CORRIGENDUM AND ADDENDUM TO "STRUCTURE MONOIDS OF SET-THEORETIC SOLUTIONS OF THE YANG-BAXTER EQUATION"

Ferran Cedó, Eric Jespers, and Charlotte Verwimp

Abstract

One of the results in our article which appeared in Publ. Mat. 65(2) (2021), 499-528, is that the structure monoid $M(X, r)$ of a left non-degenerate solution (X, r) of the Yang-Baxter equation is a left semi-truss, in the sense of Brzeziński, with an additive structure monoid that is close to being a normal semigroup. Let η denote the least left cancellative congruence on the additive monoid $M(X, r)$. It is then shown that η is also a congruence on the multiplicative monoid $M(X, r)$ and that the left cancellative epimorphic image $\bar{M}=M(X, r) / \eta$ inherits a semi-truss structure and thus one obtains a natural left non-degenerate solution of the Yang-Baxter equation on \bar{M}. Moreover, it restricts to the original solution r for some interesting classes, in particular if (X, r) is irretractable. The proof contains a gap. In the first part of the paper we correct this mistake by introducing a new left cancellative congruence μ on the additive monoid $M(X, r)$ and show that it also yields a left cancellative congruence on the multiplicative monoid $M(X, r)$, and we obtain a semi-truss structure on $M(X, r) / \mu$ that also yields a natural left non-degenerate solution.

In the second part of the paper we start from the least left cancellative congruence ν on the multiplicative monoid $M(X, r)$ and show that it is also a congruence on the additive monoid $M(X, r)$ in the case where r is bijective. If, furthermore, r is left and right non-degenerate and bijective, then $\nu=\eta$, the least left cancellative congruence on the additive monoid $M(X, r)$, extending an earlier result of Jespers, Kubat, and Van Antwerpen to the infinite case.

2020 Mathematics Subject Classification: 16T25, 20M05.
Key words: Yang-Baxter equation, set-theoretic solution, structure monoid, 1-cocycle, semi-truss.

