of the following proposition is
obvious.

Proposition 1. For any X € ¥(M) the following conditions are

equivalent:

(1) [x,¥} € JM), if Y € J(M),
(2) the flow of X preserves F

(3) x = Z El(x,y)ai + Z nj(y)ss on the domain of a distinguished

chart, where ai‘= a/axi, gj = a/ayj.

By %y we denote the Lie algebra of all vector fields

satisfying the above conditions.

Lemma 2. If X € *F satisfies X(p) # 0, then there is é
distinguished chart (U,x,y) at p such that one of the following
identities is satisfied on U: (i) X = 51, or (ii) X = al+ Eni(y)si,
where ni(O,...,O) =0 for i=1,...,q9.



In fact, the vector X(p) is either tangent to the leaf
or not.
Theorem 3 (Amemiya [1}). Let (M,F) and (M',F') be foliated
manifolds. If ¢ is a Lie algebra isomorphism of J(M) onto
J(M'), then there is a foliation preserving diffeomorphism ¢
of M onto M' such that @ = v, on J(M).

The following corollary from Theorem 3 will be useful in
the sequel.
Corollary 4. Let (M,F) and (M',F') be foliated manifolds.
If ® is a Lie algebra isomorphism of *F onto [, such that
®(J(M)) = J(M'), then there is a foliation preserving diffeo-
morphism ¢ of M onto M' such that @~ ¢, on *r.
Proof. Let ¢ be the diffeomorphism obtained in Theorem 3. We

use Proposition 1. Since

ox,v] =[ox,%v] € J'), 1f X €¥;, ¥ € Jm)
v IX, ¥l =Ly X,0 ¥l € J(M'), if X €%, ¥ € J(M)
and ¢ = v, on J(M), we have
[ X, ¥'] =[®,y'] , if Y' € J(M"). (#)

In particular, ®,X € *F' Let us denote X, = 9«X - ®X. We shall

show that X, = 0. Suppose X, (p) # 0. By Lemma 2 there is

(U,x,y) a distinguished chart at p such that X, =93, or

Xl = al+ an(y)si in a neighborhood 0of p. Let Y' = yla in



the first case or Y' = xlal in the second. In both cases we

obtain [Xl,Y'] # 0 which contradicts ().

§2. The structural theorem for transversally complete
foliations.
Let (M,F) denote a foliated manifold with codimension
g. Suppose M 1is a compact manifold. The foliation F is said
to be transversally complete, if for any p € M the evaluation

map

is a surjection, In particular, if M is connected, then the
group of all foliation preserving diffeomorphisms acts transi-
tively on M. The examples of the transversally complete
foliations are thé total spaces of fibrations, the transversally
parallelisable foliations and the Lie foliations (c.f.[4]).
We need the following fundamental result :
Theorem 5 {(Molino [4]). If (M,F) is a transversally complete
foliated manifold, then the closures of the leaves of F are
the fibers of a fibration m: M — W. Moreover, the local
trivialisations ¥ :7 *(U) — UxF of the fibration
preserve foliation, if UxF is foliated by (pt}xL; where L
is a leaf of F. )
Remark. The fibration 7: M —— W is called basic. r = dim W
is called the basic dimension of the transversally complete

foliation.-



Now we introduce a special kind of coordinates. A local
coordinate syétem (U,xl,...,xn_q, §1,..., ;q-r’ yl,...,yr) is

called distinguished by the foliation F, if for any fixed
n=q gl .., 3975 are
_1 -]~
(Y ,---:yq rl

(yl,...,yr) the coordinates (xl,...,x

coordinates of a fiber of 7 and for any fixed

yl,..., yr) the coordinates (xl,...,xn-q

are coordinates of
a leaf of F. The existence of the distinguished coordinates
follows from Theorem 5. In the sequel, it shall be denoted

1 X9y, =g-r

= -1
X = (x7,..., y=(y ,..o, ¥ o

1
)y =y seeery )
§3. The analogue of Pursell-Shanks Theorem for transver-

sally complete foliations.

We want to prove the following

Theorem 6. Let {(M,F) and (M',F') be transversally complete

foliated manifolds with M, M' compact and codim F = q.> 0o,
codim F' = g' > 0.

If there is a Lie algebra isomorphism ® of *F onto *F’ then
there is a foliation preserving diffeormorphism ¢ of M onto
M' such that @ = p,.

Example. Let M = Slx Sl = Blz/ ZZ. For any «® € R M admits

a well-known linear foliation Fo which is generated by the

differential form w = adx1+dx2, where (xl,xz) are coordinates
on IR2. If a #8, theniby the theorem of Denjoy there does not
exist any diffeomorphism ¢: M —— M such that v (F,) = FB'
Hence, the Lie algebras ¥Fa and *F are not isomorphic.



The proof of the theorem consists of several lemmas. Let
7T : M —> W be the basic fibration of F. By F7r we denote
the foliation.on M by the fibers of w7. Let J”(M) denote

ker 7y and let J(M) denote J (M) N ¥.

Lemma 7. Let (U,x,y,y) be a distingished chart of (M,F).Then

(1) X = BT (x, 7,903, + znj<x,§,y>5j + %¥(y)8, on U for x€ %, ,
s
(2) X = BT Foy)a, + 2Ipd, + wFyE on U for x € ¥,

where, ai = 3/axi, 5j = a/ayj, gk = a/ayk.

Proof. (1) follows immediately from Proposition 1. In order to

prove (2), let X € *F and, in view of Proposition 1, X =

= Zgl(x,y,y)ai + Eﬂj(?,y)gj + Efk(§,ydgk on U. Note that *F;C *F
T
since the leaves of F" are the closures of the leaves of F.

k

Hence, again in view of Proposition 1, we have {k(§,y) = {"y).

Next, let us denote by F an arbitrary fiber of the basic

fibration of F and by FF the foliation induced by F on F.

Let *F be the Lie algebra of all vector fields on F preser-
ving FF' Suppose L 1is a dense leaf in F. It is easily seen

that if X € *F .is such that X{p) 1is tangent to L, p € L, then

X € J(F), i.e. X 1is tangent to the foliation FF. Therefore

dim *F/J(F) < codim F_ = g-r. Hence nd(y,y) cannot depend

F

on y and (2) is satisfied.

Lemma 8. Let m be a proper ideal of *F such that for any
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point p € M there is

x = 7(p). Then

o4
o

Proof. Let W
1
the £

1
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1=al lEJ(M).

a partition of unity subordinated to

at X on Fan and X-X

define X, = Kal + pX. It is easily seen

X, € m+J (M) .

bitrary element of ¥. If {vy,3 is a

W subordinated to the covering M Vo,

where Y, = ¢ ¥ € *F' Thus it suffices
for Y € . such that supp Y C FxU=
for some a. Let 2 € *F be such that
Y-z € J(M) and it

upp 2 C FxU. Hence

2 €m+ J(M). Let X denote a C -function

X €U and X =1 on a neigborhood of
be another C  -function such that supp
i ' 2 = 2t (y)3
on a neighborhood of supp X. Let y) 5
1= al on FxU,

1
Y dla~.=z +x5.
T X051 2y Xy



for any Jj, where supp 32, c\supp X. Next

3

y . .
§dej)aj] =

~ E ~
3., Y7 ¢3aydya.] = [xd.,
(z,+ x 3 (x {m $-dy”) J] [x 3 (x {

o0

Since X, €m + TJM), we have {Jgj Em+ JM) and 2z € m+J(M).
Lemma 8 is then proved.
Note that the assumption of Lemma 8 is satisfied only if

the basic dimension r is nonzero.

Lemma 9. Under the assumption of Lermma 8,if m 1is maxinmal then

m is one codimensional.

Proof. First we show that JM) Cm. Let M =YV,  Dbea finite
open covering of M. sﬁch that (Va,x,§,y) is a distinguished
chart of M and a suitable extension ¢f gl = 3/ayl is contained
in m. Let {¥4} be a partition of unity subordinated to the
above covering. We define X, = v, X for X € J(M). By an
argument similar to that in the proof of Lemma 8, one can see

that X, € m. Hence X € m and J{M) C m. Next observe that

JM)/J(M) is abelian. Indeed, every X € J(M) satisfies
X =2 (x,¥.y)3;+ 20 (1)
on the domain of a distinguished chart. Hence, it is easily

seen that [X,Y] € JM) for X,Y € J(M). In particular, [X,YI€ m

for X, Y € JM). Thus, in view of Lemma 8, m 1is a maximal



vector subspace of f.

Lemma 10. If .m is a maximal ideal of *F satisfying the

assumption of Lemma 8, then 7(M)C‘m. \
Proof. Let Y € J(M). As in the proof of Lemma 8, we can assume

that supp Y C FxU = 7 1{U), where (U,y) is a chart of W.

Let 09 € *F denote some extension of 3 = a/ayl on FxU. We

can assume 9 € m. In fact, if 3 €m and yla € m (otherwise

[a,yla] = 9 € m), then there is a« # 0 such that ab+yla Em

(Lemma 9) and we get

[3,2d4y'3] = 3 € m.

Next we have \

(0,Y] =03 Y €Em,
[3,ylv] = veyloy € m,

[ylaveylay] = 2ylav+(yh) 202y € m,

((yhH2a,0v] = (yhH2%a%y € m.

Hence we have ylaY €m and Y € m. Lemma 10 is then proved.
Suppose dim W =r > 0 and x € W..By m, we denote
the ideal of %, which consits of all X € f; such that

T+«X and all its derivatives vanish at x.

Lemma 11. Let m be an ideal of *F such that @m«m vanishes
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at x € W. Then the ideal 74m vanishes at x with all its
qerivatives, i.e. mC me .

Proof. Let (V,yl,...,yr) be a chart at x such that =7 is
trivial over V. Let X € m be such that W,X_= an(y)a~j and

suppose there is k > 0 such that
k_i I ; : -
0™~ (x)/dy" # 0 for some i and I = (Lyreverip)e

Then [n*x,sik] = —Z(nj(x)/gyik)gj € my m. This vector field

has a coefficient with derivative of order k-1 wich does not
vanish at x. Repeating this procedure k-1 times we get X' € m
such that 74X does not vanish at x.

Corollary 12. Every ideal my is maximal. Every proper ildeal of

*F must be contained in some m.

Corollary 13. The ideal J(M) 1is the intersection of all maximal

ideals of *F'

Lemma l4.lThe ideal J(M) can be characterized as a minimal
ideal of J(M) such that J(M)/J(M) is abelian.

Proof. We stated that J(M)/J(M) is abelian in the proof of
Lemma 9. It suffices to show that J(M) is a unique ideal which
is minimal with this property. Suppose a is an ideal of J{(M)
such that a 2 J(M) and J(M)/a is abelian. Then J(M)/a N J(M)
# 0 is alsq abelian. So it suffices to prove that there does
not exist any ideal a such that a G J(M) and J(M)/a is
abelian. Assume a is én ideal with the above property. Let

X € J(M) and, by a partition-of-unity argument, let supp X be

14



contained in a chart domain U. Let 2 € J(M) be such that 2 =
= a/axl on a neighborhood of'supp X and supp 2 C U. Repeating
the reasoning from the proof of Lemma 8, one can see that there

are I(X), J(X) € J(M) such that
[[z,1(X)],3(X)] =X on M.
Since J(M)/a 1is abelian, we have X € a and J(M) C a. This

contradiction proves the uniqueness of J(M).

Corollary 15. *F has an ideal with finite codimension if and

only if r = 0.
In fact, for r = 0 J{M) 1is g codimensional in *F‘
Now we are in a position to conclude the proof of Theorem
6. Let ¢ be a Lie algebra isomorphism of *F onto *F" If

*F and *F' have finite codimensional ideals, then *F'= Ty,

*F' = J(M') and trivially & (J(M)) = J(M'). Otherwise, we
get &(JM)) = J(M') by Coréllary 13. Next Lemma 14 implies
®(J(M)) = J(M'). Finally we apply Corollary 4.

Remark. Let us discuss briefly the assumption of Theorem 6. The
theorem is no longer true for the trivial case of codimension

0 foliation i.e. the foliation with one leaf M. The foliations
F = {M}, F' = {points} give a simple coﬁnterexample to Theorem
6. Lecomte in his thesis [3] considered the Lie algebra of all
infinitesimal automorphisms of a vector bundle E with a base

B and standard fibre F. It was proved a Pursell-Shanks type
theorem. However, if dim F =1 then the Lie algebra of all

infinitesimal automorphisms of E 1is isomorphic to *(B)xcw(B)
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and obviously it does not determine E. This result suggest that

Theorem 6 cannot be proved for the non-compact case.
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