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1 Introduction to randomness

1.1 Random phenomena

A random phenomenon is a physical phenomenon in which “randomness”
takes a place.

So, what is randomness? It is something that we do not control, in
the sense that it may lead to different outcomes or measurements of the
phenomenon in what we believe are “identical” conditions.

There are many keywords associated to the discussion and mathematical
foundation of random phenomena: probability, chance, likelihood, statistical
regularity, plausibility, ... There are whole books discussing and trying to
explain what is the nature of chance and randomness. It is not worth going
into such philosophical depth for the practitioner. One may get lost into the
variety of “definitions” or “trends” related to the word probability (classi-
cal, frequentist, axiomatic, subjective, objective, logical, ...) or statistics
(frequentist, classical, Bayesian, decision-theoretic, ...).
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2 The Modelling of Random Phenomena
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Figure 1: General mathematical modelling

1.2 The modelling point of view

Instead, take the modelling point of view: Each problem must be treated in
its own merits, choosing the appropriate tools provided by mathematics.

In general, the modelling of a real world phenomenon follows the scheme
of Figure 1.

When randomness is present, the scheme is the same. The distinguishing
feature is the use of the mathematical concept of “probability” (which has
an unambiguous and worldwide accepted definition), and the solution to the
problem comes usually in the form of a “probability distribution” or some
particular property of a probability distribution. See Figure 2.

1 Modelling Formal language
{Real—world phenomenonJ e )
some keyword:
randomness probability
Interpretation Implementation
some probability
distribution

Solution - ( Computation tools

Computation L

Figure 2: Mathematical modelling in the presence of randomness
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1.3 Quantifying randomness: Probability

Take a playing die, for example (Figure 3). Throwing a die is a familiar
random phenomenon. We need the outcome to be unpredictable (thus po-
tentially different) each time; otherwise the die is not useful for playing.
On the other hand, the experiment is performed each time in identical con-
ditions: We throw the die on the table so that it rebounds several times
before stopping. Of course, the conditions are no “truly” identical; in this
case, our ignorance about the exact physical conditions provides the desired
unpredictability, therefore the randomness.

Figure 3: A playing die developed to show all its faces.

Suppose we examine the die, and we see that it looks new, homogeneous,
balanced and with no visible manufacturing defect. Is there any outcome
that looks more likely to appear than some other? If not, then it is logical
that any attempt to quantify the likelihood of the outcomes lead to assign
the same quantity to all outcomes.

We may think that every outcome takes an equal part of a cake they have
to share. Let us say, arbitrarily, that the cake measures 1. Therefore, every
outcome has to take 1/6 of the cake. We say that every possible result w
of the random phenomenon “throwing a balanced die” has a probability of
1/6. See Figure 4.

From the probability of all possible results w € 2, we can deduce (define,
in fact, but in the only sensible way) the probability of all possible events,
that is, subsets A C 2: The event A takes the part of cake that its results
w € A take in total.

1.4 The law of Large Numbers

The relative frequency of an event in a series of identical experiments is

the quotient
Number of occurrences of the event

Number of experiments performed
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Figure 4: A (presumed) balanced die eating the probability cake.

If 1/6 is the probability of obtaining a 3 when tossing the die, it can be
proved that the relative frequency of the event {3} converges to 1/6 when
the number of experiments tends to infinity.

In general, the relative frequency of an event converges to its probability.
This is the Law of Large Numbers. It is a Theorem (an important one).
It is not a definition of “probability”, as it is frequently said.

1.5 Statistical inference

We may think that a die is balanced when in fact it is not. In this case, the
relative frequencies will not converge to the probabilities that we expect. Or,
plainly, we suspect that the die is not balanced, and we do not know what
to expect.

In any case, the Law of Large Numbers leads to the following idea:

1. Toss the die as many times as you can.
2. Write down the relative frequency of each result.
3. Construct the model of the die by assigning

Probability of w := Relative frequency of w .

This is Statistical Inference: We construct a model of a random phe-
nomenon using the data provided by a sample of the population.

The population here is a (hypothetical) infinite sequence of die throws.
In the usual applications, the population is a big, but finite, set of objects
(people, animals, machines or anything), and the sample is a subset of this
set.
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In another common (and definitely overused) setting of statistical infer-
ence, one simply declares the die as balanced unless the relative frequencies
deviate too much of the expected values. If they do, then the die is declared
“non-balanced”.

1.6 Probability. The mathematical concept

We want a mapping that assigns to every event a number called “the proba-
bility of the event” satisfying:

1. It is nonnegative.
2. The probability of the whole set €2 of possible results is 1.

3. The probability of the union of two disjoint events is the sum of the
probabilities of the two events.

Formally: A probability is a mapping

P: P(Q)——10,1]
A—— P(A)

such that P(€2) = 1 and for any countable family {A,},, C Q, with A,NA; =0

ifi#j, )
P(n‘ijl An> =Y P(4,).
n=1

This definition captures perfectly the idea of the pieces of cake taken by
the different events that we saw in Figure 4. The extension to a countably
infinite union instead of just finite does not harm and allows to construct a
mathematical theory much more in line with the phenomena that we intend
to model. Demanding the same for uncountable unions, on the contrary,
would collapse the theory and make it useless. If €2 is a finite set, then of
course this discussion is void.

Sometimes it is not possible to define the mapping on the whole collec-
tion P(€2) of subsets of 2 preserving at the same time the properties of the
definition. In this case, we define it on a subcollection F C P(£2) satisfying
some desirable stability properties:

1. Qe F,

2. Ae F= A e F,
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Figure 5: Probabilities and areas

3. {4} CF = ‘[len eF,

where A¢:= ) — A is the complement set of A.

These subcollections are called o-fields or o-algebras. They enjoy the
right stability properties so that the additivity property in the definition of
P still makes sense.

Probability Theory is a specialised part of Measure and Integration
Theory. In general, a measure is a function defined on the sets of a o-field
with values in a set which is not necessarily the interval [0, 1].

1.7 Drawing probabilities

Probabilities behave like areas of planar regions. Consider Figure 5.

To compute the area of the region AU B, we may add the areas of A and
B, and then subtract the area of AN B, which have been counted twice. This
leads immediately to the fundamental formula:

P(AUB)=P(A)+ P(B)— P(ANB).

All usual lists of “properties of the probabilities” are trivial derivations of this
formula, and can also be deduced from Figure 5. It is useless to learn them
by heart.

1.8 Conditional probabilities

Consider the following example (see Figure 6): We have a box with five white
balls, numbered 1 to 5, and three red balls, numbered 1 to 3. We pick a ball
“completely at random”. What is the probability of drawing an even number?
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Figure 6: Balls in a box

First of all, what is the probability of picking a particular ball? The
expression “completely at random”, though imprecise, is used to mean that
all outcomes are equally likely, as in the case of the balanced die.

We are interested in the event A = {Wy, Wy, Ry}, where W means white
ball and R red ball. Since each of the balls in A takes i of the probability

8
cake, we have that

11 1 3

Now suppose a ball has been picked by someone, who tell us that the ball is
white. What is the probability that the ball carries an even number?

In this case the possible results are W = {Wy, Wy, W3, Wy, W5}, all with
probability %, thus the probability of {Wy, W,} is % The additional infor-
mation has led as to change the model, and consequently the value of the
probabilities.

Notice that :

2 2/8 PANW)

5 5/8  PW) '’

where the probabilities in the quotient are those of the original model.
The conditional probability of A to B is defined as

P(ANB)
P(A -
(4] B) =55
In relation to Figure 5, the conditional probability of A to B is the pro-
portion of area of A inside B.
We say that A and B are independent if the information that B has
happened does not change the probability of A:

P(A [ B) = PLA).
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Equivalently,
P(ANnB)=P(A)- P(B).

1.9 Random variables

We can now step into a second level of difficulty: the concept of random
variable. Let us consider the following example: We toss two balanced dice,
and we are interested in the sum of the points shown. We may consider
directly the set 2 = {2,...,12} and assign probabilities to each element of
), but this is difficult; or we may keep the model closer to the real experiment
by defining Q = {(7,7) : 1 <i <6, 1 <j <6}, and think of the mapping

o—X 50 .12}
(6, ) ———i+]

If the dice really look balanced, and if it is clear that the outcome of
one die does not influence the outcome of the other, then it is natural to
distribute the same amount of the probability cake to every pair (i, ), that
means P{(i,j)} = 55 .

This setting induces a probability Px on {2,...,12}, which is what we
are looking for:

Pyf2} = P} = .

Px{3} = P{(1,2), 2,1} = o,
Pe{d) = P{(1,3),(2,2), (3, 1)} = = ..., etc.

36

In general, a random variable is a mapping X: Q@ — R. (R can be
replaced by other convenient sets; technically, the random variable must take
values in another measure space, that is, a set endowed with a o-field.) The
law of a random variable is the probability Px on R induced by P and X as
in the example.

From the modelling point of view the law is the important thing, not 2 or
the mapping X themselves. Typically one says: “I am observing a random
phenomenon following the law ...”.

From the law of a random variable one may define certain numeric values
that carry some information, and that sometimes are all that is needed in a
particular application. The most important one is the ezpectation, which is
the “mean value” that a variable with that law will take. It can be thought as
the limit of the arithmetic mean of the observed values of the variable when
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the number of observations tends to infinity. But this is again a version of
the Law of Large Numbers, and not a definition.

The expectation E[X] of a random variable X with law Py and taking
a countable number of values k is defined as

E[X] = Zk"PX{k},

with the sum extended over all values taken by X. The variance of X is a
degree of dispersion of its values around the expectation, and defined as

Var[X] := E [(X — E[X])*].

1.10 The binomial law

Leaving aside the elementary “equiprobable” or “uniform” model of the bal-
anced die, the most basic useful example of probability law is the one ap-
pearing in the following situation:

Fix an event A of any random experiment. Call p its probability: P(A) =
p. Repeat n times the same experiment, and let X be the number of occur-
rences of A in the n trials. The law of X is then determined by

n

P{sz}z(k)pk(l—p)”_k, E=0,...,n. (1)

We write X ~ Binom(n,p) and say that X follows a binomial law with
parameters (n,p).

The sentence “repeating n times the same experiment” means in particu-
lar that one experiment does not influence the result of another, and therefore
events concerning the outcome or one experiment are independent of events
concerning the outcome of the other experiments, in the sense of section 1.8.
This fact is key in the deduction of formula (1).

2 Examples from daily life: Arrivals and wait-
ing lines

2.1 The geometric law

Assume the experiments of Section 1.10 are performed continuously and at
regular unit time intervals. We want to know the time elapsed between an
occurrence of A and the next occurrence of A. Or, in other words, how many
experiments are needed before observing again the event A.
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This is a situation that may be of interest in manufacturing, where the
event A is the occurrence of a defective item in the production line.

Let N be the number of A¢ occurrences before the next occurrence of A.
Then it is easy to deduce

P{IN=k}=(01-p)*-p, k=0,1,2,...

We write N ~ Geom(p) and say that N follows a geometric law with
parameter p.

2.2 Tails and the memoryless property

Once we know the density function (or probability function) & —
P{N = k}, we can compute, as in the case of the die, the probability of
any event P{N € B}, where B is any subset of N. In particular, we can
compute the right and left tails of the law:

P{N>k}=(1—-pF, P{N<k}=1-(1-p)rt.

Because of the (hypothesized) independence between the experiments, the
law of N is the same if we define N as the number of A¢ occurrences before
the first occurrence of A. From this fact one can prove the memoryless

property:
P{N>m+k [N~ p)=P{N>k}.

In words, knowing that the event has not appeared in the first k experiments,
it is not more or less likely to appear than if we just start now the sequence.

2.3 Arrivals at random times: The Poisson law

Assume now that the arrivals occur at random times instead of regularly.
For example, the arrival of customers to a waiting line may correspond to
this situation. To be precise, assume:

1. People arrive alone (never in groups).

2. The probability p that an arrival occurs during a time interval of length
h (small) is proportional to h:

p=X-h+o(h).

3. The number of arrivals on disjoint time intervals are independent ran-
dom variables.
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We would like to know, for instance, the law of the number of arrivals NV,
in the interval [0, t], or the number of arrivals per unit time. The hypotheses
above are quite suitable for a situation where the arrivals can be considered
“completely at random”.

Now, divide [0, ] in intervals of length h = t/n. For n big enough, inside
each interval we will see at most one arrival, and this will happen with prob-
ability A h. Therefore, the number of arrivals in [0, ¢] follows approximately
a law Binom(n, At/n). Hence, by (1):

, , n Atk At\n—k
P{k arrivals in [0, ]} =~ (k) : (7> : (1 - —) :
Taking n — oo,

. (At)F
P{k arrivals in [0,¢]} = T exp{—At}. (2)
Let N be the number of arrivals per unit time. We write N ~ Pois(\)
and say that N follows a Poisson law with parameter A:

P{N =k} = % exp{—\}.

The parameter X is called the traffic intensity.

2.4 Interarrival times: The exponential law

Let T be the time between two arrivals. As in the case of the geometric law,
this random variable is equal in law to the time when the first arrival takes
place. The event {T" > ¢} means to have 0 arrivals in [0, t|, whose probability
according to (2) is exp{—At}.

We observe that this probability is nonzero for all ¢ > 0, and that it
cannot be expressed as the sum of the probability of elementary events. We
say that the interarrival times follow a continuous law, in contrast with all
laws seen so far, called discrete laws.

In the case of continuous laws, the density is a function f: R — R*
such that P{T" € [a,b]} is the area under its graph between a and b.

P{T ¢ [a,b]}:/ f.
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To compute the density of the interarrival times, we observe that

/Otf = P{T € [0,t]} =1 —exp{—At},

so that

T

2.5

f(t) = X-exp{—At}.

~ Exp()) is called the exponential law with parameter \.

Continuous laws

Continuous laws have some features that contrast with those of discrete laws:

The law is not determined by the probability of the individual out-
comes.

It is the density that determines the law. (This can be said to be true
also for discrete laws, but the concept of “density function” is different.)

It is not possible to assign a probability to all subsets of the real line
(this is not obvious). But we do not need to! It is possible to assign a
probability to all intervals, and therefore to the members of the minimal
o-field containing the intervals, which is far more than what we need
from a practical point of view.

Continuous laws show why we cannot ask a probability to be additive
for collections of arbitrary cardinality. For example: 1 = P{T > 0} #

Yo P{T =t} =0.

The expectation of a variable with a continuous law cannot be defined
with sums. It is the integral

B = [ o f)de.

o
where f is the density. Notice however the analogy with the definition
for discrete laws. In the context of measure theory, the expectation can
be expressed in a unified way for all cases.

The correct name of these laws is absolutely continuous, for math-
ematical consistency, but the adverb is frequently dispensed with. “Con-
tinuous”, strictly speaking, simply means that the so-called distribution
function F(z) := P{X < z}, which is always non-decreasing and right-
continuous, is furthermore continuous; whereas “absolutely continuous” refers
to the stronger property that the distribution function is a primitive of an-
other function, the density: F(z) = [*_ f.

UFRB
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2.6 Poisson arrivals / Exponential times

Still some remarks about the relation between the Poisson and the exponen-
tial laws:

1. If the interarrival times are Exp()), then the arrivals per unit time are

Pois(\).

2. This situation is called “completely random arrivals", in the sense that
the arrival times 0 < ] < ty < .-+ < t}, < t have the law of k indepen-
dent uniformly distributed values in [0, ¢], after sorting them.

3. The exponential laws enjoy the same memoryless property as the geo-
metric law,

P{T>t+s [~ g} =P{T >},
and is the only continuous law with this property. It is a good model for

lifetimes of “ageless devices”; for instance, the lifetime of an electronic
device, or living beings in their middle ages, when the death comes

from internal or external accidents (electric shocks, heart strokes, ...).
Arrivals
15 —
10 -
5 - —_—
Time
0 ) 10 15 20

Figure 7: A Poisson sample path with A = 1 (red) and with A = 0.5 (blue). Lower A
means less frequent arrivals in average.



14 The Modelling of Random Phenomena

2.7 The Poisson process

The collection of random variables {N;, ¢t > 0}, counting how many arrivals
have occurred in the time interval [0, ¢], form the Poisson process.

When we observe a particular arrival phenomenon, we see, as time passes,
a sample path of the Poisson process (see Figure 7). We may also think of
the Poisson process as the collection of all its sample paths.

2.8 Stochastic processes

In general, a random evolution in time is modelled by a stochastic process.
There are two possible points of view of a stochastic process:

1. As a collection of random variables:

X :={X;, t >0}, with X;: Q —R.

2. As a “random function”

X: Q——RR'
wi— X (w)

Here R®" denotes the set of all functions Rt — R, which can be identified
with the Cartesian product of “R* copies” of R as a set, as a topological
space and as a measure space.

2.9 Queues (waiting lines)

A queue is a situation in which users arrive to a service, wait to be served
if the service is not immediately available, and leave after having been served
(Figure 8).

Examples are customers in a supermarket cash, cars in the highway at
the toll booths, and parts in a manufacturing chain.

Its behaviour depends, among other things, on:

1. Arrival pattern: Interarrival times, number of users per arrival, pa-
tience of the customers, ...

2. Service pattern: Service time, number of users served simultaneously,

3. Queue discipline: FIFO (First-In, First-Out), LIFO (Last-In, First-
Out), SIRO (Service in Random Order), ..., with variants specifying
priorities, pre-emption, etc.

UFRB
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Figure 8: A typical simple queue: Customers arrive, wait in a line, are served, and leave
the system. (Illustration appeared in The New Yorker, 1977)

4. Capacity: Number of users allowed to wait.

Moreover, everything may be dependent or not on the state of the system
(number of users, etc.) and the elapsed time since the start.
Typical questions posed in these situations are:

e How many users are in the line? (at a given time, in the mean, ...)
e How long a user must wait? (a given user, in the mean, ...)

e How much time a service facility is idle?

e How long are the busy/idle periods of the service facility?

The answers are random variables if at least one of the features is random.
We would like to know the law of these variables, or at least its expectation,
or some other value of interest.

The purpose of knowing these laws or law parameters is, frequently, to
take a decision about some controllable inputs of the queue, and with some
cost associated to each of the values of these inputs. For instance, the number
of cashiers in a supermarket clearly influences the waiting time of the cus-
tomers; benefits may increase thanks to that, but the running costs are also
higher. Here we enter the realm of optimisation and operations research.

2.10 The M/M/1 queue. Transition probabilities

Assume that we have Poisson arrivals to a queue, the service time is also
random and follows an exponential law (just one among some common sit-
uations), and there is a single service channel (only one user at a time is
served).
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More precisely, we now put in rigorous mathematics the hypothesis of
Section 2.3. In the sequel we use the usual notation o(h) to mean any function
such that limy_,00(h)/h = 0. Assume that the arrivals satisfy:

1. P{more than one arrival in [t,t + h]} = o(h).
2. P{an arrival occurs in [t,t + h]} = Ah + o(h).

3. The number of arrivals in non-overlapping time intervals are indepen-
dent random variables.

And moreover the service times satisfy
1. P{more than one service completed in [¢t,t + h|} = o(h).

2. P{a service is completed in [t,t + h|} = ph + o(h) (assuming the ser-
vice is not idle).

3. The number of completed services in non-overlapping time intervals are
independent random variables.

All these properties together imply that we have a queue where the in-
terarrival times follow the law Exp()\) and the service times follow the law
Exp(p).

Assume, moreover, than jointly considered, arrivals and services are in-
dependent.

Let us call now NV; the number of users in the system at time ¢. We can
compute the probability that the state of the system changes from n users
to any other number in some time interval [t,¢ 4+ h]. These are called the
transition probabilities, and can be considered for any stochastic process.
It is easy to find, using the hypotheses above that for all n > 1

a) P{Nt+h:n+1/Nt:n}:)\h—i—o(h),fornZO.
b) P{Nt+h:71—1/Nt:n}:uh+o(h),forn21.

c) P{Nt+h:n/Nt:n}:1—(A+u)h+0(h),forn21, and
P{Nen =0 | N, =0} =1 Ah+o(h).

d) All other transition probabilities are o(h) .

UFRB
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2.11 The M/M/1 queue. Differential equations

Fix two times s < t. Denote p,, ,(s,t) the conditional probability of being in
state m at time ¢, conditional to be in state n at time s. Then, for m > 0,

Pran(s:t+ 1) =Y pus(s,t) - pram(t,t + 1)
keN

= Do (S, ) - Dt + B) + Dpm—1(8,1) - Dn—1.m(t, T+ h)
+ Pnm+1(5,1) - Pmgrm(t,t + h) + o(h)

= Ppm(S,t) - (1 —(A+p)h+ o(h)) + Pnm—1(s,1) - ()\ h + o(h))
+ Pumsi(s:8) - (h+o(h)) +o(h),

where the so-called Markov property have been used (see Section 3.3 below).
Diving by h and taking A — 0, we obtain

d
%pn,m(s, t) = =N+ 1) Pam(8,t) + ADnm—1(8,t) + e Pnmi1(s,t).

Analogously, for m = 0, one finds

d
%pn,o(sa t) = _)‘pn,0<37 t) + ﬂpn,l(& t) .

This is a countably infinite system of ordinary differential equations for
the conditional probabilities p;, (s, t) = P{Nt =m /NS - n}, for s < t,
and n,m € N.

One can also obtain differential equations for the law of /V; itself: Denote
pn(t) = P{N; =n}. For n > 0,

%pn(t) = % ( kEZNpk(O) Pin (0, ﬂ)

= 3" e0) | = O+ 1) Pn(0.8) + Aprn1(0,8) + 1 s (0, )
keN

= —(A+ 1) Pult) + Apn_1(t) + ppasa(t).

And, for n =0,
d

Z00(t) = =Apo(t) + ppa(8)

We get again a countably infinite system of ordinary differential equations.
The system can be solved exactly but it is difficult and there is a lot of higher
mathematics involved.
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e ——
2.12 The M/M/1 queue. Steady-state law

In the long run, as t grows, does the law of IV, stabilises? If this is true, then
the derivatives in the system of Section 2.11 must vanish when ¢t — oo:

0= —Apo+ pup1,
0=—A+ 1) pn+APn_1 + lPps1 -

A\ 7
Pn = (_) * Do -
1
Using as boundary condition ) p, = 1, we obtain

1
Po = S oom o
L ()

hence a necessary condition for the existence of a stabilisation is A < pu.
Denote p := A/u. This number is called the traffic intensity of the queue.
If p > 1, no steady-state exists; in fact, the queue tends to grow forever,
as more and more users accumulate in it.
If, on the contrary, p < 1, then py = 1 — p, and we get

By induction,

which is the probability of having n users in the system, in the long run.

Knowing the law of the number of users in the system in the long run, it
is easy to compute:

e The expectation of the number of users /N in the system:

EN] = 2

e The expectation of the number of customers N, in the queue:
7
1—p’

e The law of the waiting time 7, in queue:

P{T, =0 =1—p.
P{T, <t} =1—pexp{—p(l—p)t} (fort>0).

e The expectation of T:

UFRB
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2.13 Complex queueing systems. Simulation

The results above are specific of the M/M/1 queue. There are specific re-
sults for other types of queues, and there are also some general results. For
instance, the relations

E[N] =A E[T]
E[Nq] =A E[Tq] )

which one can easily deduce in the M/M/1 queue, are true, no matter the
law of arrivals and service times.

However, except for relatively easy queue systems, there is no hope to
find analytical results, as computations become intractable very soon. That
means that in the real world, one can hardly find closed formulae.

What to do then? One may propose:

e [dea 1: Observe the system long enough, take data and do some sort
of statistical inference.

e [dea 2: Simulate the system in a computer, and do statistical inference
as well.

For idea 1 to work, we need the system really running, some mechanism of
observation, and a lot of time. In practice, we seldom can afford such luxuries.
For idea 2, on the other hand, we only need, essentially, a mechanism to
generate random numbers.

There are very good random number generators embodied in software.
Their outcome is not really random, but they can fool any detector of “non-
randomness”. Anyway, if the quality of a stream of such pseudo-random
numbers is a concern, it is very easy to use a true random number generator
based in hardware: Nowadays, several internet sites offer potentially infinite
streams of true random numbers produced by a quantum device. And such
devices are quite cheap, in fact.

2.14 Birth and death processes

A birth and death process N, takes values in N and the change across an
infinitesimal time interval can only be -1, 0, +1:

P{Nin=n+1 /N —pn} =X\ -h+o(h),
P{Nt+h:n—1/Nt:n}:un-h—I—o(h).
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This is a generalisation of the M /M /1 queue model to transition probabilities
that may depend on the system state.

The corresponding system of differential equations for the state of the
system becomes

d
Epn@) = _<>\n + ,U/n) pn<t> + )\n—l pn—l(t> + Hn+1 Pn+1 (t)

d

Ep()(t) = —/\0 po(t) + p1p1 (t)

Birth and death processes have been used, for example, to model the
varying size of a biological population under given environmental conditions,
or to describe the evolution of an epidemic.

3 Example from industry: Inventories

3.1 Inventory modelling

A company distributes some product, maybe after
processing some raw material that arrives to the
warehouse. Let us assume that we are dealing
only with one product and no processing time.
Assume also that the product has an approxi-
mately constant level of demand, but the arrival of
orders from the clients is not so predictable. The
time required to obtain units of product from the
manufacturer is also subject to some variability.
Two fundamental questions in this situation are:

1. When should more items be ordered?
2. How many items should be ordered when an order is placed?

A couple of things to take into account:

e [f a customer wants to purchase but we do not have items, the sale is
lost. Therefore, it is important to have enough items in the warehouse.

e The product may become obsolete, and there is also a cost of main-
taining the inventory. Therefore, it is not good to keep in storage too
many items.

Simple hypothesis for an inventory problem that allow analytical compu-
tations similar to the M/M/1 queue are:
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e Orders arrive for single items with a random interarrival times following
the same law, independent from each other.

e The time to receive items from the manufacturer (lead times) follows
some law, and are independent, and independent of order arrival.

A commonly used simple strategy is the (7, s)-policy: when the inventory
drops to r units, order s — r units. One may measure the performance to
this policy, given r and s by the average inventory level, or by the average
no-inventory time, or by the number of orders that arrive when the inventory
is broken, or, most probably, by an combination of these and other measures
that ultimately reduces to a measure of economic benefit that the company
wants to maximise.

Level

5 4+— _— —

4 + —_ — —_

0 t t t : t } Time
0 ) 10 15 20 25 30

Figure 9: A path of a inventory process. For some time before day 20 and around day 30
the inventory was “empty”.

The inventory process, whose paths have the aspect of Figure 9, is not
in general a birth and death process: Items may arrive in batches to the
warehouse, and the clients’ orders may also involve more that one unit. It is
therefore a generalisation of the situations seen in the last sections. But it
can still be simulated easily if we know the input distributions.

3.2 Markov chains

We further generalise by abstracting a remarkable property of the inventory
process: If we know the state of the system at a particular time ¢, we do not
need to know anything about previous states to predict the future. This is
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a random analogous of the uniqueness property of deterministic dynamical
systems when proper initial conditions are given.
Formally: If t; < --- <1t <t,

P{Nt:n/Ntlznla S Ntk:nk}:P{Nt:n/Ntk:nk}’

Stochastic processes satisfying this property are called Markov chains,
and enjoy an extensive an quite rich theory.

3.3 Chapman—Kolmogorov equation

Consider times 0 < u < t < s. Recall the notation of Section 2.11 for the
transition probabilities.

The Chapman—Kolmogorov equation for Markov chains establishes
that the probability of going from state n to state m when time runs from u
to s can be computed by decomposing all possible paths at the intermediate
time ¢:

pn,m(u7 S) = an,k(u7 t) pk,m(ta S) .
k

We have already used this in Section 2.11.
In particular, the law of the random variable V;,;, can be obtained from
the law of N; and the transition probabilities from ¢ to ¢t + h:

an pnm0t+h Zan pnkOt)pkm(t t—l—h)

Pt + h) = Zpk () Py (t, t+ 1)
k

3.4 Kolmogorov forward and backward equations

Assume

1= pon(t,t+h) =q.(t) h+o(h),
Pnm(t,t+h) = gum(t) h+o(h) (for n # m),

for some continuous functions ¢, and ¢,,,. Then, the following two relations
hold:

0
Epn,m (u, t) = 4m <t> pn,m (U, t) + k#zmpn,k: (u, t) Qk,j (t> )
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0
%pn,m (u, t) = ({n (u) pnm(u7 t) - g Qn,k (t> pk:,m (U, t) .

These differential equations for the transition probabilities are known as Kol-
mogorov equations, forward and backward, respectively.

3.5 Differential equations for the laws

Assume that the functions ¢, and ¢, ,, above are constant: ¢,(t) = ¢, and
Inm(t) = qnm- The Markov chain is then called time-homogeneous.

From Kolmogorov forward equations, letting v = 0, multiplying by p,(0)
and summing over n, one obtains a (infinite) system of differential equations
for the laws of N;:

ipm(t) = G m(t) + > Pr(t) iy -

dt
k#m

3.6 Long-run behaviour of Markov chains

In many applications it is of interest to study the behaviour of the chain in
the long run. For instance:

e Limiting distributions: Assume that the limits lim; oo prm(u,t) exist
and are equal, for all n. That means, the limit is independent of the
initial state, when time is large. The limit is a probability law called
the limiting or steady-state distribution of the Markov chain.

e Stationary distributions: If the limit of the laws {lim; . pn(t) }, exists,
it is called the stationary distribution of the chain. If there is a
limiting distribution, then it coincides with the stationary distribution.
But the latter may exist independently.

e Ergodicity: Loosely speaking, ergodictiy means that some kind of
information that can be extracted from a process as a whole, can also
be obtained by observing one single path. For instance, ergodicity
with respect to the expectation means that the limit lim, ., E[X (?)]
coincides with .

1
lim = [ X(s)ds
t—oo t 0
for all sample paths X (s). For example, the M/M /1 queue, with traffic
intensity p < 1, satisfies this property.
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In particular, ergodicity implies that simulating one only sample path
for long enough time is sufficient to estimate the expectation of the
process in the long run.

e (Classification of states: The elements of the state space of Markov
chains are classified according to different interwoven criteria. Among
the most important concepts: A state is transient if the probability to
never returning to it is positive; otherwise it is called recurrent, and
the process will certainly visit that state an infinite number of times; a
state is absorbing if the chain never leaves it once it is reached.

3.7 Stochastic processes in discrete time

A discrete time stochastic process is a process where the family of ran-
dom variables is indexed by a discrete set, usually Z or N.

A discrete time Markov chain has the same definition of a Markov
(continuous time) chain, except that the index t runs over a discrete set,
usually the non-negative integers.

Passengers
600

500
400 A
300

200

100 - |

1 13 25 37 49 61 73 8 97 109 121 133 Time

Figure 10: A time series: A discrete time stochastic process with 144 values corresponding
to the number of airlines passengers (in thousands) between 1949 and 1960.

Another important class of stochastic process in discrete time is the time
series, that models a different sort of dependency between variables. Fig-
ure 10 shows the monthly evolution of the number of passengers of interna-
tional airlines between January 1949 and December 1960. One observes a
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trend (increasing), a seasonality (peaks at the central months of the year)
and a residual noise (the purely random component of the process). Usually,
one tries to fit a suitable model of dependence between the variables, so that
the original process is expressed as the sum of these individual components.

4 Example from biology: genes

4.1 Genotype and gene frequencies

Alleles are several forms that a gene may have in a
particular place (locus) of a chromosome.

For example, sheep haemoglobin presents two forms,
produced by two alleles, A and B, of a certain locus.
Each individual possesses chromosomes in pairs, one
coming from each parent. This implies that there are
three possible genotypes: AA, AB, BB.

Typically, one allele is dominant, while the other
is recessive. The recessive allele shows up externally
in the phenotype only if the dominant is not present.

Assume we extract blood from a population of N
sheep, and the genotypes appear in proportions Pag,
Pap and Ppp (called genotypic frequencies). The
gene frequencies are the proportions of the two alleles:

Some sheep

1
Py = Psas+ =Pap

2 (3)
PBZZPBB+§PAB-

4.2 Hardy-Weinberg principle

Assume that:
e The proportions are the same for males and females.
e The genotype does not influence mating preferences.
e Each allele of a parent is chosen with equal probability 1/2.

Then, the probabilities of each mating are, approximately (assuming a
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large population):

P(AA with AA) = P3,,
P(AB with AB) = Pip,
P(BB with BB) = P35,
P(AA with AB) = 2 Paa Pag,
P(AA with BB) = 2 Pya Ppp,
P(AB with BB) =2 Pag Psp .

We can deduce easily the law of the genotypes for the next generation:

1 1
QAAZPE;A-FE?PAAPAB-FZP,%B:PE;,

1 1
QBB:P§B+§2PBBPAB+ZP3,B:P§,

Qap=2P4 Pp.

Computing the gene frequencies @ 4 and Qg with (3) we find again P4 and
Ppg, so the genotype frequencies must be constant from the first generation
onwards. This is the Hardy-Weinberg principle (1908).

As an application of this principle, suppose B is recessive and we observe
a 4% proportion of individuals showing the corresponding phenotype. Then
we can deduce the genotype proportions of the whole population:

4% = Ppp = P, = P = 20%, Pa = 80%, Pss = 64%, Pap = 32% .

If the population were small, then randomness in the mating may lead to
genetic drift, and eventually one of the alleles will disappear from the pop-
ulation. The other gets fized, and time to fixation is one of the typical things
of interest. This purely random fact explains the lost of genetic diversity in
closed small populations.

4.3 Wright-Fisher model (1931)

If the mating is completely random, it does not matter how the alleles are
distributed among the N individuals. We can simply consider the population
of 2 N alleles.

Assume that at generation 0 there are X, alleles of type A, with 0 <
Xo < 2N. We pick alleles from this population independently from each
other 2 N times to form the N individuals of generation 1.
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The law of the number of alleles of type A must be Binom(2 N, p), with
p = Xo/2N. Thus

P{X, =k} = (2;\1) (Xo/2N)* (1 — Xo/2N)*N=F kK =0,...,2N.

In general, the number of alleles A in generation n + 1 knowing that there
are j in generation n is

PR =k [x, = 3= (%)) Gt - g,

This defines a Markov chain in discrete time. Its expectation is constant,
E[X,] = E[Xj], and the expectation of the random variable X,,, knowing
that a past variable X,, (m < n) has taken value k, is equal to k:

E[Xa /X, =k =k, k=0,..2N. (4)

However, as we saw in Section 4.2, the process will eventually reach states
0 or 2 N, and it will remain there forever. They are absorbing states (see
Section 3.6).

4.4 Conditional expectation

The expression on the right-hand side of (4) is called the conditional ex-
pectation of X, given that X,, = k. It is exactly the expectation of X,
computed from the conditional probability to the event {X,, = k}. One may
write (4) as

B[Xn [ X,] = X

and the left-hand side is now a random variable instead of a single number,
called the conditional expectation of X, given X,,. For each w € ,
the random variable E [X / Y](w) is equal to the number E [X / Y =y, if
Y(w)=uy.

In case the conditioning random variable Y has a continuous law, the
definition above does not work, since {Y (w) = y} is an event of probabil-
ity zero. The intuitive meaning is however the same. Mathematically, the
trick is not to consider the y individually, but collectively: The conditional
expectation E [X / Y} is given a sense as the (unique) random variable that
can be factorized as a composition (¢ o Y)(w), with ¢: R — R, and whose
expectation, restricted to the events of Y, coincides with that of X:

El(¢oY) 1yem| =EX - Liyeny,
where 1{ycpy is equal to 1 if Y(w) € B and 0 otherwise.
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4.5 Continuous approximation of discrete laws

Discrete laws involve only elementary discrete mathematics, but they are
sometimes cumbersome with computations. For instance, computing exactly
the probability density of a Binom(n, p) distribution when n is large involve
making the computer work with higher precision than usual. Although nowa-
days this is not a big deal (unless n is really very large), it is still useful, and
conceptually important, to use continuous laws as a proxy to the real distri-
bution.
Specifically, for the binomial law: If X ~ Binom(n,p), then

X —np

——————— ~ N(0,1), (approximately, for n large)
np(l—p)

where N(0, 1) denotes the so called Normal (or Gaussian) law with ex-
pectation 0 and variance 1. Its density function is the Gaussian bell curve

fle) = e

voxa

Figure 11 shows graphically the approximation.

T T

—4 -2 0 2 4

Figure 11: Approximation by the Gaussian law: The probability density of Binom(n =
45,p = 0.7), after subtracting its expectation (centring) and dividing by the square root
of its variance (reducing), depicted with black vertical lines. In red, the density function
of N(0,1).
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The importance of the Gaussian law comes from the Central Limit The-
orem, which explains its ubiquity: If X, is a sequence of independent identi-
cally distributed random variables, with finite variance, and S, := > | X;,
then

Sy — E[S,]

/ Var[S,]

We immediately see that the binomial case above is a particular ap-
plication of this theorem, taking X; ~ Binom(l,p), which implies S, ~
Binom(n, p). Convergence in law is a non-elementary concept that has to do
with duality in functional spaces: Suppose that {Y,,} is a sequence of random
variables with respective distributions P,, and Y is a random variable with
distribution P. Then, we say that {Y,,} converge in law to P if for every
bounded continuous function f: R — R,

converges in law to  N(0,1).

Jim B[ (¥,)] = E[f(¥)].
The seemingly natural “setwise” convergence lim,, o, P,(A) = P(A) for all
sets A is too strong, and will not work for the purpose of approximating by
continuous distributions.

One practical consequence of the Central Limit Theorem for modelling is
that any phenomenon whose result is the sum of many quantitatively small
causes (like for instance the height or the weight of a person) will be well
described by a Gaussian random variable. The fact that the Gaussian laws
may take values in any interval of the real line is not an obstacle due to the
rapid decrease of the bell curve: Outside a short interval, the probability is
extremely small.

4.6 Random walk and the Wiener process
Let {X,,}, be a Markov chain taking values in Z with
XO = 07
P{Xnp=i+1/x —}=1/2,
P{Xpn=i—1/x —}=1/2.

This process is called random walk. It is simply a “walk” on the integer
lattice, where at each time step we go to the left or to right according to
the toss of a fair coin. In other words, the increments ¢, := X,, — X,,_1 are
independent and take values 1 and —1 with probability 1/2.
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Define a sequence of continuous-time process W' by renormalisation of
a random walk:

LN ¢]

1 1
\/—ﬁkz:;f:k.

VN

By the Central Limit Theorem,

WY = —=X|ny =

1 [Nt
= — Z g converges in law to  N(0,1),
k=1

VNt

hence the sequence {W/N}y converges in law to a random variable W, ~
N(0,t), the Gaussian law with variance ¢, for all ¢ > 0, whose density is

1 2
T) = ——e /2,
fa) = —7—
Analogously, W — WX converges in law to W, — W, ~ N(0,t — s). The
limiting process W, satisfies:

1. The increments in non-overlapping intervals are independent.
2. The expectation is constant equal to zero.
3. The sample paths are continuous functions.

4. The sample paths are non-differentiable at any point.

W is called the Wiener process. In fact, a Wiener process is defined
by its laws, but usually it is additionally asked to have continuous paths.
This particular construction as the limit of random walks leads indeed to
continuous paths.

The Wiener process is also called Brownian Motion in the mathemati-
cal literature. However, the Brownian motion is a physical phenomenon, and
the Wiener process is just a mathematical model (and not the best one) to
that phenomenon.

4.7 Diffusion approximation of Wright-Fisher model

The Markov chain of the Wright-Fisher model is too complicated to work
upon. Instead, define Y, = ﬁXgNtJ. Then,

1 2
E [<Yt]¥h —YN)? /Y;N —q) = (ﬁ) E [(ngzv(tJrh)J - X0 /XtN = 7]

1 . 1
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The limiting process Y; exists, satisfies
E [(Yirn — Y2)? /Y75 — 2] =hz(l—1z)+o(h)

and it is called the diffusion approximation of the original Markov chain.

4.8 Diffusions

A diffusion Y is a continuous-time Markov process, with continuous paths,
and such that

1 EYien = Y5 [y, = o] = b(t,2) h + o(h) ,

2. B[(Yien =Y |y, = 4] = a(t,2)h + oh)

for some functions a and b. See Section 4.4 for the interpretation of the
conditional expectations when the conditioning variable is continuous.

Under mild conditions, ¥; has a continuous law with density f(¢,x) sat-
isfying the Kolmogorov forward and backward equations:

0 1 02 0
0 1 0? 0

The Wright-Fisher model can be expanded to take into account other
effects in population dynamics, such as selection or mutation. This compli-
cations make even more useful the corresponding diffusion approximations.

5 Example from economy: stock markets

5.1 A binomial economy

Assume an economy with only two states:
e Up (with probability p),
e Down (with probability 1 — p).
Assume that there are two assets:

e A risk-free bond with interest rate R, and
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e A share with price S(0) at time 0 and S(1) at time 1, given by
s(1) = {S(O)u , ‘if the economy ‘is “up”
S(0)d , if the economy is “down”
A trading strategy for a portfolio is defined by
e B, € allocated to the bond, and
e A quantity of shares of the stock at time zero.
The values of the portfolio at times 0 and 1 are

V(0) = By + A S(0)
V(1) = Bo(1+ R)+ ApS(1)

""f;'.g %‘ 'S Q,@..m Ve -
A o " . | -y o o
T g *’l.h# ? mi‘%ﬂ"]' t ‘lﬁr

Kuwait stock market

5.2 Free lunch?

As we will see, one can make money for free, unless d < 14+ R < u. An
arbitrage opportunity is the situation in which, without investing any
money at time zero, the probability to have a positive portfolio at time one
is positive, and the probability of a loss is zero.

For a couple (By, Ag) such that V' (0) =0,

Bo(1+ R) + ApuS(0)

V(1) = Bo(14+ R) + AeS(1) = {Bo(l + R) + AydS(0)

_ [8S@) - [u— (14 R)]
" | A0S() - [d— (14 R)
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with respective probabilities p and 1 — p.

If (1+ R) < d, both quantities are positive and we could borrow money
to buy assets to have a sure win. If (1+ R) > u, both quantities are negative
and we could make money by selling assets and buying bonds. If V(0) # 0,
the argument is equally valid.

The arbitrage situation is not realistic if all the actors have complete
information. Thus, usually there is no free lunch!

5.3 European options

An European call option is a financial derivative: It gives the holder
the right (not the obligation) to buy a share for an pre-specified amount
(exercise price K) on a specific later date (expiry date 7). Similarly, an
European put option is the right to sell the share.

If S(T) is the value of the share at time 7', the payoff of a call is (S(T') —

K )+. If S(T) < K, the holder does not exercise the option, since it can buy
the share in the market for a cheaper price, so the payoff is never negative.
Correspondingly, the payoff of a put is (K -5 (T))+, see Figure 12.

Payoff Payoff

Figure 12: Graphs of an European call and an European put

5.4 Fair price of an European call option. Example

Assume the following data:
e Current price of the share: S(0) = 100,
e Interest of the risk-free bond: 10%,
e Possible prices for the share at time 1: 120 or 90,

e [xercise price: K = 100.
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We have uw=1.2, d=0.9, 14+ R =1.1. The payoff will be C, := 20
or Cy :=0.

To find the fair price, let us construct a portfolio with a value V(1) equal
to the payoff of the option. The fair price will be V(0).

Vi) = { By~ 1.1+ AgS(0) - 1.2 =20

Bo-1.14A¢5(0)-0.9=0
= AgS(0) = 66.67, By= —54.55

The fair price is thus 12.12.

5.5 Fair price of an European call option. In general

In general, we have

V(1) = By(1+R)+A¢S(0)u=C,
| Bo(14+R)+2¢5(0)d=Cy

o UCd—dCu . Cu_Od
1+R—d
:>BO+AOS(O):(1+R)_1(C’uq+Cd(1—q)), Whereq:ﬁ.

It follows that the fair price of the option is the expected (and discounted!)
payoff of the option under the probability @ = (¢, 1 — ¢) for the states of the
economy:

Eo [(1+B)7H(S() — k)] (7)
Some remarks on the probability @):

e Under @, the share and the bond have the same expected return:

Eq[S(1)] = 5(0)ug+5(0)d(1—q)

1+ R—-d u—1—R
_S<0)<u u—d +d u—d )

— S(0)(1+R).

e The probability () does not depend on the underlying probability P =
(p, 1 — p) nor on the payoff of the option.

e () is called the risk-neutral probability (or martingale probabil-
ity).
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5.6 Fair price of an European call option. Example
(cont.)

With the same data as before, we compute now the fair price directly using
formula (7), where in this case ¢ =: 2/3.

Eo[1+R)™(S)~K) =1 +R) ™ (Cy-q+Cys-(1—q))

_ ! [20 2.0 1}—1212
11 3 3] T

Assume now that the exercise price is fixed to K = 95 instead of K = 100,
while all other data remain the same. Logically, the option should be more
expensive in this case. Applying again formula (7),

Eo[A+ RS~ K) =1 +R)™(Cy-q+Cys-(1—q))

1 2 1
— —[o5.2 -—}:1.1.
1.1[53“}3 o1

5.7 FEuropean call option. Multiperiod

The previous sections dealt with a single time period. Assume now that the
expiry time of the option is 7" and that we can change the composition of the
portfolio at any of the intermediate integer times.

A trading strategy is then {(B;,4;), 0 <t < T —1}. It is called a
self-financing strategy if we do not put new money or take money out of
the portfolio.

At time ¢, we can change the portfolio composition, but the value remains
the same:

B+ A;S(t) = Brpr + A1 S(2)
The new value at time ¢ + 1 will be:
Biy1 (1+R)+ A1 S(t+1).
Therefore, the value increments for a self-financing strategy is
V(t+1) = V(t) = Biyr R+ Apa (S(E+1) = S(¢)) .

We can compute the fair price F/(0) at time 0 of an option with exercise
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value K at expiry date T recursively:
F(T —1) =Eq :(1 +R)7HS(T) = K)* g1 - 1):
F(T —2) =Eq :(1 +R)TF(T-1) [ g1 - 2)]

(L+R)2(S(T) = K)* | g1 2)

=Eqg [ ]
F(0)=Eq [(1+ R)""(S(T) — K)*].

This computation uses essential properties of the conditional expectation that
we are not going to detail here. But the conclusion must be quite intuitive.

5.8 Martingales

Under probability @, the stochastic process (1+ R)~S(t) enjoys the martin-
gale property. A stochastic process {X;,t > 0} is a martingale if

E [Xt /Xs] = X, whenever s <t, (8)

meaning that the knowledge of the state of the system at time s makes this
the expected value at any later time. The discrete time process defined in
Section 4.3 is a discrete time martingale (see Equation (4)).

Martingales are good models for fair games: The expected wealth of a
player in the future is the current wealth, no matter what happened before,
or how long has been playing.

From (8) it can be deduced in particular that the expectation of the
process is constant in time. In our case of the FEuropean call option, this
means

Eq [(1+R)™ S()] = S(0).
implying that
Eq [S(T)] = 8(0) - (1+ R)"

which is precisely the return of the risk-free bond (and this is why @ is called
a “risk neutral” probability measure).
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5.9 European call option. Continuous time

In continuous time, it can be shown that there is also a probability ) under
which e~fS(t) is a martingale, and the fair price at time 0 of a call option
is given by

F(0) =Eq [e”""(S(T) = K)7],
although @) is more difficult to describe here.

The evolution of the value of the bond asset I(t) is driven by the well-
known differential equation

di(t)=R-I(t)dt.
The evolution of the price of the share can be described as
dS(t) = S(t)(pdt + o dW(t)) (9)

where W is a Wiener process, approximating (in the continuum limit) the
Markov chain given by the binomial model. The trend, if p # 1/2, goes to
the drift u. The volatility o is the intensity of the noise. This is a simple
example of a stochastic differential equation. It is a pathwise description
of a diffusion process with b(t,z) = p and a(t, z) = o2 (see Section 4.8).

Although the paths of W are non-differentiable everywhere, Equation (9)
has the obvious meaning

S(t) = S(0) —i—u/otS(r) dr +oW(t).

This equation can be solved explicitly (this is not common, of course).
The solution is the stochastic process given by

S@%:ﬂmeq{pt—%ﬁt+0W@ﬁ,

and we can compute its law from here.
The evolution of the whole portfolio value will be

dV () = B, dI(t) + A, dS(t).

5.10 Stochastic differential equations

In general, a diffusion process X with characteristic functions a(t,z) and
b(t,x) (called respectively diffusion and drift coefficients) can be repre-
sented pathwise by means of the stochastic differential equation

dX (t) = b(t, X (t)) dt + a(t, X (t))/2dW (1),
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with a suitable definition of the last term, which in general, when the function
a depends effectively of its second argument, does not possess an obvious
meaning.

Diffusions can therefore be studied at the same time with the tools of par-
tial differential equations that describe the evolution of the laws in time, and
with the tools of stochastic processes and stochastic differential equations,
that provide the evolution of the paths themselves.

The word “diffusion” is taken from the physical phenomenon with that
name: The movement of particles in a fluid from regions of high concentration
to regions of low concentration. The heat “diffuses” in the same way, following
the negative gradient of the temperature field f(t,x). In one space dimension,
it obeys the partial differential equation

0 0?

sy t: =D _— tv 9

o f(ta) = D o f(t,)

where D is called the thermal diffusivity. Comparing with Kolmogorov equa-
tions (5-6), we see that, with suitable initial conditions, f(t,z) is the density
at time ¢ and point x of a diffusion process following the stochastic differential
equation

dX(t)=V2D dW(t),

that means, essentially, the Wiener process.

6 Recommended books

Nelson, Stochastic Modeling, Dover 1995
(Arrivals, queues, Markov chains, simulation)

Gross-Harris, Fundamentals of queueing theory, Wiley 1998
(Queues)

Asmussen-Glynn, Stochastic simulation, Springer 2007
(Simulation)

e Maruyama, Stochastic problems in population genetics, Springer 1977
(Diffusions, application to genetics)

Lamberton-Lapeyre, Introduction au calcul stochastique appliqué a la
finance, Ellipses 1997
(Diffusions, stochastic differential equations, application to finance)
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