Varieties of characters
and knot symmetries (I)

Joan Porti

Universitat Autònoma de Barcelona

June 2017
Day 1 Character Varieties.
 Definition and computation

Day 2 Distinguished curves for hyperbolic knots
 (and of hyperbolic 3-manifolds of finite volume).

Day 3 Knot symmetries (joint with Luisa Paoluzzi)
 (Distinguish in the variety of characters whether a knot
 symmetry has fixed points or not)
Motivation

- $\text{hom}(\pi_1(M^3), (P)\text{SL}_2(\mathbb{C})/\text{PSL}_2(\mathbb{C})$ contains the space of hyperbolic structures on M^3, as $\text{PSL}_2(\mathbb{C}) \cong \text{Isom}(\mathbb{H}^3)$.
- Used in the proof of the hyperbolic Dehn filling theorem, hyperbolic cone manifolds, also for degeneration of structures, and many other situations...

- Culler-Shalen theory of surfaces associated to ideal points.
- A-polynomial.

- Representations have been used to distinguish knots, in Casson’s invariant, ...

- Study the variety of characters as an algebraic object.
- Dynamics of group actions
- ...
Variety of representations

- $\Gamma = \langle \gamma_1, \ldots, \gamma_n \mid (r_j)_{j \in J} \rangle$ finitely generated group
- $\text{SL}_2 \mathbb{C} = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \bigg| a, b, c, d \in \mathbb{C}, \ ad - bc = 1 \right\}$

Def: $R(\Gamma) = \text{hom}(\Gamma, \text{SL}_2 \mathbb{C})$

- It is an affine algebraic set (zero set of polynomials in \mathbb{C}^{4n})

\[R(\Gamma) \rightarrow \text{SL}_2 \mathbb{C} \times \cdots \times \text{SL}_2 \mathbb{C} \subset \mathbb{C}^{4n} \]
\[\rho \mapsto (\rho(\gamma_1), \ldots, \rho(\gamma_n)) \]

The algebraic structure is independent of the presentation.

- The action by conjugation is algebraic

\[\text{SL}_2 \mathbb{C} \times R(\Gamma) \rightarrow R(\Gamma) \]
\[A, \rho \mapsto \gamma \mapsto A \rho(\gamma) A^{-1} \]

but the quotient $R(\Gamma)/\text{PSL}_2(\mathbb{C})$ may be not Hausdorff.
Quotient in the “algebraic category”

- $\Gamma = \langle \gamma_1, \ldots, \gamma_n \mid (r_j)_{j \in J} \rangle$

 $R(\Gamma) = \text{hom}(\Gamma, \text{SL}_2\mathbb{C}) \subset \mathbb{C}^{4n}$

 \mathbb{C}-algebra of functions: $\mathbb{C}[R(\Gamma)] = \mathbb{C}[x_1, \ldots, x_{4n}]/I$

 where $I = \{p \in \mathbb{C}[x_1, \ldots, x_{4n}] \mid p(R(\Gamma)) = 0\}$

- Look for functions invariant by conjugation: $\mathbb{C}[R(\Gamma)]^{\text{SL}_2\mathbb{C}}$

 For $\gamma \in \Gamma$, the trace function is

 $\tau_\gamma: R(\Gamma) \to \mathbb{C}$

 $\rho \mapsto \text{tr}(\rho(\gamma))$

 Thm: (Procesi) $\exists \gamma_1, \ldots, \gamma_N \in \Gamma$ such that

 $\mathbb{C}[R(\Gamma)]^{\text{SL}_2\mathbb{C}} = \langle \tau_{\gamma_1}, \ldots, \tau_{\gamma_N} \rangle$

- Setting $y_j = \tau_{\gamma_j}$, $\mathbb{C}[R(\Gamma)]^{\text{SL}_2\mathbb{C}} \cong \mathbb{C}[y_1, \ldots, y_N]/J$

 hence the zero set of J in \mathbb{C}^N is the algebraic quotient.
Variety of characters

<table>
<thead>
<tr>
<th>trace functions</th>
<th>characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_\gamma: R(\Gamma) \to \mathbb{C}$</td>
<td>$\chi_\rho: \Gamma \to \mathbb{C}$</td>
</tr>
<tr>
<td>$\rho \mapsto \text{tr}(\rho(\gamma))$</td>
<td>$\gamma \mapsto \text{tr}(\rho(\gamma))$</td>
</tr>
</tbody>
</table>

Def: The variety of characters is $X(\Gamma) = \{ \chi_\rho \mid \rho \in R(\Gamma) \}$

- Since $\mathbb{C}[R(\Gamma)]^{\text{SL}_2\mathbb{C}} = \langle \tau_{\gamma_1}, \ldots, \tau_{\gamma_N} \rangle$, $X(\Gamma)$ has a natural algebraic structure so that $\mathbb{C}[X(\Gamma)] = \mathbb{C}[R(\Gamma)]^{\text{SL}_2\mathbb{C}}$.
- For $f: R(\Gamma) \to \mathbb{C}$ polynomial and $\text{SL}_2\mathbb{C}$-invariant, there exists a unique $\tilde{f}: X(\Gamma) \to \mathbb{C}$ such that

\[
\begin{array}{ccc}
R(\Gamma) & \xrightarrow{f} & \mathbb{C} \\
\rho & \mapsto & \tilde{f}
\end{array}
\]

- Conjugate representations have the same character:

\[
R(\Gamma) \to R(\Gamma)/\text{PSL}_2\mathbb{C} \to X(\Gamma) \\
\rho \mapsto [\rho] \mapsto \chi_\rho
\]

- What is the difference between $R(\Gamma)/\text{PSL}_2\mathbb{C}$ and $X(\Gamma)$?
Irreducible representations

Def: \(\rho \in R(\Gamma) \) is **reducible** if \(\rho(\Gamma) \) has an invariant line in \(\mathbb{C}^2 \)
equiv, \(\rho \in R(\Gamma) \) is reducible if \(\rho(\Gamma) \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \)

Lemma: \(\rho \) is reducible iff \(\text{tr} \rho([\Gamma, \Gamma]) = 2 \)

Cor: \(R^{red}(\Gamma) \) and \(X^{red}(\Gamma) \) Zariski closed

Lemma: For \(\rho, \rho' \in R(\Gamma) \) **irreducible**, \(\rho \) and \(\rho' \) are conjugate iff \(\chi_\rho = \chi_{\rho'} \). In fact, \(\text{PSL}_2 \mathbb{C} \to R^{irr}(\Gamma) \to X^{irr}(\Gamma) \) is a principal bundle

- For reducible characters \(\chi \), there is a unique conjugacy class of diagonal representations \(\rho \) with \(\chi_\rho = \chi \)
- For every continuous \(f : R(\Gamma)/\text{PSL}_2 \mathbb{C} \to H \) with \(H \) Hausdorff:

\[
\begin{array}{ccc}
R(\Gamma)/\text{PSL}_2 \mathbb{C} & \xrightarrow{f} & H \\
\downarrow & & \downarrow \\
X(\Gamma) & \xrightarrow{\tilde{f}} & H
\end{array}
\]
Free group of rank two

Lemma: For $A, B \in \text{SL}_2 \mathbb{C}$:

(i) $\text{tr}(AB) = \text{tr}(BA)$;

(ii) $\text{tr}(A^{-1}) = \text{tr}(A)$;

(iii) $\text{tr}(AB) + \text{tr}(A^{-1}B) = \text{tr}(A) \text{tr}(B)$.

For (iii), $A^2 - \text{tr}(A)A + \text{Id} = 0$ times $A^{-1}B$ and take trace.

Thm: *(Fricke-Klein)* Let $F_2 = \langle a, b \mid \rangle$, we have an isomorphism

$$(\tau_a, \tau_b, \tau_{ab}) : X(F_2) \overset{\cong}{\longrightarrow} \mathbb{C}^3$$

- Setting $x = \tau_a$, $y = \tau_b$, and $z = \tau_{ab}$,

$$\mathbb{C}[X(F_2)] \cong \mathbb{C}[x, y, z].$$

Cor: $\forall \gamma \in F_2, \tau_\gamma$ is a (unique) polynomial on x, y, z
Groups of rank two

- \(F_2 = \langle a, b \mid \rangle, x = \tau_a, y = \tau_b, z = \tau_{ab} \), \(\mathbb{C}[X(F_2)] = \mathbb{C}[x, y, z] \)
- \(\tau_{\gamma} = \tau_{\gamma^{-1}} \quad \tau_{\gamma\mu} = \tau_{\mu\gamma} \quad \tau_{\gamma\tau_{\mu}} = \tau_{\gamma\mu} + \tau_{\gamma^{-1}\mu} \)
- Powers:
 - \(\tau_{a^2} = \tau_a^2 - \tau_1 = x^2 - 2 \)
 - \(\tau_{a^3} = \tau_a \tau_{a^2} - \tau_a = x^3 - 3x \)
 - \(\tau_{a^n} = \tau_a \tau_{a^{n-1}} - \tau_{a^{n-2}} = \text{Chebyshev pol. on } x \).
- \([a, b] = aba^{-1}b^{-1} \)
 \[\tau_{aba^{-1}b^{-1}} = \tau_{aba^{-1}} \tau_b - \tau_{aba^{-1}b} = y^2 - \tau_{aba^{-1}b} \]
 \[\tau_{aba^{-1}b} = \tau_{ab} \tau_{a^{-1}b} - \tau_a = z \tau_{a^{-1}b} - x^2 + 2 \]
 \[\tau_{a^{-1}b} = \tau_a \tau_b - \tau_{ab} = xy - z \]
 \(\tau_{[a,b]} = x^2 + y^2 + z^2 - xyz - 2 \)
- \(\mathbb{Z}^2 = F_2 = \langle a, b \mid [a, b] = 1 \rangle \). We have:
 \(X(\mathbb{Z}^2) \cong \{(x, y, z) \in \mathbb{C}^3 \mid x^2 + y^2 + z^2 - xyz - 4 = 0 \}\)
The trefoil knot exterior

- $\Gamma = \langle a, b | aba = bab \rangle$ \quad $bab^{-1} = a^{-1}ba \Rightarrow \tau_a = \tau_b$

 Choose $x = \tau_a = \tau_b$ and $y = \tau_{ab^{-1}}$

- Write $\tau_{abab^{-1}} - \tau_{ab} = 0$:

 \[
 \tau_{ab} = \tau_a \tau_b - \tau_{ab^{-1}} = x^2 - y
 \]

 \[
 \tau_{abab^{-1}} = \tau_{ba} \tau_{ab^{-1}} - \tau_{b^2} = (x^2 - y)y - x^2 + 2
 \]

 $\tau_{abab^{-1}} - \tau_{ab} = x^2y - 2x^2 - y^2 + y + 2 = (y - 2)(x^2 - y - 1) = 0$

 We have $X(\Gamma) \cong \{(x, y) \in \mathbb{C}^2 \mid (y - 2)(x^2 - y - 1) = 0\}$

- $y = 2$: abelian (and reducible) representations

- $x^2 - y - 1 = 0$:

 $\tau_{ab} = x^2 - y = 1$ \quad and \quad $\tau_{aba} = \tau_a \tau_{ab} - \tau_b = x \cdot 1 - x = 0$

 $\Rightarrow \rho(ab)^3 = \rho(aba)^2 = -\text{Id}$ \quad (set $\alpha = ab$ and $\beta = aba$):

 $\Gamma \cong \langle \alpha, \beta, t \mid \alpha^3 = \beta^2 = t \rangle$, \quad $[\alpha, t] = [\beta, t] = 1$

 Irreducible reps map the center to $\pm \text{Id}$
The figure eight knot exterior (I)

- $\Gamma = \langle a, b \mid w a = b w \rangle$ with $w = ab^{-1}a^{-1}b$

 \begin{align*}
 x &= \tau_a = \tau_b, \quad y = \tau_{ab^{-1}} \\
 \tau_\omega - \tau_{b^{-1}wa} &= (y - 2)(y^2 - (x^2 - 1)y + x^2 - 1) = 0
 \end{align*}

 - $y - 2 = 0$ consists of abelian representations
 - $y^2 - (x^2 - 1)y + x^2 - 1 = 0$ contains the holonomy of the hyperbolic structure and all deformations corresponding to Dehn filling.

 Hence
 \[X(\Gamma) \cong \{(x, y) \in \mathbb{C}^2 \mid (y - 2)(y^2 - (x^2 - 1)y + x^2 - 1) = 0 \} \]

- For a 2-bridge knot exterior in general

 $\Gamma = \langle a, b \mid w a = b w \rangle$ for some $w = w(a, b)$

 $X(\Gamma)$ is a plane curve.

 For a 2-bridge knot exterior, $X(\Gamma)$ may have arbitrarily many components (Ohtsuki-Riley-Sakuma)
The figure eight knot exterior (II)

1. \(\Gamma = \langle a, b \mid w a = b w \rangle \) with \(w = ab^{-1}a^{-1}b \)

2. Write \(\rho(a) = \begin{pmatrix} s & 1 \\ 0 & s^{-1} \end{pmatrix} \) and \(\rho(b) = \begin{pmatrix} s & 0 \\ 2 - y & s^{-1} \end{pmatrix} \)

 \[s + s^{-1} = \tau_a = \tau_b = x \text{ and } \tau_{a^{-1}b} = y \]

3. \(\rho(wa) - \rho(bw) = (y^2 - (x^2 - 1)y + x^2 - 1) \begin{pmatrix} 0 & -1 \\ y - 2 & 0 \end{pmatrix} \)

Component of irreducible representations (Whittemore 1973):

\[y^2 - (x^2 - 1)y + x^2 - 1 = 0 \]
The figure eight knot exterior (III)

- It is a bundle over S^1 with fibre a punctured torus.
 \[\Gamma = \langle \alpha, \beta, \mu \mid \mu \alpha \mu^{-1} = \alpha \beta, \mu \beta \mu^{-1} = \beta \alpha \beta \rangle \]
 \[1 \to F_2 = \langle \alpha, \beta \mid \rangle \to \Gamma \to \mathbb{Z} = \langle \mu \rangle \to 1 \]
 \[\phi : F_2 \to F_2, \quad \phi(\alpha) = \alpha \beta, \phi(\beta) = \beta \alpha \beta, \]

- $X(F_2) \cong \mathbb{C}^3$ with coordinates $x_1 = \tau_\alpha, x_2 = \tau_\beta, x_3 = \tau_{\alpha \beta}$
 \[\phi(x_1, x_2, x_3) = (x_1, x_2, x_3) \iff x_3 = x_1, x_1 + x_2 = x_1x_2 \]
 \[X(F_2)^\phi = \{ \chi \mid \chi \circ \phi = \chi \} \cong \{ (x_1, x_2) \in \mathbb{C}^2 \mid x_1 + x_2 = x_1x_2 \} \]

- res: $X(\Gamma) \to X(F_2)^\phi$ is surjective and, for $\chi \in X(F_2)^\phi$:
 \[\text{res}^{-1}(\chi) = \begin{cases}
 2 \text{ characters} & \text{if } \chi \text{ irreducible} \\
 1 \text{ irred. character} & \text{if } \chi \text{ reducible non trivial} \\
 \text{a line of red. ch.} & \text{if } \chi \text{ trivial}
 \end{cases} \]

- $X^{irr}(\Gamma, \text{PSL}_2 \mathbb{C}) \cong X(F_2)^\phi$
The Whitehead link exterior

- $\Gamma = \langle a, b \mid aw = wa \rangle$ where $w = bab^{-1}a^{-1}b^{-1}ab$.
- Coordinates

 \[x = \tau_a, \quad y = \tau_b, \quad z = \tau_{ab}, \]

 then $X(\Gamma) \cong \{ (x, y, z) \in \mathbb{C}^3 \mid pq = 0 \}$ with

 \[
 \begin{cases}
 p = xy - (x^2 + y^2 - 2)z + xyz^2 - z^3 \\
 q = x^2 + y^2 + z^2 - xyz - 4
 \end{cases}
 \]

- $\{ q = 0 \} \cong X(\mathbb{Z}^2)$ abelian/reducible characters
- $\{ p = 0 \}$ Component containing a lift of the holonomy of the complete hyperbolic structure (and Dehn fillings)
$X(F_n), \ n \geq 3$

- $F_3 = \langle a, b, c | \rangle$
 \[
 (\tau_a, \tau_b, \tau_c, \tau_{ab}, \tau_{bc}, \tau_{ca}): X(F_3) \to \mathbb{C}^6 \text{ is a branched covering}
 \]

 There is one more coordinate algebraically dependent:

 τ_{abc} and τ_{acb} are the solutions of the equation

 \[z^2 - Pz + Q = 0\] with

 \[P = \tau_a \tau_{bc} + \tau_b \tau_{ca} + \tau_c \tau_{ab} - \tau_a \tau_b \tau_c\]
 \[Q = \tau_a^2 + \tau_b^2 + \tau_c^2 + \tau_{ab}^2 + \tau_{bc}^2 + \tau_{ca}^2 + \tau_{ab} \tau_{bc} \tau_{ca} - \tau_a \tau_b \tau_{ab} - \tau_b \tau_c \tau_{bc} - \tau_c \tau_a \tau_{ca} - 4\]
 \[\text{eg } \tau_{abc} + \tau_{acb} = P \text{ and } \tau_{abc} \tau_{acb} = Q.\]

- $F_4 = \langle a, b, c, d | \rangle$
 \[\tau_{abcd} \text{ is a polynomial on the traces of words on } a, \ b, \ c \text{ and } d\]
 \[\text{of length } \leq 3 \text{ with coefficients in } \frac{1}{2}\mathbb{Z}\]
\(X(\Gamma), \Gamma \text{ of finite type} \)

- \(\Gamma = \langle \gamma_1, \ldots, \gamma_n \mid \{w_j\}_{j \in J} \rangle \)

Thm: (González-Acuña and Montesinos-Amilibia)

\[
X(\Gamma) \cong \{ \chi \in X(F_n) \mid \chi_{\gamma_i \omega_j} = \chi_{\gamma_i}, \ i = 1, \ldots, n, j \in J \}
\]

- Fico and Montesinos give the explicit description of \(X(F_n) \), defined with polynomials with coefficients in \(\mathbb{Z} \)
- \(\forall \gamma \in F_n, \tau_\gamma \) is a polynomial in the traces of words of length \(\leq 3 \) on the generators, with coefficients in \(\frac{1}{2} \mathbb{Z} \).

\(\Rightarrow \) Can take reduction \(\text{mod} \ p, \ p \neq 2 \text{ prime}, \) of \(X(\Gamma) \), to compute the variety of characters in an algebraically closed field of characteristic \(p \).
Varieties of characters
and knot symmetries (II)

Joan Porti

Universitat Autònoma de Barcelona

June 2017

INDAM Meeting
Geometric Topology in Cortona
Day 1 Character Varieties.
Definition and computation

Day 2 Canonical component for hyperbolic 3-manifolds of finite volume (...and further components).

Day 3 Knot symmetries (joint with Luisa Paoluzzi)
(Action of knot symmetries on $X(S^3 - K)$)
Manifolds of finite volume

- M^3 orientable & (complete) hyperbolic. Its volume is finite iff
 $\text{Ends}(M^3) \cong (T_1^2 \sqcup \cdots \sqcup T_k^2) \times [0, \infty)$
 with $T_i^2 \cong S^1 \times S^1$, and each end is a cusp.
- By defn, a link $L \subset S^3$ is hyperbolic if $S^3 - L$ is hyperbolic
 (hence of finite volume).
- If M^3 is hyperbolic, then $\text{hol}: \pi_1 M^3 \to \text{Isom}^+(\mathbb{H}^3) \cong \text{PSL}_2 \mathbb{C}$
 lifts to ρ_0 (Culler, Thurston):

$$
\begin{array}{ccc}
\pi_1(M^3) & \xrightarrow{\text{hol}} & \text{PSL}_2 \mathbb{C} \\
\downarrow & & \downarrow \\
\text{SL}_2 \mathbb{C} & \xrightarrow{\rho_0} & \text{PSL}_2 \mathbb{C}
\end{array}
$$

Use that M^3 is parallelizable, and $SO(3) \to \text{PSL}_2 \mathbb{C} \to \mathbb{H}^3$ is the frame bundle on \mathbb{H}^3
- Results in this talk work also for $X(M^3, \text{PSL}_2 \mathbb{C})$
Canonical component

- Let M^3 be hyperbolic, orientable, of finite volume, and with $k > 0$ ends (that are cusps), $\rho_0 = \tilde{\text{hol}}: \pi_1 M^3 \to \SL_2\mathbb{C}$.

Thm: (Thurston) χ_{ρ_0} is a smooth point of $X(M^3)$, and the component $X_0(M^3)$ that contains χ_{ρ_0} has dimension k.

Def: $X_0(M^3)$ is called the **canonical component** of $X(M^3)$

- Perhaps not unique?
 - If there are several components, then they are isomorphic, because other lifts of hol are $(-1)^\epsilon \rho_0$ for $\epsilon: \pi_1 M^3 \to \mathbb{Z}/2\mathbb{Z}$
 - Isometries in $\PSL_2\mathbb{C}$ preserve orientation, so $\chi_{\rho_0} \neq \overline{\chi_{\rho_0}}$.

- Characters close to χ_{ρ_0} are holonomies of incomplete hyperbolic structures (used for hyperbolic Dehn filling).

- For a hyperbolic knot exterior $S^3 - K$, $X_0(K) := X_0(S^3 - K)$ is a curve.

 Furthermore the A-polynomial is nontrivial
Example: cone manifold structures on the fig 8 knot

- The n-cyclic branched covering of S^3 branched on the figure eight knot is:

$$
\begin{cases}
\text{hyperbolic} & \text{if } n \geq 4 \\
\text{Euclidean} & \text{if } n = 3 \\
\text{spherical} & \text{if } n = 2
\end{cases}
$$

- Setting $\alpha = \frac{2\pi}{n}$, particular case of: There exists a family of cone manifold structures on S^3, with singular locus the figure eight knot, and with cone angle $\alpha \in (0, \frac{4\pi}{3})$ that are

$$
\begin{cases}
\text{hyperbolic} & \text{if } \alpha < \frac{2\pi}{3} \\
\text{Euclidean} & \text{if } \alpha = \frac{2\pi}{3} \\
\text{spherical} & \text{if } \frac{2\pi}{3} < \alpha < \frac{4\pi}{3}
\end{cases}
$$

- As the trace of a rotation of angle α is $\pm 2 \cos(\frac{\alpha}{2})$, look at characters s.t. $\chi(\mu) \in [-2, 2]$ for a meridian $\mu \in \pi_1(S^3 - K)$
Transition geometry in the character variety

$K \subset S^3$ fig eight knot, $\mu \in \Gamma = \pi_1(S^3 - K)$ a meridian. Since $\chi(\mu) = \pm 2 \cos \frac{\alpha}{2}$, look at the set \{\$x \in X(\Gamma), \chi(\mu) \in [-2, 2]\}$

- $1 < |\chi(\mu)| < 2$ are holonomies of hyperbolic cone structures (in magenta the complex conjugate, ie opposite orientation)
- The blue curve consists of characters in $SU(2)$. Pairs (χ, χ') with $-1 < \chi(\mu) = \chi'(\mu) < 1$ are lifts of spherical holonomies as $SO(4) \cong SU(2) \times SU(2)$
- $\chi(\mu) = \pm 1$ Euclidean collapse.
Back to the canonical component thm

Thm: If M^3 hyperbolic of finite volume, with one single end, $
ho_0$ lift of the holonomy, then χ_{ρ_0} is a smooth point of $X(M^3)$, and the component $X_0(M^3)$ that contains χ_{ρ_0} is a curve.

Proof based on:

(a) for each component $Y \subset X(M^3)$ containing an irreducible character χ so that $\chi(\pi_1 \partial M^3) \not\subset \{\pm 2\}$, $\Rightarrow \dim Y \geq 1$

(b) The dimension of the Zariski tangent space at χ_0 is

$$\dim T_{\chi_0}^{\text{Zar}} X(\Gamma) = 1$$

- (a) is a lower bound of the dimension. It is proved in Thurston notes (sufficient for hyperbolic Dehn filling)
- (b) gives an upper bound of the dimension.
- (a)+(b) \Rightarrow smoothness.
 (the dimension of the Zariski tangent space is an upper bound for the dimension, with equality precisely at smooth points)
Thurston’s lower bound (one cusp case)

Thm: Let $\chi_\rho \in X(M^3)$ be irreducible so that $\chi(\pi_1 \partial \overline{M^3}) \not\subset \{\pm 2\}$. For each component $Y \subset X(M^3)$ containing χ, $\dim Y \geq 1$

Proof: Chose a simple closed curve α with base point in $\partial \overline{M^3}$, s.t.

1. $\text{tr}(\rho(\alpha)) \neq \pm 2$
2. the restriction $\rho|_{\langle \alpha, \pi_1(\partial \overline{M^3}) \rangle}$ is irreducible.

Set $M' = \overline{M^3} - N'(\alpha)$. As α is simple:

$$\chi(M') = \frac{1}{2}\chi(\partial M') = -1.$$

\Rightarrow M' has the homotopy type of a 2-dim CW-complex with

1 zero-cell, r one-cells and $(r - 2)$ two-cells:

$\Rightarrow \pi_1 M'$ has presentation with r generators and $r - 2$ relations

$\Rightarrow \dim R(\pi_1 M') \geq 6 \Rightarrow \dim X(\pi_1 M') \geq 3$

- View $\alpha \in \pi_1(\partial M')$ and chose $\beta \in \pi_1(\partial M')$ a meridian around α, so that $[\alpha, \beta]$ bounds a disk in $\partial \overline{M^3}$

Claim: For $\rho' \in R(M')$ in a neighborhood of ρ, the conditions

$$\text{tr}(\rho'(\beta)) = \text{tr}(\rho'([\alpha, \beta])) = 2$$

imply $\rho'(\beta) = \text{Id}$

- The claim and $\dim X(\pi_1 M') \geq 3$ yield the theorem.
Zariski tangent space

Def: For $V = \{ x \in \mathbb{C}^N \mid p_1(x) = \cdots = p_r(x) = 0 \}$ the Zariski tangent space at $x \in V$ is
\[T^\text{Zar}_x V = \{ v \in \mathbb{C}^N \mid p_1(x + \varepsilon v), \ldots, p_r(x + \varepsilon v) \in O(\varepsilon^2) \} \]

- $\dim T^\text{Zar}_x V \geq \dim(\text{component of } V \text{ containing } x)$ with equality iff x smooth point of V (and one single comp)

Def: Crossed morphisms
\[Z^1 = \{ \theta : \Gamma \to \mathfrak{sl}_2 \mathbb{C} \mid \theta(\gamma \mu) = \theta(\gamma) + \rho(\gamma) \theta(\mu) \rho(\gamma^{-1}) \} \]

 Inner morphisms:
\[B^1 = \{ \theta_a \in Z^1 \mid \theta_a(\gamma) = \rho(\gamma) a \rho(\gamma^{-1}) - a, \forall \gamma \in \Gamma \} \]
\[H^1(\Gamma, \text{Ad } \rho) = Z^1 / B^1 \]

Thm: (Weil) \[Z^1 \xrightarrow{\cong} T^\text{Zar}_\rho R(\Gamma) \]
\[\theta \quad \longmapsto \quad \gamma \mapsto (\text{Id} + \varepsilon \theta(\gamma)) \rho(\gamma) = \rho_\varepsilon(\gamma) \]

$B^1 \cong$ orbit by conjugation

Cor: (Weil) For χ_ρ irreducible, \[H^1(\Gamma, \text{Ad } \rho) \cong T^\text{Zar}_\chi X(\Gamma) \]

Thm: (Garland) M^3 hyperbolic, orient., finite vol, and k cusps.
For $\rho_0 \in R(M^3)$ lift of the holonomy, \[H^1(\pi_1 M^3, \text{Ad } \rho_0) \cong \mathbb{C}^k \]
Cohomology thm

Thm: (Garland) M^3 hyperbolic, orient, finite vol, and k cusps. For $\rho_0 \in R(M^3)$ lift of the holonomy, $H^1(\pi_1M^3, \text{Ad} \rho_0) \cong \mathbb{C}^k$

- Use de Rham cohomology:
 - Flat bundle $\mathfrak{sl}_2\mathbb{C} \rightarrow E_{\text{Ad} \rho_0} \rightarrow M$ where $E_{\text{Ad} \rho_0} = \tilde{M} \times \mathfrak{sl}_2\mathbb{C}/\sim$ with $(x, a) \sim (\gamma x, \text{Ad}_{\rho_0(\gamma)} a)$
 - $\Omega^p(M, E_{\text{Ad} \rho_0}) = \Gamma(\wedge^p T^*M \otimes E_{\text{Ad} \rho_0}) = \text{vector valued p-forms}$
 - $d: \Omega^p(M, E_{\text{Ad} \rho_0}) \rightarrow \Omega^{p+1}(M, E_{\text{Ad} \rho_0})$ yields de Rham cohom,

and $H^*_d(M^3, E_{\text{Ad} \rho_0}) \cong H^*(\pi_1M^3, \text{Ad} \rho_0)$

Thm: (...? 1960’s) closed L^2-forms are exact.

Set $U = M^3 - \{\text{Compact core}\} \cong \bigcup T_i^2 \times (0, +\infty)$ hence

$H^1(M, U, \text{Ad} \rho_0) \xrightarrow{0} H^1(M, \text{Ad} \rho_0) \rightarrow H^1(U, \text{Ad} \rho)$

and $\dim H^1(M, \text{Ad} \rho_0) = \sum_i \dim \frac{1}{2} H^1(T_i^2, \text{Ad} \rho_0) = \sum_i 1 = k$.
Galois conjugates

- \(M^3 \) hyperbolic, orientable, finite volume, \(\rho_0 : \pi_1 M^3 \to SL_2 \mathbb{C} \) lift of the holonomy.

- \(\rho_0(\pi_1 M^3) \subset SL_2 \mathbb{K} \), for \(\mathbb{K} \) a number field (Vinberg).
 May assume that the finite extension \(\mathbb{K}|\mathbb{Q} \) is Galois.

Rmk: For each \(\sigma \in \text{Galois} (\mathbb{K}) \),

\(\chi_{\rho_0^\sigma} \) is a smooth point of \(X(M^3) \) and the unique component that contains \(\chi_{\rho_0^\sigma} \) has dimension the number of cusps.

Why? View the space of crossed morphisms as a linear space

\[
Z^1 = \{ \theta : \pi_1 M^3 \to \mathfrak{sl}_2 \mathbb{C} \mid \theta(\gamma \mu) = \theta(\gamma) + \rho_0(\gamma)\theta(\mu)\rho_0(\gamma^{-1}) \}
\]

From \(\Gamma = \pi_1 M^3 = \langle \gamma_1, \ldots, \gamma_n \mid r_1, \ldots, r_m \rangle \), embed

\[
Z^1 \hookrightarrow \mathfrak{sl}_2 \mathbb{C} \times \cdots \times \mathfrak{sl}_2 \mathbb{C}
\]

\[
\theta \mapsto (\theta(\gamma_1), \ldots, \theta(\gamma_n))
\]

The image is the kernel of a linear map given by \(r_1, \ldots, r_m \),

with coefficients in \(\mathbb{K} \).

So \(\dim(Z^1(\pi_1 M^3, \text{Ad } \rho_0^\sigma)) = \dim(Z^1(\pi_1 M^3, \text{Ad } \rho_0)) \).
Further components

- Have shown $X(M^3)$ has the canonical component and the abelian ones. Look for further components.

Thm: (Ohtsuki-Riley-Sakuma) Among 2-bridge knots K and K', the set $\{ f : \pi_1(S^3 - K) \to \pi_1(S^3 - K') \text{ epimorphism} \}/\{\text{inner}\}$ may have arbitrarily large cardinality.

Cor: (Ohtsuki-Riley-Sakuma) For 2-bridge knots K, $X(K)$ can have arbitrarily many components

Rmk: For 2-bridge knots K, components of $X(K)$ are plane curves:
- As $\pi_1(S^3 - K) = \langle a, b \mid a w(a, b) = w(a, b) b \rangle$, use coordinates $x = \tau_a = \tau_b$ and $y = \tau_{ab^{-1}}$. Hence $X(K) \subset \mathbb{C}^2$
- By Thuston's estimate, the dim of components is at least 1.
- Cannot have dim 2.

Thm: (Paoluzzi-P, using an idea of Riley) Given $m \in \mathbb{N}$, $m \geq 2$, for a Montesinos knot K, $X(K)$ may have arbitrarily many components of dim m.
Varieties of characters
and knot symmetries (III)

Joan Porti

Universitat Autònoma de Barcelona

June 2017

INDAM Meeting
Geometric Topology in Cortona
Recap

• $R(M) = \text{hom}(\pi_1 M, \text{SL}_2 \mathbb{C})$. \quad $\chi_\rho(\gamma) = \text{tr}(\rho(\gamma))$

 $X(M) = \{ \chi_\rho: \pi_1 M \to \mathbb{C} \mid \rho \in R(M) \} \cong R(M)//\text{SL}_2 \mathbb{C}$

• M^3 hyperbolic, orientable and of finite volume.
 The \textit{canonical component} $X_0(M^3)$
 has dimension the number of cusps.

• $X(M^3)$ may have other irreducible components.

• Fico-Montesinos: coeffs. of the polynomial equations in $\frac{1}{2} \mathbb{Z}$, so that its reduction \textit{mod} p is the variety of $\text{SL}_2 \mathbb{F}$-characters, for $\mathbb{F} = \text{algebraically closed field of characteristic } p \neq 2$

• For a knot $K \subset S^3$, $X(K) := X(S^3 - K)$
Knot symmetries

Let K be a knot in S^3 and $\psi: (S^3, K) \to (S^3, K)$ a diffeomorphism of finite order p, that preserves the orientation of S^3. Either $\text{Fix}(\psi) = \emptyset$ or $\text{Fix}(\psi) \cong S^1$ unknotted in S^3.

Def: ψ is said to be:

- a **free symmetry** if the group $\langle \psi \rangle \cong \mathbb{Z}/p\mathbb{Z}$ acts freely.
- a **periodic symmetry** if $\text{Fix}(\psi)$ is a circle disjoint from K.
- a **strong inversion** if ψ has order 2 and $|\text{Fix}(\psi) \cap K| = 2$.
- a **pseudo–periodic symmetry** otherwise.

Assume that ψ has order a prime $p \neq 2$.
Hence ψ is either free or periodic.

Goal: show different behavior between periodic and free symmetries in the variety of characters.
Example: periodic (non-free) symmetry

\[\mathcal{O} = (S^3 - K) / \psi \]

\[\Sigma = \text{Fix}(\psi) / \psi \]

\[(K \cup \text{Fix}(\psi)) / \psi = 6_2^2 \]
Example: free symmetry

\[L(5, 1) = S^3 / \psi \]
Components of the variety of characters

- $K \subset S^3$ hyperbolic knot
- $\psi: (S^3, K) \rightarrow (S^3, K)$ symmetry of prime order $p \neq 2$.

\[X(K)^\psi = \{ \chi \in X(K) \mid \chi \circ \psi_* = \chi \} \]

Thm: (Paoluzzi-P) If ψ is periodic then $X(K)^\psi$ has at least $\frac{p-1}{2}$ components that are also components of $X(K)$.

Rmks: (a) For each prime $p > 4$ there is a knot K_p with a free symmetry ψ of order p so that $X(K_p)^\psi$ has at most 20 components
(b) When reducing mod p, all the components of the theorem collapse to a single one.
(c) If we look at components of $X(K)$, without ψ-invariance, many further components may appear, for ψ either free or periodic.
Components of the variety of characters

- $K \subset S^3$ hyperbolic knot
- $\psi: (S^3, K) \rightarrow (S^3, K)$ symmetry of prime order $p \neq 2$.

$$X(K)^\psi = \{ \chi \in X(K) \mid \chi \circ \psi_\ast = \chi \}$$

Thm: (Paoluzzi-P) If ψ is periodic then $X(K)^\psi$ has at least $\frac{p-1}{2}$ components that are also components of $X(K)$.

- The proof has 3 steps. Set $M = S^3 - K$, $O = M/\psi$.
 1. The restriction map $\text{res}: X^{\text{irr}}(O) \rightarrow X^{\text{irr}}(M)^\psi$ is a bijection
 2. Find several components for $X(O)$
 3. Use (1) + (2) to find several components for $X(M)^\psi$
Step 1: Extending ψ-invariant characters

$M = S^3 - K$ \hspace{1cm} $O = M/\psi$ \hspace{1cm} $\pi_1 M \rightarrow \pi_1 O \rightarrow \mathbb{Z}/p\mathbb{Z}$

$\mu \leftarrow 1$

$\psi : \pi_1 M \rightarrow \pi_1 M$

$\gamma \mapsto \mu \gamma \mu^{-1}$

$\pi_1 O = \langle \pi_1 M, \mu | \mu^p = 1, \mu \gamma \mu^{-1} = \psi_* \mu, \forall \gamma \in \pi_1 M \rangle$

Lemma The restriction map $\text{res} : X^{irr}(O) \rightarrow X^{irr}(M)^\psi$ is a bijection

Proof Want to extend $\chi_\rho \in X^{irr}(M)^\psi$ to $\pi_1 O$ in a unique way.

Since $\chi_{\rho \circ \psi_*} = \chi_\rho \Rightarrow \exists A \in \text{SL}_2 \mathbb{C}$ s.t. $\rho(\psi_*(\gamma)) = A \rho(\gamma) A^{-1}$. A is unique up to sign. If furthermore we require $A^p = \text{Id} \Rightarrow A$ exists and unique because p odd \Rightarrow Set $\rho(\mu) = A$.

(need to show also that restriction of irreducible is irreducible)
Step 2: Finding components for $X(\mathcal{O})$

- \mathcal{O} is hyperbolic and $\text{hol}: \pi_1\mathcal{O} \to \text{PSL}_2\mathbb{C}$ lifts to $\rho_0: \pi_1\mathcal{O} \to \text{SL}_2\mathbb{C}$ because p is odd.
- $\rho_0(\pi_1\mathcal{O}) \subset \text{SL}_2\mathbb{K}$, for \mathbb{K} a number field (Vinberg). May assume that the finite extension $\mathbb{K}|\mathbb{Q}$ is Galois.
- Since $\mu^p = 1$, then $\text{tr}(\rho_0(\mu)) = -2 \cos \frac{\pi}{p}$ and
 \[
 \{\tau_\mu(\rho_0^\sigma)|\sigma \in \text{Galois}(\mathbb{K})\} = \{-2 \cos \frac{\pi r}{p}|r = 1, 3, 5, \ldots, p-2\}.
 \]
- $\tau_\mu = -2 \cos \frac{\pi r}{p}$ distinguishes $\frac{p-1}{2}$ components $Y_1, \ldots, Y_{\frac{p-1}{2}}$ of $X(\mathcal{O})$ that contain different Galois conjugates $\chi_{\rho_0^\sigma}$ of χ_{ρ_0}.
- By Garland’s Thm, since \mathcal{O} has a cusp, $H^1(\pi_1\mathcal{O}, \text{Ad} \rho_0) = \mathbb{C}$
 \[
 \Rightarrow H^1(\pi_1\mathcal{O}, \text{Ad} \rho_0^\sigma) = \mathbb{C}, \forall \sigma \in \text{Galois}(\mathbb{K})
 \]
 \[
 \Rightarrow \text{each } Y_r \text{ is a curve.}
 \]
- Next step: using that $\text{res}: X^{\text{irr}}(\mathcal{O}) \to X^{\text{irr}}(M)^\psi$ is a bijection, the curves $Y_1, \ldots, Y_{\frac{p-1}{2}}$ yield different components of $X(M)^\psi$.

Step 3: components for $X(M)\psi$

We know that $\text{res}: X^{\text{irr}}(O) \to X^{\text{irr}}(M)\psi$ is a bijection. We have $Y_1, \ldots, Y_{\frac{p-1}{2}}$ components of $X^{\text{irr}}(O)$ that are curves.

\[
\begin{align*}
X(O) & \xrightarrow{\text{res}} X(M)\psi \subset X(M) \\
Y_1 & \\
\vdots & \quad W_i = \text{res}(Y_i) \\
Y_{\frac{p-1}{2}} &
\end{align*}
\]

- Since $Y_i = Y_i^{\text{irr}} \cup (\text{a finite set})$, $W_i = \text{res}(Y_i) \cup (\text{a finite set})$ and $W_1, \ldots, W_{\frac{p-1}{2}}$ are different components of $X(M)\psi$
- As $\dim H^1(\pi_1 M, \text{Ad } \rho_0^\sigma) = \dim H^1(\pi_1 M, \text{Ad } \rho_0) = 1$, $W_1, \ldots, W_{\frac{p-1}{2}}$ are also components of $X(M)$. \qed
Rmk: Let \mathbb{F} be an algebraically closed field of characteristic p. As an element of $\text{SL}_2 \mathbb{F}$ of order p is conjugate to

$$\begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix},$$

all these components $W_1, \ldots, W_{\frac{p-1}{2}}$ in the theorem collapse to a single one mod p.
Free symmetries: a family of examples

Consider $\frac{q}{p}$-Dehn filling on A and take the covering $(S^3, K_{\frac{q}{p}}) \to (L(p, q), K_0)$ where $p > 4$ prime and p, q coprime.

$\psi: (S^3, K_{\frac{q}{p}}) \to (S^3, K_{\frac{q}{p}})$ free symmetry of order p

- $X(6_2^2)$ has two components: $X_0(6_2^2)$ and $X^{ab}(6_2^2)$.
 - The map $X_0(6_2^2) \to X(\partial \mathcal{N}(A))$ is dominant and its generic fibre is finite.
 - $\forall \gamma \in \pi_1 \partial \mathcal{N}(A)$ primitive, $\{\tau_\gamma = 2\}$ is a line in $X(\partial \mathcal{N}(A))$.
 - $\Rightarrow X(L(p, q) - K_0)$ has at most C components, C uniform

$\Rightarrow X(S^3 - K_{\frac{q}{p}})\psi$ has at most C components (uniform) and ψ has order p (that can be any prime > 4).
Thanks for your attention!