STABILITY OF GENERALIZED LINEAR
WEINGARTEN HYPERSURFACES IMMERSED
IN THE EUCLIDEAN SPACE

JONATAN F. DA SILVA, HENRIQUE F. DE LIMA, AND
MARCO ANTONIO L. VELÁSQUEZ

Abstract: Given a positive function F defined on the unit Euclidean sphere and satisfying a suitable convexity condition, we consider, for hypersurfaces M^n immersed in the Euclidean space \mathbb{R}^{n+1}, the so-called k-th anisotropic mean curvatures H_k^F, $0 \leq k \leq n$. For fixed $0 \leq r \leq s \leq n$, a hypersurface M^n of \mathbb{R}^{n+1} is said to be (r, s, F)-linear Weingarten when its k-th anisotropic mean curvatures H_k^F, $r \leq k \leq s$, are linearly related. In this setting, we establish the concept of stability concerning closed (r, s, F)-linear Weingarten hypersurfaces immersed in \mathbb{R}^{n+1} and, afterwards, we prove that such a hypersurface is stable if, and only if, up to translations and homotheties, it is the Wulff shape of F. For $r = s$ and $F \equiv 1$, our results amount to the standard stability studied, for instance, by Alencar–do Carmo–Rosenberg [1].

2010 Mathematics Subject Classification: Primary: 53C42; Secondary: 53B25.

Key words: Euclidean space, Wulff shape, k-th anisotropic mean curvatures, (r, s, F)-linear Weingarten hypersurfaces, stable closed hypersurfaces.