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Abstract

We study of noncompact Euclidean cone manifolds with cone angles
less than c < 2π and singular locus a submanifold. More precisely, we
describe its structure outside a compact set. As a corollary we classify
those with cone angles < 3π/2 and those with cone angles = 3π/2.
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1 Introduction

In this paper we study non-compact orientable Euclidean cone 3-manifolds
with cone angles less than 2π. When the cone angles are ≤ π these manifolds
are classified: they play a key role in the proof of the orbifold theorem, as
they are rescaled limits of collapsing sequences of hyperbolic or spherical
cone manifolds [2, 6]. The aim of this paper is to have some understanding
when the cone angles lie between π and 2π.

We will fix an upper bound of the cone angles c < 2π. The reason is that
if we only impose cone angles < 2π, the singular locus can have infinitely
many components.

For simplicity, we will also restrict to the case where the singular set is
a submanifold.

The first tool to study those cone manifolds is the soul theorem of
Cheeger and Gromoll [5], or its cone manifold version. The soul can have
dimension 0, 1 or 2. If the dimension is 1 or 2, then the cone manifold is
easy to describe, the difficulties arise when the soul is zero dimensional (i.e.
just a point). Notice that the definition of soul is different from the one
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considered in [2], where it was adapted to cone manifolds with cone angle
≤ π.

The following proposition says that the singular locus is unknotted, pro-
vided there are no compact singular components.

Proposition 1.1 Let E be a Euclidean cone 3-manifold with cone angles
≤ c < 2π and soul a point. Assume that its singular locus Σ is a non-empty
submanifold. If all components of Σ are non-compact, then the pair (E,Σ)
is homeomorphic to R3 with some straight lines.

When there are compact singular components, we have a nice description
away from a compact set. We start with some examples. The angle defect
of a singularity is 2π minus the cone angle.

Example 1.2 Consider a Euclidean cone metric on D2 with totally geodesic
boundary. Such a metric exists if and only if the sum of the cone angle
defects is 2π. This metric can be enlarged to a complete metric on the plane
by adding a flat cylinder S1 × [0,∞), where S1 × {0} = ∂D2. Take the
product with R, so that we get a three dimensional manifold with closed
parallel geodesics. Some of those geodesics can be easily replaced by singular
geodesics, provided that the cone angle defects add up to π. See Figure 1.

The topology of the pair (E,Σ) is more involved in the next example,
but it can still be described in terms of rational tangles.

Example 1.3 The product [0, 1] × R2 is bounded by two parallel planes.
Take a geodesic on each plane such that, when parallel transported, they
intersect with an angle equal to a rational multiple of 2π. Consider the cone
manifold obtained by folding these planes along these lines, so that the folding
lines become the singular locus, with cone angle π. Then, the foliation by
segments [0, 1]×{∗} gives rise to a foliation by geodesic circles, or intervals
with end-points in the singular locus. Again, some of the closed geodesics
can be replaced by singular geodesics with small cone angle defect. The group
of transformations in the plane generated by reflections on the two lines is a
dihedral group with 2n elements, and the sum of the cone angle defects now
is bounded above by π/n. See Figure 1.

This example can be further perturbed to replace the edges with cone angle
π by several singular edges with cone angle defects whose sum is π.

Notice that away from a compact set both examples are similar.
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Figure 1: The singular locus of a cone manifold as in Example 1.2. The
underlying space is R3, and the angle defects satisfy

∑
(2π − αi) = 2π and∑

(2π − βi) ≤ π.

Theorem 1.4 Let E be a non-compact Euclidean cone 3-manifold with cone
angles ≤ c < 2π and such that Σ is a submanifold. Assume that the soul
of E is a point and that it has a compact singular component. Then there
exists a compact subset K such that:

(1) either K = D1 = D2 or ∂K = D1 ∪∂ D2, where D1 and D2 are totally
geodesic discs with geodesic boundary ∂D1 = ∂D2 = D1 ∩D2.

(2) E−int(K) can be decomposed isometrically in three product pieces: D1×
[0,+∞), D2× [0,+∞) and S × S1, where S denotes a Euclidean sector
(i.e. its boundary is two half lines) with cone points. The pieces are glued
so that Di×[0,∞)∩K = Di×{0} and ∂S×S1 = ∂D1×[0,+∞)∪∂Di×{0}
∂D2 × [0,+∞).

(3) The dihedral angle between the discs D1 and D2 in ∂K is ≤ π minus
the sum of the angle defects in the sector S.

It can happen that both discs are the same: K = D1 = D2, as in
Example 1.2.

Corollary 1.5 Let E be a cone manifold as in Theorem 1.4. If the cone
angles are < 3π

2 , then E is as in Example 1.2.
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Figure 2: The singular locus of a cone manifold as in Example 1.3.
∑

(2π−
αi) ≤ π
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Figure 3: Cone manifold as in Theorem 1.4. The interior of K is not de-
scribed in this picture and the singular locus is represented thicker. The
angle defects satisfy

∑
(2π − αi) =

∑
(2π − βi) = 2π and

∑
(2π − γi) ≤ π

Notice that in the case of Example 1.2 the topology of the singular locus
is the simplest one. In particular it is the case when cone angles are < 3π

2 .
The topology of Example 1.3 is still easy to understand in terms of

rational 2-tangles. We shall illustrate in Section 6 that when cone angles
are 3π

2 the topology may be more involved. We shall describe cone manifolds
with all cone angles precisely equal to 3π

2 .

Organization of the paper. In Section 2 we recall the basic properties
for Euclidean cone manifolds, including the soul theorem of Cheeger and
Gromoll. Section 3 deals with the case of one or two dimensional soul.
The zero dimensional case and the proof of Theorem 1.4 is the content of
Sections 4 and 5. Finally Section 6 deals with the case where all cone angles
equal 3π

2 .
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2 Euclidean cone manifolds

A Euclidean cone 3-manifold E is a smooth 3-manifold equipped with a
metric so that it is a complete length space locally isometric to

– either the Euclidean space R3 (smooth points),

– or a neighborhood of a singular edge (singular points).

The local model of the singular points is given, in cylindrical coordinates,
by the following metric.

ds2 = dr2 +
( α

2π
r
)2
dθ2 + dh2

where r ∈ (0,+∞) is the distance from the singular axis Σ, θ ∈ [0, 2π) is the
rescaled angle parameter around Σ and h ∈ R is the distance along Σ. The
angle α > 0 is called the singular angle. When α = 2π this is the standard
smooth metric of R3.

The singular locus will be denoted by Σ and, according to our definition,
Σ is a submanifold of codimension two and the cone angle is constant along
each connected component. For cone manifolds in general one must allow
singular vertices too.

We shall also consider two dimensional cone manifolds; i.e. by taking
polar coordinates (r, θ) in the previous description of the singularity, so that
the singular locus is discrete.

Remark 2.1 Since we assume that the cone angles are less than 2π, the
cone manifolds considered here are Alexandrov spaces of non-negative cur-
vature, hence the corresponding comparison results apply (cf. [3, 4]): To-
ponogov comparison for triangles and hinges, the splitting theorem, etc.

For instance, using comparison results, in [1, Prop. 8.3] it is proved:

Proposition 2.2 The number of singular components of a Euclidean cone
3-manifold with cone angles ≤ c < 2π is finite.
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Soul and Cheeger Gromoll filtration. We briefly recall the construc-
tion of Cheeger Gromoll filtration (cf. [5, 2]). Let E be a non-compact Eu-
clidean cone manifold without singular vertices and cone angles ≤ c < 2π.
Given a point p ∈ E, we consider all rays r : [0,+∞) → E starting at
p. Since E has non-negative curvature in the Alexandrov sense, Busemann
functions br : C → R are convex. For every t, define

Ct = {x ∈ E | br(x) ≤ t for all rays r starting at p}.

The sets Ct are convex, give a filtration of E, and if Ct2 is not empty then
for t2 ≥ t1

∂Ct1 = {x ∈ Ct2 | d(x, ∂Ct2) = t2 − t1}.
To construct the soul, we start with the smallest t for which Ct is not
empty. Then Ct is a convex manifold of dimension less than 3. If this
lower dimensional manifold has boundary, we continue to decrease the set by
taking distance subsets to the boundary. We stop when we get a submanifold
without boundary (possibly a point), which is the soul S.

The sets of this filtration are totally convex, i.e. no geodesic segment
with endpoints in this sets can exit them, even if the geodesic is not totally
minimizing. The fact that S is totally convex, determines the topology, and
even the metric when dimS = 2, 1. Next we discuss the possible dimensions
of S.

3 One or two dimensional soul

Let E be a non-compact Euclidean cone 3-manifold with cone angles ≤ c <
2π, and denote by S its soul.

Proposition 3.1 If dim(S) = 2, then E is isometric to:

– either a product of R with a Euclidean 2-sphere with cone points,

– or its orientable quotient, a bundle over the projective plane with cone
points.

On the Euclidean 2-sphere the cone angle defects add up to 4π, and on
the projective plane, 2π. In particular, the upper bound c < 2π gives an
explicit bound on the number of singular components.

Proof: If the soul S is orientable, then E has two ends and, by the splitting
theorem, E = S × R. Since S is a compact Euclidean surface, it must
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Figure 4: Cone manifold with soul S1.

be a sphere with cone points, whose angle defects add up to 4π. If S is
non-orientable, then E is the orientable bundle over S, which is a projective
plane. By taking the double cover, we reduce to the previous case. �

Proposition 3.2 If dim(S) = 1, then E is isometric to the metric suspen-
sion of a rotation in a plane with cone points.

More precisely, E is isometric to [0, 1]×F 2/ ∼, where F 2 is a plane with
singular cone points, and ∼ identifies {0} ×F 2 with {1} ×F 2 by a rotation
(possibly trivial).

Again the cone angle defects on F 2 add up to < 2π, hence the bound
c < 2π gives an explicit bound on the number of singular components. If
there are singular components other that the suspension of points in F 2

fixed by the rotation, then the rotation has to be of finite order. In this
case E is a solid torus and the singular locus is made of fibers of a Seifert
fibration with at most one singular fibre.

Proof: Since S is one dimensional, S ∼= S1. In particular π1E ∼= Z.
In the universal covering, S lifts to a line, hence by the splitting theorem
Ẽ = R × F 2 for F 2 a two dimensional cone manifold. The monodromy of
the covering acts on F 2 by isometries, with a fixed point corresponding to
the soul.

Notice that F 2 is a non-compact Euclidean cone manifold with non-
empty singular locus. Hence the soul of F 2 is a point and F 2 is a plane with
several cone points. �

4 Zero dimensional soul

Proposition 4.1 Let Σnoncpt denote the union of the non-compact compo-
nents of Σ. If dim(S) = 0, then the pair (E,Σnoncpt) is homeomorphic to
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R3 with some straight lines. The sum of the cone angle defects of these
non-compact components is ≤ 2π.

In particular, if Σ has no compact components, the singular locus is
unknotted. Notice that again we have an explicit bound of the number of
non-compact components of Σ coming from the upper bound on the cone
angles ≤ c < 2π.

Proof: Since the soul S is a point, all sets of the Cheeger-Gromoll fil-
tration are balls. Those sets are totally convex, thus they intersect each
non-compact geodesic (singular or not) in precisely an interval (possibly
empty), even if the geodesic is not minimizing. Furthermore, since the sets
of the filtration are strictly convex, if the singular locus meets the bound-
ary of one of these sets then it makes an angle of π/2 with the boundary.

This applies to the non-compact singular components of Σ, therefore, as
we increase the sets of the filtration, the singular components intersect the
sets in segments that are increasing. This implies the first assertion of the
proposition.

For the assertion about the cone angle defects, notice that the sets of the
filtration have boundary with non-negative intrinsic curvature, by convexity.
The contribution of cone points to the total curvature is larger than the cone
angle defects, and we apply Gauss–Bonnet. �

The proof of Theorem 1.4 occupies the remainder of this section and the
following one.

Proof of Theorem 1.4: finding the sector S ×R. Let C be a closed singular
geodesic in E. By comparison, every ray starting at some point of C must
be perpendicular to C. In addition, since the sets of the Cheeger-Gromoll
filtration are totally convex, either they contain C or are disjoint from C.

Lemma 4.2 Every ray starting at C is contained in a flat half-infinite cylin-
der bounded by C.

Proof: Consider r : [0,+∞)→ E a ray with r(0) ∈ C. Toponogov’s theorem
applied to the triangle with edges C and two copies of r([0, t]), when t→∞,
gives that r and C are perpendicular.

Next we show that r can be parallel transported along C by another
comparison argument. Consider a parameterized subsegment σ of C starting
at r(0) of length x. For t > 0, consider also a segment σ̄ starting at r(t)
parallel to σ along r of length x. Let s = d(σ(x), σ̄(x)). We know by
comparison that s ≤ t and we claim that s = t.
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Figure 5: Constructing the flat strip

Seeking a contradiction, assume that s < t. Choose d � 1 and set
d̄ = d(σ̄(x), r(t+ d)). See Figure 4. Since

lim
d→+∞

√
d2 + x2 − d = 0,

and t − s > 0 by hypothesis, applying comparison d can be chosen large
enough so that

d̄ ≤
√
d2 + x2 < d+ t− s.

Hence d(r(d + t), C) ≤ d̄ + s < d + t. This would imply that C has points
inside and outside the sublevel zero set of the Busemann function of r,
contradicting total convexity.

This proves that the rays can be parallel transported along C. We claim
that this transport does not have monodromy, i.e. once we have made a
whole turn around C, the ray is the same, so that it gives a cylinder. We
look at the sublevel set 0 for the Busemann function. For any vector v
tangent to this sublevel set, the angle between v and r is ≥ π/2. Hence
there is no monodromy, otherwise this level set would be two dimensional
and C smooth, but we are assuming that the cone angle at C is less than
2π. �

For p ∈ C, all rays starting at p are perpendicular to C, hence the set
of rays at p, lies in the set of directions transverse to C, which is a circle of
length equal to the cone angle. In addition, those directions form an angle
≥ π/2 with any direction tangent to the subset of the Cheeger-Gromoll
filtration. Thus it makes sense to talk about the two extremal or outermost
flat strips at C, which are the ones with larger angle.
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Lemma 4.3 The two extremal flat strips at C bound a metric product S ×
S1, where S is a 2-dimensional Euclidean sector with cone points and C is
the product of S1 with the tip of the sector.

Proof: We cut along both extremal flat strips, and consider the connected
component with angle ≤ c − π < π. We glue the two half planes by an
isometry fixing C pointwise. We call Y this new Euclidean cone manifold.
The singular geodesic C gives a singular geodesic in Y , that we also denote
by C. The new cone angle is the angle between the strips, which is < π,
since it is bounded above by the cone angle of C in E minus π (the angle
between any ray and the sets of the Cheeger-Gromoll filtration is ≥ π/2).
Since C is a closed singular geodesic in Y with cone angle < π, it must be
contained in the soul of X, because the convex hull of any point close to
C meets C (cf. [2, Lemma 4.2.5]). The soul must be C itself, since a two
dimensional soul cannot contain a closed singular geodesic. Thus Y is a
mapping torus as in Proposition 3.2. The flat strip implies that actually Y
is a product, and the lemma is clear. �

5 Asymptotic behavior

In the previous section we found the factor S ×S1. Continuing the proof of
Theorem 1.4 and, in order to analyze the rest of the manifold, we remove the
interior of the product S×S1. This space now has two ends, corresponding
to the two half-lines in the boundary of the sector S. Let X be one of the
ends, i.e. one of the unbounded components if we further remove a convenient
compact subset. We will not worry about which compact subset we have
removed to analyze X. In order to simplify the argument the proofs below
use some standard facts about conemanifolds with boundary. We leave it
as an exercise for the reader to check that the proofs can also be done by
doubling X along its boundary.

Notice that at each point in C ⊂ ∂X there is a single ray going to ∞,
since we have chosen the outermost flat strips. Thus the Tits boundary of
X is a single point. The fact that the Tits boundary does not depend on
the base point in X implies that for any two rays in X with r1(0) = r2(0),

lim
t→+∞

d(r1(t), r2(t))
t

= 0.
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Also, by looking at equivalent definitions (cf. [8]), if SR ⊂ X is the metric
sphere of radius R centered at some fixed point,

lim
R→+∞

diam(SR)
R

= 0. (1)

Lemma 5.1 Fix a point p ∈ X. For any q ∈ X, as d(p, q)→∞, the angle
between a minimizing segment to p and a ray starting at q goes to π.

Proof: Let r be any ray starting at q, and σ any minimizing segment
between p and q.

For large t, choose a segment σ′ between p and r(t). The segments σ,
σ′ and a piece of r form a triangle with vertices p, q and r(t). We want to
show that its angle at q is close to π. Let q′ be the point of σ′ such that
d(p, q) = d(p, q′). By the triangle inequality:

|d(q′, r(t))− t| ≤ d(q, q′).

Thus
|d(p, r(t))− d(p, q)− t| ≤ d(q, q′).

By Equation (1), the ratio d(q, q′)/d(p, q) is arbitrarily small, (independently
of the choice of t and σ′). By choosing t arbitrarily large, comparison implies
that the angle at q between σ and r is arbitrarily close to π. �

q
g

g(t)

p
r

sp
s

PSfrag replacements
p
q
q′

σ
σ′

r
r(t)

Figure 6: The triangle p, q, r(t) in the proof of Lemma 5.1.

Corollary 5.2 (1) The angle at q between any two minimizing segments to
p goes to 0.

(2) The angle at q between any two rays starting at q goes to 0.

(3) If q ∈ Σ ∩X, then the angle between Σ and any minimizing segment to
p goes to 0. The angle between Σ and any ray starting at q goes to 0.
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Proof: Assertions (1) and (2) are straightforward. To prove (3) we use
the upper bound on the cone angle c < 2π. The directions of σ and r are
arbitrarily close to the singular directions, because this is the only way two
directions of angle close to π can fit in the space of directions. �

Corollary 5.3 For any sequence qn → ∞, the limit of pointed cone mani-
folds (X, qn) contains a line.

Proof: Consider two points at distance dn from qn, one on a ray starting
at qn and the other one in a minimizing segment to the base point p. They
form a triangle whose angle at qn goes to π. Choose dn →∞ depending on
this angle so that the distance between q to the opposite edge of the triangle
is bounded. Thus it gives a line at the limit.

Alternatively, Lemma 5.1 implies that the slope of the Busemann func-
tion restricted to the segment pq goes to one. Hence the union of pq with a
ray converges to a line. �

It follows from this corollary and the splitting theorem that lim(X, qn) =
X∞ is a product. We need however to understand the behavior of the
singular locus. We choose qn so that the distance to the singularity is 1, and
qn is contained in a parallel copy of C ie. a smooth closed geodesic parallel
to C.

Proposition 5.4 The limit X∞ is a cone manifold X2 ×R. The singular
components of the approximates become parallel to give the cone points of
X2, so that when singular components merge at the limit then the cone angle
defects add. Moreover X2 is a disc bounded by a parallel copy of C.

If the distance between singular components is bounded below away from
zero, then X∞ is a cone manifold and the argument for Proposition 5.4
is easy (see the proof below). Thus, as a preliminary step to prove this
proposition, we need to understand how the singularities behave at the limit.

Denote by Σ1, . . . ,Σk the singular components of X. Take xin to be the
intersection of Σi with the same level set as qn for the Busemann function.
Assume that d(x1

n, x
2
n)→ 0 faster than the other d(xin, x

j
n), i.e. d(x1

n, x
2
n) ≤

d(xin, x
j
n). We take the rescaled limit

lim(
1

d(x1
n, x

2
n)
X,x1

n) = (X1
∞, x

1
∞).

The singular component Σ1 becomes a line at the limit X1∞, because by
Lemma 5.1 the slope of the Busemann function on Σ1 converges to one.
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Lemma 5.5 The injectivity radius in 1
d(x1

n,x
2
n)
X at x1

n is bounded below away
from zero.

Proof: Consider a small ball centered at x1
n. It is a metric ball with a

singular diameter (which is a piece of Σ1). Increase its radius until the ball
intersect itself or meets a singularity along its boundary; the radius of this
ball is the injectivity radius. We control it by finding lower bounds for the
length of geodesic paths γ joining x1

n to Σ and to the length of geodesic
loops l with base point x1

n.
Let γ be a geodesic path joining x1

n to another singular point yn, so that
γ itself is not contained in the singular locus. By taking the shortest one, we
may assume that γ is perpendicular to Σ at yn. By Lemma 5.1 and triangle
comparison, γ is almost perpendicular to every ray. Thus the Busemann
function restricted to γ is almost constant. Since the Busemann function
restricted to the singular components has slope close to one, if yn ∈ Σ1 then
the length of the singular segment x1

n yn ⊂ Σ1 is much shorter than the
length |γ|. When we compute the injectivity radius, we increase the radius
of a ball centered at x1

n, and such a path does not appear. If yn belongs to
some other component Σj of Σ, then yn has to be close to the corresponding
xjn. Namely, using that the Busemann function br restricted to γ has slope
less than 1

2 , and restricted to Σj more than 1
2 :

d(yn, xjn) ≤ 2 |br(yn)− br(xjn)| = 2 |br(yn)− br(x1
n)| ≤ |γ|.

Thus
|γ| ≥ d(x1

n, yn) ≥ d(x1
n, x

j
n)− d(xjn, yn) ≥ 1− |γ|,

and |γ| ≥ 1
2 .

Given a short geodesic loop l with base point x1
n, by comparison and

Lemma 5.1, l is almost perpendicular to Σ1. Let α be the angle of l at
the base point. Since c < 2π is the upper bound of the cone angle, almost
perpendicularity gives another bound α ≤ c′/2 < π. By pushing l in the
direction of the angle at x1

n, if it does not meet the singular set it shrinks to
a point at distance

|l|/2
cos(α/2)

≤ |l|/2
cos(c′/2)

,

where |l| denotes the length of l. So |l|/2
cos(c′/2) ≥ 1

2 , which is the previous
bound for |γ|. This proves the claim. �

Lemma 5.6 The limit X1∞ is a cone manifold.
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Proof of Lemma 5.6: The argument of Lemma 5.5 also gives control of the
injectivity radius at each xin. Once the distance to the singular locus is
controlled, the argument with the loops gives an injectivity radius estimate
for points in 1

d(x1
n,x

2
n)
X at distance at most R from x1

n, for some fixed R > 0.
This estimate is uniform on n and R. �

Some components Σi remain at the limit X1∞ (at least Σ1 and Σ2), some
other components go to infinity. The components that remain at the limit
are parallel. We shall use this to prove that, when rescaled by another factor,
they converge to a single component whose cone angle defect is the limit.

Proof of Proposition 5.4. We take limits inductively, according to the order
of convergence to zero of d(xin, x

j
n), and always taking subsequences, so that

we use information from previous steps. More precisely, in the limit X1∞ we
obtain the singular components Σi such that the ratio

d(x1
n, x

i
n)

d(x1
n, x

2
n)

is bounded; the other components go to infinity. We take the pair of coef-
ficients i, j such that d(xin, x

j
n) → 0 with the next order of convergence. If

i, j 6= 1 and d(x1
n,x

j
n)

d(xin,x
j
n)
→ ∞, we repeat the argument of Lemma 5.6 for the

base point xjn and we do not care about x1
n. Otherwise we can assume i = 1

and take the limit

lim(
1

d(x1
n, x

j
n)
X,xjn) = (Xj

∞, x
j
∞).

At the ball B(xj∞, 1) of radius 1, the singularity of the approximating balls
B(xjn, 1) ⊂ 1

d(x1
n,x

j
n)
X is controlled and therefore B(xj∞, 1) is a cone manifold.

By the product structure, Xj∞ is a cone manifold at the neighborhood of
Σj . The point x1

n converges to x1∞ ∈ Xj∞ at distance one from xj∞. For any
y∞ ∈ Xj∞ not in x1∞ × R, if y∞ is smooth, then the approximates yn are
at bounded distance from the singularity. Otherwise, if y∞ is singular, then
the yn are at bounded distance from the other singular components, by the
choice of the indices i and j. Thus the arguments in Lemmas 5.5 and 5.6
may be used to say that Xj∞ is locally a cone manifold away from x1∞ ×R.

Claim: Xj∞ − (x1∞ ×R) is a non-complete product cone manifold.

To take the metric completion of Xj∞− (x1∞×R), we take an arbitrarily
small loop around x1∞ . By looking at the approximates toX1∞ in Lemma 5.6,
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hence by changing the base point and the scale factor, the holonomy of this
loop must be a rotation of angle 2π minus the sum of angle defects. This
follows from the product structure of X1∞, and the fact that the rotation
angle of the holonomy does not depend on the scale factor and the choice
of the base point (the conjugacy class). Hence the completion is a cone
manifold, and the cone angle defect of the singularity is the sum of cone
angle defects of singular components merging with Σ1. This proves the
claim.

We iterate this process, which must stop by the finiteness of the number
of singular components.

Recall that the base points qn are contained in parallel copies of C
and that the distance to the singular locus is one. Thus the argument
of Lemma 5.5 applies to say that the injectivity radius at qn is bounded
below. This implies that the 2-dimensional factor X2 in the limit is a cone
manifold containing at least one cone point and one boundary component
which is a geodesic circle. Therefore X2 must be compact. Notice that the
choice of base points qn does not allow all singularities to merge to a single
one, because this would make the length of C go to zero. �

It follows from Proposition 5.4 that the singular components are asymp-
totically parallel. We claim that they are actually parallel.

Proposition 5.7 Away from a compact set X is a metric product.

Proof: By the Cheger-Gromoll filtration, away from a compact set the pair
formed by X and its singular locus is topologically a product (Prop. 4.1).
By Lemma 5.4, the singular axis at (X, qn) are almost parallel.

We shall use the direct product structure of the isometry group

Isom+(R3) = R3 o SO(3),

and the fact that the holonomy lifts to R3 o Spin(3) [7]. We identify
Spin(3) ∼= S3 equipped with the standard round metric, so that a rota-
tion in SO(3) of angle α ∈ [−π, π] lifts to two points in S3, which are at
respective distance from the identity |α|/2 and π − |α|/2.

The fundamental group of the smooth part π1(X − Σ) is a free group
generated by the meridians, so we can choose the lifts of their holonomy.
In fact we will only look at its projection to Spin(3), that we denote by
A1, . . . , Ak ∈ Spin(3).
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For each meridian (with label i), if αi is its cone angle defect, we choose
Ai so that the distance to the identity in S3 is |αi|/2. The product of
all meridians gives the holonomy of C, which is a pure translation, so the
product A1 · · ·Ak gives either the identity or its antipodal point in S3, at
distance π.

We consider the piecewise geodesic path γ in Spin(3) with ordered ver-
tices Id, A1, A1A2, . . . , A1A2 · · ·Ak. Notice that the angles along γ may
depend on the conjugacy classes of the meridians, but not the length of the
pieces, because they are precisely half the cone angle defects. By Propo-
sition 5.4, and possibly after reordering the indexes, the conjugacy classes
may be chosen so that the angles along the path γ are arbitrarily close to
π. Since the length of the pieces of γ are fixed, the endpoint of γ can not be
the identity. Thus it is antipodal to the identity. The bound on cone angle
defects implies that the length of γ is at most π. Thus it is precisely π and
γ is a geodesic, which implies that the singular axis are parallel. �

Conclusion of the Proof of Theorem1.4. Once we know that X is a metric
product away from a compact set, we start to decrease the level set of the
Busemann function until it meets C. Hence Theorem 1.4 is proved. �

Proof of Corollary 1.5: We apply Theorem 1.4 to E. The dihedral angle
between D1 and D2 in K is less than the cone angle at C minus π, because
any direction in K has an angle ≥ π

2 with any ray, and rays are perpendicular
to C. Thus, since the cone angle at C is α < 3π

2 , the dihedral angle of the
compact K is < α − π < π

2 . We claim that this angle is zero. In order
to show it, we analyze what happens to the singularity when we shrink K
by taking distance subsets. Once the singularity in one of the faces of K
reaches this boundary of the face, since the singularity is perpendicular to
the face, either it meets immediately the other face (when the angle is zero),
or it enters the interior of K (when the angle is larger than π

2 ). Since here
the dihedral angle is < π

2 , it must be zero. �

In next section we will analyze what happens when the dihedral angle of
K is precisely π

2 , which implies working with cone manifolds with cone angle
3π
2 . Larger cone angles would probably give more complicated constructions.
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6 Constructions from an edge pattern on a paral-
lelepiped

We explain how to construct a non-compact Euclidean cone manifold with
cone angles 3π

2 from an edge pattern on a rectangular parallelepiped. Such
a cone manifold has soul a point and both closed and unbounded singular
geodesics.

A rectangular parallelepiped is a subset of R3 isometric to the product
of three finite closed intervals of positive length. Consider the twelve edges
of such a parallelepiped. An edge pattern consists of joining the edges into
intervals or circles, so that:

(1) The components of the pattern are one or two circles and precisely four
intervals.

(2) On each vertex, two of the three edges are joined by the pattern.

Figure 7: Examples of patterns, already realized metrically. The closed
components are drawn thicker.

Figure 8: The singular locus of the respective cone manifolds of patterns in
Figure 7, respecting the order from left to rigth. The underlying space is
R3 and all cone angles 3

2π.

We shall only consider patterns than are metrically realizable in R3

satisfying the following properties. First we enlarge edges as follows. Those
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edges which have one free endpoint are enlarged to be unbounded geodesic
rays and those with two free endpoints to be complete geodesics. Next we
move by parallel transport and slightly shorten those edges which are not
part of a circle in the pattern. This must be done so that at each corner the
ray in the enlarged edge at that corner lies inside the right angle defined by
the other two segments joined in the pattern at that corner. After this is
done all the edges must connect up to give the same combinatorial pattern.
Notice that this condition for a metric realization already eliminates some
patterns, cf. Figure 9.

Figure 9: Example of pattern that can no be realized metrically in R3.
Notice that the edges must be parellel to coordinate axis.

The cone manifold is constructed as follows. We define a subset in R3

with piecewise geodesic boundary so that the cone manifold is obtained by
gluing its faces. To each (possibly extended) edge I in the metric pattern,
remove a sector of angle π

2 from R3. This sector is a metric subset I × S
bounded by planes parallel to the sides of the parallelepiped. The set S
is a sector in the plane orthogonal to I. There are four such sectors and
we chose the one which is in the opposite quadrant to the parallelepiped.
The condition that the geodesic rays lie inside the right angle defined by
segments joined in the pattern implies that all the corners of the pattern
are removed. The identifications consist of folding each such sector, i.e.
in gluing the faces by a rotation. Thus the edges of the pattern give the
singular locus.

Definition 6.1 Such a cone manifold is said to be constructed from an edge
pattern on a parallelepiped.

Notice that two examples on the left of Figure 8 are already described in
Examples 1.2 and 1.3, but the two on the right are topologically different.

Theorem 6.2 Let E be a Euclidean cone manifold with cone angles 3π
2 , with
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soul a point and having a closed singular geodesic. Then E is constructed
from an edge pattern in a parallelepiped.

Proof: We apply Theorem 1.4. Let K be the compact subset, whose
boundary is a union of two singular discs along their boundary, which is a
singular geodesic C. Since we assume that the cone angle is 3π

2 , the dihedral
angle of K is at most π

2 . By the same argument as in Corollary 1.5, if the
dihedral angle is < π

2 , then E is as in Example 1.2 and therefore it satisfies
the theorem. From now on we assume that the dihedral angle is precisely
π
2 .

We shrink K by considering Kt supperlevel sets of the distance to ∂K
(equivalently the sublevel sets of the Busemann function). Initially, for small
t, these subsets are bounded by the union of two faces, forming a dihedral
angle along the boundary. Each face is a disc with four cone points. The
boundary of Kt stays of this form as it shrinks until a cone point meets the
boundary of the disc.

Since we assume that the dihedral angle is π
2 , when a cone point meets

the boundary of one of the faces ∂Kt at an edge, a whole segment of the
singular component has to lie in the other face of ∂Kt. If we shrink further,
we realize that a new edge on ∂Kt has been created for every pair of cone
points going to the boundary of the disc. Now the boundary is a union of
flat cone manifolds, meeting along edges with cone angle π

2 , and edges meet
at corners, so that each corner is trivalent. If ncone and ncorner denote the
number of cone points on the faces and corners respectively, then

ncone + ncorner = 8 globally on ∂Kt (2)
ncone + ncorner = 4 on each face of ∂Kt (3)

by the Gauss-Bonnet formula.
We continue the process of shrinking, until some other cone point meets

the boundary of the face.
It may happen that a cone point meets the boundary of the face at a

corner. By using (3), the corresponding face must be either a triangle with
a cone point or a bigon with two cone points. This face cannot have three
cone points, because the distance between cone points stays constant during
the shrinking, but the face has to collapse. Thus the edges of the corner are
different.

When a corner meets a cone point, we change the process of shrinking,
so that the speed is not the same on each face. Hence the shrinking process
becomes generic and we avoid cone points converging to a corner.
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So we assume that the cone points meet the boundary at the interior of
an edge. This creates new edges and corners, satisfying Equations (2) and
(3), until we end up in one of the following situations:

(a) a smooth point,

(b) a singular point, or

(c) a one or two dimensional cone manifold with boundary.

In case (a), shortly before the collapsing time there are no cone points at
all, and formulas (2) and (3) imply that Kt must be combinatorially a cube,
hence Kt is isometric to a parallelepiped. In case (b), the same argument
gives a triangular prism with two cone points on the upper and lower face.
By changing the speed of the faces as before, Kt is non-singular, hence a
parallelepiped.

In case (c), some of the faces have collapsed. Since we assume that
cone points do not meet corners, the collapsing faces must be rectangles.
So shortly before the collapsing time Kt must be a product X2 × [0, ε]
or X1 × [0, ε]2, where dimXi = i. Notice that X1 × [0, ε]2 is already a
parallelepiped, and there is nothing to prove. For X2 × [0, ε], the list of all
possible X2 is quickly determined by (3), and it follows that changing the
shrinking speed of the faces also gives a parallelepiped. �
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