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Introduction

Classically, integral geometry in Euclidean space deals with two basic questions: the expression
of the measure of planes meeting a convex domain, the so-called Crofton formulas; and the
study of the measure of movements taking one convex domain over another fixed convex
domain, the so-called kinematic formula.

In the Euclidean space Rn, we denote by Lr a totally geodesic submanifold of dimension
r, and we call it r-plane. We denote the space of r-planes by Lr. This space has a unique
(up to a constant factor) density invariant under the isometry group of Rn, denoted by dLr.
Then, given a convex domain Ω ⊂ Rn with smooth boundary, the expression of the measure
of r-planes meeting a convex domain is given by∫

Lr

χ(Ω ∩ Lr)dLr = cn,rMr−1(∂Ω), (1)

where cn,r only depends on the dimensions n, r, and Mr−1(∂Ω) denotes the integral over ∂Ω
of the (r − 1)-th mean curvature integral.

Thus, the mean curvature integrals appear naturally in the Crofton formula. A classical
known property of mean curvature integrals is the following∫

Lr

M
(r)
i (∂Ω ∩ Lr)dLr = c′n,r,iMi(∂Ω) (2)

where c′n,r,i only depends on the dimensions n, r, i, and M (r)
i (∂Ω∩Lr) denotes the i-th mean

curvature integral of ∂Ω ∩ Lr as a hypersurface in Lr
∼= Rr. From (2), it is said that mean

curvature integrals satisfy a reproductive property.
On the other hand, the kinematic formula in Rn is expressed as follows. Let Ω1 and Ω2 be

two convex domains with smooth boundary, let O(n) := O(n)nRn denote the isometry group
of Rn, and let dg be an invariant density of O(n). Then,∫

O(n)
χ(Ω1 ∩ gΩ2)dg =

n∑
i=0

cn,iMi(∂Ω1)Mn−i(∂Ω2). (3)

The previous three formulas were extended to projective and hyperbolic spaces (cf. [San04]),
i.e. they are known in the spaces of constant sectional curvature k. The generalization of in-
tegral (2) does not depend on k but in the expression (1) for projective and hyperbolic space
appear other terms, depending on k. Moreover, its expression depends on the parity of the
dimension of the planes. If r is even, then∫

Lr

χ(Ω ∩ Lr)dLr = cn,r−1Mr−1(∂Ω) + cn,r−3Mr−3(∂Ω) + · · ·+ cn,1M1(∂Ω) + cnvol(Ω), (4)

and if r is odd∫
Lr

χ(Ω ∩ Lr)dLr = cn,r−1Mr−1(∂Ω) + cn,r−3Mr−3(∂Ω) + · · ·+ cn,2M2(∂Ω) + cnvol(∂Ω), (5)

1



2 Introduction

where cn,j depends on the dimensions n and j and are multiples of kn−j .
The facts that the expression depends on the parity, and that we study an integral of

the Euler characteristic, remain us the Gauss-Bonnet formula in spaces of constant sectional
curvature, which also depends on the parity of the ambient space. We recall here this formula
in a space of constant sectional curvature k and dimension n.

If n is even, then

Mn−1(∂Ω) + cn−3Mn−3(∂Ω) + · · ·+ c1M1(∂Ω) + kn/2vol(Ω) = vol(Sn−1)χ(Ω),

and if n is odd,

Mn−1(∂Ω) + cn−3Mn−3(∂Ω) + · · ·+ c2M2(∂Ω) + k(n−1)/2vol(∂Ω) =
vol(Sn−1)

2
χ(Ω)

where ci depends only on the dimensions n, i and are multiples of the sectional curvature k.
Now, using the expression (2) and the Gauss-Bonnet formula, we get (4) and (5).

The goal of this work is generalize formulas (1) and (2) in the standard Hermitian space
Cn, in the complex projective space and in the complex hyperbolic space, denoted by CKn(ε)
with 4ε the holomorphic curvature of the manifold (see Section 1.1).

In order to achieve this goal, we use the notion of valuation in a vector space V , a real-
valued functional φ from the space of convex compact domains K(V ) in V to R satisfying the
following additive property

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A, B, A ∪B ∈ K(V ).
The first examples of valuations are the volume of the convex domain, the area of the

boundary, and the Euler characteristic. Other classical examples of valuations are the so-
called intrinsic volumes. They are defined from the Steiner formula: given a convex domain
Ω ⊂ Rn, if we denote by Ωr the parallel domain at a distance r, the Steiner formula relates
the volume of Ωr with the so-called intrinsic volumes Vi(Ω) by

vol(Ωr) =
n∑

i=0

rn−iωn−iVi(Ω)

where ωn−i denotes the volume of the (n − i)-dimensional Euclidean ball with radius 1 (cf.
Proposition 2.1.3).

If Ω ⊂ Rn is a convex domain with smooth boundary, then intrinsic volumes satisfy

Vi(Ω) = cMn−i−1(∂Ω),

and they are the natural generalization of the mean curvature integrals for non-smooth convex
domains.

Hadwiger in [Had57] proved that all continuous valuations in Rn invariant under the isom-
etry group of Rn are linear combination of the volume of the convex domain, the area of
the boundary, and the intrinsic volumes (see Section 2.2.1). This result has as immediate
consequence formulas (1), (2) and (3).

Alesker in [Ale03] proved that the dimension of the space of continuous valuations in Cn

invariant under the holomorphic isometry group of Cn is
(
n+2

2

)
and gave a basis of this space.

In the recent paper of Bernig and Fu, [BF08], there are given other basis of valuations in Cn.
In particular, the Hermitian intrinsic volumes are defined (see Section 2.4.2). These are the
valuations we will use to work with. The fact that the dimension of the space of continuous
valuations invariant under the isometry group of Cn is bigger than the one of R2n is not
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surprising if we recall that the holomorphic isometry group of Cn, U(n), is smaller than the
isometry group of R2n, O(2n).

Hermitian intrinsic volumes are a kind of generalization of mean curvature integrals, but
taking into account that Cn has a complex structure which defines a canonical vector field on
hypersurfaces. Indeed, at each point x of a hypersurface, if we consider the normal vector, and
we apply the complex structure, then we get a distinguished vector JN in the tangent space
of the hypersurface at x. Moreover, the orthogonal space to JN in the tangent space defines
a complex space of maximum dimension, n− 1.

So, if S is a smooth hypersurface in Cn, we can consider the integral∫
S
kn(JN)dx

where kn(JN) denotes the normal curvature in the direction JN , and this is a valuation in
Cn. Other valuations related to normal curvature of the direction JN appear as elements in
of Hermitian intrinsic volumes basis.

The notion of valuation can be also defined in a differentiable manifold (see Definition
2.4.1). In real space forms the volume of a convex domain and the area of its boundary are
valuations. But, it is not known an analogous result to Hadwiger Theorem in these spaces.

The definition of the Hermitian intrinsic volumes can be extended to other space of constant
holomorphic curvature. We denote by {µk,q} the Hermitian intrinsic volumes. The subscript
k denotes the degree of the valuation (see Section 2.4.2).

In order to give a similar expression of (1) and (2) in the spaces of constant holomorphic
curvature, we need to describe the integration space. Note that in spaces of constant sectional
curvature we integrate over the space of r-planes, i.e. totally geodesic submanifold of fixed di-
mension. In spaces of constant holomorphic curvature, complete totally geodesic submanifolds
are classified. If ε 6= 0 they are complex submanifolds isometric to CKr(ε) ⊂ CKn(ε), with
1 ≤ r < n or totally real submanifolds isometric to RKq(ε) ⊂ CKn(ε) with 1 ≤ q ≤ n, where
RKq(ε) denotes the space of constant sectional curvature ε. For ε = 0 there are other totally
geodesic submanifolds. We denote the space of complex planes with complex dimension r,
1 ≤ r < n, by LC

r , and the space of totally real planes of maximum dimension n by LR
n , the

so-called Lagrangian manifolds.
In this work, we obtain a Crofton formula for complex r-planes and Lagrangian planes∫

LC
r

χ(Ω ∩ Lr)dLr = vol(GC
n−1,r)

(
n− 1
r

)−1

· (6)

· (
n−1∑

k=n−r

εk−(n−r)ω2n−2k

(
n

k

)−1
 k−1∑

q=max{0,2k−n}

(
2k−2q
k−q

)
4k−q

µ2k,q(Ω) + (k + r − n+ 1)µ2k,k(Ω)


+ εr(r + 1)vol(Ω)),

∫
LR

n

χ(Ω ∩ L)dL =
vol(G2n,n)ωn

n!

n−1
2∑

q=0

(
2q − 1
q − 1

)−1 4q−n

2q + 1
µn,q(Ω) if n is odd, (7)

and∫
LR

n

χ(Ω ∩ L)dL =
vol(G2n,n)

n!
· (8)

·

 n
2∑

q=0

(
2q − 1
q − 1

)−1 4q−nωn

2q + 1
µn,q(Ω) +

n
2∑

i=1

εi
(

n
n
2 + i

)−1 2−n+1ωn−2i

n+ 1
µn+2i, n

2
+i(Ω)

 if n is even,



4 Introduction

where ωi denotes the volume of the i-dimensional Euclidean unit ball.
Previous formulas have more addends that the corresponding ones in the spaces of constant

sectional curvature, but they are similar. If ε = 0, i.e. in Cn also appear all the valuations
with the corresponding degree. If ε 6= 0 the notion of degree of a valuation has no sense but
there is a similitude with the expression in spaces of constant sectional curvature comparing
the subscripts of the valuations.

In order to get these expressions we use a variational method. That is, we take a smooth
vector field X defined on the manifold and we consider its flow φt. We prove the following
formula of first variation

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(φt(Ω) ∩ Lr)dLr =
∫

∂Ω
〈X,N〉

∫
GC

n−1,r(Dp)
σ2r(II|V )dV dp

where N is the exterior normal field, D is the distribution in the tangent space at ∂Ω or-
thogonal to JN , and σ2r(II|V ) denotes the 2r-th symmetric elementary function of the second
fundamental form II restricted to V ∈ GC

n−1,r(Dp), the Grassmannian of complex planes with
complex dimension r inside Dp.

On the other hand, we get an expression of the variation of valuations µk,q using the method
in [BF08].

Comparing both variations and solving a system of linear equations we obtain the result.

Using the same variational method we also obtain a Gauss-Bonnet formula for the spaces
of constant holomorphic curvature. It is known that the variation of the Euler characteristic
is zero. Thus, we can express it as a sum of Hermitian intrinsic volumes such that its variation
vanishes. The obtained Gauss-Bonnet formula is the following

ω2nχ(Ω) = (n+ 1)εnvol(Ω) +
n−1∑
c=0

εcω2n−2c(n− c)
n
(
n−1

c

)
 c−1∑

q=max{0,2c−n}

(
2c−2q
c−q

)
4c−q

µ2c,q + (c+ 1)µ2c,c

.
(9)

In spaces of constant sectional curvature k, Solanes in [Sol06] related the measure of planes
meeting a domain with the Euler characteristic of the domain

ωnχ(Ω) =
1
n
Mn−1(∂Ω) +

2k
nωn−1

∫
Ln−2

χ(Ω ∩ Ln−2)dLn−2.

In CKn(ε), we get

ω2nχ(Ω) =
1
2n
M2n−1(∂Ω) + ε

∫
LC

n−1

χ(Ω ∩ Ln−1)dLn−1 +
n∑

j=1

εjω2n

ω2j
µ2j,j(Ω).

The analogous expression to (2), it is given when we integrate the mean curvature inte-
gral over complex r-planes. The obtained expression for a compact oriented (possible with
boundary) hypersurface S of class C2 is∫
LC

r

M
(r)
1 (S∩Lr)dLr =

ω2n−2vol(GC
n−2,r−1)

2r(2r − 1)

(
n

r

)−1(
(2n− 1)

2nr − n− r

n− r
M1(S) +

∫
S
kn(JN)

)
(10)

where kn(JN) denotes the normal curvature in the direction JN ∈ TS.
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To get this result, first we obtain, using moving frames, the following intermediate expres-
sion (for any mean curvature integral). If r, i ∈ N such that 1 ≤ r ≤ n and 0 ≤ i ≤ 2r − 1,
then ∫

LC
r

M
(r)
i (S ∩ Lr)dLr (11)

=
(

2r − 1
i

)−1∫
S

∫
RP2n−2

∫
GC

n−2,r−1

|〈JN, er〉|2r−i

(1− 〈JN, er〉2)r−1
σi(p; er ⊕ V )dV derdp,

where er ∈ TpS unit vector, V denotes a complex (r − 1)-plane containing p and contained in
{N, JN, er, Jer}⊥, σi(p; er ⊕V ) denotes the i-th symmetric elementary function of the second
fundamental form of S restricted to the real subspace er ⊕ V and the integration over RP2n−2

denotes the projective space of the unit tangent space of the hypersurface.

In order to complete the generalization of equation (1) in CKn(ε), it remains to study the
measure of (non-maximal) totally real planes. These are the other totally geodesic subman-
ifolds of CKn(ε), ε 6= 0. Using the same techniques as in the rest of this work, it does not
seem possible to solve this case since we cannot obtain enough information of the variational
properties of the measures of totally real planes meeting a domain in CKn(ε).

On the other hand, it would be interesting to extend formula (10) to i ∈ {2, . . . , 2r − 1}.

Next we explain the organization of the text.

Chapter 1 contains a description of the spaces of constant holomorphic curvature. We
review its definition and describe some of the most important submanifolds, i.e. the totally
geodesic submanifolds, the geodesic spheres, and the complex planes. In this chapter we also
recall the method of moving frames, which will be used along this text. Using moving frames,
we give an expression for the density of the space of complex planes. Finally, we prove that
integral

∫
LC

r
χ(Ω ∩ Lr)dLr satisfies a reproductive property.

Chapter 2 is devoted to the study of valuations in Cn and in the spaces of constant holomor-
phic curvature. First of all, we review the concept and the main properties of the valuations
on Rn together with the Hadwiger Theorem (which characterize all continuous valuations in
Rn invariants under the isometry group). An analogous Hadwiger Theorem in Cn is stated.
Finally, we define the used valuations in this work in spaces of constant holomorphic curva-
ture, and we give new properties and relations with other valuations also important in the
next chapters.

Chapter 3 gives a proof of (10). First of all, we prove some geometric lemmas and we
obtain the expression for the mean curvature integrals over the space of complex planes in
terms of an integral over the boundary of the domain given in (11). This expression will be
fundamental to attain the goal of this chapter. As a corollary of (10) we characterize the
valuations of degree 2n− 2 satisfying a reproductive property in Cn, and we give the relation
among different valuations defined by Alesker (already reviewed in Chapter 2). The results of
this chapter are contained in [Aba].

In Chapter 4 we obtain the measure of complex planes intersecting a domain in the spaces of
constant holomorphic curvature in terms of the Hermitian intrinsic volumes defined at Chapter
2. We also give an expression of the Gauss-Bonnet formula in terms of these valuations. In
order to get these expressions we use a variational method. First, we obtain an expression for
the variation of the measure of complex planes and for the Hermitian intrinsic volumes. In
this chapter, we verify the certainty of (6). A constructive proof, where we find the constants
in the expression is given in the appendix. As a corollary, we express the total mean Gauss
curvature in Cn also in terms of the Hermitic intrinsic volumes. Finally, we relate Chapters 3
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and 4 obtaining another method to compute the measure of complex lines meeting a domain.
The results of this chapter are contained in [AGS09].

Chapter 5 studies the measure of another type of planes meeting a domain in Cn, the so-
called coisotropic planes. These planes are the orthogonal direct sum of a complex subspace
of complex dimension n− p and a totally real subspace of dimension p. Totally real planes of
maximum dimension and real hyperplanes are particular cases of this type of planes. Using
similar techniques as in Chapter 4 we give an expression for the measure of planes of this type
meeting a domain. For the spaces of constant holomorphic curvature we prove (7) and (8),
which give the measure of totally real planes of maximum dimension, the so-called Lagrangian
planes.

The appendix contains the constructive proof of (6) and (9). That is, we give the method
that allowed us to obtain the constants appearing in these expressions. This proof consists,
at a final instance, to solve a linear system obtained from the study of the variation of both
sides of the expressions, as it is detailed in Chapter 4.
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Chapter 1

Spaces of constant holomorphic
curvature

1.1 First definitions

In this section we introduce the spaces of constant holomorphic curvature, also called complex
space forms, and give the properties we shall use along this work. First of all, we recall some
basic definitions.

Definition 1.1.1. Let M be a differentiable manifold. M is a complex manifold if it has an
atlas such that the change of coordinates are holomorphic, that is, {(Uα, φα)} is an atlas with
{Uα} an open covering of M and φα : Uα → Cn homeomorphisms such that φβ ◦ φ−1

α are
holomorphic in its domain of definition.

Examples

(i) The vector space Cn is a complex manifold of complex dimension n.

(ii) The complex projective space CPn is a complex manifold of complex dimension n.

The complex projective space can be defined analogously to the real projective space.
Let us consider in Cn+1\{0} the equivalence relation which identifies the points differing
by a complex multiple. Then, we take as an atlas the open sets {U0, ..., Un} such that

Uj = {(z0, ..., zn) ∈ Cn+1 | zj 6= 0}

and for every Uj we take the map φj(z0, ..., zn) = (z0/zj , ..., zj−1/zj , zj+1/zj , ..., zn/zj)
which is a homeomorphism. It can be proved that the change of coordinates are holo-
morphics.

Definition 1.1.2. Let M be a complex manifold. A linear map J : TxM → TxM is an almost
complex structure of M if for each x ∈ M , the restriction of J at TxM satisfies Jx : TxM →
TxM , J2 = −Id, and J varies differentially on M .

Note that any complex manifold admits an almost complex structure. Indeed, the tangent
space of a complex manifold has a complex vector space structure, so the map “multiply by i”
is well-defined and satisfies that applied twice is the map −Id. We call this canonical almost
complex structure complex structure.

Definition 1.1.3. Let V be a complex vector space and let u, v ∈ V . It is said that h :
V × V → C is an Hermitian product on V if

7
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1. it is C-linear with respect to the first component,

2. h(u, v) = h(u, v).

Remark 1.1.4. From the properties of a Hermitian product, it follows that if λ ∈ C then
h(u, v) = λh(u, v). Indeed, by definition we get the following equalities

h(u, λv) = h(λv, u) = λh(v, u) = λh(u, v).

Definition 1.1.5. Let M be a differentiable manifold with complex structure J and a Rie-
mannian metric g. Then, g is called a Hermitian metric if it is compatible with the complex
structure, i.e. it satisfies gx(Ju, Jv) = gx(u, v) for every x ∈M and u, v ∈ TxM .

Definition 1.1.6. Let M be a complex manifold with complex structure J and Hermitian
metric g. The 2-form ω defined by

ω(u, v) = g(u, Jv), ∀ u, v ∈ TxM

is the Kähler form.

Remark 1.1.7. Given a complex manifoldM with complex structure J and a Hermitian product
defined on TM , we get a Hermitian metric on M from the real part of the Hermitian product,
and a Kähler form on M from the imaginary part of the Hermitian product.

Definition 1.1.8. A complex manifold M is called a Kähler manifold if it has a Hermitian
metric such that the Kähler form associated to this metric is closed.

Proposition 1.1.9 ([O’N83] page 326). Let M be a Kähler manifold with connection ∇.
Then,

∇JX = J∇X, ∀X ∈ X(M).

Definition 1.1.10. A subspace W ⊂ TxM of complex dimension 1 is a complex direction or
a holomorphic section of the tangent space if W is invariant under J , i.e. JW = W .

If w 6= 0 ∈W , then the vectors {w, Jw} constitute a basis of W , as a real subspace.

Definition 1.1.11. The holomorphic curvature is the sectional curvature of holomorphic sec-
tions.

Definition 1.1.12. A space of constant holomorphic curvature 4ε of dimension n is a com-
plete, simply connected Kähler manifold of complex dimension n, such that the holomorphic
curvature is constant and equal to 4ε for every point and every complex direction.

Theorem 1.1.13 ([KN69] Theorem 7.9 page 170). Two complete, simply connected Kähler
manifolds with constant holomorphic curvature equal to 4ε are holomorphically isometric.

Definition 1.1.14. We denote by CKn(ε) any space of constant holomorphic curvature of
dimension n. If ε > 0, then it corresponds to the complex projective space CPn, if ε < 0, to
the complex hyperbolic space CHn, and if ε = 0, to the Hermitian standard space Cn.

Spaces of constant holomorphic curvature are also called complex space forms.

Remark 1.1.15. Complex space forms are, in some sense, a generalization of real space forms
(spaces of constant sectional curvature), i.e. the complete simply connected Riemannian man-
ifolds with constant sectional curvature. Real space forms are (up to isometry) the Euclidean
space Rn, the real projective space RPn and the real hyperbolic space Hn. The results in this
work extend some of the classical results in integral geometry from real space forms to com-
plex space forms. Santaló [San52] and Griffiths [Gri78], among others, obtained some results
of classical integral geometry in the standard Hermitian space and in the complex projective
space taking complex submanifolds. In this work, we deal with non-empty domains and, thus,
with real hypersurfaces.
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Definition 1.1.16. Given two planes Π and Π′ of real dimension 2 in a vector space with a
scalar product, the angle between the two planes is defined as the infimum among the angles
between a pair of vectors, one in Π and the other one in Π′.

Definition 1.1.17. Let Π be a plane with real dimension 2 in the tangent space of a point in a
Kähler manifold with complex structure J . The holomorphic angle µ(Π) is the angle between
Π and J(Π).

Proposition 1.1.18 ([KN69] page 167). Let M be a Kähler manifold with complex structure
J and Hermitian metric g. The holomorphic angle of a plane Π ⊂ TxM , x ∈M , is given by

cosµ(Π) = |g(u, Jv)|

where u, v form an orthonormal basis of Π.

Remark 1.1.19. The holomorphic angle of a plane takes values between 0 and π/2. In the
extreme cases we have holomorphic planes, when the holomorphic angle is 0; and totally real
planes defined as the planes with holomorphic angle π/2.

In a complex space form, the sectional curvature of any plane can be computed from the
holomorphic curvature and the holomorphic angle of the plane.

Proposition 1.1.20 ([KN69] page 167). Let M be a Kähler manifold with constant holomor-
phic curvature 4ε. Then, the sectional curvature of any plane Π ⊂ TxM , x ∈ M is given
by

K(Π) = ε
(
1 + 3 cos2 µ(Π)

)
(1.1)

where µ(Π) is the holomorphic angle of the plane Π.

Corollary 1.1.21. Sectional curvature of any plane in the tangent space of a point in a
complex space form with constant holomorphic curvature 4ε lies in the interval [ε, 4ε], if ε > 0
and in the interval [4ε, ε], if ε < 0.

1.2 Projective model

Along this work, we shall use the projective model of CKn(ε), which we describe here briefly
(cf. [Gol99]).

If ε = 0, we are considering the standard Hermitian space Cn with the standard Hermitian
product. Along this section we suppose ε 6= 0, unless otherwise stated.

1.2.1 Points

Endow Cn+1 with the Hermitian product

(z, w) = sign(ε)z0w0 +
n∑

j=1

zjwj . (1.2)

Define
H := {z ∈ Cn+1 | (z, z) = ε}.

H is a real hypersurface of Cn+1 (i.e. it has real dimension 2n + 1). We define the points of
CKn(ε) as

CKn(ε) := π(H)

where
π : Cn+1\{0} → Cn+1\{0}/C∗ = CPn. (1.3)
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Remarks 1.2.1. (i) The fiber of Π for the points in π(H) =: CKn(ε) is S1. Indeed, let z,
w ∈ H such that π(z) = π(w). By definition of π, we have w = αz. On the other hand,
it holds (z, z) = (αz, αz) = ε. Thus, α = eiθ with θ ∈ R and π−1([z]) ∼= S1.

(ii) If ε > 0, then CKn(ε) coincides as a subset with CPn. But, if ε < 0, then CKn(ε) is an
open set of CPn.

The differentiable structure and the structure of a complex manifold we take in CKn(ε) is
the same as the one of an open set of CPn.

1.2.2 Tangent space

The tangent space of a point z ∈ H is

TzH = {w ∈ Cn+1 | Re(z, w) = 0}.

The elements in the tangent space of π(z) ∈ CKn(ε) are obtained from the image of the
elements in the tangent space of the point z under dπ. Moreover, the kernel of dπ has dimension
1.

The direction that its image under dπ is the null vector is Jz, since it is the tangent
direction to the fiber. (Note that Jz ∈ TzH since Re(z, Jz) = 0.) Indeed, the fiber of a point
[z] is {eiθz | θ ∈ R}, then

∂(eiθz)
∂θ

∣∣∣∣
θ=0

= iz = Jz.

Thus, the tangent space at z ∈ H can be decomposed as

TzH = 〈Jz〉 ⊕ 〈Jz〉⊥.

The tangent space at points in CKn(ε) coincides with the image by the differential map of
the projection of vectors 〈Jz〉⊥ at TzH.

Given a vector v ∈ Tπ(z)CKn(ε) there are infinitely many vectors of TzH such that under
the differential map dπ give the same vector v, but we can distinguish the one lying in 〈Jz〉⊥,
which is called horizontal lift and we denote by vL. All other vectors are obtained as linear
combination of this vector and a multiple of Jz.

1.2.3 Metric

Let v, w ∈ Tπ(z)CHn. The Hermitian product at CKn(ε) between v, w is defined by

(v, w)ε := (vL, wL), (1.4)

that is, the Hermitian product defined at Cn+1 applied to the horizontal lift of the vectors.
The real part of this product gives a Hermitian metric on CKn(ε)

〈v, w〉ε := Re(vL, wL).

This metric coincides with the so-called Fubini-Study metric, if ε > 0 and with the so-called
Bergmann metric, if ε < 0 (cf. [Gol99, page 74]).

Along this work we denote the Hermitian metric of CKn(ε) by 〈 , 〉 instead of 〈 , 〉ε.
Notation 1.2.2. In order to unify the study of the complex space forms, we define, in the
same way as it is classically done in real space forms, the following trigonometric generalized
functions

sinε(α) =


sin(α

√
ε)√

ε
, if ε > 0

α, if ε = 0
sinh(α

√
−ε)√

−ε
, if ε < 0
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cosε(α) =


cos(α

√
ε), if ε > 0

1, if ε = 0
cosh(α

√
|ε|), if ε < 0

and

cotε(α) =
cosε(α)
sinε(α)

.

1.2.4 Geodesics

Geodesics in the projective model of CKn(ε) are given by the projection of the intersection
points between H and a plane in Cn+1 such that it is spanned by a vector corresponding to a
representative in H ⊂ Cn+1 of a point z in the geodesic at CKn(ε), and a vector u tangent to
the geodesic at z.

Then, the expression of a geodesic at CKn(ε) is given by [γ(t)] = [cosε(t)z+sinε(t)u] where
u ∈ 〈Jz〉⊥ ⊂ TzH.

The distance between two points in the complex projective and hyperbolic space can be
expressed in terms of the Hermitian product defined at Cn+1.

Proposition 1.2.3 ([Gol99] page 76). Let x, y ∈ CKn(ε), ε 6= 0, and let d be the distance
between the two given points. If x′ and y′ are representatives of x and y, respectively, in the
projective model, then the distance between the two points is given by

(cosε d(x, y))2 =
(x′, y′)(y′, x′)
(x′, x′)(y′, y′)

where ( , ) denotes the Hermitian product in Cn+1 defined at (1.2).

1.2.5 Isometries

Let us recall the definition of the matrix Lie group U(p, q).

Definition 1.2.4. Let (x, y) = −
∑p−1

j=0 xjyj +
∑n

j=p xjyj be a Hermitian product in Cn and
p, q ∈ N ∪ {0} such that p+ q = n+ 1. Then it is defined

U(p, q) = {A ∈Mn×n(C) | (Av,Aw) = (v, w) with v, w ∈ Cn}.

The matrix group U(n) coincides with U(0, n), that is, we consider the standard Hermitian
product on Cn.

The matrices of PU(n + 1) = U(n + 1)/(multiplication by scalars), if ε > 0 (resp. the
matrices of PU(1, n) = U(1, n)/(multiplication by complex scalars), if ε < 0) act naturally on
CKn(ε). Moreover, they preserve the metric defined in the model since preserve the Hermitian
product defined at Cn+1. Then, the matrices in PU(n+ 1) (resp. PU(1, n)) are isometries of
CPn (resp. CHn).

Proposition 1.2.5 ([Gol99] page 68). • Every isometry of CKn(ε) comes from a linear
map in Cn+1.

• The isometry group of CKn(ε) is PUε(n) with

Uε(n) =


Cn o U(n), if ε = 0,
U(n+ 1) = U(0, n+ 1), if ε > 0,
U(1, n), if ε < 0.

(1.5)
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In order to unify the study of the complex space forms, independently of ε, we represent
the elements in the group Cn o U(n) as matrices(

1 0
Cn U(n)

)
. (1.6)

The transitivity of the isometry group at different levels is given in the following proposi-
tion.

Proposition 1.2.6 ([Gol99] page 70). The isometry group of CKn(ε) acts transitively

• on the points in CKn(ε),

• on the unit tangent bundle. That is, given (p, v), (q, w) in the unit tangent bundle there
exists an isometry σ such that σ(p) = q and dσ(v) = w.

• on the holomorphic sections (see Definition 1.1.10).

In the following lemma, we give a basis of left-invariant forms of U(p, q). We will prove
that these forms are also right-invariants.

Lemma 1.2.7. Let A = (a0, . . . , am) ∈ U(p, q), with p, q, m ∈ N∪{0} such that p+q = m+1.
A basis of left-invariant forms in U(p, q) is given by {Re(ϕjk), Im(ϕjk),Re(ϕjj)}, 0 ≤ j ≤ k ≤
m, j 6= k where ϕij = (dai, aj) and (x, y) = −

∑p−1
j=0 xjyj +

∑m
j=p xjyj in Cm+1.

Proof. From Definition 1.2.4 of U(p, q) it follows that A ∈ U(p, q) if and only if A−1 = εA
t
ε

where

ε =
(
−Idp 0

0 Idq

)
. (1.7)

In order to find a basis of left-invariant forms we compute A−1dA with A ∈ U(p, q). If we
denote A = (a0, . . . , am), then

A−1dA = εA
T
εdA =


(da0,−a0) . . . (dam,−a0)

...
...

(da0,−ap−1) . . . (dam,−ap−1)
(da0, ap) . . . (dam, ap)
(da0, am) . . . (dam, am)

 = (ϕij)ij . (1.8)

Each entry of this matrix is a 1-form given by ϕij = ±(dai, aj).
Note that each aj is a m-tuple of complex numbers, so that the 1-forms ϕij are complex-

valued.
In order to find a basis of left-invariant real-valued 1-forms from the entries of the former

matrix we use the following

• (aj , aj) = ±1 and differentiating

0 = (aj , daj) + (daj , aj) = (daj , aj) + (daj , aj) = 2Re(daj , aj).

Thus, ϕjj = −ϕjj and each ϕjj takes only imaginary values.

• (aj , ak) = 0 if k 6= j and differentiating

0 = (daj , ak) + (aj , dak).

Thus, {
ϕjk = ϕkj if j ∈ {0, . . . , p− 1} or k ∈ {0, . . . , p− 1}
ϕjk = −ϕkj otherwise.
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On the other hand, it follows directly from the definition of U(p, q) that its dimension is
(p + q)2. Then, {Re(ϕjk), Im(ϕjk),Re(ϕjj)}, 0 ≤ j ≤ k ≤ m, j 6= k constitutes a basis of
left-invariant 1-forms since they generate all the space and there are (p+ q)2 forms.

For ε = 0, if we denote the elements A ∈ Cn oU(n) as the matrices of (1.8), we define the
forms

ϕij = (dai, aj)

with ( , ) the standard product in Cn+1.

Definition 1.2.8. A group G is said to be unimodular if there exists a volume element of G
left and right-invariant.

Lemma 1.2.9. U(p+ q) is a unimodular group.

Proof. From Lemma 1.2.7 we have a basis of left-invariant forms of U(p, q). We prove that
each of these forms is also right-invariant, i.e. it satisfies

R∗
Bϕij(A; v) = ϕij(A; v) ∀A,B ∈ U(p, q), v ∈ TAU(p, q).

We use the expression ϕij = ±(dai, aj) and we denote by ak(A) the map taking the k-th
column of a matrix A. Then, if A,B ∈ U(p, q) and v ∈ TAU(p, q)

R∗
Bϕij(A; v) = ϕij(RB(A); d(RB)(v)) = ±(dai(d(RB)(v)), aj(RB(A))) = ±(dai(vB), aj(AB))

= ±
(
−

m∑
k,l=0

p−1∑
r=0

vk
i b

r
ka

l
jb

r
l +

m∑
k,l=0

m∑
r=p

vk
i b

r
ka

l
jb

r
l

)

= ±
(
−

p−1∑
k,l=0

δklv
k
i a

l
j +

m∑
k,l=p

δklvk
i a

l
j

)

= ±
(
−

p−1∑
k=0

vk
i a

k
j +

m∑
k=p

vk
i a

k
j

)
= ±(dai(v), aj(A)) = ϕij(A; v).

Then, U(p, q) is a unimodular group since the volume element obtained from the product of the
forms ϕij is left-invariant and right-invariant (it is a product of forms with this property).

1.2.6 Structure of homogeneous space

Definition 1.2.10. Let (M, g) be a Riemannian manifold. If given any two points x, y ∈ M
there exists an isometry σ of M such that σ(x) = y, then M is a homogeneous space. That is,
a Riemannian manifold is homogeneous if it is a homogeneous space of its isometry group.

By Proposition 1.2.6 we have that complex space forms are homogeneous spaces. It will
be interesting to represent them as a quotient of Lie groups.

Proposition 1.2.11 ([War71] Theorem 3.62 page 123). Let η : G ×M → M be a transitive
action of the Lie group G over the manifold M . Let m0 ∈M and H the isotropy group of m0.
Then, the map

β : G/H −→ M
gH 7→ η(g,m0)

is a diffeomorphism.
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The Lie group PUε(n) acts transitively over CKn(ε) and the isotropy group of a point in
CKn(ε), for each ε, is isomorphic to P (U(1)× U(n)), a closed Lie subgroup of PUε(n). Thus,
we can represent CKn(ε) as a quotient of Lie groups

CKn(ε) ∼= PUε(n)/P (U(1)× U(n)) ∼= Uε(n)/(U(1)× U(n)),

where the first diffeomorphism is given by x 7→ g ·P (U(1)×U(n)) with g ∈ PUε(n) such that,
if x0 ∈ CKn(ε) is fixed then g(x0) = x.

Definition 1.2.12. A Riemannian manifold is a 2-point homogeneous space if the isometry
group of the manifold acts transitively in the unit tangent bundle.

Thus, complex space forms are 2-point homogeneous spaces. Real space forms are also 2-
point homogeneous spaces but, they are also 3-point homogeneous spaces, that is, the isometry
group acts transitively for triplets of a point and two orthonormal vectors in the tangent space
of the point. Complex space forms (ε 6= 0) cannot be 3-point homogeneous spaces since the
sectional curvature is preserved by isometries and the sectional curvature is not constant.

1.3 Moving frames

Definition 1.3.1. Let U ⊂ M be an open set of a differentiable manifold. An orthonormal
moving frame of CKn(ε) defined at U is a map g0 : U → CKn(ε) together with a collection of
gi : U → TCKn(ε) (i ∈ {1, . . . , 2n}) such that 〈gi, gj〉ε = δij where 〈 , 〉ε denotes the Hermitian
product of CKn(ε) (defined at (1.4)) and π : TCKn(ε) → CKn(ε) is the canonical projection.

Definition 1.3.2. Let V be a 2n-dimensional real vector space endowed with a complex
structure J . An orthonormal basis {v1, v2, . . . , v2n} is said to be a J-basis if v2i = Jv2i−1 for
every i ∈ {1, . . . , n}.

We denote by {e1, e1 = Je1, . . . , en, en = Jen} the J-bases of V , and by {ω1, ω1, . . . , ωn, ωn}
the dual basis of a J-basis.

Remark 1.3.3. A J-basis is a special type of an orthonormal basis in a real vector space with
an almost complex structure J .

Definition 1.3.4. An orthonormal moving frame of CKn(ε) such that vectors {g1(p), . . . , g2n(p)}
constitute a J-basis for all x ∈ U , is called a J-moving frame.

J-moving frames in CKn(ε) play an important role since they are in correspondence with
the elements of the isometry group of CKn(ε).

Consider F(CKn(ε)) the bundle of J-moving frames of CKn(ε), constituted by J-moving
frames (g0; g1, Jg1, . . . , gn, Jgn) with g0 ∈ CKn(ε) and {g1, Jg1, . . . , gn, Jgn} a J-basis of
Tg0CKn(ε).

Proposition 1.3.5. The bundle of J-moving frames F(CKn(ε)) is identified with the isometry
group of CKn(ε).

Proof. We study the case ε 6= 0. Let A ∈ Uε(n). By definition (1.5) of Uε(n) we have that A is
an (n+1)× (n+1) matrix with complex entries and such that its columns {a0, . . . , an} satisfy

(a0, a0) = sign(ε)1,
(a0, ai) = 0, i ∈ {1, . . . , n},
(ai, aj) = δij i, j ∈ {1, . . . , n},

(1.9)

where ( , ) denotes the Hermitian product in Cn+1 defined at (1.2).
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From the first property in the former list, we can take a0 as a representative of g0 = π(a0) ∈
CKn(ε).

From the second property of (1.9) we have that ai satisfies the condition of being a vector
in Ta0H (cf. Section 1.2.2). Moreover, Re(Ja0, ai) = Im(a0, ai) = 0 and Re(Ja0, Jai) =
Re(a0, ai) = 0. Let us consider gi := dπ(ai) and Jgi := dπ(Jai) where π denotes the projection
defined at (1.3).

From the third condition in (1.9), vectors {g1, Jg1, . . . , gn, Jgn} constitute a J-basis of the
tangent space at g0.

Reciprocally, given a J-moving frame {g0; g1, Jg1, . . . , gn, Jgn} defined on an open set, we
can define a matrix of Uε(n) (with the entries depending continuously on a parameter) just
taking as the first column the representative a0 of g0 with norm sign(ε)1. For the other columns
we consider the horizontal lift of gj at a0. As {g1, Jg1, . . . , gn, Jgn} is, in each point g, a J-basis
and we choose the horizontal lift, the columns of the constructed matrix verify the conditions
in (1.9) and are in Uε(n).

Definition 1.3.6. The unit tangent bundle of CKn(ε), denoted by S(CKn(ε)), is defined as

S(CKn(ε)) =
⋃

p∈CKn(ε)

T ′pCKn(ε)

where T ′pCKn(ε) denotes the sphere of unit vectors in the tangent vector space of CKn(ε) at
p.

In Lemma 1.2.7 we defined the invariant forms {ϕij} of Uε(n) as

ϕij(A; ·) = (dai(·), aj)

where A = (a0, . . . , an) ∈ Uε(n). As forms {ϕij} takes complex values we consider

ϕjk = αjk + iβjk (1.10)

Using the identification between Uε(n) and F(CKn(ε)), we can consider forms {ϕij} as
forms of F(CKn(ε)).

On the other hand, consider the canonical projections

F(CKn(ε)) π1−→ S(CKn(ε)) π2−→ CKn(ε)
(g; g1, . . . , Jgn) 7→ (g, g1) 7→ g

and local sections

CKn(ε) ⊃ U
s2−→ S(CKn(ε)) ⊃ V

s1−→ F(CKn(ε)).

Using the forms ϕij defined in F(CKn(ε)) and the previous local sections, we define the
following local invariant forms in S(CKn(ε))

s∗1(ϕij), s∗1(αij) and s∗1(βij)

and the local invariant forms in CKn(ε)

s∗2s
∗
1(ϕij), s∗2s

∗
1(αij) and s∗2s

∗
1(βij).

Lemma 1.3.7. Forms s∗1α01, s∗1β01 and s∗1β11 are global forms in S(CKn(ε)).
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Proof. If V ∈ T(p,v)(S(CKn(ε))) then

s∗1α01(V )(p,v) = Re((dπ2(V ), v)) = 〈dπ2(V ), v〉ε
s∗1β01(V )(p,v) = Im((dπ2(V ), v)),

s∗1β11(V )(p,v) = Im((∇V, v)),

where ∇ denotes the Levi-Civita connection defined by ∇ : T (SCKn(ε)) → TCKn(ε), from
the Levi-Civita connection of CKn(ε). Inded, a vector V ∈ T (SCKn(ε)) is a tangent vector
to a curve of unit vectors, and in each of them we can apply the Levi-Civita connection of
CKn(ε).

We denote by α, β, γ the forms s∗1α01, s∗1β01, s∗1β11, respectively.
Remark 1.3.8. The 1-form α coincides with the standard contact form of the unit tangent
bundle S(CKn(ε)).

On the other hand, forms s∗2s
∗
1(ϕij) coincide with forms φij of CKn(ε) we define in the

following.
Let {g; g1, Jg1, . . . , gn, Jgn} be a J-moving frame on CKn(ε). As in the tangent space of

each point g, {g1, Jg1, . . . , gn, Jgn} defines a J-basis, we can consider the vectors {g1, . . . , gn}
as complex vectors. Then, the following differential forms are well-defined

φj(·) = (dg(·), gj)ε and φjk(·) = (∇gj(·), gk)ε (1.11)

where j, k ∈ {1, ..., n}, and ∇ denotes the Levi-Civita of CKn(ε) (i.e. we consider gj as a real
vector, we apply the Levi-Civita connection and we consider the result again as a complex
vector). Note that the differential forms φj and φjk are complex valued. We denote

φj = αj + iβj (1.12)
φjk = αjk + iβjk.

At Chapter 3, we work with orthonormal moving frames not necessarily J-moving frames.
Analogously, if {g; g1, g2, . . . , g2n−1, g2n} is a moving frame on CKn(ε), we define the dual and
connection forms for this moving frame. We denote

ωj(·) = 〈dg(·), gj〉ε and ωjk(·) = 〈∇gj(·), gk〉ε (1.13)

with j, k ∈ {1, ..., 2n}, 〈 , 〉ε the Hermitian product defined on CKn(ε) (see (1.4)), and ∇ the
Levi-Civita connection of CKn(ε).

Note that the differential forms {αj , βj} are a particular case of forms {ωj}: they are
obtained if we consider a J-moving frame.
Notation 1.3.9. Along this work we use invariant forms defined at CKn(ε), S(CKn(ε)) or
F(CKn(ε)), but we denote all of them by ϕij , αij , βij , without the pull-back of the sections,
if it is clear by the context.

Definition 1.3.10. Given a domain Ω ⊂ CKn(ε) we define the unit normal bundle of ∂Ω by

N(Ω)={(p, v) : p ∈ ∂Ω, v such that 〈v, w〉ε ≥ 0 ∀w tangent to a curve at Ω by p and ||v||ε =1}.

Remark 1.3.11. The main results of this work, given at Chapters 3 and 4, have as a hypothesis
that the domain Ω ⊂ CKn(ε) which we take is compact with C2 boundary. We denote by
regular domain a domain satisfying these hypothesis. We suppose that domains are regular in
order to simplify the arguments and to use techniques of differential geometry (for instance,
to have a well-defined second fundamental form in the whole boundary of the domain). These
hypothesis can be relaxed since most of the used results, mainly in valuations (see Chapter 2),
are known for a more general class of domains (cf. [Ale07a]).
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Lemma 1.3.12. Let Ω ⊂ CKn(ε) be a regular domain. Forms α and dα vanishes at N(Ω) ⊂
S(CKn(ε)).

Proof. Let V ∈ T(p,v)Ω. Then, α(V )(p,N) = 〈dπ2(V ), N〉ε = 0 since dπ2(V ) is a tangent vector
tangent at ∂Ω at point p.

In order to prove that the 2-form dα vanishes at the unit normal bundle, we consider the
inclusion of the unit normal bundle to the unit tangent bundle i : N(Ω) → S(Ω). Using that
the differential map commutes with the inclusion we have the result

dα|N(Ω) = (i∗ ◦ d)(α) = (d ◦ i∗)(α) = d(i∗α) = d(0) = 0.

1.4 Submanifolds

1.4.1 Totally geodesic submanifolds

Definition 1.4.1. LetM be a Riemannian manifold. A submanifoldN ⊂M is totally geodesic
if every geodesic in the submanifold N is also a geodesic in M .

As Cn is metrically equivalent to R2n, totally geodesic submanifolds in Cn coincide with
the ones in R2n. For the other complex space forms, the totally geodesic submanifolds are
classified.

Definition 1.4.2. Let V be a real vector space of dimension 2n endowed with an almost com-
plex structure J compatible with a scalar product 〈 , 〉. It is said that vectors {e1, . . . , em} ex-
pand a complex subspace if the space generated by these vectors is J-invariant, i.e. J(span{e1, . . . , em}) =
span{e1, . . . , em}.

It is said that a submanifold of a complex manifold is complex if at each point, the tangent
space of the submanifold is complex subspace of the tangent space of the manifold.

Definition 1.4.3. Let V be a real vector space of dimension 2n endowed with an almost
complex structure J compatible with a scalar product 〈 , 〉. It is said that vectors {e1, . . . , em}
expand a totally real subspace if

〈ei, Jej〉 = 0, ∀i, j ∈ {1, . . . ,m}.

It is said that a submanifold of a complex manifold is totally real if at each point, the tangent
space of the submanifold is a totally real subspace of the tangent space of the manifold.

Theorem 1.4.4 ([Gol99] pages 75 and 80). Let z ∈ CKn(ε).

1. If L ⊂ TzCKn(ε) is a complex vector subspace with complex dimension r, then there
exists a unique complete complex totally geodesic submanifold through z and tangent to
L at z.

2. If L ⊂ TzCKn(ε) is a totally real vector space of real dimension k, then there exists a
unique complete totally geodesic totally real submanifold through z and tangent to L at
z.

Definition 1.4.5. The complex submanifold defined at 1. in the previous theorem is called
complex r-plane, and denoted by Lr.

The totally real submanifold defined at 2. in the previous theorem is called totally real
k-plane, and denoted by LR

k .
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In the projective model, complex r-planes are obtained from the projection of a subspace
F ⊂ Cn+1 intersection CKn(ε). The subspace F is the (r + 1)-dimensional complex vector
subspace spanned by a representative z′ of z = π(z′) and by the horizontal lift of vectors in
L ⊂ TzCKn(ε) (cf. [Gol99, Section 3.1.4]).

Analogously, totally real k-planes are obtained from the projection of FR ⊂ Cn+1 in-
tersection CKn(ε), where FR is the (k + 1)-dimensional real vector subspace spanned by a
representative z′ of z = π(z′) and by the horizontal lift of vectors in L ⊂ TzCKn(ε).

Theorem 1.4.6 ([Gol99] p. 82). The unique complete totally geodesic submanifolds in CKn(ε)
are the complex r-planes, r ∈ {1, . . . , n− 1} and the totally real k-planes, k ∈ {1, . . . , n}.
Corollary 1.4.7. In CKn(ε), ε 6= 0, there are not totally geodesic (real) hypersurfaces.

That is, it does not exist the equivalent hypersurface to a hyperplane in a real space form.
The more reasonable substitutes of hyperplanes are the so-called bisectors, which we study on
page 82.

Theorem 1.4.6 will be important along this work since it will be interesting to know which
totally geodesic submanifolds can be taken in a complex space form as a substitutes of (totally
geodesic) planes in real space forms.

1.4.2 Geodesic balls

A geodesic ball in a Riemannian manifold is the set of points equidistant from a fixed point
called center.

In real space forms, geodesic balls are totally umbilical real hypersurfaces, i.e. the second
fundamental form is, at every point, a multiple of the identity and the same multiple for every
point.

This fact does not hold in complex projective and hyperbolic spaces. Moreover, in these
spaces, there are no totally umbilical real hypersurface.

Proposition 1.4.8 ([Mon85]). The principal curvatures of a sphere of radius r in CKn(ε),
ε 6= 0 are

i) 2 cotε(2r) with multiplicity 1 and principal direction −JN (where N denotes the inward
normal vector to the sphere),

ii) cotε(r) with multiplicity 2n− 2.

Recall that cosε, sinε denote the generalized trigonometric functions defined at Notation
1.2.2.

Along this work, we use the value of the mean curvature integrals for a geodesic ball of
radius R in CKn(ε) (cf. Definition 2.1.4).

From the previous proposition we have that the symmetric elementary functions are
σ0 = 1
σi =

(
2n−1

i

)−1
((

2n−2
i

)
coti

ε(R) +
(
2n−2
i−1

)
2 coti−1

ε (R) cotε(2R)
)

σ2n−1 = 2 cot2n−2
ε (R) cotε(2R).

By a straightforward computation, we obtain that the expression of the mean curvature inte-
grals is

M0 = vol(∂BR) = 2πn

(n−1)! sin2n−1
ε (R) cosε(R)

Mi = 2πn

(2n−1)(n−1)!((2n+ i− 1) cosi+1
ε (R) sin2n−i−1

ε (R)− i cosi−1
ε (R) sin2n−i−1

ε (R))
M2n−1 = 2πn

(n−1)!(cos2n
ε (R) + cos2n−2

ε (R) sin2
ε (R))

and
vol(BR) =

πn

n!
(sinε(R))2n.
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1.5 Space of complex r-planes

We denote the space of all complex r-planes in CKn(ε) by LC
r and the space of all totally real

r-planes in CKn(ε) by LR
r (cf. Definition 1.4.5).

We shall use that LC
r is a homogeneous space with respect to the isometry group of CKn(ε).

In order to prove this fact, we need the following result.

Lemma 1.5.1. The group of isometries of CKn(ε) acts transitively on the J-bases.

Proof. We study the case ε 6= 0. Fix the canonical J-basis {e1, Je1, . . . , en, Jen} at e0 ∈
CKn(ε). It is enough to prove that given another J-basis {g1, Jg1, . . . , gn, Jgn} of Tg0CKn(ε),
there exists an isometry ρ which takes this J-basis to the fixed one.

Take as isometry ρ ∈ Uε(n) the matrix with columns (g̃0, g̃1, . . . , g̃n) where g̃0 is a repre-
sentative of g0 with norm ε and g̃i is the horizontal lift of gi at g̃0. In the same way as in the
proof of Proposition 1.3.5 we have that ρ is a matrix in Uε(n). Moreover, it carries the fixed
J-basis to the given one.

From the previous lemma we get

Lemma 1.5.2. The space of complex r-planes is a homogeneous space with respect to the
isometry group of CKn(ε).

Proof. We define a J-basis {e1, Je1, . . . , er, Jer} of the tangent space in any point of a complex
r-plane. Completing this J-basis to a J-basis of the whole space CKn(ε), and applying the
previous lemma we get the result.

In order to study integral geometry in CKn(ε), it is necessary that the space LC
r admits an

invariant density under the isometries of CKn(ε). In general, the absolute value of a form of
maximum degree is called a density. By the following lemma, it is enough to prove that LC

r is
the quotient of unimodular groups.

Lemma 1.5.3 ([San04]). If G, H are unimodular groups, then G/H admits an invariant
density.

The isotropy group of a complex r-plane is isomorphic to

Uε(r)× U(n− r) =
{
X ∈M(n+1)×(n+1)(C) : X =

(
A 0
0 B

)
, A ∈ Uε(r), B ∈ U(n− r)

}
(1.14)

since these matrices (and only these) leave invariant a complex r-plane and its orthogonal.
Then,

LC
r
∼= Uε(n)/(Uε(r)× U(n− r)).

The group Uε(n), by Lemma 1.2.9, is unimodular, and Uε(r)×U(n−r) is also a unimodular
group. Thus, there exists an invariant density in the quotient space, that is, in the space of
complex r-planes.

The following result give a method to obtain explicitly the density in the quotient space.

Theorem 1.5.4 ([San04] page 147). Let G be a Lie group with dimension n and H a closed
subgroup of G with dimension n−m. Then, G/H is a homogeneous space with dimension m.
Let ω̃ be the m-form obtained from the product of all invariant 1-forms of G such that they
vanish on H. Then, there exists an invariant density ω in G/H if and only if dω̃ = 0. In
this case, ω̃ is the pull-back of ω for the canonical projection of G at G/H (up to constants
factors).
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Proposition 1.5.5. Let π : Uε(n) −→ Uε(n)/(Uε(r)×U(n− r)) ∼= LC
r . If dLr is an invariant

density of LC
r then

π∗dLr =
∧

i=0,...,r
j=r+1,...,n

ϕij ∧ ϕij

or, equivalently,

π∗dLr =
∧

i=0,...,r
j=r+1,...,n

αij ∧ βij ,

where {ϕij , αij , βij} are the forms defined at Lemma 1.2.7 and at (1.11).

Proof. The result is known for Cn, see [San04].
For the other complex space forms, we note that the (real) dimension of the space of

complex r-plans coincides with the degree of π∗dLr (and it is equal to 2(r+ 1)(n− r)). Thus,
it suffices to prove that each form ϕij with i ∈ {0, . . . , r}, j ∈ {r + 1, . . . , n} vanishes over
Uε(n) × U(n − r). But, from the form of matrices in Uε(n) × U(n − r) given at (1.14), the
result follows immediately.

Let us give an example of moving frames in the space of complex r-planes using Definition
1.3.1, which will be used in the next section.

Let us take as the open set U ⊂M (see Definition 1.3.1) an open set in LC
r . An orthonormal

frame is given by

g : U ⊂ LC
r −→ CKn(ε)

Lr 7→ p ∈ Lr
and

gi : U ⊂ LC
r −→ TCKn(ε)

Lr 7→ vi ∈ Tg(Lr)Lr
, (1.15)

i ∈ {1, . . . , 2r}, such that 〈vi, vj〉ε = δij . It will be interesting to consider that Jg2k−1(Lr) =
g2k(Lr), k ∈ {1, . . . , r}, that is, vectors {g1(Lr), . . . , g2r(Lr)} constitute a J-basis at g(Lr). By
abuse of notation, we denote g(Lr) by g and gi(Lr) by gi.

Remark 1.5.6. From the correspondence between Uε(n) and the bundle of J-moving frames
F(CKn(ε)), and between Uε(n)/(Uε(r)×U(n−r)) and LC

r we have that {p; g1(Lr), . . . , g2r(Lr)}
are sections of Uε(n) → Uε(n)/(Uε(r)× U(n− r)).

1.5.1 Expression for the invariant density in terms of a parametrization

Sometimes it is interesting to have a more geometric expression for the invariant density of
complex r-planes. For example, Santaló proved

Proposition 1.5.7 ([San04]). The invariant density of the space of totally geodesic planes in
a space form of constant sectional curvature k is

dLr = cosr
k(ρ)dxn−r ∧ dL(n−r)[O] (1.16)

where dxn−r is the volume element of the (n− r)-plane orthogonal to Lr containing the origin
O and dL(n−r)[O] is the volume element of the Grassmannian of (n− r)-planes containing the
origin.

Now, we give a similar expression in complex space forms, for the density of complex
r-planes in CKn(ε).
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Proposition 1.5.8. The invariant density of the space of complex r-planes in a space form
of constant holomorphic curvature 4ε is

dLr = cos2r
ε (ρ)dxn−r ∧ dL(n−r)[O]

where dxn−r is the volume element of the complex (n−r)-plane orthogonal to Lr containing the
origin O and dL(n−r)[O] is the volume element of the Grassmannian of complex (n− r)-planes
containing the origin.

Proof. In order to obtain the expression of the invariant density of LC
r in terms of dL(n−r)[O]

and dxn−r, we follow the same idea as in [San04] (where it is proved for the Euclidean and the
real hyperbolic space). That is, we fix an adapted J-moving frame to the complex r-plane,
defined in a neighborhood of the point at minimum distance from the origin O, then, by
parallel translation, we translate this moving frame to the origin O. Finally, we relate both
moving frames from the pull-back of a section.

Denote by G = Uε(n) and by H = Uε(r)×U(n−r) the isotropy group of a complex r-plane.
The projection π : G −→ G/H gives, with respect to a J-moving frame adapted to the

complex r-plane and the forms defined at Lemma 1.2.7,

π∗dLr =
n∧

j=r+1

αj0 ∧ βj0

∧
i=1,...,r

j=r+1,...,n

αji ∧ βji.

Let O ∈ CKn(ε) be the fixed origin and let Lr ∈ LC
r . We denote by p(Lr) the point in Lr

at a minimum distance from O.
Let i be a local section of π. Then, π ◦ i = id and i∗π∗dLr = dLr, so that, we can obtain

the expression of dLr. From the identifications explained in Remark 1.5.6, we take as a section
i the defined by {p(Lr); g1, Jg1, . . . , gn, Jgn}, a J-moving frame defined in a neighborhood V
of Lr, adapted to Lr and such that gr+1 is the tangent vector to the geodesic joining p(Lr)
and O. Denote by {g1, Jg1, . . . , gn, Jgn} the dual basis of {g1, Jg1, . . . , gn, Jgn} at g0. From
Proposition 1.3.5, we consider the matrix in G corresponding to this J-moving frame. Denote
the columns of G also by (g0, g1, . . . , gn), so that (gi ◦ i) denotes the i-th column of the matrix.
Then, using the same notation as in (1.12), we have

i∗(
n∧

j=r+1

αj0 ∧ βj0) =
n∏

j=r+1

αj0(di) ∧ βj0(di) =
n∏

j=r+1

〈dg0(di), gj〉〈dg0(di), Jgj〉

=
n∏

j=r+1

〈d(g0 ◦ i), gj〉〈d(g0 ◦ i), Jgj〉 = (g0 ◦ i)∗(
n∧

j=r+1

gj ∧ Jgj)

but (g0 ◦ i) = p(Lr) and the previous form coincides with the volume element of p in the
subspace generated by {gr+1, Jgr+1, . . . , gn, Jgn}, which is a complex (n− r)-plane. Thus,

i∗(
n∧

j=r+1

αj0 ∧ βj0) = dxn−r.

Let G′ ⊂ G be the subgroup of all J-moving frames of G such that gr+1 is the tangent
vector to the geodesic containing O and g0, and let G0 ⊂ G be the subgroup of all J-moving
frames with base point O. Let ρ be the distance from Lr to O. Denote by sρ the parallel
translation from O to p(Lr) along the geodesic. Consider the following maps

π1 : G′ −→ G0

(g0; g1, . . . , gn) 7→ (O; s−1
ρ (g1), . . . , s−1

ρ (gn))
,
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π2 : G0 −→ LC
r[O]

G0 7→ complex r-plane containing O generated by g1, . . . , gr
,

π3 : LC
r −→ LC

r[0]

Lr 7→ ((Lr)⊥O)⊥O
,

where (Lr)⊥O denotes the orthogonal space to Lr by O. Then, the following diagram is com-
mutative

G′ π1−−−−→ G0

π

y yπ2

LC
r

π3−−−−→ LC
r[0].

(1.17)

We define curves xij in G0 ⊂ G as follows

xij(t) = (O; g1, . . . , gi(t), Jgi(t), . . . , gj(t), Jgj(t) . . . , gn, Jgn)

where gi(t) = cos(t)gi + sin(t)gj and gj(t) = − sin(t)gi + cos(t)gj and curves

xj
i (t) = (O; g1, . . . , gi(t), Jgi(t), . . . , gj(t), Jgj(t), . . . , gn, Jgn)

where gi(t) = cos(t)gi + sin(t)Jgj and gj(t) = − sin(t)Jgi − cos(t)gj .
From the local section i, we have

i∗αji = i∗((π∗1 ◦ s∗)(αji)) = (π1 ◦ i)∗(s∗ραji),

i∗βji = i∗((π∗1 ◦ s∗)(βji)) = (π1 ◦ i)∗(s∗ρβji).

Thus, we have to study (s∗ραij)(ẋkl) and (s∗ραij)(ẋl
k) (and the same for βij). Then, we need

(gl ◦ sρ)(xij) since

(s∗ραij)(ẋkl) = αij(dsρ(ẋkl)) = 〈gj

∣∣
sρ(xkl(t))

, d(gi ◦ sρ)
∣∣
sρ(xkl(t))

(ẋkl)〉. (1.18)

Note that
(gi ◦ sρ)(xkl) = i-th column of the matrix sρ(xkl)

and that sρ(xkl) ∈ G′ is obtained from the parallel translation along the geodesic for O and
with tangent vector gr+1(t) in O. Hence, for curves xij , x

j
i with i, j 6= r + 1 we always take

parallel translation along the same geodesic, when we apply sρ.
When we move gr+1(t) we consider the parallel translation along different geodesics for each

t. But, as curves xr+1,j , x
j
r+1, x1,r+1 just move the vector gr+1(t) in a real plane generated by

{gr+1(0), gj(0)} or {gr+1(0), Jgj(0)}, we have that g0(sρ(xr+1,j)(t)) or g0(sρ(x
j
r+1(t))) describes

a circle in CKn(ε) contained in the plane generated by {gr+1(0), gj(0)} (or {gr+1(0), Jgj(0)}).
From these remarks we have

• (g0 ◦ sρ)(xkl): point at a distance ρ from O in which we arrive along the geodesic with
tangent vector gr+1 at O.

� xr+1,l, l > r + 1.

(g0 ◦ sρ)(xr+1,l) = cosε(ρ)O + sinε(ρ)(cos(t)gr+1 + sin(t)gl).

� xl
r+1, l ≥ r + 1.

(g0 ◦ sρ)(xl
r+1) = cosε(ρ)O + sinε(ρ)(cos(t)gr+1 + sin(t)(Jgl)).
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� x1,r+1.

(g0 ◦ sρ)(x1,r+1) = cosε(ρ)O + sinε(ρ)(− sin(t)g1 + cos(t)gr+1)

since g1(t) = g1 cos(t) + gr+1 sin(t) and gr+1(t) is perpendicular to g1(t) for all t.
Then, gr+1(t) = −g1 sin(t) + gr+1 cos(t).

� xr+1
1 .

(g0 ◦ sρ)(xr+1
1 ) = cosε(ρ)O + sinε(ρ)(sin(t)(Jg1) + cos(t)gr+1).

� xkl, k < l, k, l 6= r + 1.

(g0 ◦ sρ)(xkl) = cosε(ρ)O + sinε(ρ)gr+1.

� xl
k, k ≤ l, k, l 6= r + 1.

(g0 ◦ sρ)(xl
k) = cosε(ρ)O + sinε(ρ)gr+1.

• (gr+1 ◦ sρ)(xkl):

� xr+1,l, l > r + 1.

(gr+1 ◦ sρ)(xr+1,l) = s−1
ρ (cos(t)gr+1 + sin(t)gl)

but this parallel translation coincides with the tangent vector to the geodesic at
time ρ, that is,

s−1
ρ (cos(t)gr+1+sin(t)gl) = tangent vector to (cosε(ρ)O+sinε(ρ)(cos(t)gr+1+sin(t)gl))

= sinε(ρ)O + cosε(ρ)(cos(t)gr+1 + sin(t)gl).

� xl
r+1, l ≥ r + 1.

(gr+1 ◦ sρ)(xl
r+1) = sinε(ρ)O + cosε(ρ)(cos(t)gr+1 + sin(t)(Jgl)).

� x1,r+1.

(gr+1 ◦ sρ)(x1,r+1) = sinε(ρ)O + cosε(ρ)(− sin(t)g1 + cos(t)gr+1).

� xr+1
1 .

(gr+1 ◦ sρ)(xr+1
1 ) = sinε(ρ)O + cosε(ρ)(sin(t)(Jg1) + cos(t)gr+1).

� xkl, k < l, k, l 6= j.

(gr+1 ◦ sρ)(xkl) = sinε(ρ)O + cosε(ρ)gr+1.

� xl
k, k ≤ l, k, l 6= j.

(gr+1 ◦ sρ)(xl
k) = sinε(ρ)O + cosε(ρ)gr+1.

• (gj ◦ sρ)(xkl), j > r + 1:

� xjl, l > j.
(gj ◦ sρ)(xjl) = s−1

ρ (cos(t)gj + sin(t)gl).
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� xl
j , l ≥ j.

(gj ◦ sρ)(xl
j) = s−1

ρ (cos(t)gj + sin(t)(Jgl)).

� xlj , l < j.
(gj ◦ sρ)(xlj) = s−1

ρ (− sin(t)gl + cos(t)gj).

� xj
l , l ≤ j.

(gj ◦ sρ)(x
j
l ) = s−1

ρ (sin(t)(Jgl) + cos(t)gj).

� xkl, k < l, k, l 6= j.
(gj ◦ sρ)(xkl) = s−1

ρ (gj).

� xl
k, k ≤ l, k, l 6= j.

(gj ◦ sρ)(xl
k) = s−1

ρ (gj).

Now, we compute s∗ραij (and s∗ρβij) in terms of αij , βij using (1.18) and evaluating s∗ραij

(and s∗ρβij) to each curve xkl. Doing so, we obtain
(s∗ραj1)g = −(αj1)g′ , j > r + 1.

(s∗ραr+1,1)g = − cosε(ρ)(αr+1,1)g′ .

(s∗ρβj1)g = (βj1)g′ , j > r + 1.

(s∗ραr+1,1)g = − cosε(ρ)(βr+1,1)g′ .

Finally, we have

s∗ρ(
∧

j=r+1,...,n
i=1,...,r

αji ∧ βj1)g = cos2r
ε (ρ)(

∧
j=r+1,...,n

i=1,...,r

αj1 ∧ βj1)g′ . (1.19)

To get an expression for

i∗(
∧

j=r+1,...,n
i=1,...,r

αji ∧ βj1)

we use the diagram (1.17) and the computation in (1.19), so that

i∗(
∧

j=r+1,...,n
i=1,...,r

αji ∧ βji)g = i∗ ◦ π∗1 ◦ s∗ρ(
∧

j=r+1,...,n
i=1,...,r

αji ∧ βji)g

= i∗ ◦ π∗1(cos2r
ε (ρ)(

∧
j=r+1,...,n

i=1,...,r

αji ∧ βji)′g)

= cos2r
ε (ρ)π∗3(dLr[0]) = cos2r

ε (ρ)dL(n−r)[0]

where we used the expression for the invariant density of complex r-planes through a point,
cf. (1.20), and the duality between complex r-planes through a point and the complex (n−r)-
planes through the same point.

Hence, we get
dLr = cos2r

ε (ρ)dxn−rdL(n−r)[O].
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1.5.2 Density of complex r-planes containing a fixed complex q-plane

We denote by LC
r[q] the space of complex r-planes containing a fixed complex q-plane.

We denote by H[q] := Uε(q) the isotropy group of a complex q-plane in CKn(ε) and by Hr[q]

the isotropy group of a complex r-plane containing the fixed complex q-plane. Note that H[q]

acts transitively on LC
r[q].

On the other hand, if we suppose that L0
q is the fixed complex q-plane, then we can define

the projection
π : H[q] −→ H[q]/Hr[q]

g 7→ Lr[q] = gL0
q .

As the elements in Hr[q] do not mix tangent vectors to the fixed complex q-plane with
orthogonal vectors to this complex q-plane, we have

Hr[q]
∼=


 A 0 0

0 B 0
0 0 C

 , A ∈ Uε(q), B ∈ U(r − q), C ∈ U(n− r)

 ,

π∗dLr[q] =
∧

q+1≤i≤r
r+1≤j≤n

αij ∧ βij . (1.20)

(The forms vanishing, with respect to the isometry group, in this case H[q], are the ones
inside the big box.)

1.5.3 Density of complex q-planes contained in a fixed complex r-plane

Denote by L(r)
q the space of complex q-planes contained in a fixed complex r-plane. Let us

fix a complex r-plane Lr and a complex q-plane L(r)
q contained in Lr. Consider the projection

π : Uε(r) → Uε(r)/Uε(q) × U(r − q) where Uε(r) denotes the isometry group of the fixed
complex r-plane and Uε(q) × U(r − q) the isotropy group of a complex q-plane contained in
the complex r-plane. Then, as in the previous case we get

π∗dL(r)
q =

∧
1≤i≤q

q+1≤j≤r

αij ∧ βij

∧
q+1≤j≤r

αj0 ∧ βj0 =
∧

0≤i≤q
q+1≤j≤r

αij ∧ βij .

1.5.4 Measure of complex r-planes intersecting a geodesic ball

In order to obtain the value of this measure we use the expression for the invariant density
of complex r-planes in (1.16) and the expression of the Jacobian of the map of changing to
spherical coordinates. This is given by (cf. [Gra73])

cosε(R) sin2n−1
ε (R)

|ε|(n−1)/2
.

Recall that cosε and sinε denote the generalized trigonometric functions defined at Notation
1.2.2.

We fix as a origin of the spherical coordinates the center of the geodesic ball. Then, using
the expression in spherical coordinates for the element volume of CKn−r(ε) (the orthogonal
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space to a complex r-plane intersecting the sphere), we obtain

m(Lr ∈ LC
r : BR ∩ Lr 6= ∅) =

∫
BR∩Lr 6=∅

dLr =
∫

GC
n,n−r

∫
BR∩Lr

cos2r
ε (ρ)dxn−r ∧ dGC

n,n−r[O]

=
vol(GC

n,n−r)
|ε|(n−1)/2

∫
S2(n−r)−1

∫ R

0
cos2r+1

ε (ρ) sin2(n−r)−1
ε (ρ)dρdS2(n−r)−1

=
vol(GC

n,n−r)
|ε|(n−1)/2

vol(S2(n−r)−1)
∫ R

0
cos2r+1

ε (ρ) sin2(n−r)−1
ε (ρ)dρ

=
vol(GC

n,n−r)
|ε|(n−1)/2

vol(S2(n−r)−1)
∫ R

0
cosε(ρ)(1 + sin2

ε (ρ))
r sin2(n−r)−1

ε (ρ)

=
vol(GC

n,n−r)
|ε|(n−1)/2

vol(S2(n−r)−1)
r∑

i=0

(
r

i

)∫ R

0
cosε(ρ) sin2(n−r+i)−1

ε (ρ)

=
vol(GC

n,n−r)
|ε|(n−1)/2

vol(S2(n−r)−1)
r∑

i=0

(
r

i

)
sin2(n−r+i)

ε (R)
2(n− r + i)

.

At Chapter 4 we give a general expression for the measure of complex r-planes intersecting
a regular domain, in a way such that the previous expression can be interpreted in terms of
mean curvature integrals and other valuations defined at Chapter 2.

1.5.5 Reproductive property of Quermassintegrale

At Chapter 3 we prove that the mean curvature integral does not satisfy a reproductive
property (see Definition 3.4.1). In this section we prove that Quermassintegrale do satisfy a
reproductive property.

Definition 1.5.9. Let Ω be a domain in CKn(ε). For r ∈ {1, . . . , n− 1} we define

Wr(Ω) =
(n− r) ·Or−1 · · ·O0

n ·On−2 · · ·On−r−1

∫
LC

r

χ(Ω ∩ Lr)dLr

where Oi denotes the area of the sphere of radius in the standard Euclidean space. Moreover,
we define

W0(Ω) = vol(Ω) and Wn(Ω) =
On−1

n
χ(Ω).

Constants are chosen for analogy to the case of real space forms.

Proposition 1.5.10. Let Ω be a domain in CKn(ε). Then,

Wr(Ω) = c

∫
LC

q

Wr(Ω ∩ Lq)dLq

for 1 ≤ r ≤ q ≤ n− 1 and c is a constant depending only on n, r and q.

Proof. This proof is analogous to the one given by Santaló (cf. [San04]) to obtain the result
in the Euclidean space.

By definition, it is satisfied∫
LC

q

Wr(Ω ∩ Lq)dLq =
(q − r)Or−1 . . . O0

qOq−1 . . . Oq−r−1

∫
LC

q

∫
Ω∩L

(q)
r 6=∅

dL(q)
r ∧ dLq.

We express the densities dL(q)
r , dLq, dLq[r], dLr in terms of the forms ϕij defined at Lemma

1.2.7 (we omit the absolute value for the densities),



1.5 Space of complex r-planes 27

dLq =
∧

q<i≤n
0≤j≤q

ϕijϕij ,

dL(q)
r =

∧
1≤i≤r

r+1≤j≤q

ϕijϕij ,

dLq[r] =
∧

r+1≤i≤q
q+1≤j≤n

ϕijϕij ,

dLr =
∧

r<i≤n
0≤j≤r

ϕijϕij ,

and
dL(q)

r ∧ dLq =
∧

r+1≤j≤n

ϕj0ϕj0

∧
r+1≤i≤n
1≤j≤r

ϕijϕij

∧
q+1≤i≤n
r+1≤j≤q

ϕijϕij ,

dLq[r] ∧ dLr =
∧

r+1≤j≤q
q+1≤j≤n

ϕijϕij

∧
r+1≤i≤n
1≤j≤r

ϕijϕij

∧
r+1≤i≤n

ϕijϕi0.

Thus, the equality
dL(q)

r ∧ dLq = dLq[r] ∧ dLr

holds.
Applying it we get the result∫

LC
q

∫
Ω∩L

(q)
r 6=∅

dL(q)
r ∧ dLq =

∫
Ω∩Lr 6=∅

∫
Lq[r]

dLq[r] ∧ dLr

=
∫
LC

q[r]

dLq[r]

∫
Ω∩Lr 6=∅

dLr = cWr(Ω).





Chapter 2

Introduction to valuations

The notion of valuation in Rn was introduced by Blaschke in 1955 at [Bla55]. Recently,
Alesker, among others, has extended this notion to differentiable manifolds. A survey about
the development of valuations is given at [MS83] where some references are given.

In this chapter we briefly introduce the theory of valuations, focusing on the concepts and
results we shall use in the following chapters.

In the last section, we define some valuations in the spaces of constant holomorphic cur-
vature, generalizing the definition of some valuations in Cn. We also give relations among the
defined valuations.

2.1 Definition and basic properties

Let V be a vector space of real dimension n. We denote by K(V ) the set of non-empty compact
convex domains in V .

Definition 2.1.1. A functional φ : K(V ) → R is called a valuation if

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A,B,A ∪B ∈ K(V ).

Remark 2.1.2. The extension theorem of Groemer states that every valuation extends uniquely
to the set of finite union of convex set.

First examples of valuations in Rn are the volume of a convex domain, the area of its
boundary and its Euler characteristic. Intrinsic volumes, defined by the coefficients of the
polynomial obtained in the Steiner’s formula, are also valuations.

Consider in Rn a convex domain Ω and denote by Ωr the parallel domain at a distance r
from Ω. Recall that the parallel domain is constituted by all points at a distance less or equal
than r.

The Steiner formula relates the volume of the parallel domain with the volume and some
other functionals of the initial domain.

Proposition 2.1.3 (Steiner’s formula). Let Ω ⊂ Rn be a compact domain and Ωr the parallel
domain at distance r. Then, the volume of Ωr can be expressed as a polynomial in r and
its coefficients are multiples of the valuations Vi : K(V ) → R, i ∈ {0, . . . , n}, called intrinsic
volumes. The explicit expression is

vol(Ωr) =
n∑

i=0

rn−iωn−iVi(Ω) (2.1)

where ωn−i denotes the volume of the (n − i)-dimensional ball of radius 1 in the Euclidean
space.

29
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Proof. (of the fact that Vi are valuations.)
Let A, B, A∪B ∈ K(V ). Then, it is satisfied (A∩B)r = Ar ∩Br and (A∪B)r = Ar ∪Br.

Thus,

vol((A ∪B)r) = vol(Ar) + vol(Br)− vol(Ar ∩Br) = vol(Ar) + vol(Br)− vol((A ∩B)r) ∀r.

Applying (2.1) we deduce that the intrinsic volumes are valuations.

Some particular cases of intrinsic volumes are

• Vn(Ω) = vol(Ω),

• Vn−1(Ω) = vol(∂Ω)/2,

• V0(Ω) = χ(Ω).

Note that the Steiner formula has sense for any convex domain, without any assumption
on the regularity of the boundary. In some cases it is interesting to consider convex domains
such that its boundary is an oriented hypersurface of class C2. Applying the previous formula
in this case we obtain the so-called mean curvature integrals.

Definition 2.1.4. Let S be a hypersurface of class C2 in a Riemannian manifold M of dimen-
sion n. If x ∈ S, we denote the second fundamental form of S at x by IIx. We define the i-th
mean curvature integral of S as

Mi(S) =
(
n− 1
i

)−1 ∫
S
σi(IIx)dx

where σi(IIx) denotes the r-th symmetric elementary function of the second fundamental form
IIx.

Then, the Steiner formula in Rn is

vol(Ωr) = vol(Ω) +
n−1∑
i=0

rn−i

(
n
i

)
n
Mn−i−1(∂Ω).

Sometimes, it is defined M−1(∂Ω) := vol(Ω).
The relation among the intrinsic volumes and the mean curvature integrals, for convex

domains with boundary of class C2, is

Vi(Ω) =

(
n
i

)
nωn−i

Mn−i−1(∂Ω).

Definition 2.1.5. A valuation φ is continuous if it is continuous with respect to the Hausdorff
metric.

Recall that the Hausdorff distance between two compact sets A, B is given by

dHaus(A,B) = max{sup
a∈A

inf
b∈B

{d(a, b)}, sup
b∈B

inf
a∈A

{d(a, b)}}

where d(a, b) is the distance defined in the ambient space for A and B.

Example 2.1.6. The intrinsic volumes are continuous valuations. Anyway, there are some
interesting examples of non-continuous valuations in Rn. For example, the affine surface area
is a valuation in the Euclidean space, but it is not continuous (cf. [KR97]). The affine surface
area of a convex domain Ω ⊂ Rn is defined as the integral of the (n + 1)-th root of the
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generalized Gauss curvature (cf. [Sch93] notes of Sections 1.5 and 2.5) of the boundary of the
domain with respect to the (n− 1)-dimensional Hausdorff measure of the boundary

AS(Ω) =
∫

∂Ω

n+1
√
Kxdx.

One of the most important property of this valuation is that it is invariant under translations
and linear transformations with determinant 1.

Definition 2.1.7. Given a (2n − 1)-form ω defined on S(V ), and a smooth measure, η we
consider, for each regular domain Ω, ∫

Ω
η +

∫
N(Ω)

ω

where N(Ω) denotes the normal bundle of the boundary of the domain. The obtained func-
tional is called smooth valuation.

Definition 2.1.8. Let Ω ∈ K(V ). A valuation φ : K(V ) → R is called

• translation invariant if
φ(ψΩ) = φ(Ω)

for every ψ translation of the vector space V ;

• invariant with respect to a group G acting on V if

φ(gΩ) = φ(Ω)

for every g ∈ G;

• homogeneous of degree k if

φ(λΩ) = λkφ(Ω) for every λ > 0, k ∈ R;

• even (resp. odd) if
φ(−1 · Ω) = (−1)εφ(Ω)

with ε even (resp. odd);

• monotone if
φ(Ω1) ≥ φ(Ω2) for every Ω1,Ω2 ∈ K(V ) and Ω1 ⊃ Ω2.

The space of continuous invariant translation valuations is denoted by Val(V ), the subspace
of Val(V ) of the homogeneous valuations of degree k by Valk(V ) and the subspace of Val(V )
of even valuations (resp. odd valuations) by Val+(V ) (resp. Val−(V )).

Example 2.1.9. The intrinsic volume Vi is a continuous invariant translation valuation ho-
mogeneous of degree i.

Remark 2.1.10. The space Val(V ) has structure of infinite dimensional vector space.

The following result of P. McMullen [McM77] gives a decomposition of the space of valua-
tions depending on the degree, and another depending on the parity

Theorem 2.1.11 ([McM77]). Let n = dimV . Then,

Val(V ) =
n⊕

i=0

Vali(V ) and Val(V ) = Val+(V )⊕Val−(V ).
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The linear groupGL(V ) of invertible linear transformations of V acts transitively on Val(V )

(gφ)(Ω) = φ(g−1(Ω)) for g ∈ GL(V ), φ ∈ Val(V ),Ω ∈ K(V ).

This action is continuous and preserves the homogeneous degree of the valuation.

Theorem 2.1.12 (Irreducibility Theorem). Let V be an n-dimensional vector space. The
natural representation of GL(V ) at Val+i (V ) and Val−i (V ) is irreducible for any i ∈ {0, . . . , n}.
That is, there is no proper closed GL(V )-invariant subspace.

From this theorem, it can be proved the following result which relates continuous valuations
with smooth valuations.

Theorem 2.1.13 ([Ale01]). In a vector space V , the smooth translation invariant valuations
are dense in the space of continuous translation invariant valuations.

If V has an Euclidean metric, then every group G subgroup of the orthogonal group, acts on
Val(V ) and it has sense to consider the space ValG(V ) ⊂ Val(V ), i.e. the space of G-invariant
valuations under the action of the group G n V . The following result by Alesker gives the
necessary and sufficient condition to be this space of finite dimension.

Corollary 2.1.14 ([Ale07a] Proposition 2.6). The space ValG(V ) is finite dimensional if and
only of G acts transitively on the unit sphere of V .

2.2 Hadwiger Theorem

In 1957 Hadwiger proved the following result concerning valuations.

Theorem 2.2.1 ([Had57]). The dimension of the space of continuous translation and O(n)-
invariant valuations is

dim ValO(n)(Rn) = n+ 1

and a basis of this space is given by

V0, V1, . . . , Vn−1, Vn

where Vi denotes the i-th intrinsic volume.

Remark 2.2.2. From this theorem it follows that in Rn the subspace of valuations of homoge-
neous degree k ∈ {0, . . . , n} is of dimension 1.

Last remark allows us to prove, in an easy way, some of the classical results of integral
geometry (in Rn), such as reproductive or the kinematic formulas.

Example 2.2.3. • Crofton formula. Let Ω ⊂ Rn be a compact convex domain, and let Lr

be the space of all planes of dimension r with dLr the (unique up to a constant factor)
invariant density. The measure of the set of planes a convex body in Rn can be expressed
in terms of the intrinsic volumes as∫

Lr

χ(Ω ∩ Lr)dLr = cVn−r(Ω).

This expression is obtained from the fact that the integral in the left hand side is a
valuation of homogeneous degree (n− r).

At Chapter 4, we study the expression of the measure of complex planes meeting a
domain in CKn(ε), and at Chapter 5, the measure of totally real planes of dimension n
meeting a domain.
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• Reproductive property of the intrinsic volumes. If Ω is a compact convex domain, the
reproductive formula for the intrinsic volumes in Rn is given by∫

Lr

V
(r)
i (∂Ω ∩ Lr)dLr = cVi(∂Ω)

where Lr denotes the space of r-planes in Rn and c is a constant depending only on n,
r and i.

Clearly, the integral in the left hand side is a continuous valuation of homogeneous
degree i. By the Hadwiger Theorem the equality follows directly, since the i-th intrinsic
volume is a homogeneous valuation of this degree and the dimension of the space of
homogeneous valuations of degree i is 1. In order to compute the value of c it is used
the so-called template method, which consists on evaluating each side of the equation in
an easy domain (for instance, a sphere) and then compute the value of c. In [San04] it is
given a way to prove this reproductive formula, but using the mean curvature integrals.
The value of c it is also computed.

• Kinematic formula. Although in this work we do not study kinematic formulas, we would
like to give, for completion, the classical kinematic formula of Blaschke-Santaló.

One of the problems of study of the integral geometry consists on measuring the move-
ments of Rn which takes one convex domain to another fixed one. In Rn, if we denote
by O(n) the movements group of the space, we obtain the classical kinematic formula∫

O(n)
χ(Ω1 ∩ gΩ2)dg =

n∑
i=0

cn,iVi(Ω1)Vn−i(Ω2). (2.2)

This formula can be proved from applying twice the Hadwiger Theorem, and then,
applying the obtained formula to spheres of different radius.

Note that the integral on the left hand side is a functional on the first convex domain
Ω1, but also on the second convex domain Ω2. As a functional on the second convex
domain, from the Hadwiger Theorem, we have∫

O(n)
χ(Ω1 ∩ gΩ2)dg =

n∑
i=0

ci(Ω1)Vi(Ω2)

where the coefficients ci(Ω1) depend on Ω1. But, the integral under consideration is also
a valuation with respect to Ω1, thus, the coefficients ci(Ω1) are valuations and, again by
Hadwiger Theorem, we obtain that it is satisfied∫

O(n)
χ(Ω1 ∩ gΩ2)dg =

n∑
i=0

n∑
j=0

cijVj(Ω1)Vi(Ω2).

To obtain the expression (2.2), first, note that the desired expression have to be sym-
metric with respect to Ω1 and Ω2, hence, cij = cji. To prove that most of the constants
cij vanishes we use the template method , i.e. we apply the equality for a sphere of radius
r and for a sphere of radius R.

Using the invariance with respect to the rotations of a sphere we have∫
O(n)

χ(Br ∩ gBR)dg =
∫

O(n)

∫
Rn

χ(Br ∩ (φBR + v))dvdφ (2.3)

= vol(O(n))
∫

Rn

χ(Br ∩ (BR + v))dv = vol(O(n))(r +R)nωn.
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On the other hand, as the intrinsic volume Vi is a homogeneous valuation of degree i we
get

n∑
i=0

n∑
j=0

cijVj(Br)Vi(BR) =
n∑

i,j=0

cijr
jRiVj(B1)Vi(B1). (2.4)

Thus, in both cases (2.3) and (2.4), we obtained a polynomial on r and R. Comparing
the coefficients we get i+ j = n in the last summation in (2.4).

To get the explicit value for the constant, it remains only to use the expression of the
intrinsic volume of sphere of any radius. As the parallel domain at distance r of a sphere
of radius R is a sphere of radius r+R, we can easily compute its intrinsic volume using
the Steiner formula, and we get

Vi(Br) = ri

(
n

i

)
ωn

ωn−i
.

2.3 Alesker Theorem

Recently, Alesker gave an analogous theorem of Hadwiger Theorem for the Hermitian standard
space V = Cn, with isometry group IU(n) = CnoU(n). As the isometry group of Cn is smaller
than the isometry group of R2n it may happen that some non-invariant valuations under the
isometry group of R2n is invariant under the isometry group of Cn, and this occurs.

Theorem 2.3.1 ([Ale03] Theorem 2.1.1). Let ValU(n)(Cn) be the space of continuous transla-
tion and U(n)-invariant valuations in Cn. Then,

dim ValU(n)(Cn) =
(
n+ 2

2

)
,

and the dimension of the subspace of degree k homogeneous valuations is
min{k, 2n− k}

2
+ 1.

Alesker [Ale03] also gave two bases of continuous isometry invariant valuations on Cn. One
of these bases is defined as the integral of the projection volume. That is, let Ω ⊂ Cn be a
convex domain and k, l integers such that 0 ≤ k ≤ 2l ≤ 2n, then

Ck,l(Ω) :=
∫

GC
n,l

Vk(PrLl
(Ω))dLl

where GC
n,l denotes the space of complex l-planes in Cn through the origin (see Section 1.5),

PrLl
(Ω) denotes the orthogonal projection of Ω at Ll and Vk the k-th intrinsic volume. Valu-

ations {Ck,l} with 0 ≤ k ≤ 2l ≤ 2n define a basis of ValU(n)(Cn). The index k coincides with
the homogeneous degree of the valuation.

The other basis of ValU(n)(Cn) is {Uk,p} with k, p integers such that 0 ≤ 2p ≤ k ≤ 2n with

Uk,p(Ω) :=
∫
LC

n−p

Vk−2p(Ω ∩ Ln−p)dLn−p (2.5)

where LC
n−p denotes the space of complex affine (n − p)-planes of Cn (see Section 1.5), and

Vk−2p the (k− 2p)-th intrinsic volume. The index k coincides with the homogeneous degree of
the valuation.
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Example 2.3.2. We describe explicitily the elements of {Uk,p} in C3. In C3 there are
(
5
2

)
= 10

linearly independent valuations. For each degree k we have as much valuations as linearly
independent integers p such that

0 ≤ p ≤ min{k, 2n− k}
2

.

Suppose that Ω is a convex domain in C3. Then, a basis of ValU(3)(C3) is given by the following
valuations.

k = 0: There is only one value of p, p = 0 and

U0,0(Ω) = V0(Ω) = χ(Ω).

k = 1: There is only one value of p, p = 0 and

U1,0(Ω) = V1(Ω).

k = 2: There are two values of p, p = 0, 1.

If p = 0 then
U2,0(Ω) = V2(Ω).

If p = 1 then

U2,1(Ω) =
∫
L2

V0(Ω ∩ L2)dL2.

k = 3: There are two values of p, p = 0, 1.

If p = 0 then
U3,0(Ω) = V3(Ω).

If p = 1 then

U3,1(Ω) =
∫
L2

V1(Ω ∩ L2)dL2.

k = 4: There are two values of p, p = 0, 1.

If p = 0 then
U4,0(Ω) = V4(Ω).

If p = 1 then

U4,1(Ω) =
∫
L2

V2(Ω ∩ L2)dL2.

k = 5: There is only one value of p, p = 0 and

U5,0(Ω) = V5(Ω) =
1
2
vol(∂Ω).

k = 6: There is only one value of p, p = 0 and

U6,0(Ω) = V6(Ω) = vol(Ω).

Note that we obtained all intrinsic volumes Vj(K), j ∈ {0, . . . , 6}, in the same way as in
R6, but at C3 appear three new linear independent valuations.
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In the same way as in Rn, having a basis for ValU(n)(Cn) allows us to establish a kinematic
formula. The difference is that, now, does not seem possible to find the constants using the
template method. Alesker, in the same paper [Ale03] establish the following result.

Theorem 2.3.3 ([Ale03] Theorem 3.1.1). Let Ω1, Ω2 ⊂ Cn be domains with piecewise smooth
boundaries such that for any U ∈ IU(n) the intersection Ω1 ∩ U(Ω2) has a finite number of
components. Then,∫

U∈IU(n)
χ(Ω1 ∩ U(Ω2))dU =

∑
k1+k2=2n

∑
p1,p2

κ(k1, k2, p1, p2)Uk1,p1(Ω1)Uk2,p2(Ω2),

where the index of the inner summation runs over 0 ≤ pi ≤ ki/2, i = 1, 2, and κ(k1, k2, p1, p2)
are constants depending only on n, k1, k2, p1, p2.

Theorem 2.3.4 ([Ale03] Theorem 3.1.2). Let Ω ⊂ Cn be a domain with piecewise smooth
boundary and 0 < q < n, 0 < 2p < k < 2q. Then,∫

LC
r

Uk,p(Ω ∩ Lr)dLr =
[k/2]+n−q∑

p=0

γp · Uk+2(n−q),p(Ω),

where γp are constants depending only on n, q, and p.

Theorem 2.3.5 ([Ale03] Theorem 3.1.3). Let Ω ⊂ Cn be a domain with piecewise smooth
boundary. Then, ∫

LR
n

χ(Ω ∩ Ln)dLn =
[n/2]∑
p=0

βp · Un,p(Ω),

where LR
n denotes the space of Lagrangian planes (i.e. totally real planes of dimension n) in

Cn and βp are constants depending only on n and p.

The constants for Theorem 2.3.3 are given by Bernig-Fu at [BF08]. These constants were
computed using indirect methods and others bases of valuations in Cn. In this work, we give
the constant, in some cases, for Theorems 2.3.4 and 2.3.5.

In [BF08] are given some other bases for ValU(n)(Cn). In Chapters 4 and 5, we use a basis
defined in [BF08] and we extend it to all complex space forms CKn(ε). The definition of theses
valuations and its extension in CKn(ε) is given at Section 2.4.2.

Finally, we note that Proposition 2.1.14 gives another way to generalize the theory of valu-
ations in vector spaces. From this proposition, we have that for any group acting transitively
on the sphere can be stated a Hadwiger type theorem, i.e. the space of continuous translation
invariant valuations has finite dimension, thus, it has sense to compute its dimension and give
a basis. An expression for the kinematic formula can also be given.

In this section, we recalled the case in which the acting group is U(n) and befors we studied
SO(n), but there are some known result for other groups.

The groups acting over a sphere are classified and they are (cf. [Bor49], [Bor50], [MS43])
six infinite series

SO(n), U(n), SU(n), Sp(n), Sp(n) · U(1), Sp(n) · Sp(1)

and three exceptional groups
G2,Spin(7),Spin(9).

Alesker and Bernig obtained a Hadwiger type theorem, a kinematic formula (and the
algebraic structure) for some of these groups (cf. [Ale04] for G = SU(2), [Ber08a] for G =
SU(n) and [Ber08b] for G = G2 and G = Spin(7)).
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2.4 Valuations on complex space forms

In this section we define some valuations on CKn(ε) and we give relations among them.

2.4.1 Smooth valuations on manifolds

The notion of smooth valuation in a differentiable manifold was recently studied (cf. [Ale06a],
[Ale06b], [AF08], [Ale07b], [AB08]). First, a definition of smooth valuation on a manifold was
given, and then it was proved that some important properties, which we do not study in this
work, of smooth valuations, such as the duality property, still hold.

Definition 2.1.7 can be extended for differentiable manifolds.

Definition 2.4.1. Let M be a differentiable manifold and Ω a compact submanifold. Given
a (2n− 1)-form ω in S(M), and a smooth measure η, we consider for any Ω∫

Ω
η +

∫
N(Ω)

ω,

where N(Ω) denotes the normal cycle (cf. [Ale07a]). The obtained functional is called smooth
valuation.

Remark 2.4.2. A more general definition analogue to Definiton 2.1.1 appears in [Ale06b], and
it is called finitely additive measure.

In spaces of constant sectional curvatures, invariant smooth valuations are well-known.
These spaces have the same isotropy group of a point as a point in Rn, and from the point of
view of a homogeneous spaces they can be studied in an analogous way. Despite this fact, a
Hadwiger type theorem for continuous valuations (and not only for smooth valuations) it is
not known, i.e. it is not known a basis of continuous translation invariant valuations invariant
also for the isometry group of the space. The dimension of this space of valuations it is not
known an analogous result to Theorem 2.1.13.

Anyway, a big amount of the results in integral geometry are known in these spaces. For
instance, Santaló [San04, page 309] proved that a reproductive formula holds for any real
space form and also obtained an expression for the measure of totally geodesic planes meeting
a convex domain.

In view of these results of Santaló and the knowledge of a basis of continuous invariant
valuations on Cn, the aim of this work is to study the classical formulas in integral geometry
described in the last paragraph in complex space forms, i.e. in the standard Hermitian space,
and in the complex projective and hyperbolic space.

2.4.2 Hermitian intrinsic volumes

Bernig and Fu [BF08] defined the Hermitian intrinsic volumes in Cn. In this section we recall
this definition and its extension to CKn(ε) following [Par02].

Bernig and Fu at [BF08, page 14] defined in TCn, the following invariant 1-forms α, β
and γ and the invariant 2-forms θ0, θ1, θ2 and θs. Let (z1, . . . , zn, ζ1, . . . , ζn) be the canonical
coordinates of TCn ' Cn × Cn with zi = xi +

√
−1yi and ζi = ξi +

√
−1ηi. Then,

θ0 :=
∑n

i=1 dξi ∧ dηi, θ1 :=
∑n

i=1 (dxi ∧ dηi − dyi ∧ dξi) ,

θ2 :=
∑n

i=1 dxi ∧ dyi, θs :=
∑n

i=1 (dxi ∧ dξi + dyi ∧ dηi) ,

α :=
∑n

i=1 ξidxi + ηidyi, β :=
∑n

i=1 ξidyi − ηidxi,

γ :=
∑n

i=1 ξidηi − ηidξi.
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α is the contact form (see Remark 1.3.8) and θs is the symplectic form of TCn. Recall that a 2-
form ω defined in a manifold of dimension 2m is said symplectic if it is closed, non-degenerated
and ωm 6= 0.

The previous forms are only defined for ε = 0 since canonical coordinates exist only at Cn.
But, we can express them in terms of a moving frame on S(Cn) (and, then extend them for
any ε ∈ R). The expression in terms of a moving frame allows us to prove that these forms are
well-defined, i.e. they do not depend on the chosen coordinates. Let (x, v) ∈ S(CKn(ε)) and
let {x; e1 := v, Je1, . . . , en, Jen} be a J-moving frame defined in a neighborhood of x. Then

θ0 =
n∑

i=2

α1i ∧ β1i,

θ1 =
n∑

i=2

(αi ∧ β1i − βi ∧ α1i), (2.6)

θ2 =
n∑

i=2

αi ∧ βi,

where αi, βi, αij , βij are the forms given at (1.12) but interpreted as forms in S(CKn(ε)).

Remark 2.4.3. From the expression of θ0, θ1 and θ2 in terms of a moving frame we can define
these 2-forms in S(CKn(ε)) for any ε.

Remark 2.4.4. In [Par02] invariant 2-forms at CKn(ε) are defined in the same way as before
(see Section 2.4.3).

Proposition 2.4.5 ([Par02] Proposition 2.2.1). The algebra Ω∗(S(CKn(ε))) of R-valued in-
variant differential forms on the unit tangent bundle S(CKn(ε)) is generated by

α, β, γ, θ0, θ1, θ2, θs.

From this proposition, Bernig and Fu define the families of (2n−1)-forms {βk,q} and {γk,q}
at S(Cn), but from the definition of θ0, θ1 and θ2 at S(CKn(ε)) these families of forms can be
defined in the same way at S(CKn(ε)). By the previous proposition we have, as it is note in
[Par02], that all (2n− 1)-form invariant on S(CKn(ε)) such that they do not vanish over the
normal bundle of a domain Ω (cf. Lemma 1.3.12) are the ones given in the next definition.

Definition 2.4.6. Let k, q ∈ N be such that max{0, k− n} ≤ q ≤ k
2 < n. Then, the following

differential (2n− 1)-forms at S(CKn(ε)) are defined

βk,q := cn,k,qβ ∧ θn−k+q
0 ∧ θk−2q−1

1 ∧ θq
2, k 6= 2q

γk,q :=
cn,k,q

2
γ ∧ θn−k+q−1

0 ∧ θk−2q
1 ∧ θq

2, n 6= k − q

where
cn,k,q :=

1
q!(n− k + q)!(k − 2q)!ω2n−k

and ω2n−k denotes the volume of the Euclidean ball of radius 1 and dimension 2n− k.

Definition 2.4.7. Given a regular domain Ω ⊂ CKn(ε), forms βk,q and γk,q define the following
invariant valuations (see Section 2.4.3) in CKn(ε) (for max{0, k − n} ≤ q ≤ k

2 < n)

Bk,q(Ω) :=
∫

N(Ω)
βk,q (k 6= 2q) and Γk,q(Ω) =

∫
N(Ω)

γk,q (n 6= k − q)

where N(Ω) denotes the normal fiber bundle of Ω (see Definition 1.3.10).
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In Cn the previous valuations satisfy Bk,q(Ω) = Γk,q(Ω) since dβk,q = dγk,q. For ε 6= 0 no
form βk,q has the same differential as γk,q.

The differential of the forms θ0, θ1 and θ2 is given in [BF08] for ε = 0. From the structure
equations in CKn(ε) (cf. [KN69]), in the same way as in [Par02], we compute the differential
for any ε.

Lemma 2.4.8. In S(CKn(ε)) it is satisfied

dα = −θs, dθ0 = −ε(α ∧ θ1 + βθs),
dβ = θ1, dθ1 = dθ2 = dθs = 0
dγ = 2θ0 − 2ε(α ∧ β + θ2).

In the following proposition we give the relation between valuations {Bk,q(Ω)} and {Γk,q(Ω)}
in CKn(ε).

Proposition 2.4.9. In CKn(ε), for any pair of integers (k, q) such that max{0, k− n} < q <
k/2 < n it is satisfied

Γk,q(Ω) = Bk,q(Ω)− ε
cn,k,q

cn,k+2,q+1
Bk+2,q+1(Ω)

= Bk,q(Ω)− ε
(q + 1)(2n− k)
2π(n− k + q)

Bk+2,q+1(Ω).

Proof. Denote by I the ideal generated by α, dα and all the exact forms in N(Ω) (see Definition
1.3.10). If two forms λ and ρ of degree 2n− 1 coincide modulo I, then by Lemma 1.3.12∫

N(Ω)
λ =

∫
N(Ω)

ρ.

Thus, it is enough to prove

γk,q ≡ βk,q − ε
cn,k,q

cn,k+2,q+1
βk+2,q+1 mod I. (2.7)

Consider the form η = (θs − β ∧ γ) ∧ θn−k+q−1
0 θk−2q−1

1 θq
2. As dη is exact we have dη ≡ 0

mod I. On the other hand, from the differentials given in Lemma 2.4.8 we obtain

dη ≡ −γθn−k+q−1
0 θk−2q

1 θq
2 + 2βθn−k+q

0 θk−2q−1
1 θq

2 − 2εβθn−k+q−1
0 θk−2q−1

1 θq+1
2 mod I.

Using the definition of γk,q and βk,q we get the relation (2.7).

Remark 2.4.10. For n = 2, 3, the previous relations are given in [Par02].

By the relation in Proposition 2.4.9, we define the Hermitian intrinsic volumes in CKn(ε).

Definition 2.4.11. For max{0, k−n} ≤ q ≤ k
2 < n, we define the Hermitian intrinsic volumes

µk,q in CKn(ε)

µk,q(Ω) :=
{

Bk,q(Ω) si k 6= 2q
Γ2q,q(Ω) si k = 2q.

(2.8)

Remark 2.4.12. In Cn, Hermitian intrinsic volumes form a basis of continuous valuations
invariant under the isometry group of Cn (cf. [BF08]).

In the previous definition of µk,q we take an arbitrary choice, despite of the relations in
Proposition 2.4.9. It would be interesting to know if there is a better choice, such that it
satisfies some more natural geometric or algebraic properties.
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2.4.3 Relation between Hermitian intrinsic volumes and the valuations given
by Park

We give, by completeness, the valuations defined by Park in CKn(ε).

Definition 2.4.13. Denote θ00 = −α∧β+ θ2, θ01 = −β ∧ γ+ θs, θ10 = −α∧ γ+ θ1, θ11 = θ0.
Let κ = σ ∧ {a, b, c} where σ ∈ {α, β} and {a, b, c} = 1

a!b!c!θ
a
11 ∧ θb

00 ∧ θc
10. Then

Φκ(Ω) =
∫

N(Ω)
κ

are smooth valuation invariant under the action of the isometry group of CKn(ε).

The relation between these valuations and the Hermitian intrinsic volumes is given straight-
forward from the definition of each valuation.

Proposition 2.4.14. Let Ω ⊂ CKn(ε) be a regular domain. Then,

Bk,q(Ω) =
1

(k − 2q)ω2n−k
Φβ{n−k+q,q,k−2q−1}(Ω),

Γk,q(Ω) =
1

2(n− k + q)ω2n−k
Φγ{n−k+q−1,q,k−2q}(Ω).

2.4.4 Other curvature integrals

Let M be a Kähler manifold of complex dimension n and suppose that S ⊂ M is a real
hypersurface. Then, we can canonically define a distribution of complex dimension n − 1 in
the tangent fiber bundle of S in the following way.

Let Nx be the normal fiber bundle of S at x. Let J be the complex structure in M . The
vector JNx is a tangent vector to S at x. Consider the orthogonal vectors to JNx inside the
tangent space of S at x. These form a complex subspace of dimension n − 1. Denote by D
the distribution defined by these subspaces. Then, we define the mean curvature integrals
restricted to the distribution D as

Definition 2.4.15. Let S be a hypersurface of a Kähler manifold M of complex dimension n.
If x ∈ S, we denote the second fundamental form of S at x by IIx and the second fundamental
form restricted to D by IIx|D. The r-th mean curvature integral of S restricted at D, 1 ≤ r ≤
2n− 2, is defined as

MD
r (S) =

(
2n− 2
r

)−1 ∫
S
σr(IIx|D)dx

where σr(IIx|D) denotes the r-th symmetric elementary function of IIx|D.

Along this work, we use the idea of restricting mean curvature integrals to the distribution
D. The first mean curvature integral restricted to D will play an important role, i.e. the
integral of the trace of the second fundamental form restricted to the distribution. Also the
integral over the normal curvature JN will have an important role. If Ω is a regular domain,
we have the following relations

(2n− 1)M1(∂Ω)− (2n− 2)MD
1 (∂Ω) =

∫
∂Ω
kn(JN)dp = 2ω2Γ2n−2,n−1(Ω). (2.9)
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2.4.5 Relation between the Hermitian intrinsic volumes and the second
fundamental form

In this section we give another expression for the Hermitian intrinsic volumes in terms of the
second fundamental form.

In the proof of Theorem 4.3.1 we shall use some properties, interesting by their own, of
the expression of the invariant (2n − 1)-forms expressed in terms of the second fundamental
form of ∂Ω, and not only in terms of the connection forms of a moving frame. In order to give
this expression in terms of the second fundamental form (with respect to a fixed basis) it is
necessary to consider the pull-back of the following canonical map

ϕ : ∂Ω −→ N(Ω)
x 7→ (x,Nx)

. (2.10)

Let us study some properties of ϕ∗(βk,q) and ϕ∗(γk,q).
Let x ∈ ∂Ω ⊂ CKn(ε) and let {e1 = ϕ(x), e1 = Je1, . . . , en, en = Jen} be a J-moving

frame defined in a neighborhood of x. Consider the 1-forms {αi, βi, α1j , β1j}, and the 2-forms
{θ0, θ1, θ2, θs} given at (2.6).

Notation 2.4.16. In order to simplify the notation in the following expressions we denote βi

by αi and β1i by α1i and we define I := {1, 2, 2, . . . , n, n}.
Now, using the relation between the connection forms α1i, i ∈ I, and the second funda-

mental form
α1i =

∑
j∈I

hijαi, (2.11)

we obtain

Lemma 2.4.17. In the previous notation,

ϕ∗(β) = α1,

ϕ∗(γ) =
∑
j∈I

h1jαj ,

ϕ∗(θ0) =
n∑

i=2

∑
j,l∈I

hijhilαj ∧ αl,

ϕ∗(θ1) =
n∑

i=2

∑
j∈I

hijαi ∧ αj −
∑
l∈I

hilαi ∧ αl

 ,

ϕ∗(θ2) =
n∑

i=2

αi ∧ αi.

On the other hand, each form ϕ∗(βk,q) is a form of maximum degree, and, thus, a multiple
of the volume element dx = α1∧α2∧α2∧ · · ·∧αn of ∂Ω. Thus, ϕ∗(βk,q) is determined by this
multiple, which can be interpreted as a polynomial with variables the entries of the second
fundamental form hij (with respect to the fixed J-moving frame).

In [Par02], it is computed explicitly the pull-back of the forms βk,q and γk,q for dimensions
n = 2, 3. In the following lemma we give some general properties for the pull-back of these
forms for any dimension n.

Lemma 2.4.18. Let Ω ⊂ CKn(ε) be a regular domain and let ϕ : ∂Ω → N(Ω) be the canonical
map defined at (2.10). Let us fix a point x ∈ ∂Ω and a J-moving frame {e1 = ϕ(x), e1 =
Je1, . . . , en, en = Jen} at x. If

ϕ∗(βk,q) = Qk,qdx, ϕ∗(γk,q) = Pk,qdx
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where dx is the volume element of ∂Ω, then

1. Qk,q is a polynomial of degree 2n− k − 1 with variables the entries of the second funda-
mental form hij = II(ei, ej), i, j ∈ {2, 2, . . . , n};

2. Pk,q is a polynomial of degree 2n− k − 1 with variables the entries of the second funda-
mental form hij = II(ei, ej), i, j ∈ {1, 2, 2, . . . , n};

3. each monomial of Pk,q containing only entries of the form hii also contains h11 and
exactly n+ q − k − 1 factors of the form hjjhjj, i ∈ {1, 2, 2, . . . , n}, j ∈ {2, . . . , n};

4. the polynomials Pk,q and Qk,q can be written as a sum of minors of the second funda-
mental form with rank r = 2n− k − 1;

5. among the minors described at 4. appear all minors centered at the diagonal with degree r
containing h11 for Pk,q, and not containing h11 for Qk,q. It also appears all non-centered
minors such that the indices of the rows and the indices of the columns determining a
minor satisfy

(a) contain n− k+ q indices, in the case of Qk,q, and n− k+ q− 1, in the case of Pk,q,
such that, if the index j appears as an index in the rows (resp. columns), then the
index j also appears as an index in the rows (resp. columns) of the minor. We say
that the index j is paired in the rows (or in the columns);

(b) contain k − 2q − 1 indices non-paired neither in the rows nor in the columns for
Qk,q, and k − 2q for Pk,q;

(c) if the index j is in the non-paired indices of the rows, then the index j is not in the
index of the columns.

Proof. From Lemma 2.4.17 we have

ϕ∗(βk,q) = cn,k,qα1 ∧

 n∑
i=2

∑
j,l∈I

hijhilαj ∧ αl

n+q−k

∧ (2.12)

∧

 n∑
i=2

∑
j∈I

hijαi ∧ αj −
∑
l∈I

hilαi ∧ αl

k−2q−1

∧

(
n∑

i=2

αi ∧ αi

)q

,

and

ϕ∗(γk,q) =
cn,k,q

2

∑
j∈I

h1jαj

 ∧

 n∑
i=2

∑
j,l∈I

hijhilαj ∧ αl

n+q−k−1

∧

∧

 n∑
i=2

∑
j∈I

hijαi ∧ αj −
∑
l∈I

hilαi ∧ αl

k−2q

∧

(
n∑

i=2

αi ∧ αi

)q

.

Thus, as ϕ∗(βk,q) and ϕ∗(γk,q) are differential forms defined on ∂Ω of maximum degree, we
have that ϕ∗(βk,q) = Qk,qdx and ϕ∗(γk,q) = Pk,qdx satisfy that Qk,p and Pk,q are polynomials
of degree 2n − k − 1. Moreover, polynomials Pk,q cannot contain h11 since this variable is
multiplied by α1 (see formula (2.11)), but this differential form is a common factor in the
expression ϕ∗(βk,q).
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In order to prove 3. we observe that terms in the expression ϕ∗(γk,q) containing only entries
of the type hii are

cn,k,q

2
h11α1∧

(
n∑

i=2

hiihiiαi ∧ αi

)n+q−k−1

∧

(
n∑

i=2

hiiαi ∧ αi − hiiαi ∧ αi

)k−2q

∧

(
n∑

i=2

αi ∧ αi

)q

.

So, the variable h11 always appears and there are exactly n + q − k − 1 factors of the form
hjjhjj , which come from (

∑n
i=2 hiihiiαi ∧ αi)

n+q−k−1.

A minor of rank r of a matrix is defined choosing r rows and r columns of the matrix and
then taking the determinant of the square submatrix. To prove 4. and 5. we study in more
detail the expression (2.12). (An analogous study can be done in the case ϕ∗(γk,q).) First, note
that factors α1 and ϕ∗(θ2) do not give any term of the second fundamental form and, thus,
they do not influence in the minor (but they do influence in which minors can be constructed).
Thus, we have to prove that the expression

ϕ∗(θn+q−k
0 ) ∧ ϕ∗(θk−2q−1

1 ), (2.13)

is a form of degree 2n−2q−2 where each term αi1∧αi2∧· · ·∧αi2n−2q−2 goes with a summation
of minors.

Developing (2.13) we have that it is equivalent to

ϕ∗

(
n∑

i=2

α1i ∧ α1i)
n+q−k ∧ (

n∑
j=2

(αj ∧ α1j − αj ∧ α1j))
k−2q−1

 .

To develop this expression, first, we chose a := n + q − k values {i1, . . . , ia} for the index i
of the first summation and b := k − 2q − 1 values {j1, . . . , jb} (with ik, jl ∈ {2, . . . , n}) for
the index j of the second summation. Note that some indexes can be repeated. Thus, we get(

n−1
n+q−k

)
·
(

n−1
k−2q−1

)
summands

ϕ∗(α1i1
∧ α1i1

∧ · · · ∧ α1ia
∧ α1ia

∧ (αj1 ∧ α1j1
− αj1

∧ α1j1
) ∧ · · · ∧ (αjb

∧ α1jb
− αjb

∧ α1jb
)),

which can be decomposed, for example, in the form

ϕ∗(α1i1
∧ α1i1

∧ · · · ∧ α1ia
∧ α1ia

∧ αj1 ∧ α1j1
∧ · · · ∧ αjb

∧ α1jb
)

= αj1 ∧ · · · ∧ αjb
ϕ∗(α1i1

∧ α1i1
∧ · · · ∧ α1ia

∧ α1ia
∧ α1j1

∧ · · · ∧ α1jb
).

From (2.11) the form in which we take pull-back can be expressed as the summation of the
minors with rows given by the indices I := {i1, i1, . . . , ia, ia, j1, . . . , jb}, and by columns each
of the possible permutations of the elements without repetition among the indexes in J :=
I \ {1, j1, . . . , jb}. Note that index α1 cannot be taken since we are considering the form in
(2.12), which is multiplied by α1. (In the case of ϕ∗(γk,q) we do not have this restriction, and,
so, can also appear minors with the term h11.)

If we chose for J the same indexes as in I, then we get all the minors centered at the
diagonal. Condition 5.(c) is obtained directly from the fact that the indices which determines
the columns have to be in J , and if jk is an index in the rows, the index jk is not in J .

Conditions 5.(a) and 5.(b) are obtained when we recall that we are not studying the differ-
ential form in (2.13) but in (2.12), i.e. we have to take the product with α1 ∧ (

∑n
i=2 αi ∧ αi)

q.
But, if this product contains the form αk, then it also contains the form αk (except for k = 1).
Thus, to complete the form in (2.13) to a (2n− 1)-differential form we have to take the prod-
ucts αk ∧ αk, so that, in order to not obtain a vanishing term, the quantity of paired indices
in the rows and in the columns must be the same, and, thus, it also coincides the quantity of
no-paired indices.
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Remarks 2.4.19. 1. Each of the minor goes with a constant depending on the number of
permutations that allows us to obtain it. Thus, not all the minors have the same constant,
but, for instance all the minors (fixed βk,q or γk,q) centered at the diagonal have the same
one.

2. The degree of the polynomial given by βk,q or γk,q does not depend on q, just on k, but
two polynomials coming from βk,q and βk,q′ (or γk,q and γk,q′) are distinguished by the
number of paired indexes.

Example 2.4.20. We give the explicit relation between some Hermitian intrinsic volumes and
the second fundamental form.

1. ϕ∗(γ00) =
cn,0,0

2
ϕ∗(γ ∧ θn−1

0 ) = (n− 1)!
cn,0,0

2
det(II)dx =

1
2nω2n

det(II)dx.

2. ϕ∗(β10) = cn,1,0ϕ
∗(β ∧ θn−1

0 ) = (n− 1)!cn,1,0 det(II|D)dx =
1

ω2n−1
det(II|D)dx.

3. ϕ∗(γ2n−2,n−1) =
cn,2n−2,n−1

2
ϕ∗(γ∧θn−1

2 ) =
cn,2n−1,n−1(n− 1)!

2
kn(JN)dx = kn(JN)

dx

2ω2
.

4. ϕ∗(β2n−2,n−2) = cn,2n−2,n−2ϕ
∗(β ∧ θ1 ∧ θn−2

2 ) =
(n− 2)!

(n− 2)!2ω2
tr(II|D)dx = tr(II|D)

dx

2ω2
.

5. ϕ∗(β2n−1,n−1) = cn,2n−1,n−1ϕ
∗(β ∧ θn−1

2 ) = cn,2n−1,n−1(n− 1)!α1 ∧ α1 ∧ · · · ∧ αn =
dx

2
.



Chapter 3

Average of the mean curvature
integral

For the real space forms (Rn, Sn and Hn), it is known that the reproductive property holds for
mean curvature integrals. That is, given a regular domain Ω, it is satisfied (cf. Example 2.2.3)∫

Ls

M (s)
r (∂Ω ∩ Ls)dLs = cMr(∂Ω).

On the other hand, by Section 2.3, this property may not hold in Cn, when we integrate over
the space of complex planes. Thus, it is natural to study, in Cn, the value of∫

LC
s

M (s)
r (∂Ω ∩ Ls)dLs.

In the same way, we will study the value of this integral but in the other complex space
forms, CPn and CHn. Recall that we denote by CKn(ε) the space of constant holomorphic
curvature 4ε.

In this chapter we deduce the expression of the integral of M (s)
1 (∂Ω ∩ Ls) in terms of the

mean curvature integral of the convex domain M1(∂Ω) and the integral of the normal curvature
in the direction JN ,

∫
∂Ω kn(JN) (see Theorem 3.3.2). We also find a partial result for the

integral over any other mean curvature integral M (s)
r (∂Ω∩Ls), 0 ≤ r ≤ 2s−1 (see Proposition

3.2.2).

3.1 Previous lemmas

First of all, we state some lemmas that will be necessary in order to prove Theorem 3.3.2 and
some other results.

Lemma 3.1.1. Let V be a complex vector space of complex dimension 2 endowed with an inner
product 〈 , 〉 compatible with the complex structure J and let {e1, e2, e3, e4} be an orthonormal
basis of V . Then 〈ea, Jeb〉2 = 〈ec, Jed〉2 with {a, b, c, d} = {1, 2, 3, 4}.

Proof. We express Jeb and Jed in terms of the orthonormal, and we obtain

Jeb = 〈Jeb, ea〉ea + 〈Jeb, ec〉ec + 〈Jeb, ed〉ed = Aea +Bec + Ced,

Jed = 〈Jed, ea〉ea + 〈Jed, eb〉eb + 〈Jed, ec〉ec = Dea + Eeb + Fec.

45
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Now, using that 〈Jeb, Jeb〉 = 〈Jed, Jed〉 = 1, 〈Jeb, Jed〉 = 0 and 〈Jeb, ed〉 = −〈Jed, eb〉, we
get

A2 +B2 + C2 = 1,

D2 + E2 + F 2 = 1,
AD +BF = 0,
C = −E,

and
A2 +B2 = D2 + F 2 and A2D2 = B2F 2.

Finally, we substitute D2 = A2 +B2−F 2 in the second equation and we obtain A2 = F 2.

Lemma 3.1.2. If u ∈ S2n−3, then∫
S2n−3

〈u, v〉dv = 0 and
∫

S2n−3

〈u, v〉2dv = ω2n−2.

Proof. The first equality follows since the integral is over an odd function. For the second one,
we decompose v = cos θu + sin θw with w ∈ 〈u〉⊥, then using polar coordinates with respect
to u, we have∫

S2n−3

〈u, v〉2dv = O2n−4

∫ π

0
cos2 θ sin2n−4 θdθ = O2n−4

O2n−4+2+1

O2O2n−4
= ω2n−2.

where On denotes the volume of the n-dimensional Euclidean sphere and ωn the volume of the
the n-dimensional Euclidean ball.

The following lemma gives a generalized version of the Meusiner Theorem.

Lemma 3.1.3. Let S ⊂M be a hypersurface of class C2 of a Riemannian manifold M , p ∈ S
and L ⊂ TpM a vector subspace. We denote by IIS the second fundamental form of S and
by IILC the second fundamental form of C = S ∩ expp L as a hypersurface of expp L. We also
denote u = TpS ∩ L. Then,

σi(IIS |u) = cosi θσi(II|LC)

where θ denotes the angle at p between a normal vector of S and a normal vector of C in
expp L, and σi(Q) denotes the i-th symmetric elementary function of the bilineal form Q.

Proof. If A ⊂ B ⊂M are submanifolds, then we denote the second fundamental form of A as
a submanifold of B by hB

A : TpA× TpA→ (TpA)⊥. If B = M , we just put hA instead of hM
A .

Then, for all X,Y ∈ TpC

hC(X,Y ) = hL
C(X,Y ) + hL(X,Y ) = hL

C(X,Y )

since the second fundamental form of L vanishes at p. Moreover,

hC(X,Y ) = hS
C(X,Y ) + hS(X,Y ).

Let N be a normal vector to S. Note that hS
C(X,Y ) is a multiple of a normal vector to C in

S, so 〈hS
C(X,Y ), N〉 = 0 (for X,Y ∈ TpC).

If X,Y ∈ TpC, then

IIS(X,Y ) := 〈hS(X,Y ), N〉 = 〈hC(X,Y )− hS
C(X,Y ), N〉

= 〈hC(X,Y ), N〉 = 〈hL
C(X,Y ), N〉 = 〈IILC(X,Y )n,N〉
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where n denotes a normal vector of C in L. So,

IILC(X,Y ) =
1

〈N,n〉
IIS(X,Y ). (3.1)

Since σi(IILC) is the sum of the minors of order i of IILC , by replacing by (3.1) each entry of the
second fundamental form, we obtain the result.

The following lemma generalizes in Cn a result given by Langevin and Shifrin [LS82] in
Rn.

Lemma 3.1.4. Let E be a complex vector space of complex dimension n and let II be a real
bilinear form defined on E. We denote by GC

n,s the Grassmanian of s-dimensional complex
planes on E. Then, ∫

GC
n,s

tr(II|V )dV =
s vol(GC

n,s)
n

tr(II|E).

Proof. First, recall that

U(n− s)× U(s) −→ U(n) −→ GC
n,s (3.2)

is a fibration for each s ∈ {1, . . . , n− 1}.
We prove the case dimC V ≤ n

2 by induction on the complex dimension of V . The case
dimC V > n

2 can be proved using similar arguments.
Suppose dimC V = 1, that is, s = 1. Then,

∫
GC

n,1

tr(II|V )dV =
1

vol(U(n− 1))vol(U(1))

∫
U(n)

tr(II|V 1
1
)dU

since tr(II|V 1
1
) is constant along the fiber. We denote by V 1

1 the complex vector subspace
generated by the first column of the matrix U ∈ U(n). In general, for U ∈ U(n), we will
denote by V b

a the complex vector subspace generated by the columns b to b + a − 1. The
subscript a denotes the dimension of V b

a , or equivalently, the number of columns we consider
and the upperscript b denotes from which column we start to consider them. Then

∫
U(n)

tr(II|V 1
1
)dU =

1
n

∫
U(n)

(tr(II|V 1
1
) + tr(II|V 2

1
) + · · ·+ tr(II|V n

1
))dU

=
1
n

∫
U(n)

tr(II|E)dU =
vol(U(n))

n
tr(II|E).

Thus, ∫
GC

n,1

tr(II|V )dV =
vol(U(n))

nvol(U(n− 1))vol(U(1))
tr(II|E) =

vol(GC
n,1)

n
tr(II|E).

Suppose now that the result is true till dimC V = r−1. We shall prove it for dimC V = r ≤
n
2 . If R denotes the remainder of n

r , then R < r and we can apply the induction hypothesis in
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R at equality (*). Thus, using similar arguments as before, we obtain∫
GC

n,r

tr(II|V ) =
1

vol(U(n− r))vol(U(r))

∫
U(n)

tr(II|V 1
r
)

=
1

vol(U(n− r))vol(U(r))bn
r c

∫
U(n)

(tr(II|V 1
r
) + tr(II|V 2

r
) + · · ·+ tr(II|V n−R−r+1

r
))

=
1

vol(U(n− r))vol(U(r))bn
r c

(∫
U(n)

tr(II|E)−
∫

U(n)
tr(II|V n−R+1

R
)

)

=
vol(U(n))tr(II|E)− vol(U(n−R))vol(U(R))

∫
GC

n,R
tr(II|VR

)

vol(U(n− r))vol(U(r))bn
r c

(∗)
=

(
vol(U(n))− vol(U(n−R))vol(U(R))vol(GC

n,R)R
n

)
tr(II|E)

vol(U(n− r))vol(U(r))bn
r c

= vol(GC
n,r)

r

n−R

(
1− R

n

)
tr(II|E)

= vol(GC
n,r)

r

n
tr(II|E)

and the result follows when 2s ≤ n.

3.2 Integral of the r-th mean curvature integral over the space
of complex s-planes

Along this chapter we follow some conventions which we state in the following paragraphs.
We denote by S ⊂ CKn(ε) a hypersurface of class C2, compact and oriented (possibly with

boundary). Given a complex s-plane Ls intersecting S, it is said that Ls is in generic position
if S ∩ Ls is a submanifold of dimension 2s − 1 in CKn(ε). For hypersurfaces of class C2, the
subset of generic planes (intersecting S) has full measure. Thus, we suppose that each complex
s-plane is in generic position. Note that S ∩Ls (if Ls is a complex s-plane in generic position)
is a hypersurface in Ls

∼= CKs(ε).
Suppose that N denotes a unit normal vector field on S. In this chapter we take, in S ∩Ls

as a submanifold in S, the normal vector field Ñ such that the angle between N and Ñ is
acute. Along the proofs in this chapter, we denote es := ±JÑ .

Note that if p ∈ S ∩ Ls and Ñp is the chosen normal vector field in S ∩ Ls inside Ls then
JÑ ∈ Tp(S ∩Ls). Indeed, Ls

∼= CKs(ε), thus, the same structure for hypersurfaces hols inside
Ls.

We denote by E ⊂ TpCKn(ε), p ∈ S ∩ Ls, the orthogonal subspace to the space generated
by {N, JN, Ñ , JÑ}. Note that expp(E) ∼= CKn−2(ε) and it is univocally determined for each
Ls.

The fact stated in the following remark is used implicitly along this chapter, specially to
define the moving frames g and g′ in the proof of the next proposition.

Remark 3.2.1. Let V n be an n-dimensional Hermitian space with complex structure J , H ⊂ V n

a real hyperplane and Ws ⊂ V n a complex subspace of dimension s.
Consider the subspace H ∩Ws and denote by N ′ an orthonormal vector to H ∩Ws in Ws,

and D′ = 〈N ′, JN ′〉⊥ ∩Ws.
Consider also the subspaces H ∩W⊥

s and denote by N ′′ an orthonormal vector to H ∩W⊥
s

in W⊥
s , and D′′ = 〈N ′′, JN ′′〉⊥ ∩W ′′

s .
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Denote by N an orthonormal vector to H in V , and D = 〈N, JN〉⊥. Then,

V n = D⊥〈JN〉R⊥〈N〉R
= D′⊥〈JN ′〉R⊥〈N ′〉R⊥D′′⊥〈JN ′′〉R⊥〈N ′′〉R.

Indeed, from section 2.4.4 given a real hyperplane W in a Hermitian space V there exists
a canonical decomposition of V as

V = D⊥〈JN〉R⊥〈N〉R,

where N is an orthogonal vector to W in V . Applying this fact to V = Ws and to V = W⊥
s

we get the result.

The following proposition shall be essential to prove Theorem 3.3.2 and other results,
since it gives a first expression of the integral over the space of complex s-planes of the mean
curvature integral in terms of an integral on the boundary of the domain.

Proposition 3.2.2. Let S ⊂ CKn(ε) be a compact (possibly with boundary) hypersurface of
class C2 oriented by a normal vector N , and let r, s ∈ N such that 1 ≤ s ≤ n and 0 ≤ r ≤ 2s−1.
Then∫
LC

s

M (s)
r (S∩Ls)dLs =

(
2s− 1
r

)−1∫
S

(∫
RP2n−2

(∫
GC

n−2,s−1

|〈JN, es〉|2s−r

(1− 〈JN, es〉2)s−1
σr(p; es ⊕ V )dV

)
des

)
dp,

where es ∈ TpS unit vector, V denotes a complex (s−1)-plane by p contained in {N, JN, es, Jes}⊥,
σr(p; es ⊕ V ) denotes the r-th symmetric elementary function of the second fundamental form
of S restricted to the real subspace es⊕V and the integration over RP2n−2 denotes the projective
space of the unit tangent space of the hypersurface.

Remark 3.2.3. Using the previous remarks, it follows that the product |〈JN, es〉| in the last
proposition gives the cosine of the acute angle between the normal vector to the hypersurface
S in CKn(ε) and a normal vector to S ∩ Ls in Ls, that is,

|〈JN, es〉| = |〈N, Ñ〉|.

Proof. Let Ls be a complex s-plane such that S ∩ Ls 6= ∅ and let p ∈ S ∩ Ls. We denote
by σ̃r the r-th symmetric elementary function of the second fundamental form of S ∩ Ls as a
hypersurface of Ls. Then, by definition∫

LC
s

M (s)
r (S ∩ Ls)dLs =

(
2s− 1
r

)−1 ∫
S∩Ls 6=∅

∫
S∩Ls

σ̃r(s)dx dLs.

We shall prove the result using moving frames adapted to S ∩ Ls, Ls or S.

Let g = {e1, e1 = Je1, e2, e2 = Je2, . . . , es, ws, es+1, es+1 = Jes+1 . . . , en, N} be a moving
frame adapted to S ∩Ls and S (cf. Remark 3.2.1). That is, {e1, e1, . . . , es} is an orthonormal
basis of Tp(S∩Ls), {es+1, es+1, . . . , en} is an orthonormal basis of TpS∩(TpLs)⊥, N is a normal
vector field to TS and ws completes to an orthonormal basis of TpCKn(ε). We denote by

{ω1, ω1, . . . , ωs−1, ωs−1, ωs, ωs̃, ωs+1, ωs+1, . . . , ωn, ωñ}

the dual basis of the vectors in g and by {ωij}, i, j ∈ {1, 1, . . . , s, s̃, s+ 1, s+ 1, . . . , n, ñ}, the
connection forms (cf. (1.15)).

Let g′ = {e′1 = e1, e
′
1

= Je1, e
′
2 = e2, e

′
2

= Je2, ..., e
′
s = es, e

′
s = Jes, e

′
s+1 = es+1, e

′
s+1

=
Jes+1, ..., e

′
n = en, e

′
n = Jen} be a moving frame adapted to S ∩ Ls and Ls. That is,



50 Average of the mean curvature integral

{e′1, e′1, ..., e
′
s} is an orthonormal basis of Tp(Ls ∩ S) and {e′1, e′1, . . . , e

′
s, e

′
s} is an orthonor-

mal basis of TpLs. Denote by
{ω′1, ω′1, . . . , ω

′
n, ω

′
n}

the dual basis of vectors in g′ and by {ω′ij} the connection forms, i, j ∈ {1, 1, . . . , n, n}.

As the base g and g′ are constituted by orthonormal vectors, we can easily give the relation
among the elements in the frame g′ and the ones in g just expressing the vectors in g′ in
coordinates with respect to the vectors in g:

e′s = Jes = 〈Jes, ws〉ws + 〈Jes, N〉N,
e′n = Jen = 〈Jen, ws〉ws + 〈Jen, N〉N

and e′j = ej when j ∈ {1, 1, . . . , s− 1, s− 1, s, s+ 1, s+ 1, . . . , n− 1, n− 1, n}.
Then {

ω′j = ωj , if j 6= s, n,

ω′n = 〈Jen, ws〉ωs̃ + 〈Jen, N〉ωñ
(3.3)

and 
ω′is = 〈Jes, ws〉ωis̃ + 〈Jes, N〉ωiñ, if i 6= s, n
ω′in = 〈Jen, ws〉ωis̃ + 〈Jen, N〉ωiñ, if i 6= s, n
ω′ij = ωij , if i, j 6= s, n.

(3.4)

From now on, in order to simplify the notation, we omit the absolute value in densities.
The expression of dx (the density of S ∩ Ls), dLs and dLs[p] in terms of ω′ is

dx = ω′1 ∧ ω′1 ∧ · · · ∧ ω
′
s,

dLs = ω′s+1 ∧ ω′s+1
∧ · · · ∧ ω′n ∧ ω′n ∧

∧
i=1,2,...,s

j=s+1,s+1,...,n,n

ω′ij ,

dLs[p] =
∧

i=1,2,...,s

j=s+1,s+1,...,n,n

ω′ij

and the expression of dp (the density of S) in terms of ω is dp = ω1 ∧ ω1 ∧ · · · ∧ ωn.
On the other hand, by Lemma 3.1.1 it is satisfied

|〈Jen, ws〉| = |〈Jes, N〉|. (3.5)

Indeed, vectors {es, ws, en, N} are an orthonormal basis of a 2-dimensional complex plane, the
orthogonal complement of the space generated by {e1, Je1, . . . , es−1, Jes−1, es+1, Jes+1, . . . , en−1, Jen−1}.

By relations (3.3) and (3.5) we get

dx ∧ dLs = |〈Jen, ws〉|dLs[p] ∧ dp = |〈JN, es〉|dLs[p] ∧ dp (3.6)

since ωñ vanishes on TS.
Then, by Lemma 3.1.3,∫

S∩Ls 6=∅
M (s)

r (S ∩ Ls)dLs =
(

2s− 1
r

)−1∫
S

∫
Ls[p]

|〈JN, es〉|σ̃r(p)dLs[p]dp

=
(

2s− 1
r

)−1∫
S

∫
Ls[p]

|〈JN, es〉|
|〈N, Jes〉|r

σr(p)dLs[p]dp.

Note that in the last integrand we consider the absolut value in the denominator to be
sure that we consider the acute angle between the two intersecting subspace. This is not a
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priori true since es is any vector and, thus, not always the vector Jes (a normal vector to
S ∩ Ls ⊂ Ls) has the desired orientation.

Now, we shall express dLs[p] in terms of dV ∧ des where dV denotes the volume element of
the Grassmannian GC

n−2,s−1 and des the volume element of S2n−2. Fixed p, define the manifold

M = {(es, V ) | es ∈ TpS unit , V ∈ Ls containing p and orthogonal to {N, JN, es, Jes}},

which locally coincides with S2n−2 ×GC
n,s−1. Consider the fiber bundle

φ : M −→ LC
s[p]

(es, V ) 7→ expp{es, Jes, V }

with fiber GC
n,s. This is a double covering of LC

s[p] since vectors v and −v give the same complex
s-plane.

The pull-back of dLs[p] by the last mapping give the desired relation among the densities.
The expression of des in terms of ω and the expression of dV in terms of ω′ are

des =
∧

j=1,1,...,s−1,s−1,s̃,s+1,s+1,...,n

ωsj ,

dV =
∧

i=1,2,...,s−1

j=s+1,s+1,...,n−1,n−1

ω′ij . (3.7)

By (3.4) and (3.7) we have

dLs[p] =
∧

i=1,2,...,s

j=s+1,s+1,...,n,n

ω′ij

= dV ∧
∧

i=1,2,...,s−1

ωin ∧
∧

i=1,2,...,s

ω′in ∧
∧

j=s+1,s+1,...,n−1,n

ωsj .

Next, we relate
∧
ω′in
∧
ω′in with

∧
ωsj . From (3.4) follows∧

i=1,2,...,s

ω′in = |〈Jen, ws〉|s
∧

i=1,2,...,s

ωis̃

and also using that ω′in = ω′
in

since ω′in = 〈de′i, e′n〉 = 〈dJe′i, Je′n〉 = ω′
i,n

we obtain∧
i=1,2,...,s−1

ω′in =
∧

i=1,2,...,s−1

ω′
in

=
∧

i=1,2,...,s−1

〈Jen, ws〉ωis̃

= |〈Jen, ws〉|s−1
∧

i=1,2,...,s−1

ωis̃.

In order to study ∧
i=1,1,...,s−1,s−1

ωis̃,

we use es = Jes = 〈Jes, ws〉ws + 〈Jes, N〉N and we obtain∧
i=1,1,...,s−1,s−1

ωis =
∧

i=1,1,...,s−1,s−1

ωis =
∧

i=1,1,...,s−1,s−1

ωis

= 〈Jes, ws〉2(s−1)
∧

i=1,1,...,s−1,s−1

ωis̃.
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Thus, ∧
i=1,1,...,s−1,s−1

ωis̃ = 〈Jes, ws〉−2(s−1)
∧

i=1,1,...,s−1,s−1

ωis

and

dLs[p] =
|〈Jen, ws〉|2s−1

〈Jes, ws〉2(s−1)
dV ∧ des. (3.8)

Using |〈Jen, ws〉| = |〈JN, es〉| and 〈Jes, ws〉2 = 1− 〈JN, es〉2 we get the result.

3.3 Mean curvature integral

First we give an expression for the integral over the space of complex r-planes of the integral
of the normal curvature in the direction JN (see (2.9)). By Example 2.4.20 we have that this
integral is a smooth valuation in CKn(ε). Moreover, it is not a multiple of the mean curvature
integral.

Theorem 3.3.1. Let S ⊂ CKn(ε) be compact oriented (possibly with boundary) hypersurface
of class C2 oriented by a normal vector N , and s ∈ {1, . . . , n− 1}. Then∫

LC
s

(∫
S∩Ls

k̃n(JÑ)dx
)
dLs

= vol(GC
n−2,s−1)

ω2n−2

2s

(
n

s

)−1(2sn− s− n

n− s

∫
S
kn(JN) + (2n− 1)M1(S)

)
,

where k̃n(JÑ) the normal curvature of S ∩Ls in the direction JÑ , kn(JN) the normal curva-
ture of JN in CKn(ε) and ω2n−2 denotes the volume of the unit ball in the standard Euclidean
space of dimension 2n− 2.

Proof. Denote JÑ by es.

By Lemma 3.1.3 we have k̃n(JÑ) =
kn(es)
〈JN, es〉

. Using equalities (3.6) and (3.8) we obtain

I =
∫
Ls

∫
S∩Ls

k̃n(JÑ)dxdLs

=
∫

S

∫
RP2n−2

∫
GC

n−2,s−1

〈JN, es〉2s

(1− 〈JN, es〉2)s−1

kn(es)
〈JN, es〉

dV desdp

As the integral over GC
n−2,s−1 is independent of V , it follows

I = vol(GC
n−2,s−1)

∫
S

∫
RP2n−2

〈JN, es〉2s−1

(1− 〈JN, es〉2)s−1
kn(es)desdp. (3.9)

In order to compute the integral over RP2n−2, we use polar coordinates and express the
normal curvature of es in terms of the principal curvatures of TpS.

That is, if {f1, . . . , f2n−1} is an orthonormal basis of principal directions of TpS then
es =

∑2n−1
j=1 〈es, fj〉fj , and

kn(es) =
2n−1∑
j=1

〈es, fj〉2kn(fj) =
2n−1∑
j=1

〈es, fj〉2kj .

On the other hand, we consider a polar coordinates system θ1, θ2 with respect to JN
defined by

|〈JN, es〉| = cos θ1, (3.10)
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and using spherical trigonometry,

〈es, fj〉 = cos θ1 cos(JN, fj) + sin θ1 sin(JN, fj) cos(es, JN, fj)
= cos θ1 cosαj + sin θ1 sinαj cos θ2 (3.11)

where cos(es, JN, fj) denotes the cosine of the spherical angle with vertex JN . Note that αj

are constants when the point is fixed.
Then, from the relations

Γ(s)Γ(n− s)
Γ(n+ 1)

=
1

s(n− s)

(
n

s

)−1

and
Γ(s)Γ(n− s+ 1)

Γ(n+ 1)
=

1
s

(
n

s

)−1

,

we get∫
RP2n−2

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1
kn(es)des

=
2n−1∑
j=1

kj

(∫
S2n−3

∫ π/2

0

cos2s−1 θ1

sin2s−2 θ1
cos2 θ1 cos2 αj sin2n−3 θ1dθ1dS2n−3+

+
∫

S2n−4

∫ π

0
cos2 θ2 sin2n−4 θ2

∫ π/2

0

cos2s−1 θ1

sin2s−2 θ1
sin2 θ1 sin2 αj sin2n−3 θ1dθ1dθ2dS2n−4 + 0

)
=

2n−1∑
j=1

kjO2n−3

(
cos2 αj

(2sn− s− n)Γ(s)Γ(n− s)
4(n− 1)Γ(n+ 1)

+
Γ(s)Γ(n− s+ 1)
4(n− 1)Γ(n+ 1)

)

=
ω2n−2

2s

(
n

s

)−1 2n−1∑
j=1

kj

(
2sn− n− s

n− s
cos2 αj + 1

)
.

Integrating over S and using

kn(JN) =
2n−1∑
j=1

kj〈JN, fj〉2 =
2n−1∑
j=1

kj cos2 αj

we obtain the stated result.

Theorem 3.3.2. Let S ⊂ CKn(ε) be a compact (possibly with boundary) hypersurface of class
C2 oriented by a normal vector N , and let s ∈ {1, ..., n− 1}. Then∫
LC

s

M
(s)
1 (S∩Ls)dLs =

ω2n−2vol(GC
n−2,s−1)

2s(2s− 1)

(
n

s

)−1(
(2n− 1)

2ns− n− s

n− s
M1(S) +

∫
S
kn(JN)

)
where kn(JN) denotes the normal curvature in the direction JN ∈ TS.

Proof. By Proposition 3.2.2 and Lemma 3.1.4 we have∫
LC

s

M
(s)
1 (S ∩ Ls)dLs =

1
2s− 1

∫
S

∫
RP2n−2

∫
GC

n−2,s−1

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1
σ1(p; es, V )dV desdp

=
1

2s− 1

∫
S

∫
RP2n−2

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1

∫
GC

n−2,s−1

(tr(II|V ) + II(es, es))dV desdp

=
vol(GC

n−2,s−1)
2s− 1

∫
S

∫
RP2n−2

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1

(
s− 1
n− 2

tr(II|E) + kn(es)
)
desdp,

where E = 〈N, JN, es, Jes〉⊥.
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Note that if s = 1 then dimV = 0. Although the integral
∫
GC

n−2,s−1
tr(II|V )dV has no

sense, last equality above remains true since s−1
n−2trII|E = 0.

We shall study the following integrals

JE =
vol(GC

n−2,s−1)
2s− 1

s− 1
n− 2

∫
S

∫
RP2n−2

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1
tr(II|E)desdp

Js =
vol(GC

n−2,s−1)
2s− 1

∫
S

∫
RP2n−2

|〈JN, es〉|2s−1

(1− 〈JN, es〉2)s−1
kn(es)desdp.

The second integral is the same (except for a constant factor) as the integral (3.9) in Proposition
3.3.1. Thus, we know

Js =
O2n−3vol(GC

n−2,s−1)
4s(2s− 1)(n− 1)

(
n

s

)−1(2sn− s− n

n− s

∫
S
kn(JN) + (2n− 1)M1(S)

)
.

In order to study the integral JE , we shall use polar coordinates in the same way and with
the same notation as in the proof of Theorem 3.3.1. Let {e1, Je1, . . . , es−1, Jes−1} be a J-basis
of E ∩ TpLs and let {es+1, Jes+1, . . . , en−1, Jen−1} be a J-basis of E ∩ (TpLs)⊥. With respect
to this orthonormal basis of E

tr(II|E) =
n−1∑

i=1,i6=s

(kn(ei) + kn(Jei)).

If we denote by {f1, . . . , f2n−1} a basis of principal directions of S at p, we obtain

kn(ei) =
2n−1∑
j=1

kn(fj)〈ei, fj〉2 =
2n−1∑
j=1

kj〈ei, fj〉2,

and using polar coordinates with respect to JN , we get

tr(II|E) =
2n−1∑
j=1

kj

 n−1∑
i=1,i6=s

(〈ei, fj〉2 + 〈Jei, fj〉2)


=

2n−1∑
j=1

kj

 n−1∑
i=1,i6=s

(cos2(ei, JN, fj) + cos2(Jei, JN, fj)

 .

We denote by (u, v, w) the spherical angle with vertex v and sides on u and w, cosφij =
cos(ei, JN, fj) and cosφij = cos(Jei, JN, fj). Then, to study the integral JE we have to deal
with the following integral∫

S2n−3

∫ π/2

0

cos2s−1 θ1

sin2s−2 θ1
sin2 αj sin2n−3 θ1·

· (cos2 φ1j + · · ·+ cos2 φs−1,j + cos2 φs+1,j + · · ·+ cos2 φn−1,j)dθ1dS2n−3

= sin2 αj
Γ(s)Γ(n− s)

2Γ(n)
·

·
∫

S2n−3

(cos2 φ1j + · · ·+ cos2 φs−1,j + cos2 φs+1,j + · · ·+ cos2 φn−1,j)dS2n−3

where θ1 and αi are defined in (3.10) and (3.11).
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Denote by S̃2n−1 the subset of S2n−1 defined by all points not in span{N, JN}. Consider
the well-defined map

Π : S̃2n−1 −→ {N, JN}⊥

v 7→
proj{N,JN}⊥ (v)

||proj{N,JN}⊥ (v)||
.

Note that Π(ea) = ea, with a ∈ {1, 1, . . . , s− 1, s− 1, s+ 1, s+ 1, . . . , n− 1, n− 1}
Then, V ⊥ inside {N, JN}⊥ is

E⊥ ∩ {N, JN}⊥ = ({N, JN, es, Jes}⊥)⊥ ∩ {N, JN}⊥ = {Π(es), JΠ(es)}. (3.12)

As cos(φaj) = cos(ea, JN, fj) denotes the cosine of the spherical angle with vertex JN and
points in ea and fj , by definition, it coincides with 〈Π(ea),Π(fj)〉 = 〈ea,Π(fj)〉. Then, as Π(fj)
is a unit vector contained in the vector subspace with basis {e1, Je1, . . . , es−1, Jes−1,Π(es), JΠ(es)}
it is satisfied

1 = 〈Π(fj),Π(fj)〉2

= 〈e1,Π(fj)〉2 + · · ·+ 〈Jes−1,Π(fj)〉2 + 〈Π(es),Π(fj)〉2 + 〈JΠ(es),Π(fj)〉2

and we get ∫
S2n−3

(cos2 φ1j + · · ·+ cos2 φs−1,j + cos2 φs+1,j + ...+ cos2 φn−1,j)dS

=
∫

S2n−3

(1− 〈Π(es),Π(fj)〉2 − 〈JΠ(es),Π(fj)〉2)dS.

Now, we use polar coordinates θ2, θ3 with respect to Π(fj) such that

〈Π(es),Π(fj)〉 = cos θ2, θ2 ∈ (0, π),

and

〈JΠ(es),Π(fj)〉 = sin(Π(es),Π(fj)) cos(Π(es),Π(fj), JΠ(fj)) = sin θ2 cos θ3, θ3 ∈ (0, π).

By Lemma 3.1.2 and the relation

O2n−3 = O2n−5
π

n− 2

we have∫
S2n−5

∫ π

0

∫ π

0
(1− cos2 θ2 − sin2 θ2 cos2 θ3) sin2n−4 θ2 sin2n−5 θ3dθ3dθ2dS1

= O2n−3 −
∫

S2n−4

∫ π

0
cos2 θ2 sin2n−4 θ2 −

∫
S2n−5

∫ π

0
cos2 θ3 sin2n−5 θ3

∫ π

0
sin2n−2 θ2

= O2n−3 −
O2n−3

2n− 2
−O2n−52

√
πΓ(n− 2)

4Γ(n− 1
2)

√
πΓ(n− 1

2)
Γ(n)

= O2n−5

(
π

n− 2
− π

2(n− 1)(n− 2)
− π

2(n− 1)(n− 2)

)
=

O2n−5π

2(n− 1)(n− 2)
(2n− 4)

=
O2n−5π

2(n− 1)
.
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Thus,

JE =
O2n−3vol(GC

n−2,s−1)n(s− 1)
2s(2s− 1)(n− s)(n− 1)

(
n

s

)−1(
(2n− 1)M1(S)−

∫
S
kn(JN)

)
and adding both expressions of JE and Js we get the result

JE + Js =
O2n−3vol(GC

n−2,s−1)
4s(2s− 1)(n− 1)

(
n

s

)−1

·

·
(

((2n− 1) + (2n− 1)
n(s− 1)
n− s

)M1(S) + (
2sn− n− s

n− s
− n(s− 1)

n− s
)
∫

S
kn(JN)

)
=

O2n−3vol(GC
n−2,s−1)

4s(2s− 1)(n− 1)

(
n

s

)−1

·

·
(

2n− 1
n− s

(n− s+ ns− n)M1(S) +
2sn− n− s− ns+ n

n− s

∫
S
kn(JN)

)
=

O2n−3vol(GC
n−2,s−1)

4s(2s− 1)(n− 1)

(
n

s

)−1(s(2n− 1)(n− 1)
n− s

M1(S) +
∫

S
kn(JN)

)
.

It is natural to ask which functionals we have to integrate over the space of complex s-planes
to obtain the mean curvature integral of the initial hypersurface.

Theorem 3.3.3. Let S ⊂ CKn(ε) be a compact (possibly with boundary) oriented hypersurface
of class C2. If we define

ν(S) = (2ns− n− s)M1(S)− n− s

2s− 1

∫
S
kn(JN)dx,

then ∫
LC

r

ν(S ∩ Lr)dLr =
ω2n−2vol(GC

n−2,s−1)2(n− 1)(2n− 1)(s− 1)
(2s− 1)

M1(S).

Proof. The result follows straightforward from Theorems 3.3.1 and 3.3.2.

3.4 Reproductive valuations

Definition 3.4.1. Suppose given, for each s ∈ N, a valuation in CKn(ε), ϕ(s). It is said that
the collection {ϕ(s)} satisfies the reproductive property if for any regular domain Ω,∫

LC
s

ϕ(s)(Ω ∩ Ls)dLs = cn,sϕ(Ω),

for some constant cn,s depending on n and s.

Remark 3.4.2. Recall that mean curvature integral for regular domains extend to all K(Cn).
Also

∫
∂Ω kn(JN) extends to K(Cn) since it coincides with Γ2n−2,n−1(Ω) (cf. Example 2.4.20).

As neither the mean curvature integral M (s)
1 (∂Ω ∩ Ls), nor the integral of the normal

curvature,
∫
∂Ω∩Ls

kn(JÑ)dx, satisfy the reproductive property, it is natural to ask whether
there exists some linear combination of these such that satisfies this property. We consider a
linear combination since, in Cn, they constitute a basis of ValU(n)

n−2 (Cn).
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Theorem 3.4.3. Let Ω ⊂ CKn(ε) be a regular domain, s ∈ {1, ..., n−1}. Consider the smooth
valuations defined by

ϕ1(Ω) = M1(∂Ω)−
∫

∂Ω
kn(JN)

and

ϕ2(Ω) = (2s− 1)(2n− 1)M1(∂Ω) +
∫

∂Ω
kn(JN).

Then, ∫
LC

s

ϕ1(Ω ∩ Ls)dLs =
ω2n−2vol(GC

n−2,s−1)(s− 1)(2n− 1)
(2s− 1)(n− s)

(
n

s

)−1

ϕ1(Ω)

and ∫
LC

s

ϕ2(Ω ∩ Ls)dLs =
ω2n−2vol(GC

n−2,s−1)
(2s− 1)

(
n− 2
s− 1

)−1

ϕ2(Ω).

In Cn, each of ϕ1(Ω) and ϕ2(Ω) expands a 1-dimensional subspace of reproductive valuations
of degree 2n− 2.

Proof. Let

ν(Ω) = aM1(∂Ω) + b

∫
∂Ω
kn(JN).

We look for relations between a and b to be ν a reproductive valuation, that is,∫
LC

s

ν(Ω ∩ Ls)dLs = λν(Ω).

From Theorems 3.3.1 and 3.3.2 we have∫
LC

s

ν(Ω ∩ Ls)dLs =
∫
LC

s

(
aM1(∂Ω ∩ Ls) + b

∫
∂Ω∩Ls

kn(JÑ)
)

=
ω2n−2vol(GC

n−2,s−1)
2s(2s− 1)

(
n

s

)−1((
a+

b(2s− 1)(2sn− n− s)
n− s

)∫
∂Ω
kn(JN)+

+
(a(2ns− n− s)

n− s
+ b(2s− 1)

)
(2n− 1)M1(∂Ω)

)
.

Thus, ν is reproductive if and only if for some λ ∈ R

(2n− 1)
(
a(2ns− n− s)

n− s
+ b(2s− 1)

)
= λa,

a+
b(2s− 1)(2sn− n− s)

n− s
= λb.

Solving this system we get two solutions, a = −b, λ =
2s(s− 1)(2n− 1)

n− s
and a = b(2s −

1)(2n− 1), λ =
2n(n− 1)
n− s

.

Remark 3.4.4. Last theorem gives all valuations in ValU(n)
n−2 (Cn) such that they satisfy the

reproductive property. Why are these valuations reproductive? Are they special in some
sense? It shall be interesting to know the answer and also to have a geometric interpretation
for these valuations.



58 Average of the mean curvature integral

3.5 Relation with some valuations defined by Alesker

In Section 2.3 we recalled the definition of valuations Uk,p in Cn. They constitute a basis for
ValU(n)(Cn). From this basis it can be established the following theorem by Alesker

Theorem 3.5.1. (Theorem 3.1.2 [Ale03]) Let Ω be a regular domain in Cn. Let 0 < q <
n, 0 < 2p < k < 2q. Then,∫

LC
q

Uk,p(Ω ∩ Lq)dLq =
[k/2]+n−q∑

p=0

γp · Uk+2(n−q),p(Ω),

where constants γp depend only on n, q and p.

In the following theorem we give the constants γp with arbitrary n, q and k = 2q − 2.

Theorem 3.5.2. Let Ω be a regular domain and 0 < q < n. Then,∫
LC

q

U2q−2,p(Ω ∩ Lq)dLq =
ω2q−2ω2n−2vol(GC

n−2,q−1)vol(GC
q−2,q−p−1)

(q − p)(2q − 2p− 1)
(
n−2
q−1

)(
q−2

q−p−1

) ·

·
(

(2n− 3)(n− 1)(n− q + p)
ω2n−2

U2n−2,1(Ω)− (2n− 1)n(n− q + p− 1)U2n−2,0(Ω)
)
.

First, we express
∫
∂Ω kn(JN) (a translation invariant continuous valuation) in terms of

{Uk,p}.

Proposition 3.5.3. Let Ω be a regular domain in Cn. Then∫
∂Ω
kn(JN)dp =

n(2n− 3)(2n− 2)2ω2

ω2n−2
U2n−2,1(Ω)− 2n(2n− 1)(2n2 − 4n+ 1)ω2U2n−2,0(Ω).

Proof. From the relations among valuations {Uk,p} and mean curvature integrals (see (2.3))
we have

U2n−2,0(Ω) =
1

2nω2
M1(∂Ω) (3.13)

and
U2n−2,1(Ω) =

1
(2n− 2)ω2

∫
LC

n−1

M1(∂Ω ∩ Ln−1)dLn−1.

Using Proposition 3.3.2 with s = n− 1, we get the result.

Proof of the theorem 3.5.2. From the definition of Uk,p we have

Uk,p(Ω) =
1

2(n− p)ω2n−k

∫
GC

n,n−p

Mk−2p(Ω ∩ Ln−p)dLn−p

and from Theorem 3.3.2

U2q−2,p(Ω ∩ Lq) =
1

2(q − p)ω2

∫
LC

q−p

M1((∂Ω ∩ Lq) ∩ Lq−p)dLq−p

=
O2q−3vol(GC

q−2,q−p−1)
8(q − p)2(q − 1)(2q − 2p− 1)ω2

(
q

q − p

)−1

·

·

(
(2q − 1)

2q(q − p)− 2q + p

p
M1(∂Ω ∩ Lq) +

∫
∂Ω∩Lq

kn(JÑ)

)
where Ñ denotes the normal inward vector field to ∂Ω ∩ Lq as a hypersurface in Lq. Using
again Theorems 3.3.1 and 3.3.2, we express the integrals over LC

q as an integral oer ∂Ω. Finally,
from the relation in Proposition 3.5.3 and (3.13) we get the result.
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3.6 Example: sphere in CK3(ε)

In this section we check Theorem 3.3.2 in the case of a sphere of radius R in CK3(ε).
On page 18 we give an expression for the principal curvatures of a sphere of radius R in

CKn(ε). Using this expression we get∫
∂BR

kn(JN) = 2 cotε(2R)V (∂BR) = 2
cos2ε (R) + sin2

ε (R)
2 sinε(R) cosε(R)

π3

3!
6 sin5

ε (R) cosε(R)

= π3(cos2ε (R) + sin2
ε (R)) sin4

ε (R) = π3(2 sin6
ε (R) + sin4

ε (R))
= π3(2 cos6ε (R)− 5 cos4ε (R) + 4 cos2ε (R)− 1)

and

M1(∂BR) =
π36
3!4

(5 sin4
ε (R) cos2ε (R) + sin6

ε (R)) =
π3

4
(6 sin6

ε (R) + 5 sin4
ε (R))

= π3(
6
5

cos6ε (R)− 13
5

cos4ε (R) +
8
5

cos2ε (R)− 1
5
).

Thus, the right hand side of Theorem 3.3.2 is

O3π
3

144
((42 + 2) cos6ε (R)− (13 · 7 + 5) cos4ε (R) + (56 + 4) cos2ε (R)− (7 + 1))

= 2π5

(
11
36

cos6ε (R)− 2
3

cos4ε (R) +
5
12

cos2ε (R)− 1
18

)
.

The left hand side of Theorem 3.3.2 is∫
LC

2

M
(2)
1 (∂BR ∩ L2)dL2.

Let us compute first M (2)
1 (∂BR ∩ L2), for a fixed complex 2-plane, L2. Recall that the in-

tersection between a sphere and L2 is a sphere inside L2 with radius r satisfying cosε(R) =
cosε(r) cosε(ρ) where ρ is the distance from the origin of the sphere BR to the plane L2 (cf.
[Gol99, Lemma 3.2.13]).

M
(2)
1 (∂BR ∩ L2) =

1
3

∫
∂BR

(2 cotε(r) + 2 cotε(2r))

=
2
3
(cotε(r) + cotε(2r))

4π2

2!
sin3

ε (r) cosε(r)

=
1
12

(4 cos4ε (r)− 5 cos2ε (r) + 1)

=
1
12

1
cos4ε (R)

(4 cos4ε (R)− 5 cos2ε (R) cos2ε (ρ) + cos4ε (ρ)).

Thus,∫
LC

2

M
(2)
1 (∂BR ∩ L2)dL2

=
1
12

∫
GC

3,1

∫
S1

∫ R

0

cos4ε (ρ)
cos4ε (ρ)

(4 cos4ε (R)− 5 cos2ε (R) cos2ε (ρ) + cos4ε (ρ))2 cosε(ρ) sinε(ρ)

=
2πV (GC

3,1)2
12

∫ R

0
(4 cos4ε (R)− 5 cos2ε (R) cos2ε (ρ) + cos4ε (ρ))2 cosε(ρ) sinε(ρ)

=
πV (GC

3,1)
3

(
11
12

cos6ε (R)− 2 cos4ε (R) +
5
4

cos2ε (R)− 1
6

)
and we get the same result in both side of the expression in Theorem 3.3.2.





Chapter 4

Gauss-Bonnet Theorem and Crofton
formulas for complex planes

In this chapter we obtain an expression for the measure of complex r-planes intersecting a
compact domain in CKn(ε). That is, we give an expression of∫

LC
r

χ(Ω ∩ Lr)dLr (4.1)

for a regular domain Ω ⊂ CKn(ε) as a linear combination of the so-called Hermitic intrinsic
volumes valuations in CKn(ε) (cf. Definition 2.4.11). The method we use consists on computing
the variation, when the domain moves along the flow induced by a smooth vector field, of the
measure of complex r-planes intersecting the convex domain. From the theory of valuations on
Cn, we know that the expression is a linear combination of certain valuations. Thus, computing
also the variation of these valuations and then comparing both results we shall deduce the final
expression.

Using the same method we obtain an expression (cf. Theorem 4.4.1) for the Euler char-
acteristic of a compact domain in terms of its Gauss curvature of the boundary, its volume
and others Hermitian intrinsic volumes. This expression is analogous to the one obtained in
[San04, page 309] for real space forms.

Relating these two results we shall obtain another expression for the Euler characteristic.
This one involves the measure of complex hyperplanes intersecting the regular domain (cf.
Theorem 4.4.5).

4.1 Variation of the Hermitian intrinsic volumes

The study of the variation of a valuation when the domain moves along the flow of a smooth
vector field will be useful to deduce some properties of the valuation. In [BF08] it is given
the variation of some valuations on Cn and this variation is used to characterize monotone
valuations. In this work, we give the variation of the Hermitian intrinsic volumes (cf. Definition
2.4.11) on CKn(ε) and we use it to deduce expression (4.1) in terms of these valuations.

In order to obtain the variation of Hermitian intrinsic volumes on CKn(ε) we follow the
same method as in the proof of Corollary 2.6 in [BF08]. First, we recall the definition of the
Rumin derivative, introduced in [Rum94].

Definition 4.1.1. Let µ ∈ Ω2n−1(S(CKn(ε))), let α be the contact form of S(CKn(ε)) and let
α∧ ξ ∈ Ω2n−1(S(CKn(ε))) be the unique (cf. [Rum94]) form such that d(µ+α∧ ξ) is multiple
of α. Then, the Rumin operator D is defined as

Dµ := d(µ+ α ∧ ξ).

61
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Let us recall the definition of the Reeb vector field over a contact manifold.

Definition 4.1.2. Let M be a contact manifold with contact form α. The Reeb vector field
T is the only vector field over M such that

{
iTα = 1,
LTα = 0.

(4.2)

If the contact manifold is the fiber tangent bundle of a Riemann manifold, then the Reeb
vector field coincides with the geodesic flow (cf. [Bla76, page 17]). This is the situation in this
work, we consider the unit tangent bundle of CKn(ε) (cf. Lemma 1.3.7 and Remark 1.3.8).

Note that the condition LTα = 0 is equivalent to iTdα = 0. Indeed,

LTα = iTdα+ d(iTα) = iTdα = dα(T ).

The following lemma contains the value of the contraction of T with α, β, γ and θi defined
in Section 2.4.2.

Lemma 4.1.3. In S(CKn(ε)) it is satisfied

iTα = 1, iT θ1 = γ,
iT θ2 = β, iTβ = iTγ = iT θ0 = iT θs = 0.

Proof. The first equality is a characterization of the Reeb vector field. Moreover, iT θs =
−itdα = diTα− LTα = 0.

As T is the geodesic flow, it satisfies αi(T ) = βi(T ) = 0 and α1i = β1i = 0, i ∈ {2, ..., n}.
We get the result using Definition (2.6) extended to CKn(ε).

In [BF08] it is proved the following lemma, which allow to calculate the variation of a
valuation defined from an invariant smooth form. The result is proved in Cn but the same
remains true for ε 6= 0, and for any Riemann manifold. Here we repeat the proof in detail for
CKn(ε).

Lemma 4.1.4 ([BF08] Lemma 2.5). Suppose that Ω ⊂ CKn(ε) is a regular domain, N the
outward unit vector field to ∂Ω, X is a smooth vector field on CKn(ε) with flow Ft and µ a
smooth valuation given by a (2n− 1)-form ρ in S(CKn(ε)). Then

d

dt

∣∣∣∣
t=0

µ(Ft(Ω)) = δXµ(Ω) =
∫

N(Ω)
〈X,N〉 iT (Dβ)

where T is the Reeb vector field of S(CKn(ε)) and Dρ is the Rumin operator of ρ.

Proof. Let X̃ be a lift of X at S(CKn(ε)) such that it preserves α, i.e. LX̃(α) = 0. Then, if
F̃ denotes the flow of X̃
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δXµ(Ω) =
d

dt

∣∣∣∣
t=0

(∫
N(Ft(Ω))

β

)
=

d

dt

∣∣∣∣
t=0

(∫
N(Ω)

F̃t
∗
β

)

=
∫

N(Ω)
LX̃β

(1)
=
∫

N(Ω)
iX̃dβ + d(iX̃β)

(2)
=
∫

N(Ω)
iX̃dβ

(3)
=
∫

N(Ω)
iX̃Dβ − iX̃d(α ∧ η)

(4)
=
∫

N(Ω)
iX̃Dβ

(5)
=
∫

N(Ω)
iX̃(α ∧ ρ)

(6)
=
∫

N(Ω)
(iX̃α)ρ

(7)
=
∫

N(Ω)
α(X̃)iT (α ∧ ρ)

=
∫

N(Ω)
〈X,N〉iTDβ

First, note that we can change the variation of Ft(Ω) in the first integral for the Lie derivative
of the integrated form since N(Ft(Ω)) = F̃t(N(Ω)).

For (1) and (2), we use the following property of the Lie derivative, LX̃β = iX̃dβ+d(iX̃β),
and that the second term is an exact form, thus the integral vanishes.

Equality (3) follows directly from the definition of the Rumin operator.
For (4) we use

iX̃d(α ∧ η) = LX̃(α ∧ η)− d(iX̃(α ∧ η))
and that the second term is an exact form. The first term can be rewritten as

LX̃(α ∧ η) = (LX̃α) ∧ η + α ∧ LX̃η,

and so, its integral vanishes since X̃ preserves α, which vanishes over the normal fiber bundle
(cf. Lemma 1.3.12).

As the Rumin operator is, by definition, a 2n-form multiple of α, and it is defined on the
normal fiber bundle, we get (5).

For (6), using the notion of contraction we get

iX̃(α ∧ ρ) = (iX̃α) ∧ ρ+ α ∧ (iX̃ρ).

The second term vanishes over N(Ω).
To get equality (7), we repeat the same argument as in (4) in order to obtain the form

α ∧ ρ, which is the Rumin operator of β.
Finally, we recall the definition of α and that the integral is over the unit fiber normal

bundle, so that the points are (x,N) with x ∈ ∂Ω and N the unit normal vector on ∂Ω at
x.

The previous lemma allows us to compute the variation of any valuation given by a form,
once we know its Rumin operator. In this chapter we give the variation of the Hermitian
intrinsic volumes in CKn(ε) (in [BF08] is given for ε = 0).

In the following lemma we give the derivative βk,q and γk,q (defined in 2.4.6) using Lemma
2.4.8. They will be used for the computation of the Rumin operator.
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Lemma 4.1.5. In CKn(ε)

dβk,q = cn,k,q(θ
n−k+q
0 ∧ θk−2q

1 ∧ θq
2 − ε(n− k + q)α ∧ β ∧ θn−k+q−1

0 ∧ θk−2q
1 ∧ θq

2)

and

dγk,q =cn,k,q(θ
n−k+q
0 ∧ θk−2q

1 ∧ θq
2 − εθn−k+q−1

0 ∧ θk−2q
1 ∧ θq+1

2 − εα ∧ β ∧ θn−k+q−1
0 ∧ θk−2q

1 ∧ θq
2

− ε
(n− k + q − 1)

2
α ∧ γ ∧ θn−k+q−2

0 ∧ θk−2q+1
1 ∧ θq

2

− ε
(n− k + q − 1)

2
β ∧ γ ∧ θ01 ∧ θn−k+q−2

0 ∧ θk−2q
1 ∧ θq

2).

From the previous lemma and following the method used by [BF08] we can compute the
variation of Bk,q and Γk,q in CKn(ε).

Notation 4.1.6. We denote

B̃k,q = B̃k,q(Ω) :=
∫

∂Ω
〈X,N〉βk,q and Γ̃k,q = Γ̃k,q(Ω) :=

∫
∂Ω
〈X,N〉γk,q.

Proposition 4.1.7. Let X be a smooth vector field defined on CKn(ε) and Ω ⊂ CKn(ε) be
a regular domain. The variation in CKn(ε) of valuations Bk,q and Γk,q with respect to X is
given by

δXBk,q(Ω) = 2cn,k,q(c−1
n,k−1,q(k − 2q)2Γ̃k−1,q − c−1

n,k−1,q−1(n+ q − k)qΓ̃k−1,q−1

+c−1
n,k−1,q−1(n+ q − k +

1
2
)qB̃k−1,q−1 − c−1

n,k−1,q(k − 2q)(k − 2q − 1)B̃k−1,q

+ε(c−1
n,k+1,q+1(k − 2q)(k − 2q − 1)B̃k+1,q+1 − c−1

n,k+1,q(n− k + q)(q +
1
2
)B̃k+1,q))

and

δXΓk,q(Ω) = 2cn,k,q

(
c−1
n,k−1,q(k − 2q)2Γ̃k−1,q − c−1

n,k−1,q−1(n+ q − k)qΓ̃k−1,q−1

+c−1
n,k−1,q−1(n+ q − k +

1
2
)qB̃k−1,q−1 − c−1

n,k−1,q(k − 2q)(k − 2q − 1)B̃k−1,q

+ε
(
c−1
n,k+1,q+12(k − 2q)(k − 2q − 1)B̃k+1,q+1 − c−1

n,k+1,q((n− k + q)(2q +
3
2
)− 1

2
(q + 1))B̃k+1,q

−c−1
n,k+1,q+1(k − 2q)2Γ̃k+1,q+1 + c−1

n,k+1,q(n− k + q − 1)(q + 1)Γ̃k+1,q

−ε(c−1
n,k+3,q+2(k − 2q)(k − 2q − 1)B̃k+3,q+2 − c−1

n,k+3,q+1(n− k + q − 1)(q +
3
2
)B̃k+3,q+1)

))
.

Proof. We first study the valuation given by βk,q.
Lemma 4.1.4 provides an expression for the variation of a smooth valuation. In order to

use this lemma, it is enough to find iTDβk,q and iTγk,q modulo α and dα since the latter forms
vanish over N(Ω) (cf. Lemma 1.3.12).

We will use the following fact from the proof of Proposition 4.6 in [BF08]: for max{0, k −
n} ≤ q ≤ k/2 < n there exists an invariant form ξk,q ∈ Ω2n−1(S(Cn)) such that

dα ∧ ξk,q ≡ −θn−k+q
0 θk−2q

1 θq
2 mod(α), (4.3)

and

ξk,q ≡ βγθn+q−k−1
0 θk−2q−2

1 θq−1
2 (4.4)

∧
(
(n+ q − k)qθ2

1 − (k − 2q)(k − 2q − 1)θ0θ2
)

mod(α, dα).
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In order to find δXBk,q for general ε, we take a form ξε ∈ Ω2n−1(S(CKn(ε))) such that ξε
(p,v) ≡

ξ(p′,v′) when we identify T(p,v)S(CKn(ε)) and T(p′,v′)Cn, for every (p, v) ∈ S(CKn(ε)), (p′, v′) ∈
S(Cn). That is, as ξε is an invariant form, it can be expressed as a linear combination of
products with the forms α, β, θ0, θ1, θ2 and θs. We take this expression as a definition of ξε.
From Lemma 4.1.5 and (4.3) we have that d(βk,q + cn,k,qα ∧ ξε) ≡ 0 modulo α.

By Lemma 2.4.8, the exterior differential of ξε is

dξε ≡ θn+q−k−1
0 θk−2q−2

1 θq−1
2 ((n− k + q)qθ2

1 − (k − 2q)(k − 2q − 1)θ0θ2)
∧ (γθ1 − 2βθ0 + 2εβθ2) mod(α, dα)

and the contraction of dβk,q with respect to the vector field T , by Lemma 4.1.3, is

iTdβk,q ≡ cn,k,qθ
n+q−k−1
0 θk−2q−1

1 θq−1
2

∧ ((k − 2q)γθ0θ2 + qβθ0θ1 − ε(n− k + q)βθ1θ2) mod(α).

By substituting the last expressions in iTDβk,q ≡ iTdβk,q − cn,k,qdξ ( mod α, dα), we get
the result.

The variation of Γk,q with k 6= 2q can be obtained using the relation among Γk,q and Bk,q

given in Proposition 2.4.8 and the variation of Bk,q.
To compute δXΓ2q,q, note that dγ2q,q has 3 terms not multiple of α (cf. Lemma 4.1.5). As

before we take ξε
1, ξ

ε
2 ∈ Ω2n−1(S(CKn(ε))) corresponding to ξ2q,q, and ξ2q+2,q+1 respectively.

Let us consider also

ξε
3 =

n− q − 1
2

βγθn−q−2
0 θq

2. (4.5)

Then the Rumin differential of γ2q,q is given by Dγ2q,q = d(γ2q,q + cn,2q,qα ∧ (ξε
1 − εξε

2 − εξε
3)).

Indeed, dα ∧ ξε
1 cancels the first term of dγ2q,q modulo α, and dα ∧ ξε

2 cancels the second one.
The third term is canceled exactly by dα ∧ ξε

3.
Now, using Lemmas 4.1.5 and 4.1.3 we get

iTdγ2q,q≡qβθn−q
0 θq−1

2 − ε(q + 2)βθn−q−1
0 θq

2 − ε
n− q − 1

2
γθn−q−2

0 θ1θ
q
2 mod(α, dα),

and from (4.4) and (4.5)

dξε
1 ≡ (n− q)qθn−q−1

0 θq−1
2 (γθ1 − 2βθ0 + 2εβθ2) mod(α, dα).

dξε
2 ≡ (n− q − 1)(q + 1)θn−q−2

0 θq
2(γθ1 − 2βθ0 + 2εβθ2) mod(α, dα).

dξε
3 ≡

n− q − 1
2

θn−q−2
0 θq

2(γθ1 − 2βθ0 + 2εβθ2) mod(α, dα).

Plugging this into iTDγ2q,q ≡ iTdγ2q,q − cn,2q,q(dξε
1− εdξε

2− εdξε
3) mod (α, dα) gives the result.

Remark 4.1.8. For ε = 0 the variation of Bk,q coincides with the variation of Γk,q and we get
the result of Proposition 4.6 in [BF08].

From the previous proposition we can obtain easily the variation of the Gauss curvature
integral. We know that this variation vanishes in Cn, for the Gauss-Bonnet theorem, but not
in the other complex space forms.

Corollary 4.1.9. In CKn(ε) the variation of the Gauss curvature integral is

δXM2n−1(∂Ω) = 2εω2n−1(2(n− 1)Γ̃1,0 − (3n− 1)B̃1,0 +
3
2π
ε(2n− 1)B̃3,1).



66 Gauss-Bonnet Theorem and Crofton formulas for complex planes

Proof. First, we relate the Gauss curvature integral with Γ0,0(Ω) from Example 2.4.20.1

M2n−1(∂Ω) =
2c−1

n,0,0

(n− 1)!
Γ0,0(Ω) = 2nω2nΓ0,0(Ω). (4.6)

Thus, from Proposition 4.1.7 and using that c−1
n,1,0 = (n− 1)!ω2n−1, c−1

n,3,1 = (n− 2)!ω2n−3 and
ω2n−1 = (2n− 1)ω2n−3/2π we obtain the result:

δXM2n−1(∂Ω) =
2ε

(n− 1)!
(−c−1

n,1,0(3n− 1)B̃1,0 + 2c−1
n,1,0(n− 1)Γ̃1,0 + c−1

n,3,13ε(n− 1)B̃3,1)

= 2ε(−ω2n−1(3n− 1)B̃1,0 + 2ω2n−1(n− 1)Γ̃1,0 + 3εω2n−3B̃3,1)

= 2εω2n−1(−(3n− 1)B̃1,0 + 2(n− 1)Γ̃1,0 +
3
2π
ε(2n− 1)B̃3,1).

4.2 Variation of the measure of complex r-planes intersecting
a regular domain

Proposition 4.2.1. Let Ω ⊂ CKn(ε) be a regular domain, X a smooth vector field on CKn(ε)
with flow φt and Ωt = φt(Ω). Then

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr =
∫

∂Ω
〈∂φ/∂t,N〉

(∫
GC

n,r(Dp)
σ2r(II|V )dV

)
dx

where N is the outward normal field, D is the tangent distribution to ∂Ω and orthogonal to
JN and σ2r(II|V ) denotes the 2r-th symmetric elementary function of II restricted to V ∈
GC

n−1,r(Dp).

Proof. The proof is similar to the one in [Sol06, Theorem 4] for real space forms.
Denote GC

n−1,r(D) = {(p, l) | l ⊆ Tp∂Ω,dimR l = 2r and Jl = l} =
⋃

p∈∂ΩG
C
n−1,r(Dp).

For each V ∈ GC
n−1,r(Dp), we take the parallel translation Vt of V along φt(x). Recall that

parallel translation preserves the complex structure (cf. [O’N83, page 326]). Then we project
Vt orthogonally to Dφt(x), obtaining a complex r-plane V ′

t (at least for small values of t). We
define

γ : GC
n−1,r(D)× (−ε, ε) −→ LC

r

((x, V ), t) 7→ expφt(x) V
′
t .

(4.7)

Proposition 3 in [Sol06] remains true, without change, in complex space forms. From this
proposition and using a similar argument as in [Sol06, teorema 4] we get

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr = lim
h→0

1
h

∫
GC

n−1,r(D)×(0,h)

∑
sign〈∂φ

∂t
,N〉 sign(σ2r(II|V ))γ∗dLr

=
∫

GC
n−1,r(D)

〈∂φ
∂t
,N〉 sign(σ2r(II|V ))γ∗0(ιdφ∂tdLr)

where the sum on the second integral runs over the tangencies of Lr with the hypersurfaces
∂Ωt with 0 < t < h.

Consider a J-moving frame {g; g1, Jg1, ..., gn, Jgn} such that g((p, l), t) = φ(p, t), γ =
〈g; g1, Jg1, ..., gr, Jgr〉 ∩CKn(ε) and Jgn((p, l), t) = Nt (outward unit vector to ∂Ωt at φ(p, t)).
We may assume that the moving frame is defined in a neighborhood of LC

r since we are only
interested in regular points of γ.
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Considerem the curve Lr(t) given by the parallel translation of Lr along the geodesic
given by N , the outward normal vector to ∂Ω0. Recall that parallel translations preserves the
complex structure (cf. [O’N83, page 326]). If P ∈ TLrLC

r denotes the tangent vector to Lr(t)
at t = 0, then

ωi(P ) = 〈dg(P ), gi〉 = 〈 d
dt
g(Lr(t)), gi〉 = 0, i ∈ {r + 1, r + 1, ..., n− 1, n− 1},

ωn(P ) = 〈dg(P ), N〉 = 1, (4.8)

ωij(P ) = 〈∇gi(P ), gj〉 = 〈D
dt
gi(Lr(t)), gj〉 = 0, j ∈ {r + 1, r + 1, ..., n, n}, i ∈ {1, 1, ..., r, r}.

The measure of complex r-planes in CKn(ε) is (cf. Proposition 1.5.5)

dLr =

∣∣∣∣∣∣∣∣
n∧

i=r+1

ωi ∧ ωi

∧
i=1,...,r

j=r+1,...,n

ωijωij

∣∣∣∣∣∣∣∣ .
From (4.8), we get

dLr = |ωn|ιPdLr

since ιPdLr = |
∧n−1

h=r+1 ωh ∧ ωh ∧ ωn
∧
ωij |.Thus,

ιdγ∂tdLr = |ωn(dγ∂t)|ιPdLr + |ωn|ιdγ∂tιPdLr

with

ωn(dγ∂t) = 〈dg(dγ∂t), N〉 = 〈∂φ
∂t
,N〉,

γ∗0(ωn)(v) = 〈dg(dγ0(v)), N〉 = 0 ∀v ∈ T(p,l)G
C
n−1,r(Tp∂Ω0),

and we get

γ∗0(ιdγ∂tdLr) = |〈∂φ
∂t
,N〉|γ∗0(ιPdLr).

Finally, using that ψ∗0(ιPdLr) = |σ2r(II|V )|dV dx, we get the result.

Remark 4.2.2. The integral ∫
GC

n,r

σ2r(II|V )dV (4.9)

seems difficult to compute directly. However, we will find it by an indirect method. Recall that
the analogous integral in real space forms is a multiple of an elementary symmetric function
of the principal curvatures.

For r = n− 1, the integral (4.9) can be easily computed in CKn(ε).

Corollary 4.2.3. Let Ω ⊂ CKn(ε) be a regular domain, X a smooth vector field on CKn(ε)
with flow φt, and Ωt = φt(Ω). Then,

d

dt

∣∣∣∣
t=0

∫
LC

n−1

χ(Ln−1 ∩ Ωt)dLn−1 = ω2n−1B̃1,0(Ω).
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Proof. From Proposition 4.2.1 we get the result since there is just one complex hyperplane
tangent to a point in ∂Ω. Thus,

d

dt

∣∣∣∣
t=0

∫
LC

n−1

χ(Ωt ∩ Ln−1)dLn−1 =
∫

∂Ω0

〈∂φ/∂t,N〉
∫

GC
n−1,n−1

σ2n−2(II|V )dV dx

=
∫

∂Ω0

〈∂φ/∂t,N〉σ2n−2(II|D)dx

=
∫

∂Ω0

〈∂φ/∂t,N〉β ∧ θ
n−1
0

(n− 1)!

=
c−1
n,1,0

(n− 1)!
B̃1,0(Ω)

= ω2n−1B̃1,0(Ω).

4.3 Measure of complex r-planes meeting a regular domain

4.3.1 In the standard Hermitian space

Using that the measure of complex r-planes in Cn meeting a regular domain is a linear combi-
nation of the Hermitian intrinsic volumes, and Propositions 4.2.1 and 4.1.7 we find explicitly
the coefficients of this linear combination.

Theorem 4.3.1. Let Ω ⊂ Cn be a convex domain, X a smooth vector field over Cn, φt the
flow associated to X and Ωt = φt(Ω). Then

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr = vol(GC
n−1,r)ω2r+1(r + 1)

(
n− 1
r

)−1(n
r

)−1

·

·

 n−r−1∑
q=max{0,n−2r−1}

(
2n− 2r − 2q − 1

n− r − q

)
1

4n−r−q−1
B̃2n−2r−1,q(Ω)

 , (4.10)

and ∫
LC

r

χ(Ω ∩ Lr)dLr = vol(GC
n−1,r)ω2r

(
n− 1
r

)−1(n
r

)−1

·

·

 n−r∑
q=max{0,n−2r}

1
4n−r−q

(
2n− 2r − 2q
n− r − q

)
µ2n−2r,q(Ω)

 . (4.11)

Proof. In order to simplify the following computations, we consider

B′
k,q = B′

k,q(Ω) := c−1
n,k,qµk,q(Ω), Γ′2q,q = Γ′2q,q(Ω) := 2c−1

n,2q,qµ2q,q(Ω). (4.12)

and
B̃′

k,q = c−1
n,k,qB̃k,q, Γ̃′k,q = 2c−1

n,k,qΓ̃k,q. (4.13)

The functional
∫
LC

r
χ(Ω ∩ Lr)dLr is a valuation on Cn with degree of homogeneity 2n −

2r. Thus, it can be expressed as a linear combination of the elements of degree 2n − 2r,
{µ2n−2r,q|max{0, n − 2r} ≤ q ≤ n − r} (cf. Definition 2.4.11). Then, by Remark 2.4.12 and
(2.8), we have ∫

LC
r

χ(Ω ∩ Lr)dLr =
n−r−1∑

q=max{0,n−2r}

CqB
′
2n−2r,q +DΓ′2n−2r,n−r (4.14)
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for certain constants Cq, D which we wish to determine. This will be done by comparing the
variation of both sides of this equality.

From here on we assume 2r < n. The case 2r ≥ n can be treated in the same way (cf.
Remark 4.3.2).

By Proposition 4.1.7, the variation of the right hand side of (4.14) is a linear combination
of the following type

n−r−1∑
q=n−2r−1

cqB̃
′
2n−2r−1,q +

n−r−1∑
q=n−2r

dqΓ̃′2n−2r−1,q (4.15)

where the coefficients cq and dq can be expressed in terms of a linear combination with known
coefficients of the variables Cq and D, that still remain unknown.

The variation of the left hand side of (4.14), by Proposition 4.2.1 is

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr =
∫

∂Ω
〈∂φ/∂t,N〉

∫
GC

n−1,r

σ2r(II|V )dV dx. (4.16)

From Lemma 2.4.18 when pulling-back the form γk,q from N(Ω) to ∂Ω, one gets a polynomial
expression Pk,q of degree 2n − k − 1 in the coefficients hij of II with i, j ∈ {1, 2, 2, . . . , n, n}.
Moreover, for each q the monomials in Pk,q containing only entries of the form hii contain the
factor h11 = II(JN, JN) and do not appear in any other Pk,q′ with q′ 6= q. Therefore, every
non-trivial linear combination of {Pk,q}q must contain the variable h11. On the other hand,
the integral

∫
GC

n−1,r
σ2r(II|V )dV is a polynomial of the second fundamental form II restricted

to the distribution D = 〈N, JN〉⊥, hence a polynomial not involving h11. Comparing the
expressions of (4.15) and (4.16), it follows that dq = 0 for all q ∈ {n− 2r, . . . , n− r − 1}.

As cq and dq depend on Cq and D, we will obtain the value of cq once we know the value
of Cq and D. We will get their value from the equalities {dq = 0}. Note that this gives r
equations, since q runs from n − 2r to n − r − 1 in (4.15). As for the unknowns, we need to
find r constants Cq plus the constant D in (4.14).

We will get an extra equation by taking II|D = Id and equating (4.16) to (4.15). Then,
for any pair (n, r) we have a compatible linear system since constants in (4.14) exist. Next we
find the solution.

Let us relate explicitly the coefficients {cq} and {dq} in (4.15) with Cq and D in (4.14).
To simplify the range of the subscripts, we denote dn−r−a with a = 1, . . . , r and cn−r−a with
a = 1, . . . , r + 1.

Coefficient dn−r−1. From the variation of B′
k,q in Cn (Proposition 4.1.7), the coefficient of

Γ̃′2n−2r−1,n−r−1 comes from the variation of B′
2n−2r,n−r−1 and Γ′2n−2r,n−r. Then,

dn−r−1 = −2r(n− r)D + (2n− 2r − 2(n− r − 1))2Cn−r−1

= 4Cn−r−1 − 2r(n− r)D. (4.17)

Coefficient dn−r−a, a = 2, . . . , r. The coefficient of Γ̃′2n−2r−1,n−r−a comes from the variation
of B′

2n−2r,n−r−a and B′
2n−2r,n−r−a+1. Then,

dn−r−a = (2n− 2r − 2(n− r − a))2Cn−r−a − (2r + n− r − a+ 1− n)(n− r − a+ 1)Cn−r−a+1

= 4a2Cn−r−a − (r − a+ 1)(n− r − a+ 1)Cn−r−a+1. (4.18)

Coefficient cn−r−1. The coefficient of B̃′
2n−2r−1,n−r−1 comes from the variation ofB′

2n−2r,n−r−1

and Γ′2n−2r,n−r. Then,

cn−r−1 = 4(r + 1/2)(n− r)D − 4Cn−r−1

= 2(2r + 1)(n− r)D − 4Cn−r−1. (4.19)
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Coefficient cn−r−a, a = 2, . . . , r − 2. The coefficient of B̃′
2n−2r−1,n−r−a comes from the

variation of B′
2n−2r,n−r−a and B′

2n−2r,n−r−a+1. Then,

cn−r−a = −2(2a)(2a− 1)Cn−r−a + 2(r − a+ 3/2)(n− r − a+ 1)Cn−r−a+1

= −4a(2a− 1)Cn−r−a + (2r − 2a+ 3)(n− r − a+ 1)Cn−r−a+1. (4.20)

Coefficient cn−2r−1. The coefficient of B̃′
2n−2r−1,n−2r−1 comes from the variation ofB′

2n−2r,n−2r.
Then,

cn−2r−1 = (2r − 2(r + 1) + 3)(n− r − (r + 1) + 1)Cn−2r

= (n− 2r)Cn−2r. (4.21)

Now, we solve the linear system given by {dn−r−a = 0} where a ∈ {1, . . . , r}. From
equations (4.17) and (4.18) the system is given by

{
r(n− r)D = 2Cn−r−1

4a2Cn−r−a = (n− r − a+ 1)(r − a+ 1)Cn−r−a+1.

Thus,

Cn−r−a =
(n− r − a+ 1) · · · · · (n− r)(r − a+ 1) · · · · r

2 · 4a−1a2(a− 1)2 · · · · · 12
D

=
(n− r)!r!

22a−1(n− r − a)!(r − a)!a!a!
D

=
D

22a−1

(
n− r

a

)(
r

a

)
. (4.22)

To obtain the value ofD, we compute
∫
GC

n−1,r
σ2r(p)dV and β′2n−2r−1,n−r−a in case II|D(p) =

λId for λ > 0, which occurs when Ω is a geodesic ball. On one hand, we have

∫
GC

n−1,r

σ2r(p)(λId|V )dV = λ2rvol(GC
n−1,r).

On the other hand, if II|D = λId, then the connection forms satisfy α1i = λωi and β1i = λωi.
Thus, θ1 = 2λθ2 and θ0 = λ2θ2 and we obtain

β′2n−2r−1,n−r−a(p) = λ2r(β ∧ θr−a+1
0 ∧ θ2a−2

1 ∧ θn−r−a
2 )(p)

= 22a−2λ2r(β ∧ θn−1
2 )(p) = 22a−2λ2r(n− 1)!.

So, the equation

vol(GC
n−1,r) =

r+1∑
a=1

cn−r−a22a−2(n− 1)!

must be satisfied.
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Substituting equations (4.19), (4.20) and (4.21) in the last equation gives

vol(GC
n−1,r)

(n− 1)!
= (2(2r + 1)(n− r)D − 4Cn−r−1)

+
r∑

a=2

22a−2((2r − 2a+ 3)(n− r + a+ 1)Cn−r−a+1 − 4a(2a− 1)Cn−r−a)

+ 22r(n− 2r)Cn−2r

= 2(2r + 1)(n− r)D + 4((2r − 1)(n− r − 1)− 1)Cn−r−1

+
r−1∑
a=2

(−22a−24a(2a− 1) + 22a(2r − 2a+ 1)(n− r − a))Cn−r−a

+ (22r(n− 2r)− 22r−24r(2r − 1))Cn−2r

= 2(2r + 1)(n− r)D +
r∑

a=1

22a((2r − 2a+ 1)(n− r − a)− a(2a− 1))Cn−r−a

(4.22)
= D

(
2(n− r)!r!

r∑
a=0

(2r − 2a+ 1)(n− r − a)− a(2a− 1)
(n− r − a)!(r − a)!a!a!

)

= D
2n!

r!(n− r − 1)!

Thus,

D =
vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

,

Cn−r−a =
vol(GC

n−1,r)
4an!

(
n− 1
r

)−1(n− r

a

)(
r

a

)
and, for 2r < n, we have∫
LC

r

χ(Ω ∩ Lr)dLr =
r∑

a=1

Cn−r−aB
′
2n−2r,n−r−a +DΓ′2n−2r,n−r

=
vol(GC

n−1,r)
2n!

(
n− 1
r

)−1
(

r∑
a=1

(
n− r

a

)(
r

a

)
2−2a+1B′

2n−2r,n−r−a + Γ′2n−2r,n−r

)
and

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr = (2(2r + 1)(n− r)D − 4Cn−r−1)B′
2n−2r−1,n−r−1

+
r∑

a=2

((2r − 2a+ 3)(n− r + a+ 1)Cn−r−a+1 − 4a(2a− 1)Cn−r−a)B′
2n−2r−1,n−r−a

+ (n− 2r)Cn−2rB
′
2n−2r−1,n−2r−1

=
vol(GC

n−1,r)
n!

(
n− 1
r

)−1
(

r+1∑
a=1

(
n− r

a

)(
r + 1
a

)
a

4a−1
B̃′

2n−2r−1,n−r−a

)
. (4.23)

Finally, we use the relation in (4.12) and (2.8) to obtain the result.

Remark 4.3.2. If 2r ≥ n, then formula (4.10) follows directly from the relations among the
different bases of valuations on Cn given in [BF08] and the following relation in [Ale03]∫

LC
r

χ(Ω ∩ Lr)dLr =
1

O2r−1

∫
LC

r

M2r−1(∂Ω ∩ Lr)dLr = cU2(n−r),n−r
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for a certain constant c coming from the different normalizations in dLr.

Corollary 4.3.3. Let Ω ⊂ CKn(ε) be a regular domain, X a smooth vector field over CKn(ε),
φt the flow associated to X and Ωt = φt(Ω). Then

d

dt

∣∣∣∣
t=0

∫
LC

r

χ(Ωt ∩ Lr)dLr = vol(GC
n−1,r)ω2r+1(r + 1)

(
n− 1
r

)−1(n
r

)−1

·

·

 n−r−1∑
q=max{0,n−2r−1}

(
2n− 2r − 2q − 1

n− r − q

)
1

4n−r−q−1
B̃2n−2r−1,q(Ω)

 . (4.24)

Proof. Comparing equation (4.10) and Proposition 4.2.1 in case ε = 0 shows that if Ω is a
regular convex domain, then ∫

∂Ω
〈X,N〉

(∫
GC

n,r

σ2r(II|V )dV

)
dx

equals the right hand side of equation above. By taking a vector field X that vanishes outside
an arbitrarily small neighborhood of a fixed x ∈ ∂Ω, we deduce the following equality between
forms(∫

GC
n−1,r(Tx∂Ω)

σ2r(II|V )dV

)
dx =

ω2r+1(
n−1

r

)(
n
r

)vol(GC
n−1,r)(r + 1)· (4.25)

·
n−r−1∑

q=max{0,n−2r−1}

(
2n− 2r − 2q − 1

n− r − q

)
cn,2n−2r−1,n−r−q

4n−r−q−1
β ∧ θr−q+1

0 ∧ θ2q−2
1 ∧ θn−r−q

2 .

This equation can be written as P (II)dx = Q(II)dx where P and Q are polyomials with entries
in the second fundamental form. These polynomials concide for any positive defined bilineal
form. Thus, P = Q and (4.25) holds for regular domains (not necessarily convex domains).
Moreover, it is valid in CKn(ε) for any ε. Applying Proposition 4.2.1 we get the result.

Corollary 4.3.4. Equation (4.11) holds for any regular domain not necessarily convex.

Proof. Consider Ωt = φt(Ω) with φt a given flow.
From the last corollary, it is known the variation of the left hand side of (4.11).
By Proposition 4.1.7, the variation of the right hand side is a linear combination of

{Bk,q,Γk,q}. By Theorem 4.3.1 this linear combination coincides with the right hand side
of (4.24).

Thus, the variation of both sides of (4.11) coincides. So, the difference between both
members of (4.11) is constant.

Take φt such that φt(Ω) converges to a point for t→∞. Both sides of (4.11) tend to zero
when t→∞, thus their difference vanishes for all t.

4.3.2 In complex space forms

Theorem 4.3.5. Let Ω be a regular domain in CKn(ε). Then∫
LC

r

χ(Ω ∩ Lr)dLr = vol(GC
n−1,r)

(
n− 1
r

)−1

· (4.26)

· (
n−1∑

k=n−r

εk−(n−r)ω2n−2k

(
n

k

)−1
 k−1∑

q=max{0,2k−n}

1
4k−q

(
2k − 2q
k − q

)
µ2k,q(Ω) + (k + r − n+ 1)µ2k,k(Ω)


+ εr(r + 1)vol(Ω)).
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Proof. We will show that both sides have the same variation δX with respect to any vector
field X. This implies the result: one can take a deformation Ωt of Ω such that Ωt converges
to a point. Then both sides of (4.26) have the same derivative, and both vanish in the limit.

The variation of the left hand side of (4.26) is given by Corollary 4.3.3. The variation of
the right hand side can be computed by using Proposition 4.1.7, and δXV = 2B̃2n−1,n−1. In
order to simplify the computations we rewrite the right hand side of (4.26) as

Cr(Ω) :=
vol(GC

n−1,r)
n!

(
n− 1
r

)−1

{εr(r + 1)n!V

+
n−1∑

j=n−r

εj−n+r

j − n+ r + 1
2

Γ′2j,j +
j−1∑

q=max(0,2j−n)

1
4j−q

(
n− j

j − q

)(
j

q

)
B′

2j,q

}.
By Proposition 3.8 we have

δXCr(Ω) =
vol(GC

n−1,r)
n!

(
n− 1
r

)−1

[εrn(r + 1)δxB̃′
2n−1,n−1 (4.27)

+
n−1∑

j=n−r

εj−n+r j − n+ r + 1
2

{−2(n− j)jΓ̃′
2j−1,j−1 + 2ε(n− j − 1)(j + 1)Γ̃′

2j+1,j

+4(n− j +
1
2
)jB̃′

2j−1,j−1 + 4ε
(
j + 1

2
− (n− j)(2j +

3
2
)
)
B̃′

2j+1,j + 4ε2(n− j − 1)(j +
3
2
)B̃′

2j+3,j+1}]

+
n−1∑

j=n−r

j−1∑
q=max{0,2j−n}

εj−n+r

4j−q

(
n− j

j − q

)(
j

q

)
{(2j − 2q)2Γ̃′

2j−1,q

−(n+ q − 2j)qΓ̃′
2j−1,q−1 + 2(n+ q − 2j +

1
2
)qB̃′

2j−1,q−1 − 2(2j − 2q)(2j − 2q − 1)B̃′
2j−1,q

+2ε(2j − 2q)(2j − 2q − 1)B̃′
2j+1,q+1 − 2ε(n− 2j + q)(q +

1
2
)B̃′

2j+1,q}.

We will show that the previous expression is independent of ε; i.e. all the terms containing ε
cancel out. Hence, δXCr(Ω) coincides with (4.24) since we know this happens for ε = 0. This
will finish the proof.

We concentrate first on the terms with B̃′
k,q. By putting together similar terms, the third

line of (4.27) is

n−1∑
h=n−r+1

εh−n+r2{(h− n+ r + 1)(n− h+
1
2
)h+ (h− n+ r)(

h

2
− (n− h+ 1)(2h− 1

2
)) (4.28)

+(h− n+ r + 1)(n− h+ 1)(h− 1
2
)}B̃′

2h−1,h−1

−εr{(r + 2)n− 1}B̃′
2n−1,n−1 + (2r + 1)(n− r)B̃′

2n−2r−1,n−r−1.

By putting together similar terms, the double sum in (4.27) (forgetting for the moment
the terms with Γ̃′k,q) becomes

n−1∑
h=n−r

h−2∑
a=max(−1,2h−n−1)

εh−n+r

4h−a−1

(
n− h

h− a− 1

)(
h

a+ 1

)
2(n+ a− 2h+

3
2
)(a+ 1)B̃′

2h−1,a

−
n−1∑

h=n−r

h−1∑
a=max(0,2h−n)

εh−n+r

4h−a

(
n− h

h− a

)(
h

a

)
2(2h− 2a)(2h− 2a− 1)B̃′

2h−1,a
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+
n∑

h=n−r+1

h−1∑
a=max(1,2h−n−1)

εh−n+r

4h−a

(
n− h+ 1
h− a

)(
h− 1
a− 1

)
2(2h− 2a)(2h− 2a− 1)B̃′

2h−1,a

−
n∑

h=n−r+1

h−2∑
a=max(0,2h−n−2)

εh−n+r

4h−a−1

(
n− h+ 1
h− a− 1

)(
h− 1
a

)
2(n− 2h+ a+ 2)(a+

1
2
)B̃′

2h−1,a.

Note that the terms with a = −1 or a = 2h − n − 2 vanish, if they occur. Then, one checks
that all the terms in the above expression cancel out except those with h = n− r, n, and those
with a = h− 1. Clearly the terms corresponding to h = n− r are independent of ε. The terms
with h = n sum up εr(n−1)B̃′

2n−1,n−1, and together with the similar term appearing in (4.28)
cancel out the first term in (4.27). Finally, the terms with a = h − 1 are cancelled with the
sum in (4.28).

With a similar but shorter analysis one checks that the multiples of Γ̃′k,q cancel out com-
pletely. This shows that (4.27) is independent of ε, and finishes the proof.

Remark 4.3.6. The coefficients of µk,q and vol in (4.26) were found by solving a linear system
of equations, which we write down in the appendix.

4.4 Gauss-Bonnet formula in CKn(ε)

Theorem 4.4.1. Let Ω be a regular domain in CKn(ε). Then

ω2nχ(Ω) =(n+ 1)εnvol(Ω)+ (4.29)

+
n−1∑
c=0

(n− c)ω2n−2cε
c

n
(
n−1

c

)
 c−1∑

q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
µ2c,q(Ω) + (c+ 1)µ2c,c(Ω)

 .

Remark 4.4.2. For ε = 0 we have the Gauss-Bonnet formula in Cn ∼= R2n, where it is known

χ(Ω) =
1

2nω2n
M2n−1(∂Ω) = µ0,0(Ω),

which coincides with the expression in the previous result.

Here we prove the certainty of (4.29) but in the appendix we give a constructive proof of
the result.

Proof. We proceed analogously to the proof of Theorem 4.3.5. In fact, the same computations
of the previous proof show (in case r = n) that the right hand side of (4.29) has null variation.

For ε = 0 equation (4.29) is the well know Gauss-Bonnet formula in Cn ∼= R2n. For ε 6= 0,
we take a smooth deformation of Ω to get a domain contained in a ball of radius r. Under
this deformation, the right hand side of (4.29) remains constant. By taking r small enough,
the difference between both sides can be made arbitarily small. Hence, they coincide.

Although in (4.29) does not appear the Gauss curvature, we can easily get the following
expression.

Corollary 4.4.3. Let Ω ⊂ CKn(ε) be a regular domain. Then,

2nω2nχ(Ω) =M2n−1(∂Ω) + 2n(n+ 1)εnvol(Ω)+

+
n−1∑
c=1

2nω2n−2cε
c

(
n

c

)−1
 c−1∑

q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
µ2c,q(Ω) + (c+ 1)µ2c,c(Ω)

 .
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Proof. Apply relation (4.6) in (4.29).

Remarks 4.4.4. 1. The Gauss-Bonnet-Chern formula in spaces of constant sectional curva-
ture k and even dimension, for a regular domain Ω is given by

O2m−1χ(Ω) = M2n−1(∂Ω) + cn−3M2n−3(∂Ω) + · · ·+ c1M1(∂Ω) + (|k|)n/2vol(Ω),

where cj are known and depend on the curvature k.

Note that in the previous expression appear all mean curvature integrals with odd sub-
script and the volume. In formula (4.29) in CKn(ε), ε 6= 0, also appear all the Hermitian
intrinsic volumes in CKn(ε) with the first subscript odd.

2. In [Sol06] it is given an expression of the Gauss-Bonnet-Chern formula in space of con-
stant sectional curvature k using the measure of planes of codimension 2 meeting the
domain. The obtained formula for Ω ⊂ RKn(ε) is

nωnχ(Ω) = Mn−1(∂Ω) +
2k
ωn−1

∫
Ln−2

χ(Ω ∩ Ln−2)dLn−2. (4.30)

A natural question is whether in complex space forms, there exists a similar expression
relating the Gauss curvature integral with the Euler characteristic and the measure of
some complex planes meeting the domain

c0χ(Ω) ?= M2n−1(∂Ω) +
n−1∑
q=1

cq

∫
LC

q

χ(Ω ∩ Lq)dLq

or

c0χ(Ω) ?= M2n−1(∂Ω) +
n−1∑
q=0

M2q+1(∂Ω) +
n−1∑
q=1

cq

∫
LC

q

χ(Ω ∩ Lq)dLq.

Taking variation on both sides in these expressions, we get that these expressions cannot
hold in general (for n = 2 and n = 3 we can choose constants satisfying them). Anyway,
in Theorem 4.4.5 we give a similar expression. Perhaps, if we knew a formula for the
measure of totally real planes meeting a domain we could find a more similar expression.

3. For n = 2, the Gauss-Bonnet-Chern formula was already known in CKn(ε). It was given
in [Par02]. From Theorem 4.4.1 we get the same expression, which can be written as

χ(Ω) =
1
π2

(
1
2
Γ′0,0 + ε

(
1
4
B′

2,0 + Γ′2,1

)
+ 6ε2vol(Ω)

)
.

This expression can also be stated as

χ(Ω) =
1

2π2

(
M3(∂Ω) +

3ε
2

(
M1(∂Ω) +

∫
∂Ω
kn(JN)

)
+ 12ε2vol(Ω)

)
(4.31)

and

χ(Ω) =
1

2π2

(
M3(∂Ω) + 2ε

∫
LC

1

χ(∂Ω ∩ L1)dL1 +
ε

2

∫
∂Ω
kn(JN) + 12ε2vol(Ω)

)
.

In the following result we express the Euler characteristic in terms of the Gauss curvature
integral, the volume, the measure of complex hyperplanes meeting a domain and the valuations
µ2c,c. This formula generalizes (4.30) in complex space forms.
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Theorem 4.4.5. Let Ω ⊂ CKn(ε) be a regular domain CKn(ε). Then,

ω2nχ(Ω) = ε

∫
LC

n−1

χ(Ω ∩ Ln−1)dLn−1 +
n∑

c=0

εcω2n

ω2c
µ2c,c(Ω)

=
1
2n
M2n−1(∂Ω) + ε

∫
LC

n−1

χ(Ω ∩ Ln−1)dLn−1 +
n∑

c=1

εcω2n

ω2c
µ2c,c(Ω).

Proof. From Theorems 4.3.5 and 4.4.1 we get the stated formula

χ(Ω) =
n−1∑
c=0

εc c!
πc

 n−1∑
q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
B2c,q(Ω) + (c+ 1)Γ2c,c(Ω)

+
εn(n+ 1)!

πn
vol(Ω)

= Γ0,0(Ω)+
n−1∑
c=1

εc c!
πc

 n−1∑
q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
B2c,c(Ω) + (c+ 1)Γ2c,c(Ω)

+
εn(n+ 1)!

πn
vol(Ω)

= Γ0,0(Ω) +
ε n!
πn

n−1∑
c=1

εc−1 c!πn−c

n!

 n−1∑
q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
B2c,c(Ω) + cΓ2c,c(Ω)

+

+
ε n!
πn

n−1∑
c=1

εc−1c!πn−c

n!
Γ2c,c(Ω) +

εn(n+ 1)!
πn

vol(Ω)

= Γ0,0(Ω) +
ε n!
πn

∫
LC

n−1

χ(Ω ∩ Ln−1)dLn−1 +
n−1∑
c=1

εc c!
πc

Γ2c,c(Ω) +
(
εn(n+ 1)!

πn
− εn n!n

πn

)
vol(Ω).

4.5 Another method to compute the measure of complex lines
meeting a regular domain

From Theorem 4.3.5 we can give an expression of the measure of complex lines meeting a
regular domain (just taking r = 1). Here, we give another method to obtain this expression,
using the results in Chapter 3.

4.5.1 Measure of complex lines meeting a regular domain in Cn

Proposition 4.5.1. Let Ω ⊂ Cn be a regular domain. Then,∫
LC

1

χ(Ω ∩ L1)dL1 =
ω2n−4

4n(n− 1)

(
(2n− 1)M1(∂Ω) +

∫
∂Ω
kn(Jn)

)
.

Proof. Recall that each complex line is isometric to C. Gauss-Bonnet formula in Cn for
hypersurfaces ∂Ω states

M2n−1(∂Ω) = 2nω2nχ(Ω).

Applying Gauss-Bonnet formula in C and Proposition 3.3.2 with s = 1 we get the result∫
LC

1

χ(Ω ∩ L1)dL1 =
1
2π

∫
LC

1

∫
∂Ω∩L1

kgdpdL1 =
ω2n−2

4nω2

(
(2n− 1)M1(∂Ω) +

∫
∂Ω
kn(Jn)

)
.
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Although Gauss-Bonnet formula is known in Cn for n ≥ 1, we cannot apply the same
method to give the expression of the measure of s-planes meeting a regular domain since
the integral

∫
LC

r
M2r−1(∂Ω ∩ Lr)dLr is not in general known. In the next section we get

an expression for this integral using the Gauss-Bonnet formula and the measure of complex
r-planes meeting a regular domain.

4.5.2 Measure of complex lines meeting a regular domain in CPn and CHn

The following result is given, for instance, in [ÁPF04].

Proposition 4.5.2 ([ÁPF04]). Let Ω be a regular domain in CPn or CHn. Then,∫
LC

s

vol2s(Ω ∩ Ls)dLs = Cvol2n(Ω).

The value of the constant C, it is not known, but now we shall need it explicitly.

Proposition 4.5.3. Let Ω be a regular domain in CPn or CHn. Then,∫
LC

s

vol2s(Ω ∩ Ls)dLs = vol(GC
n,n−s)vol2n(Ω).

Proof. In order to find C we apply last proposition to a ball of radius R. Let Ls be a complex
s-plane meeting BR at a distance ρ from the center of the ball. From Lemma 3.2.13 in [Gol99],
we have that the intersection BR ∩Ls is a ball of complex dimension s and radius r such that

cosε(R) = cosε(r) cosε(ρ).

The expression of the volume of a geodesic ball of radius R in CKn(ε) is (cf. [Gra73])

vol2n(BR) =
πn

|ε|n n!
sin2n

ε (R).

Using this expression we get

vol2s(Ls ∩BR) =
(
π

|ε|

)s 1
s!

(
cos2ε (R)− cos2ε (ρ)

cos2ε (ρ)

)s

.

On the other hand, the Jacobian of the change of variables to polar coordinates is given by
(cf. [Gra73])

cosε(R) sin2n−1
ε (R)

|ε|n−1/2
.

Then, using Proposition 1.5.8, we get∫
LC

s

vol2s(Ls ∩BR)dLs =
πsvol(GC

n,n−s)O2(n−s)−1

|ε|n−1/2s!

s∑
i=0

(−1)i+1

(
s

i

)
·

·
∫ R

0
sin2(n−s)−1

ε (ρ) cos2i
ε (R) cos2(s−i)+1

ε (ρ)dρ

=
πsvol(GC

n,n−s)O2(n−s)−1

|ε|n−1/2s!
·

·
s∑

i=0

s−i∑
j=0

i∑
k=0

(−1)i+1

(
s

i

)(
s− i

j

)(
i

k

)
sin2(n−s+k+j)

ε (R)√
ε(n− s+ j)

.
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From Proposition 4.5.2, this expression is a multiple of

vol2n(BR) =
πn

|ε|nn!
sin2n

ε (R).

Thus, all terms in the sum are zero except for 2(n − s + k + j) = 2n, i.e. k + j = s, which
together with j ≤ s− i, k ≤ i implies j = s− i, k = i, and we get∫

LC
s

vol2s(Ls ∩BR)dLs

=
πsvol(GC

n,n−s)O2(n−s)−1

|ε|ns!

s∑
i=0

(−1)i+1

(
s

i

)
sin2n

ε (R)
2(n− i)

=
πsvol(GC

n,n−s)O2(n−s)−1

2|ε|n
sin2n

ε (R)
s∑

i=0

(−1)i+1

i!(s− i)!(n− i)

=
πsvol(GC

n,n−s)O2(n−s)−1(n− s− 1)!
2|ε|nn!

sin2n
ε (R).

Finally, from equality

C
πn

|ε|nn!
=
πsvol(GC

n,n−s)O2(n−s)−1(n− s− 1)!
2|ε|nn!

,

and using O2(n−s)−1 = 2(n− s)ω2(n−s) = 2 πn−s

(n−s−1)! , we get the value of the constant C.

Corollary 4.5.4. Let Ω ⊂ CKn(ε) be a regular domain. Then,∫
LC

1

χ(Ω ∩ L1)dL1 =
ω2n−4

4n(n− 1)

(
(2n− 1)M1(∂Ω)+

∫
∂Ω
kn(JN)+8nεvol(Ω)

)
.

where kn(JN) denotes the normal curvature in the direction JN .

Proof. Using Gauss-Bonnet formula in H2(−4) we have (cf. [San04, page 309])∫
LC

1

χ(Ω ∩ L1)dL1 =
1
2π

∫
LC

1

M1(∂Ω ∩ L1)dL1 −
2
π

∫
LC

1

vol(Ω ∩ L1)dL1,

and using Proposition 4.5.3 with s = 1, and Proposition 3.3.2 we get the result.

Corollary 4.5.5. If Ω is a regular domain in CK2(ε), ε 6= 0, then∫
Ω∩L1 6=∅

χ(∂Ω ∩ L1)dL1 =
1
4

(
M1(∂Ω)− 1

3ε
M3(∂Ω) + 4εvol(Ω) +

2π2

3ε
χ(Ω)

)
.

Proof. From previous corollary, with n = 2, we have∫
LC

1

χ(Ω ∩ L1)dL1 =
1
8

(
3M1(∂Ω) +

∫
∂Ω
kn(JN) + 16εvol(Ω)

)
.

Isolating
∫
∂Ω kn(JN) in expression (4.31) we get the stated result.

Note that the previous corollary cannot be extended to ε = 0 since the expression (4.31)
does not contain the term

∫
∂Ω kn(JN).
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4.6 Total Gauss curvature integral Cn

Theorem 4.6.1. If Ω ⊂ Cn is a regular domain, then∫
LC

r

M2r−1(∂Ω∩Lr)dLr = 2rω2
2rvol(GC

n−1,r)
(
n− 1
r

)−1(n
r

)−1

·

·

 n−r∑
q=max{0,n−2r}

1
4n−r−q

(
2n− 2r − 2q
n− r − q

)
µ2n−2r,q(Ω)

 .

Proof. On one hand, by Gauss-Bonnet formula in Cn and the relation (4.6), we have∫
LC

r

M2r−1(∂Ω ∩ Lr)dLr = 2rωr

∫
LC

r

χ(Ω ∩ Lr)dLr = 2rω2r

∫
LC

r

µ0,0(Ω ∩ Lr)dLr. (4.32)

On the other hand, by Theorem 4.3.1, we have∫
LC

r

χ(∂Ω ∩ Lr)dLr = vol(GC
n−1,r)ω2r

(
n− 1
r

)−1(n
r

)−1

·

 n−r∑
q=max{0,n−2r}

1
4n−r−q

(
2n− 2r − 2q
n− r − q

)
µ2n−2r,q(Ω)

 .

If we equate both expressions and we use the relation (4.6), we get the result.





Chapter 5

Other Crofton formulas

In the previous chapter we give an expression for the measure of complex planes intersecting
a regular domain in a complex space form. Complex planes in CKn(ε) are totally geodesic
submanifolds, but, by Theorem 1.4.6, there are other totally geodesic submanifolds. Totally
real planes are also totally geodesic submanifolds in CKn(ε) for any ε (cf. Theorem 1.4.6).
Moreover, for ε = 0, all submanifolds generated by the exponential map of a vector subspace
holomorphically isometric to Ck ⊕ Rk−2p are totally geodesic. Note that complex planes and
totally real planes are particular cases of these submanifolds, for (k, p) = (2p, p) and (k, p) =
(k, 0), respectively.

In this chapter we obtain an expression for the measure of planes of type (2n−p, n−p), the
so-called coisotropic planes, intersecting a domain in Cn, and an expression for the measure of
Lagrangian planes in CKn(ε).

5.1 Space of (k, p)-planes

First, we recall the definition of (k, p)-plane in Cn, as it is given in [BF08].

Definition 5.1.1. Suppose that V is a real vector space and Ln
k(V ) denote the space of all

affine subspaces of dimension k in V . If V = Cn, considered as a real vector space, then the
space of (k, p)-planes, Lk,p(Cn) ⊂ Ln

k(Cn) is defined as the subset of all subspace of (real)
dimension k that can be expressed as the orthogonal direct sum of a complex subspace of
complex dimension p and a totally real subspace of (real) dimension (k − 2p).

We denote the elements of Lk,p(Cn) by Lk,p and the Grassmannian of all (k, p)-planes
through the origin in a vector space V by Gn,k,p(V ).

From the previous definition, Lk,p(Cn) is the orbit of Cp ⊕ Rk−2p under the action of
Cn o U(n) (which are the holomorphic isometries of Cn).

The notion of (k, p)-plane was extended to CHn. In [Gol99] and [Hsi98], they are defined
as particular cases of the so-called linear submanifolds.

Definition 5.1.2. The image of the exponential map from a point x ∈ CHn of a vector
subspace in TxCHn is called linear submanifold.

The image of the exponential map from a point x ∈ CHn of a (k, p)-plane in TxCHn is
called linear (k, p)-plane.

This definition could be also stated in CPn, but doing so, we obtain submanifolds with
singularities except when the submanifold is totally geodesic, i.e. for complex planes (which
correspond to (2p, p)-planes), and for totally real planes (which correspond to (k, 0)-planes).

In CHn, linear submanifolds are not always totally geodesic submanifolds. They are totally
geodesic just for complex planes and totally real planes (cf. Theorem 1.4.6).

81
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5.1.1 Bisectors

As in complex hyperbolic space there are no totally geodesic real hypersurfaces, it is natural
to look for real hypersurfaces with similar properties to those expected for a totally geodesic
real hypersurface. In [Gol99, page 152] it is answered that they are the so-called bisectors, also
denoted by spinal superfaces.

Definition 5.1.3. Let z1, z2 be two different points in CHn. The bisector equidistant from z1
and z2 is defined as

E(z1, z2) = {z ∈ CHn | d(z1, z) = d(z2, z)}

where d(z, zi) denotes the distance between points zi and z at CKn(ε) (see Proposition 1.2.3).

Definition 5.1.4. Let z1, z2 be two different points in CHn.

• The complex geodesic Σ defined by z1 and z2 is the complex spine of the bisector E(z1, z2).

• The real spine of the bisector E(z1, z2), σ(z1, z2) is the intersection between the bisector
and the complex spine, i.e.

σ(z1, z2) = E(z1, z2) ∩ Σ(z1, z2) = {z ∈ Σ | d(z1, z) = d(z2, z)}.

• A slide of E is a complex hyperplane Π−1
Σ (s) where Π : CHn −→ Σ denotes the orthogonal

projection over Σ.

Remark 5.1.5. 1. The set of all slides in a bisector defines a foliation of the bisector by
complex hyperplanes.

2. The real spine is a (real) geodesic in CHn since Σ is totally geodesic and isometric to
H2, and in the real hyperbolic space, the bisector line of two given points is a geodesic.

3. Each geodesic γ ⊂ CHn is the real spine of a unique bisector. Indeed, take the complex
line Σ containing γ and the orthogonal projection ΠΣ to Σ. Then, Π−1

Σ (γ) defines a
bisector.

Example 5.1.6. In CH2 with the projective model, the bisector with respect to z1 = [(1, 0, i)]
and z2 = [(1, 0,−i)] is

E(z1, z2) = {[(1, z, t)] ∈ CHn | z ∈ C, t ∈ R}.

This expression can be obtained directly using the formula for the distance between 2 points
given at Proposition 1.2.3.

The complex spine is
{[(

1, 0, i
λ− µ

λ+ µ

)]
with λ, µ ∈ C both nonzero

}
and the real spine

is {[1, 0, t]}.

Proposition 5.1.7. The isometries of CHn act transitively over the space of bisectors.

Proof. Using the correspondence between bisectors and real geodesics, we have that isometries
act transitively over the space of bisectors, since they do so over the space of real geodesics.

It is known that there are no non-trivial isometries which fix pointwise a bisector , since
they are not totally geodesic hypersurfaces (if ε 6= 0). Anyway, we can consider the reflection
with respect to a slice S of the bisector. This reflexion fixes pointwise the slice S and lies the
bisector invariant. Moreover, each of these reflexions is also a reflection with respect to the
spine σ, thus, it fixes the points in σ ∩ S.
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Bisectors are hypersuperfaces of cohomogenity one. That is, the orbit, for the group of the
isometries fixing a bisector, of a point (except for the points in the real spine, which are of null
measure in the bisector) in a bisector is a submanifold of codimension 1 inside the bisector; a
submanifold of codimension 2 in CHn (cf. [GG00]).

Thus, bisectors are not homogeneous hypersurfaces. By definition a hypersurface is homo-
geneous if the orbit of each point (for the isometry group fixing the hypersurface) is all the
hypersurface.

Let us study the orbit of a point in a bisector.
A geodesic γ(t) ⊂ CHn uniquely determines a tube T (r) of radius r and a bisector E with

real spine γ.
We study the relation between these two hypersurfaces, obtaining the orbit of a point in

the bisector in terms of the tube containing the point.

Proposition 5.1.8. Let p ∈ E. Consider r such that p ∈ T (r) ∩ E where T (r) denotes the
tube of radius r along the real spine γ of E. The orbit of p by the isometries fixing E, is given
by T (r) ∩ E.

Proof. Each point of the orbit Op of p belongs to T (r) since the isometries fixing the bisector
fix the spine, and they preserve distances. Then, Op ⊂ T (r) ∩ E.

Every point in T (r)∩E belongs to the orbit of p. Indeed, if q ∈ T (r)∩E then d(q, γ(t)) =
d(p, γ(t)), a necessary condition to be q in the orbit of p. The projection of the points p, q to
Σ can or cannot be the same point. Let us prove that in both cases there exists an isometry
g such that fixes the bisector and g(p) = q.

Suppose that p and q project at Σ to the same point x. Then p and q belong to the
same slide of E. Let us define an isometry g fixing x and the bisector. We denote by v the
tangent vector to the real spine γ at x. As the isometries fixing the bisector also fix γ, g
satisfies dg(v) = ±v. Moreover, as isometries preserve the holomorphic angle dg(Jv) = ±Jv.
Thus, g fixes the complex spine Σ and its orthogonal complement at x, which is the slide
containing p and q, and is isometric to CHn−1. Now, in CHn−1 there exists an isometry g̃
such that g̃(p) = q (since CHn−1 is a homogeneous space). Therefore, g defined by g(x) = x,
dg(v) = ±v, dg(Jv) = ±Jv and dg(u) = d̃g(u), for all u ∈ 〈v, Jv〉⊥, gives an isometry of
CKn(ε) fixing E and such that g(p) = q.

Suppose that p and q do not project at Σ to the same point. Let x = ΠΣp and y = ΠΣq.
Note that x, y ∈ γ since p and q are points in the bisector. Then, there exists a reflection ρ
such that ρ(x) = y and ρ(γ) = γ. Thus, dρ takes the orthogonal space of {γ′x, Jγ′x} to the
orthogonal space of {γ′y, Jγ′y}. Moreover, q̃ = ρ(q) satisfies ΠΣq̃ = ΠΣq. If we consider the
points q̃ and q, then we are in the previous case and we know that there exists an isometry g
such that g(q̃) = q.

From this proposition we have that the subset of bisectors containing a point is a non-
compact set, in the space of bisectors. In the next proposition, we prove that the measure of
bisectors meeting a regular domain is infinite.

Remark 5.1.9. Denote by dL the invariant density of the space of bisectors B and by dL1

the invariant density of the space of real geodesics in CHn. By the correspondence between
geodesics and bisectors we have

dL = dL1.

If Σ denotes the complex line containing a real geodesic γ, then the density of the space
of real geodesics can be expressed as

dL1 = dLΣ
1 dΣ,
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where dΣ denotes the invariant density of complex lines and dLΣ
1 the invariant density of the

space of real geodesics contained in Σ. Using polar coordinates ρ, θ in Σ we get

dLΣ
1 dΣ = cos4ε(ρ)dρdθdΣ. (5.1)

Proposition 5.1.10. The measure of bisectors meeting a regular domain in CKn(ε) with ε < 0
is infinite.

Proof. We prove that the measure of bisectors intersecting a ball B of radius R in CKn(ε) is
infinite, i.e. ∫

B
χ(B ∩ L)dL = +∞.

Consider the expression for the density of bisectors in (5.1). Denote the volume element
of CKn(ε) by dx. Fixed a bisector L by x, then dx can be expressed as dx = dx1dxL where
dxL denotes the volume element in the bisector and dx1 the length element in the direction
Nx orthogonal to the bisector at x.

If Ny is the normal vector to the bisector at y = ΠΣ(x), then the plane spanned by Ny

(which coincides with the normal vector to the real spine inside Σ) and the tangent vector u
to the geodesic joining y and x is a totally real plane and contains Nx.

Thus, the plane expy(span{Ny, u}) is isometric to H2(ε). If r denotes the distance between
y and x, then dx1 = cosε(r)dy1 where dy1 denotes the length element in the direction Ny.

In the previous remark, we give an expression for dL1. Now, we use it taking polar
coordinates with respect to y ∈ Σ, so ρ = 0. Then, dy1 = dρ and

dxLdL1 = dxLdL
Σ
1 dΣ = dxLdθdρdΣ = dθdxLdy1dΣ =

1
cosε(r)

dθdΣdx.

On the other hand, fixed a regular domain Ω ⊂ CKn(ε) it follows, for some constant C > 0,
vol(Ω) < 1

Cχ(Ω).
Then,∫

B
χ(B ∩ L)dL > C

∫
B

vol(B ∩ L)dL = C

∫
B

∫
B∩L

dxLdL

= C

∫
B

∫
LC

1

∫ 2π

0

1
cosε(r)

dθdΣdx = 2πC
∫

B

∫
LC

1

1
cosε(r)

dΣdx

(1.16)
= 2πC

∫
B

∫
GC

n,n−1

∫
LC

(n−1)[x]

cos2ε (r)
cosε(r)

dpn−1dGn,n−1dx

= 2πvol(B)
∫

CHn−1(ε)
cosε(r)dx = +∞.

5.2 Variation of the measure of planes meeting a regular do-
main

At Chapter 4 we give an expression for the measure of complex r-planes meeting a regular
domain in CKn(ε). Now, we give a generalization of this result for the space of (k, p)-planes
in Cn, and for the space of totally real k-planes in CKn(ε).

First, we need the expression of the density of the space of (k, p)-planes with respect to
the forms ωij defined at (1.13).
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Lemma 5.2.1. 1. In Cn, the space Lk,p is a homogeneous space and

Lk,p
∼= U(n) n Cn/(U(p)×O(k − 2p)× U(n− k + p) n Rn).

Let {g; g1, g2, ..., g2n−1, g2n} with g2i = Jg2i+1 be a J-moving frame adapted to a (k, p)-
plane in g such that {g1, Jg1, ..., gp, Jgp, g2p+1, ..., g2k−1} expand the tangent space to the
(k, p)-plane. The invariant density of Lk,p is given by

dLk,p =

∣∣∣∣∣∣
∧
i

ωi

∧
j,i

ωji

∣∣∣∣∣∣ (5.2)

where i ∈ {2p+2, 2p+4, ..., 2k, 2k+1, 2k+2, ..., 2n} and j ∈ {1, 3, ..., 2p− 1, 2p+1, 2p+
3, ..., 2k − 1}.

2. In CKn(ε), ε 6= 0, the space of complex p-planes LC
p and the space of totally real k-planes

LR
k are homogeneous spaces and

LC
p
∼= Uε(n)/(Uε(p)× U(n− p)),

LR
k
∼= Uε(n)/(Oε(k)× U(n− k)),

where

Uε(n) =
{
U(1 + n), if ε > 0,
U(1, n), if ε < 0.

, Oε(k) =
{
O(1 + k), if ε > 0,
O(1, k), if ε < 0.

Moreover, fixed a J-moving frame as in the previous statement, the expression (5.2)
remains true.

Proof. 1. By Lemma 1.5.1 we have that the isometry group of Cn acts transitively over
J-basis. Thus, there exists an isometry that carries a fixed (k, p)-plane to another.

The isotropy group of a (k, p)-plane in Cn is isomorphic to U(p)×O(k−2p)×U(n−k+p)
since (k, p)-planes in Cn are totally geodesic submanifolds and the tangent space at each
point is isometric to Cp ⊕ Rk−2p.

The density can be obtained using the theory of moving frames that we have discussed
in Section 1.3.

2. The arguments for the previous case are also valid, since we restrict to totally geodesic
submanifolds.

The following proposition is a generalization of the Proposition 4.2.1 for any (k, p)-plane
in Cn.

Proposition 5.2.2. Let Ω ⊂ Cn be a regular domain, X a smooth vector field defined at Cn

with φt the flow associated to X and Ωt = φt(Ω). Then, in the space of (k, p)-planes Lk,p in
Cn, it is satisfied

d

dt

∣∣∣∣
t=0

∫
Lk,p

χ(Ωt ∩ Lk,p)dLk,p =
∫

∂Ω
〈∂φ/∂t,N〉

∫
Gn,k,p(Tx∂Ω)

σk(II|V )dV dx

where N is the outward normal field at ∂Ω and σk(II|V ) denotes the k-th symmetric elementary
function of II restricted to V ∈ Gn,k,p(Tx∂Ω), the Grassmanian of the (k, p)-planes contained
in the tangent space of ∂Ω at x.
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It is also satisfied the following extension of Proposition 4.2.1 for totally real planes in
CKn(ε).

Proposition 5.2.3. Let Ω ⊂ CKn(ε) be a regular domain, X a smooth vector field defined at
CKn(ε) with φt the flow associated to X and Ωt = φt(Ω). Then, in the space of totally real
k-plane LR

k in CKn(ε), it is satisfied

d

dt

∣∣∣∣
t=0

∫
LR

k

χ(Ωt ∩ Lk,p)dLk,p =
∫

∂Ω
〈∂φ/∂t,N〉

∫
Gn,k,0(Tx∂Ω)

σk(II|V )dV dx

where N is the outward normal field at ∂Ω and σk(II|V ) denotes the k-th symmetric elementary
function of II restricted to V ∈ Gn,k,0(Tx∂Ω), the Grassmanian of the totally real k-planes
contained in the tangent space of ∂Ω at x.

Proof. This proof is analog to the proof of Proposition 4.2.1, since the expression for the density
of the space of totally real planes in (5.2) holds. We just have to modify the construction of
the map γ in (4.7).

For every x ∈ ∂Ω consider the curve c(t) = ϕt(x). For every t, let Dc(t) = 〈Nc(t), JNc(t)〉⊥ ⊂
dϕt(Tx∂Ω) the complex hyperplane tangent to ϕt(∂Ω) at c(t). If ∇∂t denotes the covariant
derivative of CKn(ε) along c(t), we define

∇D
∂tX(t) = πt(∇∂tX(t))

where πt : Tc(t)CKn(ε) → Dc(t) denotes the orthogonal projection. Given a vector X ∈ Tx∂Ω,
there exists a unique vector field X(t) defined along c(t) such that ∇D

∂tX(t) = 0 (it can be
proved in the same way as the existence of the usual parallel translation). This define a linear
map ψt : Dx → Dc(t), which preserves the complex structure J since

∇D
∂tJX(t) = πt(∇∂tJX(t)) = πt(J∇∂tX(t)) = Jπt(∇∂tX(t)).

Finally, we extend ψt linearly to ψt : Tx∂Ω → dϕt(Tx∂Ω) such that ψt(JNx) = JNc(t). This
map takes totally real planes into totally real planes. So, we can define the new map γ as

γ : Gn,k,p(T∂Ω)× (−ε, ε) −→ Lk,p

((x, V ), t) 7→ expφt(x) ψt(V ) .

5.3 Measure of real geodesics in CKn(ε)

The following result, obtained straightforward from the last proposition, states that in complex
space forms, the measure of real geodesics meeting a regular domain is a multiple of the area
of the domain (as in real space forms).

Theorem 5.3.1. Let Ω ⊂ CKn(ε) be a regular domain, let X be a smooth vector field over
CKn(ε), let φt be the flow associated to X and let Ωt = φt(Ω). Then

d

dt

∣∣∣∣
t=0

∫
LR

1

χ(Ωt ∩ L1)dLR
1 = O2n+1(B̃2n−2,n−2(Ω) + Γ̃2n−2,n−1(Ω))

and ∫
LR

1

χ(Ω ∩ L1)dLR
1 = ω2nµ2n−1,n−1(Ω) =

ω2n

2
vol(∂Ω).
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Proof. From Proposition 5.2.2 we have

d

dt

∣∣∣∣
t=0

∫
LR

1

χ(Ωt ∩ L1)dLR
1 =

∫
∂Ω
〈∂φ/∂t,N〉

∫
GR

n,1,0(Tx∂Ω)
σ1(II|V )dV dx.

Let us study the integral with respect to the Grassmanian of geodesics in the tangent space
of each point x ∈ ∂Ω. We denote by {f1, . . . , f2n−1} the principal directions at x. Then,∫

GR
n,1,0(Tx∂Ω)

σ1(II|V )dV =
1
2

∫
S2n−1

kn(v)dv =
1
2

2n−1∑
i=1

∫
S2n−1

〈v, fi〉2kidv

=
1
2

2n−1∑
i=1

ki

∫
S2n−1

〈v, fi〉2dv
(3.1.2)

=
O2n−1

4n

2n−1∑
i=1

ki =
O2n−1(2n− 1)

4n
tr(II).

Thus, by Examples 2.4.20.3 and 2.4.20.4

d

dt

∣∣∣∣
t=0

∫
LR

1

χ(Ωt ∩ L1)dLR
1 =

O2n−1(2n+ 1)
4n

∫
∂Ω
〈X,N〉tr(II)dx

=
O2n−1

4n

∫
N(Ω)

〈X,N〉
(

1
(n− 1)!

γ ∧ θn−1
2 +

1
(n− 2)!

β ∧ θ1 ∧ θn−2
2

)
=
O2n−1

4n!

(∫
N(Ω)

〈X,N〉γ ∧ θn−1
2 + (n− 1)

∫
N(Ω)

〈X,N〉β ∧ θ1 ∧ θn−2
2

)
=

ω2n

2 (n− 1)!

(
Γ̃′2n−2,n−1(Ω) + (n− 1)B̃′

2n−2,n−2(Ω)
)

= O2n+1(B̃2n−2,n−2(Ω) + Γ̃2n−2,n−1(Ω)).

In Cn, the valuation
∫
LR

1
χ(∂Ω∩L1)dL1 has degree 2n−1, so, it is a multiple ofB2n−1,n−1(Ω),

which has variation (cf. Proposition 4.1.7)

δXµ2n−1,n−1(Ω) = cn,2n−1,n−1(2c−1
n,2n−2,n−1Γ̃2n−2,n−1(Ω) + c−1

n,2n−2,n−2(n− 1)B̃2n−2,n−2(Ω))

= cn,2n−2,n−1(Γ̃′2n−2,n−1(Ω) + (n− 1)B̃′
2n−2,n−2(Ω))

=
1

(n− 1)!ω1
(Γ̃′2n−2,n−1(Ω) + (n− 1)B̃′

2n−2,n−2(Ω)).

Therefore, comparing both variations we get the stated result in Cn. The same expression
holds for ε 6= 0 since the variation of µ2n−1,n−1 does not depend on ε.

The relation with the volume of the boundary of the domain is obtained from the relation
of β2n−1,n−1 with the second fundamental form given in Example 2.4.20.5.

5.4 Measure of real hyperplanes in Cn

The measure of real hyperplanes intersecting a regular domain in Cn also follows immediately
from Proposition 5.2.2. This particular case has interest by its own since real hyperplanes are
submanifolds of codimension 1.

Theorem 5.4.1. Let Ω ⊂ Cn be a regular domain, X a smooth vector field over Cn, φt the
flow associated to X and Ωt = φt(Ω). Then

d

dt

∣∣∣∣
t=0

∫
L2n−1,n−1

χ(Ωt ∩ L2n−1,n−1)dL2n−1,n−1 = O2n+1Γ̃0,0(Ω)

and ∫
L2n−1,n−1

χ(Ω ∩ L2n−1,n−1)dL2n−1,n−1 = ω2n−1µ1,0(Ω).
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Proof. From Proposition 4.2.1 we have

d

dt

∣∣∣∣
t=0

∫
L2n−1,n−1

χ(Ωt ∩ L2n−1,n−1)dL2n−1,n−1 =
∫

∂Ω0

〈X,N〉
∫

Gn,2n−1,n−1(Tx∂Ω)
σ2n−1(II|V )dV dx

=
∫

∂Ω
〈X,N〉σ2n−1(II)dx

=
∫

N(Ω)
〈X,N〉 1

(n− 1)!
γ ∧ θn−1

0

=
2c−1

n,0,0,

(n− 1)!
Γ̃0,0(Ω).

In Cn, the valuation
∫
L2n−1,n−1

χ(∂Ω ∩ L2n−1,n−1)dL2n−1,n−1 has degree 1, thus, it is a
multiple of µ1,0, which has variation

δXµ1,0 = 2cn,1,0c
−1
n,0,0Γ̃0,0.

Then, comparing both expressions we obtain the result.

Remark 5.4.2. From Example 2.4.20, it follows the equality

µ1,0(Ω) =
1

ω2n−1

∫
∂Ω

det(II|D) =
1

ω2n−1
MD

2n−2(∂Ω).

On the other hand, there is just one linearly independent valuation in the space of continuous
translation and U(n)-invariant valuations in Cn of degree 1. Thus,

µ1,0(Ω) = cM2n−2(∂Ω),

and the measure of real hyperplanes in Cn meeting a regular domain is a multiple of the
so-called “mean width”, as in the Euclidean space.

5.5 Measure of coisotropic planes in Cn

A subspaces of Cn is called coisotropic if its orthogonal is a totally real plane.

Lemma 5.5.1. The (2n− p, n− p)-planes in Cn are the coisotropic planes.

Proof. If L ∈ L2n−p,n−p, then L⊥ has dimensió 2n − (2n − p) = p. The dimension of the
maximal complex subspace contained in L⊥ is n− (n− p)− p = 0. Thus, L⊥ is a totally real
plane.

Reciprocally, if L⊥ is a totally real p-plane, then L has dimension 2n− p and the maximal
complex subspace has dimension n− p.

Lemma 5.5.2. Let S ⊂ Cn be a hypersurface and L ∈ L2n−p,n−p, p ∈ {1, . . . , n}, be a
(2n−p, n−p)-plane tangent in S at p. If N denotes a normal vector to S at x, then JN ∈ TxL.

Proof. As L is a (2n−p, n−p)-plane, we can consider, at each point, a basis of its tangent space
of the form {e1, Je1, . . . , en−p, Jen−p, en−p+1, en−p+2, . . . , en}, in a way such that Jei⊥TxL for
i ∈ {n−p+1, . . . , n}. Moreover, we can complete this basis to a basis of TxCn with the vectors
{Jen−p+1 , . . . , Jen}.

On the other hand, at x ∈ L ∩ S, is it satisfied TxL ⊂ TxS, thus, N⊥TxL, i.e.

〈N, ei〉 = 0, ∀ i ∈ {1, . . . , n}, (5.3)
〈N, Jej〉 = 0, ∀ j ∈ {1, . . . , n− p}.

Now, if JN =
∑n

i=1 αiei +
∑n

i=1 βiJei, then N = −
∑n

i=1 αiJei +
∑n

i=1 βiei. Using (5.3)
we get JN =

∑n
i=n−p+1 αiei. Thus, JN ∈ TxL.
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From this lemma, we can prove the following result.

Theorem 5.5.3. Let Ω ⊂ Cn be a regular domain, X a smooth vector field defined in Cn, φt

the flow associated to X and Ωt = φt(Ω). Then,

d

dt

∣∣∣∣
t=0

∫
L2n−p,n−p

χ(Ωt ∩ L)dL =
vol(Gn,2n−p,n−p)ω2n−p+1

(n− 1)!
(2n− p+ 2)

(
n

p− 1

)−1

· (5.4)

·
b p−1

2
c∑

q=max{0,p−n−1}

4q−p+1

(2n+ 2q − 2p+ 3)

(
2n+ 2q − 2p+ 1
n+ q − p+ 1

)−1

Γ̃p−1,q(Ω),

and∫
L2n−p,n−p

χ(Ω ∩ L)dL =
vol(Gn,2n−p,n−p)ω2n−p

(n− 1)!

(
n

p− 1

)−1

·

·
b p

2
c∑

q=max{0,p−n}

(
2n+ 2q − 2p− 1
n+ q − p− 1

)−1 4q−p

2n+ 2q − 2p+ 1
µp,q(Ω).

Proof. First of all, we prove that for the space of coisotropics planes, the variation of the
measure does not have contribution in B̃p,q. From Proposition 5.2.2 we have

d

dt

∣∣∣∣
t=0

∫
L2n−p,n−p

χ(Ωt ∩ L)dL =
∫

∂Ω
〈∂φ/∂t,N〉

∫
Gn,2n−p,n−p(Tx∂Ω)

σ2n−p(II|V )dV dx

but each V ∈ Gn,2n−p,n−p(Tx∂Ω), by the previous lemma, contains the JN direction (with N
the outward normal vector to ∂Ω at x), so that II|V always contains the entry corresponding
to the normal curvature of the direction JN . From Lemma 2.4.18 we have that only the
polynomials obtained from φ∗(γk,q) contain this entry of the second fundamental form.

In order to find the constants, we solve a linear system. First, note that the functional∫
L2n−p,n−p

χ(Ω ∩ L)dL is a valuation in Cn with homogeneous degree p. Thus, it can be
expressed as a linear combination of the Hermitian intrinsic volumes with the same degree∫

L2n−p,n−p

χ(Ω ∩ L)dL =
b p−1

2
c∑

q=max{0,p−n}

Ap,qµp,q(Ω) (5.5)

for some Ap,q, which we want to determine.
Taking the variation in both sides, we find the value of these constants. By Proposition

4.1.7, the variation on the right hand side of (5.5) is

b p
2
c−1∑

q=max{0,p−n−1}

(Ap,q2cn,p,qc
−1
n,p−1,q(p− 2q)2 (5.6)

−Ap,q+12cn,p,q+1c
−1
n,p−1,q(n− p+ q + 1)(q + 1))Γ̃p−1,q

+ (Ap,q+12cn,p,q+1c
−1
n,p−1,q(n− p+ q + 3/2)(q + 1)

−Ap,q2cn,p,qc
−1
n,p−1,q(p− 2q)(p− 2q − 1))B̃p−1,q

+Ap,b p
2
c2cn,p,b p

2
ccn,p−1,b p

2
c(p− 2bp

2
c)2Γ̃p−1,b p

2
c.

Imposing that the variation vanishes on B̃p−1,q we get some equations, from which we obtain
the relations

Ap,q+1 =
n− p+ q + 1

(n− p+ q + 3/2)
Ap,q. (5.7)
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So, each Ap,q+1 is a multiple of Ap,max{0,p−n}. To find this value, we need another equation,
obtained taking II|D = λId, λ ∈ R+, and equation the expression (5.6) with the variation of
the Proposition 5.2.2. Then, for each (n, r) we have a compatible linear system, since constant
in (5.5) exist. Moreover, by (5.7) they are unique. Doing so, we get, in the same way as in the
proof of Proposition 4.3.1, the desired result. Finally, we get the variation substituting the
obtained values of Ap,q at (5.6).

An interesting particular case of the last theorem is the case of Lagrangian planes. This is
the case stated by Alesker [Ale03] as a remarkable case of study. From the previous theorem
we can give explicitly the constant in the theorem of Alesker reproduced at 2.3.5, but with
respect to the Hermitian intrinsic volumes defined by Bernig-Fu, and not directly by the bases
defined by Alesker.

Corollary 5.5.4. Let Ω be a regular domain in Cn with piecewise smooth boundary. Then,

∫
LR

n

χ(Ω ∩ L)dL =
vol(Gn,n,0)ωn

n!

bn−1
2

c∑
q=0

(
2q − 1
q − 1

)−1 4q−n

2q + 1
µn,q(Ω).

where LR
n denotes the space of Lagrangian planes in Cn.

5.6 Measure of Lagrangian planes in CKn(ε)

Using the same techniques as in Chapter 4, it can be proved the following result.

Theorem 5.6.1. Let Ω ⊂ CKn(ε) be a regular domain, X a smooth vector field defined at
CKn(ε), φt the flow associated to X and Ωt = φt(Ω). Then,

d

dt

∣∣∣∣
t=0

∫
LR

n

χ(Ωt ∩ L)dL = vol(Gn,n,0)ωn+1
(n+ 2)
n!

bn−1
2

c∑
q=0

4q−n+1

2q + 3

(
2q + 1
q + 1

)−1

Γ̃n−1,q(Ω),

and
if n is odd

∫
LR

n

χ(Ω ∩ L)dL =
vol(Gn,n,0)ωn

n!

n−1
2∑

q=0

(
2q − 1
q − 1

)−1 4q−n

2q + 1
µn,q(Ω), (5.8)

and if n is even∫
LR

n

χ(Ω ∩ L)dL =
vol(Gn,n,0)

n!
· (5.9)

·

 n
2∑

q=0

(
2q − 1
q − 1

)−1 4q−nωn

2q + 1
µn,q(Ω) +

n
2∑

i=1

εi
(

n
n
2 + i

)−1 2−n+1ωn−2i

n+ 1
µn+2i, n

2
+i(Ω)

 .

Proof. In the same way as in the proof of Theorem 4.3.5, it is enough to prove that the
variation in both sides coincides.

The variation on the left hand side of (5.9) and (5.8) coincides and is independent on ε.
Thus, it coincides with the variation in (5.4).

We compute the variation on the right hand side by using Proposition 4.1.7. Here, we just
reproduce the computations when n is odd. For n even, a similar, but longer study can be
done to verify expression (5.9).



5.6 Measure of Lagrangian planes in CKn(ε) 91

Denote by En(Ω) the right hand side of (5.8). Then, by (5.4) we have

δXEn(Ω)=
vol(Gn,n,0)ωn

n!

n−1
2∑

q=0

(
2q − 1
q − 1

)−1 4q−n

2q + 1
2cn,n,q·

·
(
c−1
n,n−1,q(n− 2q)2Γ̃n−1,q − c−1

n,n−1,q−1q
2Γ̃n−1,q−1

+ c−1
n,n−1,q−1q(q + 1/2)B̃n−1,q−1 − cn,n−1,q(n− 2q)(n− 2q − 1)B̃n−1,q

+ ε(c−1
n,n+1,q+1(n− 2q)(n− 2q − 1)B̃n+1,q+1 − c−1

n,n+1,qq(q + 1/2)B̃n+1,q)
)

=2
vol(Gn,n,0)ωn

n!
{

n−3
2∑

q=0

{

(
cn,n,q4q−n(n− 2q)2

(2q + 1)
(
2q−1
q−1

) − cn,n,q+14q−n+1(q + 1)2

(2q + 3)
(
2q+1

q

) )
c−1
n,n−1,qΓ̃n−1,q

+

(
cn,n,q+14q−n+1(q + 1)(q + 3/2)

(2q + 3)
(
2q+1

q

) − cn,n,q4q−n(n− 2q)(n− 2q − 1)
(2q + 1)

(
2q−1
q−1

) )
c−1
n,n−1,qB̃n−1,q}

+ε

n−1
2∑

q=1

(
cn,n,q−14q−n−1(n− 2q + 2)(n− 2q + 1)

(2q − 1)
(
2q−3
q−2

) −
cn,n,q4q−nq(q + 1

2)

(2q + 1)
(
2q−1
q−1

) )
c−1
n,n+1,qB̃n+1,q}.

In order to prove the result, it suffices to prove that this expression is independent on ε. As
for ε = 0 we know that δXEn(Ω) coincides with (5.4), we get the result.

Now, to prove the independence of ε, we collect the coefficient for each B̃n−1,q and B̃n+1,q,
and we prove that they vanish.





Appendix

This appendix contains a constructive proof of Theorems 4.3.5 and 4.4.1.

Proof of Theorem 4.3.5

We prove that it is possible to find constants αk,q such that

∫
LC

r

χ(Ω ∩ Lr)dLr =
∑
k,q

αk,qBk,q(Ω) +
bn/2c∑
j=1

α2j,jΓ2j,j(Ω) + α2n,nvol(Ω) (A.10)

where max{0, k − n} ≤ q < k/2 ≤ n.
For ε = 0, the existence of these constants follows from the fact that Hermitian intrinsic

volumes constitute a basis of smooth valuations. If ε 6= 0, we cannot ensure this fact. Anyway,
we find the value of the previous constants imposing that the variation in both sides of (A.10)
coincides. This is enough to prove (A.10). Indeed, take a deformation Ωt of Ω such that Ωt

converges to a point. Then, both sides of (A.10) have the same variation and it vanishes in
the limit.

The variation of the left hand side of (A.10) is given in Corollary 4.3.3. The variation of
the right hand side can be computed using Proposition 4.1.7 and δXvol = 2B̃2n−1,n−1.

In the variation of the left hand side, just appear the terms {B̃2n−2r−1,q}q. Thus, the
variation of the right hand side can only have these terms. On the other hand, the variation
of a Hermitian intrinsic volume Bk,q with k even (resp. odd) has only terms B̃a,b and Γ̃a′,b′

with a, a′ odd (resp. even) (cf. Proposition 4.1.7). As the variation of the left hand side has
only non-vanishing terms with odd subscript, we just consider the valuations with first even
subscript. Doing also the change in (4.12), expression (A.10) reduces to∫

LC
r

χ(Ω ∩ Lr)dLr =
n−1∑
k=1

(
k−1∑

q=max{0,2k−n}

C2k,qB
′
2k,q(Ω) +D2k,kΓ′2k,k(Ω)) + dvol(Ω). (A.11)

Now, we start the study to find constants Ck,q, D2q,q, d such that

n−1∑
k=1

(
k−1∑

q=max{0,2k−n}

C2k,qδB
′
2k,q(Ω) +D2k,kδΓ′2k,k(Ω) + dδvol(Ω)

=
vol(GC

n−1,r)ω2r+1(r + 1)(
n−1

r

)(
n
r

)
 n−r−1∑

q=max{0,n−2r−1}

(
2n− 2r − 2q − 1

n− r − q

)
1

4n−r−q−1
B̃′

2n−2r−1,q(Ω)

 .

By Proposition 4.1.7, this equation gives rise to a linear system. We write this linear system
in matrix form Ax = b. Consider the vector of unknowns as

xt = (C2,0, D2,1, C4,0, C4,1, D4,2, . . . , C2c,max{0,2c−n}, . . . , D2c,c, . . . , C2n−2,n−2, D2n−2,n−1, d).
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Vector b contains the coefficient of B̃′
k,q, Γ̃′k,q given in (4.23), that is

bt=
vol(GC

n−1,r)

n!
(
n−1

r

) (
0, . . . , 0,

(
n− r

1

)(
r + 1

1

)
,

(
n− r

2

)(
r + 1

2

)
1
2
, . . . ,

(
n− r

r + 1

)(
r + 1
r + 1

)
r + 1
4r

, 0, . . . , 0
)
.

Note that b has all entries null except the ones corresponding to B̃′
2n−2r−1,q.

The coefficients of the matrix A contain the variation of each B′
2k,q and Γ′2q,q with respect

to B̃′
r,s and Γ̃′r,s. We denote by (δB′

k,q, B̃r,s), the coefficient of B̃r,s in the variation of the
valuation B′

k,q. By Proposition 4.1.7

(δB′
k,q, B̃

′
r,s) =


2q(n+ q − k + 1/2), if r = k − 1, s = q − 1

−2(k − 2q)(k − 2q − 1), if r = k − 1, s = q
2ε(k − 2q)(k − 2q − 1), if r = k + 1, s = q + 1

−2ε(n− k + q)(q + 1/2), if r = k + 1, s = q
0, otherwise.

(δB′
k,q, Γ̃

′
r,s) =


(k − 2q)2, if r = k − 1, s = q

−(n+ q − k)q, if r = k − 1, s = q − 1
0, otherwise.

(δΓ′2q,q, B̃
′
r,s) =


4q(n− q + 1/2), if r = 2q − 1, s = q − 1

−4ε((n− q)(2q + 3/2)− (q + 1)/2), if r = 2q + 1, s = q
4ε2(n− q − 1)(q + 3/2), if r = 2q + 3, s = q + 1

0, otherwise.

(δΓ′2q,q, Γ̃
′
r,s) =


−2(n− q)q, if r = 2q − 1, s = q − 1

2ε(n− q − 1)(q + 1), if r = 2q + 1, s = q
0, otherwise.

Each column of the matrix A contains the variation of a valuation B′
2k,q, Γ′2q,q or the volume.

We take the valuations B′
2k,q, Γ′2q,q in the same order as in the vector b. (The volume corre-

sponds to the last column.) That is, the columns of A contain the variation of the valuations
in the following order

(δB′
2,0, δΓ

′
2,1, δB

′
4,0, δB

′
4,1, δΓ

′
4,2, . . . , δB

′
2n−2,n−2, δΓ

′
2n−2,n−1, δvol).

We denote

δB′
2k,· = (δB′

2k,max{0,2k−n}, δB
′
2k,max{0,2k−n}+1, . . . , δB

′
2k,k−1),

δΓ′2k,· = δΓ′2k,k,

B̃′
2k+1,· = (B̃′

2k+1,max 0,2k−n+1, B̃
′
2k+1,max 0,2k−n+1+1, . . . , B̃

′
2k+1,k)

t,

Γ̃′2k+1,· = (Γ̃′2k+1,max 0,2k−n+1, Γ̃
′
2k+1,max 0,2k−n+1+1, . . . , Γ̃

′
2k+1,k)

t.
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Then, A has the following boxes structure

δB′
2,· δΓ′2,· δB′

4,· δΓ′4,· δB′
6,· δΓ′6,· δB′

8,· δΓ′8,· · · · δB′
2n−4,· δΓ′2n−4,· δB′

2n−2,· δΓ′2n−2,· δvol

B̃′
1,· ∗ ∗

Γ̃′1,· ∗ ∗
B̃′

3,· ∗ε ∗ε ∗ ∗
Γ̃′3,· ∗ε ∗ ∗
B̃′

5,· ∗ε ∗ε ∗ε ∗ ∗
Γ̃′5,· ∗ε ∗ ∗
B̃′

7,· ∗ε ∗ε ∗ε ∗ ∗
Γ̃′7,· ∗ε ∗ ∗
B̃′

9,· ∗ε ∗ε ∗ε

Γ̃′9,· ∗ε

...

B̃′
2n−3,· ∗ε ∗ε ∗ ∗

Γ̃′2n−3,· ∗ε ∗ ∗
B̃′

2n−1,· ∗ε ∗ε ∗ε ∗

We denoted by ∗ the boxes of A with non-null coefficients and independent of ε, and by ∗ε the
boxes of A with non-null coefficients (for ε 6= 0) and multiples of ε.

The structure by boxes of the linear system given by A suggests the method of resolution:
we start with the top box, and we get the value of variables C2,q and D2,1. Then we solve the
next bloc with rows B̃′

3,·, Γ̃
′
3,·, using the value of variables C2,q and D2,1. We can continue this

process, so that, once we know the value of variables C2k,q and D2k,k, we substitute it on the
equations given by the rows B̃′

2k+1,·, Γ̃
′
2k+1,·.

Recall that the independent vector b has all terms null except the ones corresponding to
B̃′

2n−2r−1,q. Thus, the linear system is homogeneous for the first equations until B̃′
2n−2r−2,q,

and we can take Ck,q = D2q,q = 0 whenever k ≤ 2n− 2r − 1.

By Theorem 4.3.1 we have a solution for the system Ax = b when ε = 0. This solu-
tion has C2n−2r,q and D2n−2r,n−r as non-null terms, and satisfies the equations until rows
B̃′

2n−2r,·, Γ̃
′
2n−2r,· also for ε 6= 0.

So, we consider for all ε ∈ R and for all a ∈ {1, ...,min{n− r, r}}

C2n−2r,n−r−a =
vol(GC

n−1,r)
4an!

(
n− 1
r

)−1(n− r

a

)(
r

a

)
,

D2n−2r,n−r =
vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

.

Now, we go on with the resolution of the linear system in CKn(ε). We study for each
c ∈ {n− r + 1, . . . , n} the submatrix of A with all rows B̃′

2c−1,q, Γ̃′2c−1,q. This matrix has the
following non-zero columns of A: δΓ′2c−4,c−2, δB

′
2c−2,·, δΓ

′
2c−2,c−1, δB

′
2c,· and δΓ′2c,c.

Suppose that we know the value of D2c−4,c−2, C2c−2,q and D2c−2,c−1. Then, we can sub-
stitute them in the equations given by the rows corresponding to B̃2c−1,q, Γ̃2c−1,q. We get
equations with C2c,q and D2c,c as unknowns. If we denote i = max{0, 2c − n}, the matrix of
the coefficients for the obtained equations (which corresponds to a matrix bloc of A indepen-
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dent of ε) is
δB2c,i δB2c,i+1 δB2c,i+2 · · · δB2c,c−2 δB2c,c−1 δΓ2c,c

B̃2c−1,i −4c(2c − 1) 2(n − 2c + 3/2)

B̃2c−1,i+1 −2(2c − 2)(2c − 3) 4(n − 2c + 5/2)

B̃2c−1,i+2 −2(2c − 4)(2c − 5)
...

B̃2c−1,c−2 −24 2(c − 1)(n − c − 1
2
)

B̃2c−1,c−1 −4 4c(n − c + 1
2
)

Γ̃2c−1,0 (2c)2 −(n − 2c + 1)

Γ̃2c−1,1 (2c − 2)2 −2(n − 2c + 2)

Γ̃2c−1,2 (2c − 4)2

...

Γ̃2c−1,c−2 42 −(c − 1)(n − 1)

Γ̃2c−1,c−1 4 −2c(n − c)

The independent term is obtained from the initial independent term b (which in these
cases is always zero) and from the part of the initial equation in which we substituted the
value of D2c−4,c−2, C2c−2,q, D2c−2,c−1. Comparing the box structure of A on page 95 and its
coefficients on page 94, we obtain that the independent term of this new linear system has
zero the terms Γ̃′2c−1,q with q ∈ {max{0, 2c − n}, ..., c − 2}, and the term Γ̃2c−1,c−1 equals to
2ε(n− c)cD2c−2,c−1.

Now, we consider the equations given by rows Γ̃′2c−1,q and B̃2c−1,max{0,2c−n} in the previous
matrix, which give a compatible linear system with one solution. The independent terms of
the equation given by equation B̃2c−1,max{0,2c−n} is ε(n−2c+2)C2c−2,max{0,2c−n−2}. The other
ones are zero. Solving this system we get the variables C2c,max{0,2c−n} and D2c,c in terms of
C2c−2,max{0,2c−n−2} and D2c−2,c−1, which we suppose known.

In order to avoid considering the maximum max{0, 2c− n− 2} we distinguish two cases.

First stage: 2c ≤ n. This case appears if 2r > n (since c ∈ {n− r + 1, . . . , n}).
The linear system we have to solve is given by the augmented matrix
−4c(2c − 1) 2(n − 2c + 3/2) ε(n − 2c + 2)C2c−2,0

(2c)2 −(n − 2c + 1)
(2c − 2)2 −2(n − 2c + 2)

. . .

−(c − 1)(n − c − 1)
4 −2c(n − c) −2εc(c − n)D2c−2,c−1


with variables {C2c,0, C2c,1, . . . , C2c,c−1, D2c,c}.

From the first two equations we obtain

C2c,0 =
ε(n− 2c+ 2)(n− 2c+ 1)

4c(n− c+ 1)
C2c−2,0,

C2c,1 =
ε(n− 2c+ 2)c

(n− c+ 1)
C2c−2,0.

For every q ∈ {0, ..., c− 2} the following relations are satisfied

(2c− 2q)2C2c,q = (q + 1)(n− 2c+ q + 1)C2c,q+1,

4C2c,c−1 − 2c(n− c)D2c,c = −2εc(n− c)D2c−2,c−1,

and we get

C2c,q+1 =
ε4q(n− 2c+ 2)!c!(c− 1)!

(n− c+ 1)(q + 1)!(n− 2c+ q + 1)!(c− q − 1)!(c− q − 1)!
C2c−2,0,

D2c,c = ε(D2c−2,c−1 +
2(n− 2c+ 2)!(c− 1)!4c−2

(n− c+ 1)!
C2c−2,0). (A.12)
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As the known constants are C2n−2r,q and D2n−2r,n−r we write the previous ones in terms
of these, using the recurrence we just obtained.

C2c,0 =
ε(n− 2c+ 2)(n− 2c+ 1)

4c(n− c+ 1)
C2c−2,0

=
εc−(n−r)(n− 2c+ 2)(n− 2c+ 1) · ... · (n− 2n+ 2r − 2 + 2)(n− 2n+ 2r − 2 + 1)

4c−(n−r)c(c− 1) · ... · (n− r + 1)(n− c+ 1)(n− c+ 2) · ... · (n− (n− r))
C2n−2r,0

(A.13)

=
εc−(n−r)(2r − n)!(n− r)!(n− c)!vol(GC

n−1,r)

4c−(n−r)(n− 2c)!c!r!4n−rn!

(
n− 1
r

)−1( r

n− r

)
=
εc−(n−r)vol(GC

n−1,r)
4cn!

(
n− 1
r

)−1(n− c

c

)
,

C2c,q+1 =
ε(n− 2c+ 2)4q(n− 2c+ 1)!c!(c− 1)!

(n− c+ 1)(q + 1)!(n− 2c+ q + 1)!(c− q − 1)!(c− q − 1)!
C2c−2,0 (A.14)

=
ε(n− 2c+ 2)4q(n− 2c+ 1)!c!(c− 1)!εc−1−(n−r)vol(GC

n−1,r)(n− c+ 1)!
(n− c+ 1)(q + 1)!(n− 2c+ q + 1)!((c− q − 1)!)24c−1n!(c− 1)!(n− 2c+ 2)!

(
n− 1
r

)−1

=
εc−(n−r)c!(n− c)!vol(GC

n−1,r)
4c−q−1(q + 1)!(n− 2c+ q + 1)!(c− q − 1)!(c− q − 1)!n!

(
n− 1
r

)−1

=
εc−(n−r)vol(GC

n−1,r)
4c−q−1n!

(
n− 1
r

)−1( c

q + 1

)(
n− c

c− q − 1

)
,

D2c,c = ε

(
D2c−2,c−1 +

2(n− 2c+ 2)!(c− 1)!4c−2

(n− c+ 1)!
C2c−2,0

)
= ε

(
D2c−2,c−1 +

2(n− 2c+ 2)!(c− 1)!4c−2

(n− c+ 1)!
εc−1−(n−r)vol(GC

n−1,r)(n− c+ 1)!
4c−1n!(c− 1)!(n− 2c+ 2)!

(
n− 1
r

)−1
)

= εD2c−2,c−1 +
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

= εc−(n−r)D2n−2r,n−r + (c− (n− r))
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

(A.15)

=
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

+ (c− (n− r))
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

=
εc−(n−r)vol(GC

n−1,r)
2n!

(c+ r − n+ 1)
(
n− 1
r

)−1

.

Thus, we get the value of the unknowns (in the vector x) until position D2bn/2c,bn/2c.

Second stage: 2c ≥ n. Note that B′
2c,q is defined if q ≥ 2c − n > 0. In this case, 2c ≥ n,

and the system we have to solve has the same structure as in the previous case (2c ≤ n) but
with less equations and unknowns. Taking the same equations as in the previous case 2c ≤ n,
we obtain, as augmented matrix,

(2c − n) ε((4c − 2n − 1)C2c−2,2c−n−1−
−4(n − c + 1)(2n − 2c + 1)C2c−2,2c−n−2)

(2n − 2c)2 −(2c − n − 1)

4 −2c(n − c) −2εc(c − n)D2c−2,c−1

.
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From the first equation, it follows

C2c,2c−n =
ε

2c− n
((4c−2n−1)C2c−2,2c−n−1−2(2n−2c+2)(2n−2c+1)C2c−2,2c−n−2). (A.16)

For a ∈ {0, ..., n− c}, by relation

(2n− 2c− 2a+ 2)2C2c,2c−n+a−1 = a(2c− n+ a)C2c,2c−n+a

we get

C2c,2c−n+a =
4(n− c− a+ 1)2

a(2c− n+ a)
C2c,2c−n+a−1

=
4a(n− c− a+ 1)2(n− c− a+ 2)2 . . . (n− c)2

a(a− 1) . . . 2(2c− n+ a)(2c− n+ a− 1) . . . (2c− n+ 1)
C2c,2c−n

=
4a(n− c)!(n− c)!(2c− n)!

a!(n− c− a)!(n− c− a)!(2c− n+ a)!
C2c,2c−n (A.17)

and from
4C2c,c−1 − 2(n− c)cD2c,c = −2ε(n− c)(c)D2c−2,c−1

and (A.17) we get

D2c,c = εD2c−2,c−1 +
2

c(n− c)
C2c,c−1

= εD2c−2,c−1 +
2 · 4n−c−1(n− c)!(n− c)!(2c− n)!

c(n− c)(n− c− 1)!(c− 1)!
C2c,2c−n

= εD2c−2,c−1 + 2
4n−c−1(n− c)!(2c− n)!

c!
C2c,2c−n. (A.18)

In order to obtain the value of C2c,2c−n we use the value of C2c−2,2c−n−1 and C2c−2,2c−n−2

if c ∈ {n− r, ..., bn/2c}. We consider c0 = bn+2
2 c.

From the previous case 2c ≤ n we know the value of the unknowns C2c0−2,2c0−n−1,
C2c0−2,2c0−n−2 and D2c0−2,c0−1. For n even we have (we omit the analogous computation
for n odd)

C2c0−2,2c0−n−1 = Cn,1 =
εn/2−(n−r)vol(GC

n−1,r)(n/2)!(n/2)!

4n/2−1n!((n− 2)/2)!((n− 2)/2)!

(
n− 1
r

)−1

(A.19)

=
εr−n/2vol(GC

n−1,r)
2nn!

n2

(
n− 1
r

)−1

,

C2c0−2,2c0−n−2 = Cn,0 =
εr−n/2vol(GC

n−1,r)
2nn!

(
n− 1
r

)−1

,

D2c0−2,c0−1 = Dn,n/2 =
εn/2−(n−r)vol(GC

n−1,r)
2n!

(r − n

2
+ 1)

(
n− 1
r

)−1

.

Then

Cn+2,2 =
ε

2c− n
((4c− 2n− 1)C2c−2,2c−n−1 − 2(2n− 2c+ 2)(2n− 2c+ 1)C2c−2,2c−n−2)

=
εr−n/2+1vol(GC

n−1,r)
2n+1n!

(3n2 − 2n(n− 1))
(
n− 1
r

)−1

=
εr−n/2+1vol(GC

n−1,r)
2n+1n!

n(n+ 2)
(
n− 1
r

)−1

.
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Once we know the expression of Cn+2,2 we find the value of C2c,2c−n, for every c ∈ {bn/2c, . . . , n},
using the recurrence for C2c,2c−n and C2c−2,2c−n−1. First, we have

C2c,2c−n
(A.16)

=
ε

2c− n
((4c− 2n− 1)C2c−2,2c−n−1 − 2(2n− 2c+ 2)(2n− 2c+ 1)C2c−2,2c−n−2)

(A.17)
=

εC2c−2,2c−n−2

2c− n
·

·
(

(4c− 2n− 1)4(n− c+ 1)!(n− c+ 1)!(2c− n− 2)!
(n− c)!(n− c)!(2c− n− 1)!

− 4(n− c+ 1)(2n− 2c+ 1)
)

=
4ε(n− c+ 1)

2c− n

(
(4c− 2n− 1)(n− c+ 1)− (2n− 2c+ 1)(2c− n− 1)

(2c− n− 1)

)
C2c−2,2c−n−2

=
4ε(n− c+ 1)c

(2c− n)(2c− n− 1)
C2c−2,2c−n−2.

We go on with this recurrence until C∗,∗−n with ∗ ≤ n+2
2 . In this case we know the value of

the constants, and we can find the value of C2c,2c−n.

C2c,2c−n =
(4ε)c−(n+2)/2c(c− 1) · ... · ((n+ 4)/2)(n− c+ 1)(n− c+ 2) · ... · (n/2− 1)

(2c− n)(2c− n− 1) · ... · 4 · 3
Cn+2,2

=
(4ε)c−(n+2)/2c!((n− 2)/2)!2
((n+ 2)/2)!(n− c)!(2c− n)!

Cn+2,2

=
(4ε)c−(n+2)/223

(n+ 2)n

(
c

2c− n

)
εr−n/2+1vol(GC

n−1,r)
2n+1n!

n(n+ 2)
(
n− 1
r

)−1

=
εc−(n−r)vol(GC

n−1,r)
4n−cn!

(
n− 1
r

)−1( c

2c− n

)
. (A.20)

Finally,

C2c,2c−n+a =
4a(n− c)!(n− c)!(2c− n)!

a!(n− c− a)!(n− c− a)!(2c− n+ a)!
εc−(n−r)c!vol(GC

n−1,r)
4n−c(2c− n)!(n− c)!n!

(
n− 1
r

)−1

=
εc−(n−r)vol(GC

n−1,r)
4n−c−an!

(
n− 1
r

)−1( n− c

n− c− a

)(
c

2c− n+ a

)

and

D2c,c
(A.17) and (A.20)

= εD2c−2,c−1 + 2
4n−c−1(n− c)!(2c− n)!

c!
εc−(n−r)c!vol(GC

n−1,r)
4n−c(2c− n)!(n− c)!n!

(
n− 1
r

)−1

= εD2c−2,c−1 +
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

= εc−n/2Dn,n/2 + (c− n/2)
εc−(n−r)vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

=
εc−(n−r)vol(GC

n−1,r)
2n!

(c+ r − n+ 1)
(
n− 1
r

)−1

.

To determine the value of d, the coefficient of δvol, we consider the last equation of the
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initial linear system

d

(n− 1)!
= −2ε2(2n− 1)D2n−4,n−2 − 4εC2n−2,n−2 + 2ε(3n− 1)D2n−2,n−1

= 2εr (−(2n− 1)(r − 1)− (n− 1) + (3n− 1)r)
vol(GC

n−1,r)
2n!

(
n− 1
r

)−1

=
εrvol(GC

n−1,r)
n!

n(r + 1)
(
n− 1
r

)−1

.

So,

d = εrvol(GC
n−1,r)(r + 1)

(
n− 1
r

)−1

.

Now, we have to prove that the given solution satisfies all the equations we did not use to
solve the system. This is because we cannot ensure that the equation (A.10) has solution.

Let us study first the case 2c ≤ n. Consider the matrix on page 96. The rows we did not
use correspond to B̃′

2c−1,q, q ∈ {1, ..., c − 1}. Suppose q 6= c − 1. The equations given by this
row are B̃′

2c−1,q

−(2c− 2q)(2c− 2q − q)C2c,q + (q + 1)(n− 2c+ q + 3/2)C2c,q+1

= −ε(2c− 2q)(2c− 2q − 1)C2c−2,q−1 + ε(n− 2c+ q + 2)(q + 1/2)C2c−2,q.

For q = c− 1, the equation is

2ε2(n− c+ 1)(c− 1/2)D2c−4,c−2 + 2εC2c−2,c−2 − 2ε((n− c+ 1)(2c− 1/2)− c/2)D2c−2,c−1

= −2C2c,c−1 + 2c(n− 2 + 1/2)D2c,c.

Substituting the value of each C∗,· and D∗,· given on page 97 we prove that the equations are
satisfied.

In the same way, we can prove that all equations appearing in the case 2c ≥ n are also
satisfied.

Finally, using again the relation in (4.12), we get the result with respect to {Bk,q,Γk,q}.

Proof of Theorem 4.4.1

The idea of the proof of this theorem is the same as for Theorem 4.3.5. In the same way, if the
variation δX is the same in both sides, for all differentiable vector field X, then the expression
holds.

From the Gauss-Bonnet-Chern formula, we know that χ(Ω) can be written as the integral
overN(Ω) of a differential formO(2n)-invariant, and also U(n)-invariant. Thus, by Proposition
2.4.5 there exist constants Ck,q, Dk,q, d such that

χ(Ω) =
∑
k,q

Ck,qB
′
k,q(Ω) +

bn
2
c∑

j=1

D2j,jΓ′2j,j(Ω) + dvol(Ω) (A.21)

where max{0, k − n} ≤ q < k/2 ≤ n, and B′
k,q and Γ′k,q are the valuations defined in (4.12).

Taking the variation in both sides of the previous equality we have

0 =
∑
k,q

(ck,qB̃
′
k,q(Ω) + d2q,qΓ̃′2q,q(Ω))

with ck,q and dk,q linear combination of Ck,q and D2q,q.
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Thus, we have to impose ck,q = dk,q = 0.
The variation of Γ′0,0 in CKn(ε) is (cf. Corollary 4.1.9)

δΓ′0,0(Ω) = 2ε(−(3n− 1)B̃′
1,0(Ω) + (n− 1)Γ̃′1,0(Ω) + 3ε(n− 1)B̃′

3,1(Ω)).

It is necessary to cancel the variation of the terms B̃′
1,0, B̃

′
3,1 and Γ̃′1,0. By Proposition 4.1.7 we

have that the variation of a valuation B′
k,q in CKn(ε) with k even (resp. odd) has only terms

B̃′
k′,q′ and Γ̃′k′,q′ with k′ odd (resp. even). Thus, in the expresssion (A.21) we can restrict the

value of k to k even, and (A.21) can be reduced to

χ(Ω) =
n−1∑
k=0

 k−1∑
q=max{0,2k−n}

C2k,qB
′
2k,q(Ω) +D2k,kΓ′2k,k(Ω)

+ dvol(Ω). (A.22)

The right hand side in the previous equality coincides with the right hand side of (A.11) plus
the term D0,0Γ′0,0. Thus, the variation is very similar and the linear system we have to solve
will be also very similar to the one solved in Theorem 4.3.5. The only different equations are
the ones given by c1,0 = 0, d1,0 = 0 and c3,1 = 0, that is

−ε(3n− 1)D0,0 − 2C2,0 + 2(n− 1/2)D2,1 = 0,
ε(n− 1)D0,0 + 2C2,0 − (n− 1)D2,1 = 0,

3ε2(n− 1)D0,0 + 2εC2,0 − ε(7n− 9)D2,1 − 2C4,1 + 2(2n− 3)D4,2 = 0. (A.23)

We find the value of D0,0 for ε = 0, i.e. in Cn, using the Gauss-Bonnet formula so that

D0,0 =
1

O2n−1(n− 1)!
=

1
2nω2n(n− 1)!

=
n!

2n!πn
=

1
2πn

.

The choice for the value of D0,0 ensures that both sides in (A.21) coincide when Ω collapses
to a point.

From the first two equation and the value of D0,0 we get

C2,0 =
ε

2
(n− 1)D0,0 =

ε(n− 1)
4πn

,

D2,1 = 2εD0,0 =
ε

πn
.

In order to find the value of C4,1 and D4,2 we consider the equations given by {c3,0 =
0, c3,1 = 0, d3,0 = 0, d3,1 = 0}. The equation c3,1 = 0 is the one given in (A.23), and the others
are

−ε(n− 2)C2,0 − 24C4,0 + (2n− 5)C4,1 = 0,
16C4,0 − (n− 3)C4,1 = 0,

ε(n− 2)D2,1 + C4,1 − (n− 2)D4,2 = 0.

(Note that they coincide with the ones in Theorem 4.3.5.) Solving the system given by these
3 equations and (A.23), we get that it is compatible with solution

C4,0 =
ε2

32πn
(n− 2)(n− 3), C4,1 =

ε2

2πn
(n− 2), D4,2 =

3ε2

2πn
.

To find the value of the unknowns C2c,q, D2c,c with c ≥ 3, we have to solve the same
equations as in the proof of Theorem 4.3.5. We can use the same relations if we first prove
that C4,0, C4,1 and D4,2 also satisfies (A.12). We have to check it because variables C4,0, C4,1
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and D4,2 here were obtained solving another linear system. But, it is straightforward verified.
So, we get the same relation among the unknowns.

Thus, from the equalities (A.13), (A.14), (A.15), (A.17) and (A.18), with r = n − 1, and
the computation of Cn,1, Cn,0, Dn,bn/2c in the same way as in (A.19) we have

χ(Ω) =
n−1∑
c=0

εc

πn

 c−1∑
q=max{0,2c−n}

1
4c−q

(
c

q

)(
n− c

c− q

)
B′

2c,q(Ω) +
c+ 1

2
Γ′2c,c(Ω)

+
εn(n+ 1)!

πn
vol(Ω).

Using the relation in (4.12) we get the stated expression

χ(Ω) =
n−1∑
c=0

εc

πn

 c−1∑
q=max{0,2c−n}

1
4c−q

(
c

q

)(
n− c

c− q

)
B′

2c,q(Ω) +
c+ 1

2
Γ′2c,c(Ω)

+
εn(n+ 1)!

πn
vol(Ω)

=
n−1∑
c=0

εc

πn

( c−1∑
q=max{0,2c−n}

1
4c−q

c!(n− c)!q!(n− 2c+ q)!(2c− 2q)!ω2n−2c

q!(c− q)!(c− q)!(n− 2c+ q)!
B2c,q(Ω)+

+
2(c+ 1)

2
c!(n− 2c+ c)!(2c− 2c)!ω2n−2cΓ2c,c(Ω)

)
+
εn(n+ 1)!

πn
vol(Ω)

=
n−1∑
c=0

εc

πn

( c−1∑
q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
c!(n− c)!πn−c

(n− c)!
B2c,q(Ω)

+ (c+ 1)!(n− c)!
πn−c

(n− c)!
Γ2c,c(Ω)

)
+
εn(n+ 1)!

πn
vol(Ω)

=
n−1∑
c=0

εc

πc
c!

 c−1∑
q=max{0,2c−n}

1
4c−q

(
2c− 2q
c− q

)
B2c,q(Ω) + (c+ 1)Γ2c,c(Ω)

+
εn(n+ 1)!

πn
vol(Ω).
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Hadwiger, 32
Hadwiger Theorem, 32, 36, 37
Hausdorff

distance, 30
metric, 30

Hermitian
intrinsic volume, 40, 61
product, 7

holomorphic
angle, 9
atlas, 7
curvature, 8
section, 8

homogeneous
hypersurface, 83
space, 13, 19
valuation of degree k, 31

horizontal lift, 10

intrinsic volume, 29–31
invariant

density, 19, 20
with respect to a group, 31

isometry group, 11, 14, 34
isotropy group of a complex r-plane, 19

J-bases, 14
J-moving frame, 14

(k, p)-plane, 81
Kähler

form, 8
manifold, 8

kinematic formula, 33

Lagrangian plane, 36, 90
linear

(k, p)-plane, 81
submanifold, 81

McMullen, 32
Theorem, 31

mean curvature integrals, 30, 31, 33
monotone valuation, 31
moving frame, 14

odd valuation, 31

Park, 38–40, 75

Quermasintegrale, 26
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real
hyperbolic space, 8
projective space, 8
space form, 8, 18

real spine of a bisector, 82
regular domain, 16
reproductive

formula, 33
property, 45, 56

restricted mean curvature integral, 40
r-pla complex, 17
r-pla totalment real, 17
Rumin

derivative, 61
operator, 61

second fundamental form, 30
slide of a bisector, 82
smooth valuation, 31

on a manifold, 37
space constant

holomorphic curvature, 7, 8, 14, 18
sectional curvature, 8, 18

spinal surface, 82
standard Hermitian space, 8
Steiner formula, 29, 30
symmetric elementary function, 30, 40
symplectic form, 38

template method, 33
totally

geodesic
submanifold, 17
subspace, 81

real
plane, 9
submanifold, 17
subspace, 17, 81

umbilical hypersurface, 18
translation invariant valuation, 31
trigonometric generalized functions, 10

unimodular group, 13
unit normal bundle, 16, 17
unit tangent bundle, 15
U(p, q), 11

valuation, 29


