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Introduction
intro

This is about psi classes on moduli spaces of stable n-pointed curves, and more
generally, of stable maps. The first section contains the definition and the ba-
sics: How psi classes restrict to the boundary; how they pull back along forgetful
morphisms, and the string equation, which is the central basic property of psi
classes.

Sections 2 and 3 are independent of each other and of Part II. Section 2
compares the intersection theory of psi classes onM g,n with the intersection theory
of kappa classes on Mg,0 (as studied by Mumford). The result is that the two
theories imply each other.

The third section gives an elementary introduction to Witten’s conjecture (now
Kontsevich’s theorem) which states that the generating function of the top prod-
ucts of psi classes obeys the KdV hierarchy of differential equations. This deter-
mines all the top products. We make no attempt to get into Kontsevich’s proof,
but give some examples of its consequences.

In Part II we leave the realm of stable curves and enter that of stable maps.
In Section 4 we recall the definition and basic properties about stable maps, eval-
uation classes (classes pulled back from the target space) and define psi classes.
Most of the basic results on psi classes in the setting of stable maps are easy gener-
alisations of the corresponding results for curves. Top products of psi classes and
evaluation classes are called gravitational descendants, or just Gromov-Witten in-
variants. Section 5 is devoted to the part of the theory particular to genus zero:
the WDVV equations and topological recursion, which determines all the descen-
dent integrals from the Gromov-Witten invariants. . . In Section 6 we describe
some properties of the virtual fundamental class. . .

Except for the techniques of the virtual fundamental class, all the ideas and
most of the results covered in these notes go back to the paper of Edward Witten,
Two-dimensional gravity and intersection theory on moduli space [29], which is
highly recommended reading.

There are several other places to go, for continuation of these notes at a
more advances level: from Section 2, the reader can have a look at Arbarello-
Cornalba [1], (the cohomological field theories constructed by Kabanov-Kimura [17]
are also in direct continuation of Sections 2 and 5). The reader will also enjoy
reading something about Faber’s conjecture on the tautological ring of Mg.

From Section 5 the reader might jump to the theory of Frobenius manifolds,
but that is not so much focused on psi classes! Otherwise look at relative Gromov-
Witten invariants à la Gathmann [7], or enumerative geometry and characteristic
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numbers, cf. Graber-Kock-Pandharipande [13].
From Section 6 it is natural to look into the Virasoro conjecture, which says

that the generating function of the descendants is annihilated by certain differen-
tial operators that form (half of) the Virasoro algebra. The best place to start is
probably Getzler’s survey [11], (or maybe have a look at Getzler [10] first). Other
directions: Hodge integrals, equivariant quantum cohomology (see [27]). . .

Acknowledgements: Part I of these notes originated in a mini-course I gave in
Belo Horizonte in August 1999, and I am thankful to Dan Avritzer for organising
this. Thanks are due to Letterio Gatto who explained me a lot of the material
covered. Most of Part II was compiled at the occasion of a seminar at the Royal
Institute of Technology in Stockholm in April 2000.



Part I

Psi classes on moduli of
pointed curves

1 Basic properties and the string equation
basic

1.1 Generalities and definitions

Consider a family of curves, with a section

X

σ ✻

B

π
❄

Then σ is a regular embedding if and only if π is smooth in a neighbourhood of
σ. In that case there is a natural isomorphism

Nσ ≃ σ∗Tπ,

cf. Fulton [5] B.7.2 – B.7.3. The condition is equivalent to requiring that the
section do not pass through any singular point of any fibre, i.e. in each of the
curves Xb, the point singled out by the section is a smooth one.

Definition. In this situation, the cotangent line bundle is

L := σ∗ωπ.

It’s first Chern class is called the psi class: ψ := c1(L) ∈ A1(B).
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Remark: in general the dualising sheaf need not be locally free, but in a neigh-
bourhood of σ it is, so L is really a line bundle.

If B is just a point, we’ve got a curve C with a marked point p. Then L ≃
k(p)⊗ωC ≃ mp/m

2
p, the cotangent line. Note that formation of the cotangent line

bundle commutes with base change, due to the universal property of the dualising
sheaf. So given a point b ∈ B, and let p denote the point σ(b) ∈ Xb, then the
fibre of L at b is the cotangent line mp/m

2
p of the curve Xb. Indeed, this is just a

special case of base change:

Xb
⊂ ✲ X

b
❄
⊂

ι
✲ B

π
❄

We can also describe the cotangent line bundle as

L ≃ σ∗T∨
π ≃ N∨

σ .

1.1.1 Self-intersection formula. Let D denote the image of σ. Then we haveD2
the following self-intersection formula. In terms of line bundles,

σ∗O(D) ≃ Nσ ≃ L∨,

or in terms of divisors,

π∗(D
2) = σ∗D = c1(Nσ) ∩ [B] = −ψ ∩ [B].

(In general, intersecting with D and pushing down in B is the same as pulling
back along σ.) Interpreting the same formula as an identity in A2(X), we get
D2 = −π∗ψ · [D], and more generally

Da+1 = (−π∗ψ)a ·D

1.1.2 Exercise. On any trivial family, the cotangent line bundle is trivial. . . ?

1.2 Stable n-pointed curves

1.2.1 Stable n-pointed curves. A stable n-pointed curve of genus g is a con-
nected curve of arithmetic genus g with simple nodes as only singularities, n
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marked points, which are distinct smooth points, and satisfying a stability con-
dition: if a twig has genus 0 then it must have at least three special points. If a
twig has genus one then it must have at least one special point. (Here “special
point” means either a node or a marked point.)

Two n-pointed curves are isomorphic if there is an isomorphism between the
curves sending the marks to the marks in the right order. The stability condition
is equivalent to requiring that the curves have only a finite number of automor-
phisms.

Recall that there is a coarse moduli space M g,n , which is a normal variety of
dimension 3g−3+n. It contains as a dense open set, the locus of smooth n-pointed
curves. The complement is called the boundary. (References: Knudsen [18], or
Harris-Morrison [14].)

1.2.2 Universal family. We want to define psi classes on Mg,n, so we need a
universal family over it. Unfortunately that does not exist, since M g,n is only a
coarse moduli space. The best we have is the forgetful morphism π0 : M g,n+1 →
M g,n which forgets the extra mark p0 (and stabilises if necessary). (We will often
call the extra mark p0 instead of pn+1, but that is just to simplify the indices.)
Over moduli points parametrising curves with no non-trivial automorphisms, this
is a tautological family, but over a moduli point corresponding to a curve C with
automorphism group G, the fibre is the quotient C/G.

For this reason, it is necessary to consider M g,n as a stack; it is then a smooth
Deligne-Mumford stack, and π0 : M g,n+1 → M g,n is the universal family. There is
a relative dualising sheaf ωπ which is locally free of rank 1. Now the n canonical
sections σi : M 0,n → M 0,n+1 define n cotangent line bundles and their correspond-
ing psi classes:

Li := σ∗i ωπ ψi
:= c1(Li).

M03 1.2.3 Example. Clearly M0,3 is just a point. The next case, M 0,4 is the space of
cross-ratios, isomorphic to P1. Next M 0,5 is isomorphic to the del Pezzo surface
obtained by blowing up four points in the plane. In general, M 0,n is a smooth
variety, and a fine moduli space, so in this case it coincides with the stack. In
higher genus, M g,n is only a normal variety, but the stack is smooth. . .

The space M1,1 of pointed elliptic curves another basic one: here every curve
has an involution, so there is a big difference between the stack and the coarse
moduli space. . . a factor 2. . .

1.2.4 The boundary. The boundary of M g,n is a normal crossings divisor. Itsboundary0
irreducible components are described as follows. Let S = {p1, . . . , pn} be the set
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of marks. For each partition of marks and genus, S ′ ∪ S ′′ = S and g′ + g′′ = g,
there is an irreducible boundary divisor denoted D(S ′, g′ | S ′′, g′′). There is also
a boundary divisor consisting of irreducible uninodal curves, but it will not play
a significant rôle in the sequel.

Each twig of D = D(S ′, g′ | S ′′, g′′) corresponds to a moduli space of lower

dimension, M
′
: = Mg′,S′∪{x′} and M

′′
: = M g,S′′∪{x′′}, more precisely, D is the

isomorphic image of a morphism

ρD : M
′
×M

′′
→ M g,n

from the product. Let τ ′ : M
′
×M

′′
→ M

′
denote the first projection (and let τ ′′

be the second). This set-up and notation is used throughout — summarised in
the following diagram:

D ⊂ M g,n

M
′ ✛

τ ′
M

′
×M

′′

ρD

✻

τ ′′
✲ M

′′
.

1.2.5 The soft boundary. The image of σi in M g,n+1 is the boundary divisorDD0
Di,0 whose general point represents a curve with the two marks pi and p0 on a
twig of genus zero, and all the other marks on the other twig; let O(Di,0) denote
the corresponding line bundle.

Note that since the sections are disjoint, we have

Di,0 ·Dj,0 = 0 for i 6= j.

rhosigma

The boundary divisor D0,i is the isomorphic image of M 0,{pi,p0,x′} ×M
′′
. But

the one-primed space has got only three marks, so it is isomorphic to a point,
cf.1.2.3. So in this case, Di,0 is the isomorphic image of M

′′
which is naturally

identified with M g,n (relabelling so x′′ is called pi). Under this identification, ρDi,0

is just the section σi.

restr-psi 1.2.6 Lemma. Continuing the same notation we have

ρ∗DLi =

{
τ ′∗Li when pi ∈ S ′

τ ′′∗Li when pi ∈ S ′′.



1 Basic properties and the string equation 11

In other words,

ρ∗Dψi =

{
τ ′∗ψi when pi ∈ S ′

τ ′′∗ψi when pi ∈ S ′′.

In particular, σ∗j ψi = ψi, for j 6= i.

Proof. Let C ′ → M
′
denote the “universal curve” over M

′
. Consider the diagram

of cartesian squares

τ ′∗C ′ ∪
x
τ ′′∗C ′′

τ ′∗C ′ τ ′′∗C ′′

C ′ ✛ C ′′
✲

M
′
×M

′′
❄

π̄′′

✛

π̄′ ✲

M
′

π′ ✲
τ ′✛

M
′′

π′′

✛
τ ′′ ✲

where τ ′∗C ′ ∪
x
τ ′′∗C ′′ denotes the gluing of the two families along the sections σx′

and σx′′ . Now compare with the universal family — you can convince yourself
that the glued family is a tautological one so it is the pull-back of the universal
family:

τ ′∗C ′ ∪
x
τ ′′∗C ′′ ⊂ ✲ Mg,n+1

M
′
×M

′′
❄

⊂

ρD
✲ M g,n

π
❄

Now we can compare: the cotangent line bundle of this family is just the pull-back
of the cotangent line bundle of the universal family, but on the other hand: it only
takes notice of what happens close to the section, so it is also pulled back from
M

′
(in case pi ∈ S ′). ✷

1.2.7 Corollary. In particular, if the boundary divisor is justDi,0, then (cf. 1.2.5)psiD0
we get σ∗i ψi = ρ∗Di,0

ψi = 0, since on the space with only three marks we have
ψi = 0. Now pulling back along σi is the same as intersecting with Di,0 and
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then pushing down, so π0∗(ψi ∩ [Di,0]) = 0. Now since π0 restricted to Di,0 is an
isomorphism we conclude the following identity in A∗(M g,1):

ψi ·Di,0 = 0

1.3 The important comparison result

pull-psi 1.3.1 Lemma. Let π0 : Mg,n+1 → M g,n be the forgetful morphism that forgets
p0. Then the following identity holds in A1(M g,n+1):

ψi = π∗0 ψi +Di,0

where the psi class on the right-hand side lives on M g,n.

Proof. In terms of line bundles, looking in the fibres note that Li is equal to
the pull-back from below at all points off D := Di,0. So we conclude that Li ≃
π∗0 Li ⊗O(rD) for some integer r. Now pull back along σi:

O = σ∗i Li = σ∗i π
∗
0 Li ⊗ σ∗i O(D)⊗r

= Li ⊗ (L∨
i )

⊗r

so we conclude that r = 1. ✷

selfint 1.3.2 Remark. Keeping the same notation, we have (cf. 1.1.1)

D2
i,0 = −π∗0 ψi ·Di,0

This follows immediately from the comparison result: −π∗0 ψi · Di,0 = (−ψi +
Di,0) ·Di,0 = D2

i,0, since −ψi ·Di,0 = 0.

1.3.3 Corollary. The following two identities for a power of a psi class are easilypsi-a
established via induction:

ψa
i = π∗0 ψ

a
i + π∗0 ψ

a−1
i Di,0

ψa
i = π∗0 ψ

a
i + (−1)a−1Da

i,0

These formulae will be useful in the sequel.
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1.3.4 1-parameter families. There is another perspective that gives insight in
the questions. Instead of looking at the big forgetful morphism between the two
moduli spaces, look just at the little one between two 1-parameter families. Let
π̃ : X̃ → B be a 1-parameter family of stable (n+ 1)-pointed curves, and let Dj,0

denote the divisor consisting of all points b ∈ B such that X̃b is a curve with the
two marks pj and p0 alone on a twig of genus 0.

Now forget the last mark. We know there is a stabilised family π : X → B and
a morphism ε : X̃ → X such that the following diagram commutes (with sections)

X̃
ε ✲ X

B

π
❄

π̃ ✲

The morphism ε is the blow-down of all components of a fibre having p0 and some
pj alone on a twig; let E denote the union of all the exceptional divisors.

Now compare the psi class ψ̃i of π̃ with that of π.

ψ̃i = σ̃∗i ωπ̃

= σ̃∗i
(
ε∗ωπ + E

)

= σ∗i ωπ + σ̃∗i E

= ψi +Di,0.

This proves the pull-back formula for a 1-parameter family.

1.4 The string equation

Definition. Let us adopt Witten’s notation and terminology (cf. [29]), introduc-
ing the correlation functions

〈 τa1 · · · τan 〉g :=

∫
ψa1

1 · · · ψan
n ∩ [M g,n],

(with the convention that the product is zero if it involves a negative ai). Note
that to get a non-zero integral we need

∑
ai = 3g − 3 + n.

Warning: the indices on the taus don’t refer to particular marks, so the symbol
τ4 has nothing to do with a particular mark p4. It means that there is one of the
marks q such that ψq appears with exponent 4.
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1.4.1 Example. Since M0,3 is just a point, it is immediate that

〈 τ0τ0τ0 〉0 =

∫
[M 0,3] = 1.

1.4.2 Lemma. (The string equation — see also 3.2.1.) Except for the case ofstringtau
the previous example (n = 2 and a1 = a2 = 0), we have

〈 τ0 ·
n∏

i=1

τai 〉g =
n∑

j=1

〈 τaj−1

∏
i 6=j

τai 〉g

In the formula, the left-hand side is on a space with one extra mark.

Proof. As in the previous, let us call the extra mark p0. The factor τ0 means that
there aren’t any classes at this mark. We are going to forget this mark, pushing
down along π0. Prior to the push-down, we use the pull-back formula 1.3.1 to write
each psi class as a pull-back plus a boundary divisor, and then use the projection

formula. By definition, 〈 τ0 ·
n∏

i=1

τai 〉g =
∫
ψa1

1 · · ·ψan
n ∩ [M g,n+1]. Now expand

each factor using the comparison 1.3.1 (and in particular the corollary 1.3.3),
getting ∫

Mg,n+1

n∏

i=1

(
π∗0 ψ

ai
i + π∗0 ψ

ai−1
i Di,0

)
.

Now since Di,0 · Dj,0 = 0 for i 6= j (cf. 1.2.5), only n + 1 terms survive in the
expansion of that product:

π∗0
(
ψa1

1 · · ·ψan
n

)
+

n∑

j=1

π∗0
(
ψ

aj−1
j

∏
i 6=j

ψai
i

)
·Dj,0.

Now push down, forgetting p0, and use the projection formula to get the result:
the first term has zero push-down for dimension reasons; for the other terms, note
that Dj,0 pushes down to the fundamental class, since it is a section. ✷

1.5 Genus 0

The initial condition 〈 τ0τ0τ0 〉0 = 1 (on M0,3) together with the string equation
is sufficient to determine all products in genus 0. Indeed, if not

∑
ai = n − 3,

then the product is zero for dimension reasons; otherwise, at least one of the ai’s
is equal to zero, so we can use the string equation to get fewer marks. Eventually
we come down to the initial condition. In fact,
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pascal 1.5.1 Lemma. Suppose
∑

ai = n− 3. Then

〈 τa1 · · · τan 〉0 =
(n− 3)!

a1! · · ·an!

The proof is just a combinatorial identity. Recall the summation rule of Pascal’s
triangle

(
p

q

)
=

(
p−1
q−1

)
+
(
p−1
q

)
. In other words, when q1+q2 = p we have

p!

q1! · q2!
=

(p−1)!

(q1−1)! · q2!
+

(p−1)!

q1! · (q2−1)!
.

(It is the easy argument: put aside one of the p elements, and consider first
all choices including it, and then all choices not including it.) The multinomial
analogue is this (assuming q1 + q2 + · · ·+ qn = p):

p!

q1! · · · qn!
=

n∑

j=1

(p−1)!

(qj−1)!
∏
i 6=j

qi!

Proof of the lemma. The formula holds in case of three marks: 〈 τ0τ0τ0 〉0 = 0!/(0!0!0!) =
1. Suppose it holds for n marks and consider a product with n + 1 factors. As
noticed, one of the ai’s must be zero, so by the string equation

〈 τ0 ·
n∏

i=1

τai 〉0 =

n∑

j=1

〈 τaj−1

∏
i 6=j

τai 〉0

and then by induction,

=
n∑

j=1

(n− 3)!

(aj − 1)!
∏
i 6=j

ai!

and the result follows from the multinomial identity. ✷

1.5.2 The psi class in terms of boundary divisors. The following is really0123
a feature specific to genus zero. In M 0,n, let (p1|p2, p3) denote the sum of all
boundary divisors having p1 on one twig and p2 and p3 on the other. Now we
claim that

ψ1 = (p1|p2, p3)
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The claim holds trivially in the case M0,3. Now by induction the result follows
in all other spaces. Indeed,

ψ1 = π∗0 ψ1 +D1,0

= π∗0 (p1|p2, p3) +D1,0

= (p1|p2, p3).

1.6 The push-down formula and the dilaton equation

Note first of all that even though the spaces M g,n are not smooth, they are suffi-
ciently nice so that Poincaré duality holds. Therefore we can talk about push-forth
(or as we shall put it: push-down) of cohomology classes. Take the Poincaré dual,
push it down, and take its Poincaré dual again.

First let us see how boundary divisors push down along the forgetful morphism.
Any boundary divisor of type Di,0 is the image of a section, so clearly π0∗Di,0 =
1 ∈ A0(Mg,n). (For any other boundary divisor, the image under π0 is again a
boundary divisor, in particular the dimension drops, so the direct image is zero.)

push-psi 1.6.1 Lemma. Let π0 : Mg,n+1 → M g,n be the forgetful morphism that forgets
the extra mark p0. Then

π0∗ψ0 = 2g − 2 + n in A0(Mg,n).

(Or in terms of cycle classes: π0∗
(
ψ0 ∩ [M g,n+1]

)
= (2g − 2 + n)[M g,n].)

Proof. We defer the proof to 2.3.1 in the next section, where it will follow easily
from a more general treatment of push-down. ✷

Proof in the case g = 0. Use 1.5.2 to write ψi = (pi|pj, pk). Among all those
boundary divisors, there are exactly n− 2 that give non-zero push-down, namely
the n− 2 ways to put a single mark together with pi. ✷

1.6.2 Dilaton equation. Except for the case 〈 τ1 〉1 = 1/24 explained below, wedilatontau
have

〈 τ1 ·
n∏

i=1

τai 〉g = (2g − 2 + n) · 〈
n∏

i=1

τai 〉g

Proof. As in the proof of the string equation, expand the product using the com-
parison result 1.3.3. Now for each i we have ψ0 ·Di,0 = 0 (cf.1.2.7), and since our
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product has a factor ψ0, we can omit all the boundary divisors in the expansion.
We get

=

∫
ψ0 · π

∗
0

(
ψa1

1 · · ·ψan
n

)
.

Now push down along π0 (forgetting p0), using the projection formula. The result
follows from the push-down formula π0∗ψ0 = 2g − 2 + n of Lemma 1.6.1. (The
case 〈 τ1 〉1 is not covered by this argument since by stability there is no forgetful
morphism!) ✷

1.7 Genus 1

The one-dimensional space M1,1 is the bottom one: there is no forgetful morphism
out of it, so it’s a special case. Also, since every curve in this space has got a non-
trivial involution, there is a difference between the stack and the coarse moduli
space. . .

Definition. On any family of curves π : X → B, define the Hodge bundle E to be
the direct image sheaf of ωπ. That is, the fibre of E at a general point [C] is the
vector space H0(C,ωC). If the family is a flat family of curves of genus g, then E

is locally free of rank g. The Chern classes of the Hodge bundle are called lambda
classes (or Hodge classes): λi := ci(E).

1.7.1 Remark. In particular for g = 1, the Hodge bundle is a line bundle. In
this case, (i.e. on M 1,1) we have λ1 = ψ1. . .

1.7.2 Lemma. On M1,1 we have λ1 = 1
12
D, where D denotes the boundary di-

visor consisting of irreducible uni-nodal curves. CAUTION: THIS IS PERHAPS
A COARSE MODULI SPACE IDENTITY XXXX???

Proof. This formula can either be proved using Grothendieck-Riemann-Roch, or
it can proved explicitly: there is a holomorphic section (the discriminant) of the
bundle E⊗12 which has a simple pole at the divisor D. . . (XXXX See if there isn’t
an account of this argument in Gatto [8], or in Harris-Morrison [14]. . . ) ✷

So what we really are interested in is the fact

D/12 1.7.3 Corollary. On M 1,1 we have

ψ1 =
1

12
D.
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1/24 1.7.4 Corollary. We have 〈 τ1 〉1 =
1
24
. (This is a sort of a stack integral rather

than an integral over the coarse moduli space. There are automorphisms all over
the place — this accounts for the factor 1

2
. . .

1.7.5 Lemma. The initial condition 〈 τ1 〉1 = 1/24 together with string and dila-
ton equations determine all the genus 1 numbers.

Proof. Given a product 〈 τa1 · · · τan 〉1, we must have n =
∑

ai to get any contri-
bution. Therefore not all the ai can be greater than 1. So as long as n ≥ 2 we
can use the string or the dilaton equation to reduce the number of marks, until
we get down to n = 1 and the initial condition. ✷

psiingenus1 1.7.6 Lemma. On any M 1,n let Bi denote the sum of all boundary divisors having
pi on a rational twig. Then we have the expression

ψi =
1
12
D +Bi.

Proof. This is an analogue of Lemma 5.1.8. Like in that case, the result follows
from the comparison result. First observe that for n = 1, the divisor B1 is zero
(by stability), so this case is just lemma 1.7.3. Next observe that D pulls back to
give D again.

Finally it is easy to see from a set-theoretic description that π∗0 Bi = Bi−D0,i.
Now by induction, this completes the proof ✷

2 Psi classes and kappa classes
kappa

A nice reference for this section is Arbarello-Cornalba [1].

2.1 Psi classes described “from below”

Check out some similar arguments in Manin [25], p.259–260.

In the first section, we defined the psi class ψi on M g,n as σ∗i (c1(ωπ0)), where
π0 is the forgetful morphism coming from the space with one more mark p0,
i.e. the space one level above. Now in the hierarchy of moduli spaces, there are
also morphisms downwards from Mg,n to the spaces below (i.e.with fewer marks),
namely for each of the n marks pi there is a morphism to a space with one mark
fewer, which forgets the mark pi.
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In this subsection we’re going to describe the class ψi in terms of the morphism
that forgets pi.

There are n ways in which Mg,n can be a universal curve over a space below,
namely corresponding to the n ways of forgetting a mark. These n morphisms
downwards will be denoted πi, in such a way that the index always indicate which
mark is forgotten. Each of these morphisms give rise to a relative dualising sheaf
on M g,n, which we’ll denote ωπi

or simply ωi.

Our first concern is to see how these classes pull back along other forgetful
morphisms. We place ourselves somewhere in the system of moduli spaces and set
M := M g,n. Over this space we consider two other moduli spaces, one space Mx

having an extra mark x and the other My having an extra mark y. (It’s only to
save ink we do not put the bar over these symbols as we really should since they
are compact. . . ) Consider the fibre square

Mx ×M My

τy✲ Mx

My

τx
❄

πy

✲ M

πx

❄

Here the morphisms denoted τx and τy are just the projections. Note that τy
projects to Mx. This is to keep in sync with the convention that an index on the
symbol for a morphism refers to the mark forgotten by the morphism.

The product space parametrises n-pointed stable curves with two distinguished
points that can be any point: they are allowed to be equal and they can coincide
with the marks. The most important divisors on Mx ×M My are the pull-backs of
the soft boundary divisors on Mx and My, together with the diagonal divisor Dx,y

corresponding to all the curves whose two distinguished points are equal. To be
more precise, on Mx we have the n divisors Di,x, and on My we have Di,y. Here
is a picture of those 2n+ 1 important divisors on the product:
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D1,y D2,y D3,y Dn,y

❄

Mx×
M
My

My

· · ·

✲
τy

Mx

τx

τ∗y D1,x

τ∗y D2,x

τ∗y D3,x

τ∗y Dn,x

...

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Dx,y

Now recall how the space Mx,y is constructed (cf. [18]): It is the blow-up of
Mx ×M My along each of the (disjoint) intersections of the diagonal with the
other divisors mentioned. The strict transforms of each of the 2n+ 1 divisors are
again boundary divisors in Mx,y. The n exceptional divisors Ei are the boundary
divisors corresponding to the partition having x, y, i on a genus zero twig. A point
in a blow-up centre corresponds to the case where three “marks” coincide. The
exceptional fibre over such a point is a P1 parametrising all the ways of distributing
the three marks (and the attachment point) on the twig which is a rational curve.

Now let ε : Mx,y → Mx ×M My denote the blow-up morphism, and set π̃y :=
τy ◦ ε. In other words, π̃y : Mx,y → Mx is the forgetful morphism that forgets y.
We have put the tilde over the symbol just to distinguish it from the morphism
πy : My → M . We have the following commutative square which is central to all
the following arguments:

Mx,y

π̃y ✲ Mx

My

π̃x

❄

πy

✲ M

πx

❄

2.1.1 Example. From this description we see that π̃∗y Di,x = D̃i,x + Ei. Also,
recall that there is the following description of the relative canonical class of a
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blow-up (cf. [15], II, ex. 8.5.):

Kπ̃x
= ε∗Kτx +

n∑
i=1

Ei

(At least this holds in the smooth case. Why is it true here?) Now since our
square is cartesian we also have Kτx = τ∗y Kπx

. So we conclude

Kπ̃x
= π∗y Kπx

+
n∑

i=1

Ei

2.1.2 Twisted canonical class. In a sense, when talking about pointed curves,
there is the following variant of the dualising sheaf which often is more important
than the original one, namely the twist

ωπx
(

n∑
i=1

Di,x).

For example, one characterisation of an n-pointed curve (C, p1, . . . , pn) being sta-
ble is that ωC(

∑
pi) is ample.

2.1.3 Lemma. We have the following pull-back formula:

π∗y (Kπx
+
∑

Di,x) = (Kπx
+
∑

Di,x) +Dx,y.

This follows immediately from the example above.

2.1.4 Corollary. We have

ψi = Ki +
∑

j 6=i

Dij

Proof. We just prove it in the case n = 1. This follows from the fact XXXX????
that M g,2 ≃ M g,1 ×Mg,0

M g,1. For n ≥ 2, the result follows easily from the pull-
back formula for K +

∑
D and the formula for pull-back of ψ.

✷
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2.2 Definition and basic properties of kappa classes

Let π : X → B be a family of curves and let ωπ be the relative dualising sheaf.
Mumford [26] defined the kappa classes as

κa := π∗(c1(ωπ)
a+1).

XXXX some history about kappa classes, conjectures, no relations. Now this
definition was designed for stable curves without marks. For curves with marks,
the definition has some disadvantages, due to the fact that the curves are not
necessarily stable as abstract curves, but only as marked curves. In this case it is
better to use the twisted canonical class mentioned above and set (cf. Arbarello
and Cornalba [1])

κa := π∗(c1(ωπ(D))a+1) = π∗(ψ
a+1
0 ).

Here D denotes the sum of all the divisors Di,0. Of course the two definitions
agree in case n = 0. (These classes were called Mumford classes by Arbarello-
Cornalba [1] and in case n = 0 they also appear in Witten [29] under the name
Mumford-Morita-Miller classes.)

2.2.1 Remark. Note that κ0 is in codimension zero. It is

κ0 = (2g − 2 + n)[M g,n].

(Just the degree of Kπ +
∑

Di along a fibre. . . )

2.2.2 Lemma. There is the following comparison between the kappa classes in
the sense of Arbarello-Cornalba and the näıve ones π∗(K

a+1
π )

κa = π∗(K
a+1
π ) +

n∑

i=1

ψa
i .

Proof. Note that c1(ωπ)
a ∩ [Di,0] = σ∗i c1(ωπ)

a = ψa
i . Interpreted as a class in D,

we get c1(ωπ)
a ∩ [Di,0] = π∗ψa

i ·Di,0 = (−1)aDa+1
i,0 .
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κa = π∗
(
(Kπ +

∑
Di,0)

a+1
)

= π∗(K
a+1
π ) +

a∑

j=0

(
a+1
j

) n∑
i=1

π∗(K
j
π ·D

a−j+1
i,0 )

= π∗(K
a+1
π ) +

a∑

j=0

(
a+1
j

) n∑
i=1

σ∗i (K
j
π ·D

a−j
i,0 )

= π∗(K
a+1
π ) +

a∑

j=0

(
a+1
j

) n∑
i=1

(−1)a−jσ∗i (K
a
π)

= π∗(K
a+1
π ) +

a∑

j=0

(
a+1
j

)
(−1)a−j

n∑
i=1

ψa
i

= π∗(K
a+1
π ) +

n∑
i=1

ψa
i .

✷

pull-kappa 2.2.3 Lemma. (Pull-back formula for kappa classes.) We have (with the notation
of the preceding) the following identity on My

κa = π∗y κa +ψ
a
y

This is a pushed-down version of the important pull-back formula 1.3.1.

Proof. Recall the fundamental pull-back formula 1.3.1: in our setting it reads

ψx = π̃∗y ψx +Dx,y,

which is an identity on Mx,y. Now take (a + 1)’th powers on both sides of this
identity (using 1.3.3) getting

ψa+1
x = π̃∗y ψ

a+1
x + (−1)aDa+1

x,y .

Now push down via π̃x to get

κa = π̃x∗(ψ
a+1
x ) = π̃x∗

(
π̃∗y ψ

a+1
x

)
+ π̃x∗

(
(−1)aDa+1

x,y

)

= π∗y
(
πx∗(ψ

a+1
x )

)
+ (−1)aσ∗y D

a
x,y

= π∗y κa +ψ
a
y,

where under way we swapped pull and push — this is allowed since the diagram
is a blow-up of a fibre square (cf. Fulton [5], 6.2). . . ✷
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2.3 Push-down of psi classes in terms of kappa classes

Let π0 be the morphism that forgets p0. By definition, π0∗(ψ
a0+1
0 ) = κa0 . This

generalises as follows.

push-one-psi 2.3.1 Lemma.

π0∗
(
ψa0+1

0 · (ψa1
1 · · ·ψan

n )
)
= κa0 · (ψ

a1
1 · · ·ψan

n )

Proof. This follows easily from the pull-back formula for psi classes, using in-
duction. Write ψn = π∗0 ψn + D0,n and recall the formula (π∗0 ψn + D0,n)

an =
π∗0 ψ

an
n + (−1)an−1Dan

0,n. Therefore,

π0∗
(
ψa0+1

0 · (ψa1
1 · · ·ψan

n )
)
= π0∗

(
ψa0+1

0 · (ψa1
1 · · ·ψ

an−1

n−1 )(π
∗
0 ψ

an
n + (−1)an−1Dan

0,n)
)

Now recall from 1.2.7 that ψ0D0,n = 0, so the last term is zero. Now the projection
formula gives

= π0∗
(
ψa0+1

0 · (ψa1
1 · · ·ψ

an−1

n−1 )
)
·ψan

n

and the result follows by induction. ✷

2.3.2 Corollary. (Dilaton equation — cf. 1.6.2.) Since κ0 = (2g − 2 + n)[M g,n]dilatonkappa
we get ∫

Mg,n+1

ψ0 · (ψ
a1
1 · · ·ψan

n ) = (2g − 2 + n)

∫

Mg,n

ψa1
1 · · ·ψan

n .

Let now S be a fixed set of marks, and let W :=
∏
s∈S

ψas+1
s be a product of psi

classes corresponding to these marks.

2.3.3 Example. Now suppose there are yet another two marks p1 and p2, then
we can perform a two-step push-down, forgetting these two marks, simply by
applying the pull-back formula 2.2.3 between the steps, and using the projection
formula. We get the following push-down identity.

(π2 ◦ π1)∗
(
ψa1+1

1 ψa2+1
2 ·W

)
= π2∗

(
κa1ψ

a2+1
2 ·W

)

= π2∗
(
(π∗2 κa1 +ψ

a1
2 )ψa2+1

2 ·W
)

= (κa1κa2 + κa1+a2) ·W.

Similarly we find, when there are three marks to forget (omitting W from the
notation):

(π3◦π2◦π1)∗
(
ψa1+1

1 ψa2+1
2 ψa3+1

3

)
= κa1κa2κa3+κa1+a2κa3+κa1+a3κa2+κa1κa2+a3+2κa1+a2+a3 .

The general result is:
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Rkappa 2.3.4 Proposition. Let there be n marks in addition to S. Then

(πn ◦ · · · ◦ π2 ◦ π1)∗
(
ψa1+1

1 ψa2+1
2 · · ·ψan+1

n ·W
)
= Ra1,...,an(κ) ·W,

where Ra1,...,an(κ) is an explicit polynomial in kappa classes which we now describe:
Let A : = (a1, . . . , an) and let S(A) be the symmetric group of permutations of
A. Write each permutation σ ∈ S(A) as a product of disjoint cycles σ =

∏
α

(including 1-cycles) and let |α| denote the sum of the elements ai belonging to a

cycle α. Setting κσ :=
∏
κ|α|, we can describe the polynomial R as

Ra1,...,an =
∑

σ∈S(A)

κσ.

Proof. Pure combinatorics — see the appendix. ✷

Let us content ourselves with two examples:

2.3.5 Example. Suppose there are just two marks involved in the push-down,
so that we have A = (a1, a2). The only two permutations are

(a1)(a2), (a1, a2),

so we find Ra1,a2 = κa1κa2 + κa1+a2 , in accordance with the example above.
Now for the case of three marks; A = (a1, a2, a3), and there are six permuta-

tions:

(a1)(a2)(a3), (a1, a2)(a3), (a1, a3)(a2), (a1)(a2, a3), (a1, a2, a3), (a1, a3, a2),

so the corresponding polynomial is

Ra1,a2,a3 = κa1κa2κa3 + κa1+a2κa3 + κa1+a3κa2 + κa1κa2+a3 + 2κa1+a2+a3 ,

just as we found in the direct computation in the example.

2.3.6 Proposition. Intersection theory involving psi classes and kappa classes
on a given Mg,m is equivalent to the intersection theory on all M g,n+m involving
only psi classes. In particular, intersection theory of kappa classes on M g,0 is
equivalent to intersection theory of psi classes on all Mg,n.
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Proof. Let there be given an intersection product of psi classes. If there are any
zero exponents use the string equation, until we’ve got a sum of products all of
whose exponents are positive. Then use the proposition to write each product as
a polynomial R of kappa classes.

The converse is only slightly more tricky. Induction on the number of kappa
classes: for products with only one kappa class κa1W we can just use lemma 2.3.1
to get ψa1+1

1 ·W . Otherwise, consider a product κa1 · · ·κan ·W and note that the
polynomial Ra1,...,an has κa1 · · ·κan as its only term of that degree (corresponding
to the fact that there is only one partition of (a1, . . . , an) into n parts). So the
product κa1 · · ·κan · W can be written ψa1+1

1 · ψan+1
n · W minus lower terms of

Ra1,...,an, which are handled by induction. ✷

XXXX work out the converse formula: kappa in terms of psi we have a con-
jectured formula that should be checked. . . XXXX

3 Witten’s conjecture (theorem of Kontsevich)
KdV

3.1 Notation

3.1.1 Notation. Recall that the correlation functions are defined as intersectiontau-notation

numbers on the moduli space of stable n-pointed curves as

〈 τk1 · · · τkn 〉g :=

∫
ψk1

1 · · · ψkn
n ∩ [M g,n],

which is non-zero only when
∑

ki = 3g − 3 + n. Witten’s conjecture (which
has been proved by Kontsevich) determines all the correlation functions via a
complicated system of recursions. To organise all the relations it is convenient to
adopt the formalism of generating functions.

First of all, since the symmetric group acts on the moduli spaces there is no
reason to keep track of which tau belongs to which mark. So let us collect all the
marks of equal exponent and adopt the notation

〈 τ s00 τ s11 τ s22 · · · τ smm 〉 = 〈 τ0 · · · τ0︸ ︷︷ ︸
s0 factors

· τ1 · · · τ1︸ ︷︷ ︸
s1 factors

· τ2 · · · τ2︸ ︷︷ ︸
s2 factors

· · · τm · · · τm︸ ︷︷ ︸
sm factors

〉 .

(Warning: the indices on the taus don’t refer to particular marks, so the symbol
τ4 has nothing to do with a particular mark p4. It means that there is one of the
marks q such that ψq appears with exponent 4.)
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So the set of all possible correlation functions is indexed by the set of all infinite
sequences of non-negative integers such that only a finite number of entries are
non-zero. It is worth adopting the multi-index notation. Throughout, set

s = (s0, s1, s2, . . . );

set |s| :=
∑

si; it is then the number of marks. For each such sequence there is a
correlation function which we denotefattau

〈 τ s 〉 := 〈 τ s00 τ s11 τ s22 · · · 〉.

We suppress reference to the genus. This is harmless since for each sequence s
there is at most one value of g giving a non-zero correlator 〈 τ s 〉. Indeed, the total
codimension of 〈 τ s 〉 is

∑
isi, so the equation 3g − 3 + |s| =

∑
isi determines g.

Some basic sequences deserve special names. For each i ≥ 0 we let e(i) denote
the sequence (0, . . . , 0, 1, 0, . . . ) all of whose entries are zero except e

(i)
i = 1. Also

we will have good use of the sequence w(i) defined as (0, . . . , 0, 1,−1, 0, . . . ) all of
whose entries are zero except the i’th which is equal to 1, and the (i+1)’th which
is equal to −1. In other words, w(i) = e(i) − e(i+1).

3.1.2 Example. Consider first all the sequences such that si = 0 for i ≥ 1, (that
is, s = s0e

(0)). There is only one of all these sequences giving non-zero correlation
function: namely the sequence (3, 0, 0, . . . ) corresponding to the correlator 〈 τ 30 〉0
(which incidentally we know to be equal to 1).

Next, consider all the sequences s such that si = 0 for i ≥ 2. (I.e. sequences
that are linear combinations of e(0) and e(1)). The only ones giving contribution
are the following: s = (3, s1, 0, 0, . . . ), giving 〈 τ 30 τ

s1
1 〉0 (which is easily seen to be

equal to s1!), and also s = (0, s1, 0, 0, . . . ), giving 〈 τ s11 〉1 (including the special
case 〈 τ1 〉1 = 1/24, according to 1.7.4). Proof: the total codimension is s1. Since
s0 is non-negative, the equation 3g − 3 + s0 + s1 = s1 forces g = 0 or g = 1.tau0taus0

Finally, let us note that the string equation (cf. 1.4.2) gives a formula for
〈 τkτ

s0
0 〉 .

〈 τkτ
s0
0 〉 =

{
〈 τ s0−k

0 〉 for k < s0

〈 τk−s0 〉 for k > s0
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Let us write the string equation in this new way:

〈 τ s+e
(0)

〉 =

∞∑

j=1

sj 〈 τ
s+w

(j−1)

〉

=
∞∑

j=0

sj+1 〈 τ
s+w(j)

〉,

valid except for the case s = (2, 0, 0, . . . ). Indeed, for each j ≥ 1, there are sj psi
factors all of which can drop exponent and consequently the preceding one gains
a factor.

3.2 The generating function

Now we collect all the correlation functions and use them as coefficients in a formal
power series. Let t = (t0, t1, t2, . . . ) be an infinite sequence of formal variables.

We adopt the convention that ts =
∞∏
i=0

tsii , and also the notation s! =
∞∏
i=0

si!. Now

set

F (t) :=
∑

s

ts

s!
〈 τ s 〉

=
∑

s

∞∏
i=0

tsii
si!

〈 τ s00 τ s11 τ s22 · · · 〉.

(In topological gravity, this series is called the total free energy.) The sum is over
all sequences s. This expression can also be thought of as the formal expansion of
〈 exp(

∑
tiτi) 〉 . Indeed, exp(t0τ0 + t1τ1 + t2τ2 + · · · ) =

∑∞
m=0(

∑
tiτi)

m/m!. Now
in the expression (

∑
tiτi)

m we find all possible monomials ts 〈 τ s 〉, and in each
case the coefficient is the multinomial coefficient. . .

(Note: we will not bother about whether or where this is a convergent series
and a true function; we only think of it as a formal expression.)

stringF 3.2.1 Lemma. (The string equation — cf. 1.4.2.) The string equation (as it
appears in string theory) is the differential equation

∂

∂t0
F =

t20
2
+

∞∑

i=0

ti+1
∂

∂ti
F
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This form includes all possible manifestations of the string equation 1.4.2, and
also the initial condition 〈 τ 30 〉 = 1.

Proof. Let us start noting the effect of the differential operators on a monomial

∂

∂ti

ts

s!
=

ts−e(i)

(s− e(i))!

In particular, the effect of the operator
∑

ti+1
∂
∂ti

is

∑
ti+1

∂

∂ti

ts

s!
=

∑ ts−w(i)

(s−w(i))!
(si+1 + 1).

Now it is just a matter of collecting all the string equations (keeping track of
which are which by the bookkeeping symbol t). The collected string equation is

∑

s

ts

s!
〈 τ s+e(0) 〉 =

t20
2
+
∑

s

∞∑

i=0

ts

s!
si+1 〈 τ

s+w(i)

〉 .

Note that the term
t20
2
comes from 〈 τ 30 〉 = 1. Now make an index shift on each

side: on the left-hand side we get

∑

s

ts−e
(0)

(s− e(0))!
〈 τ s 〉 =

∂

∂t0
F.

And the right-hand side gives (after changing the order of summation)

t20
2
+

∞∑

i=0

∑

s

ts−w
(i)

(s−w(i))!
(si+1 + 1) 〈 τ s 〉 =

t20
2
+

∞∑

i=0

ti+1
∂

∂ti
F.

✷

3.3 Witten’s conjecture

3.3.1 KdV equations. The KdV equation (after Korteweg and de Vries) dates
back to the 19th century and arises naturally in a lot of situations in physics: let
q(t, x) be a function in two variables, then the KdV equation is qt = qqx+

1
12
qxxx (or

similar expressions with other constants). The equation is just the first of a whole
hierarchy of equations known as the KdV hierarchy. Let us present it in Witten’s
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notation. Let U be a function in infinitely many variables t = (t0, t1, t2, . . . ). We
let dots over a function denote its derivatives with respect to t0. That is, U̇ = ∂U

∂t0
.

Now the hierarchy of KdV equations is

∂

∂ti
U =

∂

∂t0
Ri+1(U, U̇, Ü , . . . )

where Ri are polynomials in the partial derivatives of U . These polynomials Ri

are defined recursively to satisfy the following relation.

R1 = U

Ṙi+1 =
1

2i+ 1

(
RiU̇ + 2ṘiU + 1

4

...
Ri

)
.

So the first equation is

∂

∂t1
U =

1

3

(
R1U̇ + 2Ṙ1U + 1

4

...
R1

)
= UU̇ + 1

12

...
U.

Note that for i ≥ 3, Ri is not completely determined alone from U and the
recursive description of the Ri, because we only have a description of Ṙi+1, while
on the right-hand side there is an occurrence of Ri itself. So to determine the Ri

from U we need the main equation as well.

3.3.2 Notation. Following Witten, we set

〈〈 τk1 · · · τkn 〉〉 := ∂
∂tk1

· · · ∂
∂tkn

F.

Observe that the value of this function at t = 0 is exactly 〈 τk1 · · · τkn 〉. Note
further that 〈〈 1 〉〉 = F encodes all correlators, while for example 〈〈 τk1 · · · τkn 〉〉
encodes all correlators having a factor τk1 · · · τkn .

Just to get familiar with the notation, let us write the string equation again:

〈〈 τ0 〉〉 =
t20
2
+

n∑

i=0

ti+1 〈〈 τi 〉〉.

3.3.3 Witten’s conjecture. (Kontsevich’s theorem) The object U := ∂2

∂t20
F =

〈〈 τ 20 〉〉 obeys the KdV equations, with Ri+1 = 〈〈 τiτ0 〉〉. In other words,

〈〈 τiτ
2
0 〉〉 =

〈〈 τi−1τ0 〉〉 〈〈 τ
3
0 〉〉 + 2 〈〈 τi−1τ

2
0 〉〉 〈〈 τ

2
0 〉〉 + 1

4
〈〈 τi−1τ

4
0 〉〉

2i+ 1
.

✷
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The conjecture has been proved by Kontsevich [22], with analytic methods.
He translates everything into matrix integrals. . . No algebro geometric proof is
known. We are not going to make any attempt to understand the ideas of Kont-
sevich’s proof — Harris and Morrison [14] recommend Looijenga’s survey [24]
for an introduction to the proof. We will just explore some consequences of the
theorem.

The reason leading Witten to make the conjecture is roughly this (see his pa-
per [29]): There were two mathematical models that described the physical theory
of two-dimensional gravity. One was a matrix model, with some Lagrangian, in
which some flows were naturally governed by the KdV equations. The other
model was the theory of intersection theory on M g,n. Now since the two theo-
ries described the same thing, Witten translated the crucial results of one theory
over to the other. (And of course he made a lot of checks in low genus and so
on.) Kontsevich’s proof seems to follow the same ideas, formalising the dictionary
between intersection theory and matrix integrals. . .

3.3.4 Proposition. The KdV equations for U , together with the string equation,
completely determine F . That is, all the intersection products 〈 τk1 · · · τkn 〉 are
known.

Before we give the proof, let us give some examples.

3.3.5 Example. One-pointed integrals. Here we are concerned with all correla-one-pointed
tion functions of type 〈 τi 〉 (that is, those corresponding to the sequences e(i)).
The total codimension is i, and since there is only one mark, the dimension of the
space is 3g − 2. So we want to compute 〈 τ3g−2 〉g. We have already noticed that
〈 τi 〉 = 〈 τi+2τ

2
0 〉, so we can read off a recursion directly from the KdV equation

(evaluating all functions at t = 0). Recalling that 〈 τ 20 〉 = 0 and 〈 τ 30 〉 = 1, we
find

〈 τi 〉 = 〈 τi+2τ
2
0 〉 =

〈 τi+1τ0 〉 + 1
4
〈 τi+1τ

4
0 〉

2i+ 5

=
〈 τi 〉 + 1

4
〈 τi−3 〉

2i+ 5
.

Arranging the terms, we find the recursion

〈 τi 〉 =
〈 τi−3 〉

8i+ 16
.
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The denominator 8i+16 is nicer when we substitute 3g−2 for i. Then it becomes
8(3g − 2) + 16 = 24g. Now it follows easily by induction that

〈 τ3g−2 〉g =
1

24g · g!
.

The general idea is the same as we saw in this example: to use the KdV
equations whenever possible, and when it is not possible due to lack of tau-zero,
use the string equation “back-wards”. Let us have a look at the next case, that
of two-pointed integrals.

3.3.6 Example. Two-pointed integrals. Since this is just an example anyway, let
us look at the concrete problem of computing 〈 τ3τ5 〉. What is worth noting is that
there is one small tau class and one big. We’re going to express this correlator in
terms of other two-point correlators such that the big class is bigger and the small
one is smaller. Note that the total codimension is 3+5 = 8, and the relevant space
has dimension 3g − 3 + 2, so the only contribution comes from g = 3. We cannot
apply KdV because there is no factor τ 20 , so first we use the string equation in the
following backwards way to reduce the problem to the computation of 〈 τ 20 τ3τ7 〉3
(introducing two tau-zeros and incrementing the biggest tau by two). The string
equation (applied twice) compares these two correlators:

〈 τ 20 τ3τ7 〉 = 〈 τ0τ2τ7 〉 + 〈 τ0τ3τ6 〉

= 〈 τ1τ7 〉 + 2 〈 τ2τ6 〉 + 〈 τ3τ5 〉

(Note that all these correlators are in genus 3.) So this expresses our initial
problem 〈 τ3τ5 〉 in terms of other integrals which we should now argue why are
better or easier to compute. As to the two new integrals appearing on the right-
hand side of the string equation 〈 τ1τ7 〉 and 〈 τ2τ6 〉, they are better because they
are “less equilibrated” in the sense that the biggest tau has become bigger and
the smallest has become smaller. Repeating this procedure these terms eventually
are substituted by 〈 τ0τ8 〉 which we know how to compute by 3.3.5 (and 3.1.2).
As to the term 〈 τ 20 τ3τ7 〉 appearing on the left-hand side of the string equation,
it is better than the original one because it has a factor τ 20 which allows us to use
the KdV, as we now proceed to make precise.

Take the derivative ∂
∂t7

on the KdV equation with i = 3 to get 〈〈 τ3τ7τ
2
0 〉〉

expressed as

〈〈 τ2τ7τ0 〉〉 〈〈 τ
3
0 〉〉 + 〈〈 τ2τ0 〉〉 〈〈 τ7τ

3
0 〉〉 + 2 〈〈 τ2τ7τ

2
0 〉〉 〈〈 τ

2
0 〉〉 + 2 〈〈 τ2τ

2
0 〉〉 〈〈 τ7τ

2
0 〉〉 + 1

4
〈〈 τ2τ7τ

4
0 〉〉

2·3 + 1
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Now set t = 0. Among all the integrals appearing in this expression, only the first
one is not obviously better than the original one. But this first one, 〈 τ2τ7τ0 〉 we
can send back to the string equation to express it as 〈 τ2τ8τ

2
0 〉 − 〈 τ1τ8τ0 〉 which

is better.

These arguments you can piece together and generalise to get an algorithm
that can compute any correlator.

3.4 The dilaton equation, derived from KdV

3.4.1 Lemma. (The dilaton equation in terms of the potential.)

∂

∂t1
F =

1

24
+

1

3

( ∞∑

i=0

(2i+ 1) ti
∂

∂ti
F

)

This follows from and encodes all the manifestation of the dilaton equation as
stated in 1.6.2,

〈 τ1 τ
s 〉 = (2g − 2 + |s|) · 〈 τ s 〉 , (3.4.1.1) dil

and the special case 〈 τ1 〉 = 1/24 which accounts for the constant term in the
formula. To derive the differential equation, note first that in order to get any
contribution from 〈 τ s 〉 we must have 3g − 3 + |s| =

∑
isi. This is equivalent to

2g − 2 + |s| = 1
3

∑
(2i+ 1)si.

Now multiply both sides of (3.4.1.1) with ts/s! and sum them all (as we did for
the string equation). We get

∑

s

ts

s!
〈 τ1 τ

s 〉 =
1

24
+
∑

s

ts

s!
1
3

∑
(2i+ 1)si 〈 τ

s 〉

whence the result (recalling that multiplication by si corresponds to the differential
operator ti

∂
∂ti

, as we observed in the proof of 3.2.1).
Variant af ovenst̊aende.
We have

〈 τ1 τ
s 〉 = (2g − 2 + |s|) · 〈 τ s 〉 , (3.4.1.2)

and also the special case. Now sum them all (with factors t
s

s!
λ2g−2) getting

〈〈 τ1 〉〉 =
∑

s,λ

t
s

s!
λ2g−2 〈 τ1 τ

s 〉g =
1

24
λ0 +

∑

s,λ

t
s

s!
λ2g−2(2g − 2 + |s|) 〈 τ s 〉g

=
1

24
+ λ

∂

∂λ
〈〈 1 〉〉 +

∞∑

i=0

ti 〈〈 τi 〉〉 .
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Now use as above that since by the selection rule we have 2g − 2 = 2

3

∑
(i− 1)si, we get

λ
∂

∂λ
=

2

3

∑
(i− 1)ti∂i

this point of view was mostly to get a chance to play a little with λ. . .

3.4.2 Lemma. The KdV equations and the string equation together imply the
dilaton equation.

Proof. First we prove a second derivative of the dilaton equation. Afterwards we
see if there isn’t a way to conclude the equation itself. . . Start out with this special
case of the KdV equation:

〈〈 τ1τ
2
0 〉〉 = 1

3
〈〈 τ0τ0 〉〉︸ ︷︷ ︸ 〈〈 τ

3
0 〉〉 + 2

3
〈〈 τ0τ

2
0 〉〉︸ ︷︷ ︸ 〈〈 τ

2
0 〉〉 + 1

12
〈〈 τ0τ

4
0 〉〉︸ ︷︷ ︸ (3.4.2.1) kdvspecial

Now on each of the underbraced factors we’re going to use the string equation
(and its derivatives):

〈〈 τ 20 〉〉 = t0 +
∞∑
i=0

ti+1 〈〈 τ0τi 〉〉

〈〈 τ 30 〉〉 = 1 +
∞∑
i=0

ti+1 〈〈 τ
2
0 τi 〉〉

〈〈 τ 50 〉〉 =
∞∑
i=0

ti+1 〈〈 τ
4
0 τi 〉〉 .

Plugging these string equations into (3.4.2.1) we get

〈〈 τ1τ
2
0 〉〉 = 1

3

(
t0 +

∞∑
i=0

ti+1 〈〈 τiτ0 〉〉
)
〈〈 τ 30 〉〉 + 2

3

(
1 +

∞∑
i=0

ti+1 〈〈 τiτ
2
0 〉〉

)
〈〈 τ 20 〉〉 + 1

12

∞∑
i=0

ti+1 〈〈 τiτ
4
0 〉〉

= 1
3
t0 〈〈 τ

3
0 〉〉 + 2

3
〈〈 τ 20 〉〉 +

1

3

∞∑

i=0

ti+1

(
〈〈 τiτ0 〉〉 〈〈 τ

3
0 〉〉 + 2 〈〈 τiτ

2
0 〉〉 〈〈 τ

2
0 〉〉 + 1

4
〈〈 τiτ

4
0 〉〉

)

= 1
3
t0 〈〈 τ

3
0 〉〉 + 2

3
〈〈 τ 20 〉〉 +

1

3

∞∑

i=1

ti

(
〈〈 τi−1τ0 〉〉 〈〈 τ

3
0 〉〉 + 2 〈〈 τi−1τ

2
0 〉〉 〈〈 τ

2
0 〉〉 + 1

4
〈〈 τi−1τ

4
0 〉〉

)

= 1
3
t0 〈〈 τ

3
0 〉〉 + 2

3
〈〈 τ 20 〉〉 +

1

3

∞∑

i=1

ti (2i+ 1) 〈〈 τiτ
2
0 〉〉

which is exactly the right-hand side of the second derivative of the dilaton equa-
tion.

Now we just need to integrate and argue XXXX why the integration constants
are what they are. . . ✷
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3.5 Genus zero: topological recursion

3.5.1 Separating the genus contributions. One can write F =
∑∞

g=0 Fg,
where Fg is the contribution from genus g. (Sometimes it is convenient to have a
formal variable to control the genus expansion, something like a factor λ2g−2. . . see
Harris-Morrison [14]. On the other hand, Witten [29] hasn’t got this parameter. . . )

Now look at the KdV equation: if we restrict to 〈〈 τiτ
2
0 〉〉g on the left-hand

side, then on the right-hand side, the two quadratic terms take form as a sum
over all partitions of g, so that for example the first quadratic term reads

1
2i+1

∑

g′+g′′=g

〈〈 τi−1τ0 〉〉g′ 〈〈 τ
3
0 〉〉g′′ .

The last term will get only contribution from genus g − 1. (Check the dimension
relation: in a product 〈 τiτ

2
0 τ

s 〉g we must have 3g = i+
∑

ki + n, while the last
term 1

4(2i+1)
〈〈 τi−1τ

4
0 τ

s 〉〉g requires 3g = i − 3 +
∑

ki + n, thus the contribution

comes from genus one less.)

So the genus g KdV equation reads

〈〈 τiτ
2
0 〉〉g =

∑
g′+g′′=g

(
〈〈 τi−1τ0 〉〉g′ 〈〈 τ

3
0 〉〉g′′ + 2 〈〈 τi−1τ

2
0 〉〉g′ 〈〈 τ

2
0 〉〉g′′

)
+ 1

4
〈〈 τi−1τ

4
0 〉〉g−1

2i+ 1
.

This looks very much as if it were a relation coming from restriction to the
boundary: the two quadratic terms would then correspond to the boundary divi-
sors consisting of two twigs (and the possible way of distributing the genus over
them), while the last term should correspond to the boundary divisor consisting
of irreducible uninodal curves (which always have genus one less than the smooth
curves around them). However, there is at present no explanation of this analogy,
and also it seems very difficult to explain the factor 1/(2i+1) (depending on i) if
it had to do with the boundary (see Witten [29], p. ??).

The genus separated KdV equations are particularly simple in genus zero,
where there is only one way of genus partitioning, and the last term does not
exist:

〈〈 τiτ
2
0 〉〉0 =

〈〈 τi−1τ0 〉〉0 〈〈 τ
3
0 〉〉0 + 2 〈〈 τi−1τ

2
0 〉〉0 〈〈 τ

2
0 〉〉0

2i+ 1
.

This equation is very similar to the topological recursion relation described in
3.5.3 below.
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3.5.2 Genus zero. Of course in genus zero, the closed formula 1.5.1 coming from
the string equation says everything about the top products of psi classes. However,
there is another way of determining the numbers which uses other equations, and it
generalises immediately to the setting of genus zero stable maps (as we shall see in
the next section) where the string equation is of less importance. Recall from 1.5.2
that in genus zero there is the linear equivalence ψ1 = (p1|p2, p3). Now each of
the irreducible boundary divisor appearing in the sum (p1|p2, p3) is isomorphic to
a product of moduli spaces of lower dimension, and by the formula 1.2.6 we know
how to express products of psi classes over such a divisor in terms of psi classes
on the two moduli spaces of the twigs. In this way, every correlation function can
be determined recursively. It is called topological recursion because it depends on
the boundary which is stratified topologically XXXX

3.5.3 Topological recursion (for curves). Let the marking set be S∪{p1, p2, p3},toprec
and set for short M := M0,S∪{p1,p2,p3}. Then the first form of the topological re-
cursion relation reads:
∫

[M ]

ψk1+1
1 ψk2

2 ψ
k3
3

∏
i∈S

ψki
i =

∫

(p1|p2,p3)

ψk1
1 ψ

k2
2 ψ

k3
3

∏
i∈S

ψki
i

=
∑

S′∪S′′=S

(∫

[M
′
]

ψk1
1 ψ

0
x

∏
i∈S′

ψki
i

)(∫

[M
′′
]

ψk2
2 ψ

k3
3 ψ

0
x

∏
i∈S′′

ψki
i

)
,

where M
′
:= M 0,S′∪{p1,x} and M

′′
:= M 0,S′′∪{p2,p3,x}. The mark x on each twig is

the gluing mark — the factors ψ0
x = 1 have been put in just to recall that the

mark is there.
Now let us state the same equation in the notation introduced on page 27,

〈 τ s 〉0 := 〈 τ s00 τ s11 τ s22 · · · 〉0.

The formula above treats a product where there are at least three factors τk1+1τk2τk3,
so translating into the new notation it reads (for any k1, k2, k3, and any sequence
s):

〈 τk1+1τk2τk3 · τ
s 〉0 =

∑

s′+s′′=s

(
s

s′

)
〈 τk1τ0 · τ

s
′

〉0 〈 τk2τk3τ0 · τ
s
′′

〉0.

This time the big sum is over all possible partitions of the sequence s, and for
each partition, there are

(
s

s′

)
ways to distribute the corresponding marks to the

two parts.
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Finally the third form of the topological recursion is a statement about (the
genus zero part of) the generating function F0(t) =

∑
s

ts

s!
〈 τ s 〉0. It reads,

∂
∂tk1+1

∂
∂tk2

∂
∂tk3

F0 =
∂

∂tk1

∂
∂t0

F0 ·
∂

∂tk2

∂
∂tk3

∂
∂t0

F0.

Establishing this from the previous formula is just a question of comparing coef-
ficients and multiplying power series as we did previously in this section. It looks
nicer in Witten’s notation:

〈〈 τk1+1τk2τk3 〉〉0 = 〈〈 τk1τ0 〉〉0 〈〈 τk2τk3τ0 〉〉0

The special case k2 = k3 = 0 gives

〈〈 τk1τ
2
0 〉〉0 = 〈〈 τk1−1τ0 〉〉0 〈〈 τ

3
0 〉〉0

which is very similar to what comes out of the KdV equation in this case. However,
the KdV equation has this factor 1/(2k1 + 1) which makes the two expressions
very different at the same time. . .

In fact, comparing KdV and topological recursion in this case yields the rela-
tion

k1 〈〈 τk1−1τ0 〉〉0 〈〈 τ
3
0 〉〉0 = 〈〈 τk1−1τ

2
0 〉〉0 〈〈 τ

2
0 〉〉0.

3.5.4 Topological recursion in genus one XXXX Using the expression 1.7.6,
we find a relation for the genus-1 correlators:

〈〈 τk+1 〉〉1 =
1
12
〈〈 τkτ

2
0 〉〉0 + 〈〈 τkτ0 〉〉0 〈〈 τ0 〉〉1

check if it is not 1
24
. . .

Appendix: Combinatorics

3.6 Proof of Proposition 2.3.4

3.6.1 Permutations and partitions. Let A be a finite set of n elements. Let
S(A) denote the symmetric group of all permutations of the elements of A; S(A)
has order n!. Let P(A) denote the set of all partitions of A. Each permutation
has a unique decomposition into disjoint cycle (including 1-cycles) and as such
determines a partition of A. So there is a map S(A) → P(A). Let π be a
partition of A, then the length ℓ(π) is defined to be the number of parts (so it can
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be any integer in the range 1, . . . , n). Let the order of π be defined as the number
of pre-images in S(A). That is, ord(π) is the number of permutations of A which
map each part of π to itself. Clearly, if the partition π has k parts π1, . . . , πk of
cardinality c1, . . . , ck resp. then

ord(π) =
k∏

i=1

(ci − 1)!.

3.6.2 Children and parents. Now let A′ := A ∪ {x} denote the set with one
extra element x. A child of a partition π ∈ P(A) is a partition of A′ obtained as
follows: For each part πi of π, decide whether x joins πi or not. Clearly this gives
2ℓ(π) choices. In many of these choices x will have joined more than one part; in
that case all the parts joined by x are concatenated together. (Maybe you find it
enlightening to think like this: the elements are the vertices of a graph; the parts
are the connected components of the graph; now introduce a new vertex x and
look at all the graphs obtained by drawing edges from x to some of the connected
components; if a edge is drawn to more than one connected component, these
component have been connected via x. . . ). Surely all the partitions obtained like
that are distinct, so a given partition π has got 2ℓ(π) children.

Now let π′ be a partition of A′. Clearly every partition of A′ arises as child
of some partition of A, then called a parent of π′. How many parents has π′

got? Well, let π′
x be the part of π′ containing x and suppose this part has r other

elements in addition to x. Suppose π is a parent, then since only x can join parts,
all the parts in π′ distinct from π′

x must also be parts of π. Therefore the parents
are characterised by the way π′

x is partitioned. So there is a 1–1 correspondence
between the parents of π′ and the partitions of π′

x. We let C(π) denote the set of
all children of π; and F(π′) denotes the set of all parents of π′.

We will be concerned with formal sums of type

∑

π∈P(A)

ord(π)[π]

Clearly there are n! terms in this sum (counted with multiplicity).

3.6.3 Lemma. Let π′ be a partition of A′. Then the order of π′ is the sum of the
orders of its parents:

ord(π′) =
∑

π∈F(π′)

ord(π).
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(In other words, not only do all partitions of A′ arise as children of partitions of
A: their order is also inherited from their parents’ orders.)

Proof. Let P ∪ {x} be the part containing x, and suppose #P = k. Let the other
parts be Qi. Now

ord(π′) =
(∏

i

(#Qi − 1)!
)
· k!

=
(∏

i

(#Qi − 1)!
)
·
( ∑
µ∈P(P )

ord(µ)
)

=
∑

µ∈P(P )

∏
i

(#Q− 1)!
)
· ord(µ)

=
∑

π∈F(π′)

ord(π)

by the 1–1 correspondence between parents and partitions of the marked part. ✷

3.6.4 Proposition. With notation as above we have the following identity

∑

π∈P(A)

ord(π)
∑

π′∈C(π)

[π′] =
∑

π′∈P(A′)

ord(π′)[π′].

Proof. Clearly both sides are sums over all the partitions of A′. On the left-hand
side, each partition π′ appears ord(π) times for each parent π. But then the lemma
applies. ✷

3.6.5 Corollary.

(n+ 1)! =
∑

π∈P(A)

ord(π)2ℓ(π).

3.6.6 Proof of Proposition 2.3.4. By induction the statement is true for n
kappa classes, so we are in a situation πn+1∗

(
ψ

an+1+1
n+1 Ra1,...,an(κ) ·W

)
. Each term

in R corresponds to a partition of (a1, . . . , an); now use the pull-back formula to
substitute each kappa class by its pull-back plus a psi term. Expand: this corre-
sponds to making all the children of the partition corresponding to the monomial.
Indeed, for each variable in the monomial, we’ve got the choice of either taking
the psi or not. So the result follows from the combinatorial Proposition above.
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Part II

Psi classes on moduli of
stable maps

4 Gromov-Witten invariants
GW

4.1 Stable maps

Now we turn our attention to the space of stable maps. Stable maps are a gen-
eralisation of the notion of stable curve, conceived by Edward Witten [29] as a
mathematical model for “introducing gravity into topological sigma models” (to
which words we are not going to associate any further meaning). The precise
notion is due to Kontsevich.

Let X be a fixed smooth projective variety over the complex numbers. Instead
of just studying abstract curves, we are going to study curves together with a map
from the curve to X .

4.1.1 Stable maps. A stable map is a morphism from an n-pointed curve C to
a variety X subject to the following stability condition. If an irreducible rational
component of C is mapped to a point in X then it must have at least three special
points, and if a irreducible component of genus 1 is mapped to a point, it must
have at least one special point. (The second condition is automatically satisfied
except in the case where β = 0 and n = 0, in which case there are no such maps,
so in practice this condition is of no importance.)

An isomorphism of stable maps is an isomorphism of the source curves pre-
serving all the structure. The stability condition is equivalent to saying that the
stable map has got no non-trivial automorphisms.
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4.1.2 Stacks of stable maps. When X is a smooth projective variety, there
is a moduli stack M g,n(X, β) of n-pointed stable maps µ : C → X of genus g
such that µ∗[C] = β ∈ H2(X,Q). The stack Mg,n(X, β) is projective but not in
general smooth. In fact, in general it will not be irreducible nor equidimensional.
Example 6.1.2 below describes the instructive example of M 1,0(P

2, 3): there is a
good component (closure of M1,0(P

2, 3)) which corresponds to plane cubics, which
is of dimension 9 as expected, but there is also a ‘boundary divisor’ of dimension
10. . .

This makes it difficult to do intersection theory on it. The solution to this
problem is one of the features of Gromov-Witten theory: there is a virtual fun-
damental class which stands in for the topological fundamental class, and it lives
in the dimension the space is expected to have. This is the central subject of
Section 6.

In this section and the next, we will just accept it without knowing what it is
like.

Important: for g = 0 and when X is a homogeneous variety (for example
projective space), then the virtual fundamental class coincides with the topological
one.

Example: For X = Pr, we can make a quick dimension count and see that

dimM 0,n(P
r, d) = rd+ r + d+ n− 3

4.1.3 Structure morphisms. For each mark pi, there is the evaluation mor-
phism νi : M g,n(X, β) → X which takes the class of a map µ : C → X to µ(pi),
the image of pi in X . As in the case of moduli of curves, there is also a forget-
ful morphism for each mark, consisting in forgetting that mark, and stabilising
if necessary. Let the mark to be forgotten be denoted p0, and let the forgetful
morphism be π0. This morphism, together with the evaluation morphism,

M g,n+1(X, β)
ν0 ✲ X

σi

✻

M g,n(X, β)

π0

❄

plays the rôle of a universal family (in the setting of stacks, it is a true universal
family). This means that the restriction of ν0 to the fibre over a moduli point
[µ] ∈ Mg,n(X, β) is a stable map isomorphic to µ.
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Here σi are the n sections corresponding to the marks; they single out the
marks in each fibre. The image of σi in M g,n(X, β) is the boundary divisor Di,0

consisting of maps with reducible source curve, one of whose two twigs is a rational
curve carrying just the two marks pi and p0, and mapping to a point in X .

4.1.4 Example. If X is a point and β = 0 then the stability condition is equiva-
lent to stability of the source curve. In fact, it is easy to see that there is a natural
isomorphism M g,n(pt, 0) ≃ M g,n.

4.1.5 Example. More generally, there is a natural isomorphism

M g,n(X, 0) ∼→ M g,n ×X.

Indeed, since the whole map goes to the same point in X , all the evaluation
morphisms coincide, and thus provide a morphism toX . There is also the forgetful
morphism to Mg,n. So there is a morphism to the product as claimed. We leave
it as an exercise to check that it’s an isomorphism.

4.2 Primary Gromov-Witten invariants

4.2.1 Gromov-Witten invariants. The evaluation morphisms relate the prop-
erties of the moduli space with those ofX . For each cohomology class γ ∈ H∗(X),
the pull-backs ν∗i (γ) are referred to as evaluation classes. The top products of
evaluation classes are called Gromov-Witten invariants. They are interesting for
at least two reasons: in genus zero, and when X is a homogeneous space, the
Gromov-Witten invariants can be interpreted as the number of rational curves
incident to subvarieties of class (Poincaré dual to) the γ’s involved. Second, in
genus zero, they are governed by the WDVV equations (named after Witten, Di-
jkgraaf, and the Verlinde brothers), thus providing the cohomology space of X
with a rich structure: a new associative multiplication, the quantum product. Of-
ten the WDVV equations are sufficient to determine all the numbers from a small
set of initial values. (For example, in the case X = Pr, all the Gromov-Witten
invariants are determined by the initial condition that through two distinct points
there is a unique straight line.) The canonical reference for quantum cohomology
is Fulton-Pandharipande [6].

We will not go into detail with these questions in this setting. In a moment we
are going to include the psi classes, and state the WDVV equations in this greater
generality. It has become common to refer to these more general top products
simply as Gromov-Witten invariants, calling then the integrals with no psi classes
for primary Gromov-Witten invariants.
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4.3 Psi classes and descendant Gromov-Witten invariants

The psi classes are defined as in the curve case; their definition does not involve
the map but only its source curve. Let π0 be the projection from the universal
map (i.e., the forgetful morphism M g,n+1(X, β) → M g,n(X, β)), and let ωπ0 be
the relative dualising sheaf. Then

ψi
:= c1(σ∗i ωπ0).

All the basic facts about psi classes carry over without modification to the
space Mg,n(X, β). We will state the results here, and defer their proofs to Sec-
tion 6.

Definition. Top intersections of psi classes and evaluation classes (integrated
against the virtual fundamental class) are called gravitational descendants, or
descendent Gromov-Witten invariants (and it is also common plainly to call them
Gromov-Witten invariants, qualifying then the products without psi classes as
primary Gromov-Witten invariants). The following notation is similar to what
has become standard. Let

〈 τk1(γ1) · · · τkn(γn) 〉
X
g,β

:=

∫
ψk1

1 ν∗1 (γ1) · · ·ψ
kn
n ν∗n (γn) ∩ [M g,n(X, β)]virt,

where γ1, . . . , γn are cohomology classes on X .

4.3.1 The string and dilaton equations in the setting of stable maps arestring(maps)dilaton(maps)
analogue to the equations for stable curves (cf. 1.4.2 and 1.6.2). The important
thing to note is that the evaluation classes are compatible with pull-back along
the forgetful morphism, cf. 5.1.4.
String equation:

〈 τ0(0) ·
n∏

i=1

τki(γi) 〉
X
g,β =

n∑

j=1

〈 τkj−1(γj)
∏
i 6=j

τki(γi) 〉
X
g,β

There is a special case namely

〈 τ0(T0)τ0(γi)τ0(γj) 〉
X
0,0 =

∫

X

γi ∪ γj.

Dilaton equation:

〈 τ1(T0) ·
n∏

i=1

τki(γi) 〉
X
g,β = (2g − 2 + n) · 〈

n∏
i=1

τki(γi) 〉
X
g,β
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In each formula, the left-hand side is on a space with one extra mark, and products
involving a negative exponent on a psi class are declared to be zero.

For the dilaton equation there is also a special case (analogue to the special
case in the point case), namely

〈 τ1(T0) 〉
X
1,0 =

χ(X)

24

4.3.2 The divisor equation. There is also a similar formula for the case where
the extra mark carries only a divisor evaluation class ν∗0 (D):

〈 τ0(D) ·
n∏

i=1

τki(γi) 〉
X
g,β = d · 〈

n∏
i=1

τki(γi) 〉
X
g,β +

n∑

j=1

〈 τki−1(γi ∪D)
∏
i 6=j

τki(γi) 〉
X
g,β

where d :=
∫
β
D.

Again there are special cases in genus zero and degree zero, namely

〈 τ0(D) · τ0(γi)τ0(γj) 〉
X
0,0 =

∫

X

D ∪ γi ∪ γj

Proof. This is similar to the other proofs, taking 5.1.6 into account. ✷

4.4 The Gromov-Witten potential

4.4.1 Notation. As we did for the correlators in the curve case, we will tighten
up the notation in order to state the results in a neater way. Two remarks ac-
count for this notation: First, since pull-back as well as integration is linear in its
arguments, the Gromov-Witten invariants are linear in the cohomology classes γ.
So we may express everything in the our basis T0, . . . , Tr, and need only consider
the basis elements. Second, as we already noted and exploited in the curve case
(cf. 3.1.1), the symmetric group acts on the moduli space by permuting the names
of the marks, and the integrals are clearly invariant under such a permutation.
In other words, the names of the marks are irrelevant for the Gromov-Witten
invariants. So let us collect all marks “of equal type”, and use this information
directly instead of referring to the marks themselves:

For each pair (k, a) where k ∈ N and a = 0, 1, . . . , r, we will let the symbol τk,a
denote the cohomology class ψk

i ∪ ν∗i (Ta) for any fixed mark pi. The name of the
mark is immaterial, but of course it is important that we only use this mark once,
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so that no other classes belong to this mark. Now let sk,a denote the number of
marks carrying a class of this type, and let τ

sk,a
k,a denote the product of all these

classes (so it’s a product involving exactly sk,a marks).

All these exponents sk,a fit together in a huge array s indexed by k and a,
so it’s an array consisting of r + 1 infinite sequences. Note that the first entry
in the array is s0,0. Of course we will only be interested in arrays having only a
finite number of non-zero entries — this will be assumed throughout. We adopt
multi-index notation in a obvious way and set

τ s :=
∏

k,a

τ
sk,a
k,a .

When s runs through all possible arrays (with only a finite number of non-zero
entries), τ s runs through all possible monomials in psi classes and pull-back of
the basis elements Ti.

Of course we are mostly interested in the integrals of these monomial, and the
following notation should be clear by now,

〈 τ s 〉Xg,β =

∫
τ s ∩ [Mg,n(X, β)]virt,

where n =
∑
k,a

sk,a is the numbers of marks. Note that this integral is zero unless

there is equality between the total codimension of all these classes and the virtual
dimension of the space M 0,n(X, β).

4.4.2 Example. Let X be the projective plane with hyperplane class h, and
cohomology basis Ta = ha, a = 0, 1, 2. Let us take β to be the class of conics; the
space M 0,n(P

2, 2) is of dimension 5 + n, according to 5.0.1. The codimension of
ν∗(Ta) is just a in this case (since for P2, there is exactly one basis element for each
codimension), so a factor τk,a is a cohomology class of codimension k + a. Since
τ
sk,a
k,a is then a class of codimension sk,a(k + a) we see that the total codimension
of τ s is equal to

∑
k,a sk,a(k+a). To get a non-zero integral, this number must be

equal to 5 + n, where n =
∑

k,a sk,a is the number of marks. From this we finally
conclude that to get a non-zero integral we only need to consider arrays s such
that ∑

k,a

sk,a(k + a− 1) = 5.
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Here is an example of such an array.




0 2 0
3 1 0
1 0 1
0 0 0
...

...
...




Let us write out the corresponding integral 〈 τ s 〉2. The number of marks is
8 = 2+3+1+1+1. The only non-zero entry in row 0 corresponds to two factors
of type τ0,1; let us use the marks p1 and p2 for this, getting a factor ν∗1 (T1) ∪ ν∗2 (T1).
Continuing like this we can write the integral as

〈 τ s 〉2 =

∫
ν∗1 (T1) ν∗2 (T1)︸ ︷︷ ︸

2

∪ ψ3ψ4ψ5︸ ︷︷ ︸
3

∪ ψ6 ν
∗
6 (T1)︸ ︷︷ ︸
1

∪ ψ2
7︸︷︷︸

1

∪ ψ2
8 ν

∗
8 (T2)︸ ︷︷ ︸
1

∩ [M 0,8(P
2, 2)].

(Here we have suppressed factors of type ψ0 and ν∗(T0).)

4.4.3 The Gromov-Witten potential. As we did for the correlators in the
curve case, we will construct the generating function of all the possible Gromov-
Witten invariants. Introduce formal variables t = (tk,a) (with k ∈ N and a =
0, 1, . . . , r) and let as expected ts be multi-index notation for the infinite product∏
k,a

t
sk,a
k,a .

We also need to sum over all the possible degrees β ∈ A+
1 (X,Z). A priori,

for a given array s there may be several choices of β such that the dimension
compatibility condition is satisfied, so the symbol 〈 τ s 〉 is not well-defined unless
we specify the degree. So we sum over all possible degrees. There are two reasons
for introducing a parameter for this purpose: first of all, there might be infinitely
many β giving contribution(??) so in order to obtain formal convergence we need
the parameter. Second, if we want to be able to keep track of how much each
individual integral contributes to the generating function, so that we can extract
the individual invariants, we need a set of parameters. Suppose the basis is ordered
in such a way that T1, . . . , Tp constitute a basis for A1(X) (so here p is the Picard
number of X). For fixed β, consider the vector d = (d1, . . . , dp) of “directional
degrees” di :=

∫
β
Ti. Now introduce formal variables q = (q1, . . . , qp), and use the

expansion qd to keep track of the degree.
The symbols qd belong to the Novikov ring (see Getzler [9]).
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Now define
〈 τ s 〉 :=

∑

β

qd 〈 τ s 〉β

Now the Gromov-Witten potential is the generating function

Φ(t) :=
∑

s

ts

s!
〈 τ s 〉

=
∑

β

qd
∑

s

ts

s!
〈 τ s 〉β.

As in the curve case, we will employ also the Witten notation

〈〈 1 〉〉 := Φ(t,q),

which is convenient for partial derivatives: we set

〈〈 τk1,a1 · · · τkn,an 〉〉 :=
∂

∂tk1,a1
· · ·

∂

∂tkn,an
Φ(t,q).

In this notation the symbols τk,a acquire meaning as differential operators or vector
fields on the large phase space.

The advantage of this notation is the following observation: 〈〈 τk1,a1 · · · τkn,an 〉〉
is just the generating function for the correlators 〈 τk1,a1 · · · τkn,an · τ s 〉β, in the
sense that the coefficient of qβ t

s

s!
in the series 〈〈 τk1,a1 · · · τkn,an 〉〉 is exactly 〈 τk1,a1 · · · τkn,an · τ s 〉 .

This is,

〈〈 τk1,a1 · · · τkn,an 〉〉 =
∑

β

qd
∑

s

ts

s!
〈 τk1,a1 · · · τkn,an · τ

s 〉β.

5 Gromov-Witten theory in genus zero
WDVV

In this section we restrict attention to the case of genus zero.
From now on we restrict attention to genus zero

5.0.1 The nice cases. In this section our primary concern will be with the casedim
where g = 0 and the target space X is a projective homogeneous variety. In this
case, the stack M 0,n(X, β) is an irreducible smooth Deligne-Mumford stack, and
its virtual fundamental class coincides with the topological one. We will allow
ourselves to confuse the stack with the corresponding coarse moduli space which
is a normal projective variety of the expected dimension. In particular, forX = Pr

we have
dimM0,n(P

r, d) = rd+ r + d+ n− 3.
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5.1 The boundary

5.1.1 The boundary divisors. The boundary set-up is slightly more compli-boundary
cated for maps than the one for curves described in 1.2.4, because in order to glue
two maps, they must map the gluing marks to the same point in X . Let S =
{p1, . . . , pn} denote the set of marks. For each partition S ′∪S ′′ = S and β ′+β ′′ = β
there is an irreducible boundary divisor D(S ′, β ′|S ′′, β ′′), consisting generically of
maps with a two-twig source curve, one twig of which carries the marks S ′ and
maps with degree β ′, and the other twig carrying S ′′ and of degree β ′′. Each twig
corresponds to a moduli space of lower dimension, M

′
:= M 0,S′∪{x′}(X, β ′) and

M
′′
:= M 0,S′′∪{x′′}(X, β ′′). More precisely, D := D(S ′β ′ | S ′′β ′′) is the image of a

finite morphism ρD : M
′
×X M

′′
→ M 0,n(X, β). The fibred product is over the

two evaluation morphisms νx′ : M
′
→ X and νx′′ : M

′′
→ X , reflecting the fact

that in order to glue, the two maps must agree at the mark. The fibred product is
a subvariety in the cartesian product M

′
×M

′′
; let D denote the inclusion. This

set-up and notation is used throughout — summarised in the following diagram:

M0,n(X, β)

M
′
×X M

′′

ρD
✻

⊂

D
✲ M

′
×M

′′
.

The morphism ρD is an isomorphism if either there are marks on both twigs or
if one of the degrees is zero. These are the only cases we will be concerned with.

Again (cf. 1.2.5) note that for the boundary divisor D = Di,0, the morphism
ρD is naturally identified with the section σi itself (since M0,3 ≃ pt).

5.1.2 Caution. In general, for g > 0 and X not homogeneous, these boundary
divisors need not be irreducible, and being a divisor means virtual divisor in the
sense that they are of codimension 1 inside each individual component of the
moduli stack. . . see 6.2

5.1.3 Restricting evaluation classes to the boundary. Let pi be a mark,
say in S ′. In the above diagram one can draw in the evaluation morphisms of
the spaces M 0,n(X, β) and M

′
respectively, and note that the resulting diagram

commutes. This shows that the evaluation classes ηi
: = ν∗i (γ) restrict to the

boundary in this straightforward way:

ρ∗Dηi = ∗Dηi (5.1.3.1) restr-eta
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where it is understood that the eta class on the right-hand side is pulled back
from M

′
.

5.1.4 Compatibility with the forgetful morphism. The evaluation classespull-eta
are compatible with the forgetful morphism π0 : M 0,n+1(X, β) → M0,n(X, β), in
the following sense. If ηi denotes the i’th evaluation class on M 0,n(X, β) and η̃i

denotes the i’th evaluation class on M 0,n+1(X, β) then

π∗0 ηi = η̃i.

push-divisor 5.1.5 Lemma. For a divisor class γH2(X), set d :=
∫
β
γ, and set η0

:= ν∗0 (γ).
Then

π0∗η0 = d in A0(M 0,n(X, β)).

Proof. Let Γ be a general divisor of class (Poincaré dual to) γ; then ν−1
0 (Γ) is of

class (Poincaré dual to) η0. Look at the restriction of the forgetful morphism

π0|ν−1
0 (Γ) : ν

−1
0 (Γ) → M 0,n(X, β).

Since a general map of degree β meets Γ in d points, the above morphism is
generically finite of degree d, whence the result. ✷

swap 5.1.6 Remark. The following identity holds in A∗(M 0,n(X, β)).

ηi ·Dij = ηj ·Dij.

In particular, there is the following push-down formula

π0∗(η0Dj0) = ηj.

5.1.7 Formulae. The psi classes restrict to a boundary divisor D = D(S ′, β ′ |
S ′′, β ′′) exactly as in the case of stable curves, cf. 1.2.6.

ρ∗Dψi = ∗Dψi (5.1.7.1) restr-psi+

where it is understood that the psi class on the right-hand side is pulled back
along the projection τ ′ : M

′
× M ′′ → M

′
if pi ∈ S ′ (and the other projection if

pi ∈ S ′′).
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Let Di,0 denote the image of the section σi; it is the boundary divisor having
pi and p0 as only marks on a twig of degree zero (and genus zero). The following
formulae are immediate from the arguments of 1.2.5, 1.3.2, and 1.2.7.

Di,0 ·Dj,0 = 0 for i 6= j

D2
i,0 = −π∗0 ψi ·Di,0

ψi ·Di,0 = 0.

The important comparison formula is also identical to the corresponding one for
stable curves (cf. 1.3.1):

ψi = π∗0 ψi +Di,0 (5.1.7.2) compare(maps)

XXXX state this for any genus ??? XXXX Finally, the push-down formula is also
identical to 1.6.1:

π0∗ψ0 = 2g − 2 + n times [M 0,n(X, β)]virt. (5.1.7.3) pushpsi(maps)

The first result that requires a new argument is the analogue of 1.5.2:

123gw 5.1.8 Proposition. Let g = 0. In case n ≥ 3, there is the following expression
for the psi class:

ψ1 = (p1|p2, p3),

where (p1|p2, p3) denotes the sum of boundary divisors having p1 on one twig and
p2 and p3 on the other twig.

As in the proof of 1.5.2, the idea is to compare how the two classes pull back
along forgetful morphisms down to M 0,3. This forgetful morphism is composed by
forgetful morphisms M 0,n+1 → M0,n (along which we have already seen that ψ1

and (p1|p2, p3) pull back in the same way), and a forgetful morphismM0,n(X, β) →
M 0,n (for n ≥ 3) which we treat in the following lemma.

epsilon 5.1.9 Lemma. For n ≥ 3, let ε : M0,n(X, β) → M 0,n denote the morphism that
forgets the X-structure and stabilises. Let E1 denote the sum of all boundary
divisors in M 0,n(X, β) such that p1 is alone on a twig. Then

ε∗ψ1 = ψ1 − E1 and ε∗(p1|p2, p3) = (p1|p2, p3)−E1.

In particular, the preceding proposition follows.
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Proof. We perform the proof in the baby model: let π̃ : X̃ → B be a family of
n-pointed stable maps (with map µ : X̃ → X). Then the stabilised family of n-
pointed curves π : X → B is obtained blowing down unstable twigs E of the fibres.
These unstable twigs occur exactly over the divisor

∑
Ei ⊂ B. (In other words,

ε : X̃ → X is the blow-up along the base points of the linear system corresponding
to the map µ. These base points occur exactly over the divisor

∑
Ei, and a base

point lying over Ei is then a point on the section σi.

Now compare the psi classes:

ψ̃1 = σ̃∗1ωπ̃

= σ̃∗1
(
ε∗ωπ + E

)

= σ∗1ωπ + σ̃∗1 E

= ψ1 + E1

since the section σ̃1 intersects just the exceptional divisor corresponding to having
p1 alone on a twig.

As to the assertion on the pull-back of (p1|p2, p3): it is clear from a set-theoretic
argument: when pulling back this divisor, we get all the divisors in M 0,n(X, β) of
that type, except those where p1 is alone on a twig. ✷

5.2 The splitting lemma

The following lemma is the engine behind the two main recursions known in genus
zero. It is a manifestation of the recursive structure of the boundary. To treat it
in a reasonable way, it is convenient to introduce coordinates on A∗(X), in order
to reduce the possibilities of cohomology classes: the observation is simply that
the Gromov-Witten invariants are linear in the cohomology classes of X , so it
suffices to treat the elements of a basis. So let T0, . . . , Tr denote the elements of a
homogeneous basis of A∗(X). (We always order the elements such that T0 is the
fundamental class, and Tr is the class of a point.) Let the matrix (gef) be defined
as

gef :=

∫

X

Te ∪ Tf .

It is an invertible matrix, and we let gef denote the entries of the inverse matrix.
There is another characterisation of this matrix which is the reason for its impor-
tance in this context: if ∆ ⊂ X ×X is the diagonal, then the class of ∆ is given
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by the Künneth decomposition formula

[∆] =
∑

e,f

π′∗Te g
ef π′′∗Tf ,

where π′ and π′′ are the two projections. XXXX use ⊠ notation XXXX

Now the recursive structure of the boundary consists in the fact that each
boundary divisor is the image of a fibred product of moduli spaces of lower di-
mension. The fibred product M

′
×X M

′′
is a subvariety in M

′
×M

′′
(see 5.1.1 for

notation), and it coincides with the pull-back of ∆ ⊂ X×X to M
′
×M

′′
along the

product of the evaluation morphisms νx′ and νx′′ of the glueing marks. Precisely,
there is a fibre square

M
′
×X M

′′
⊂

 ✲ M
′
×M

′′

∆
❄

⊂ ✲ X ×X.

νx′ × νx′′

❄

Therefore, the class of fibred product M
′
×X M

′′
in M

′
×M

′′
is given as

∑

e,f

ν∗x′(Te) g
ef ν∗x′′(Tf).

Here, as always, we have suppressed the symbols for pull-back along the projec-
tions from M

′
×M

′′
to its factors. This gives a formula for ∗ which appears in

the restriction formulae 5.1.3.1 and 5.1.7.1.

splittinglemma 5.2.1 Lemma. Splitting lemma. On a space M 0,S(X, β), consider a bound-
ary divisor D = D(S ′, β ′ | S ′′, β ′′), and let 〈D · α 〉β denote the integral of a
cohomology class α over D. Then

〈D ·
∏
pi∈S

τki(γi) 〉β =
∑

e,f

〈
∏

pi∈S′

τki(γi) τ0(Te) 〉β′ gef 〈 τ0(Tf)
∏

pi∈S′′

τki(γi) 〉β′′.

This follows readily from the restriction formulae 5.1.3.1 and 5.1.7.1 together
with the formula for pull-back along  we just described.

perhaps a complete proof is in place here. . .
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5.3 WDVV equations

Named after Witten, Dijkgraaf, Verlinde and Verlinde. . . XXXX associativity of
quantum product. . .

5.3.1 Fundamental linear equivalence. Genus zero has some special features.
One stems from the fact that when there are at least four marks, there is a
forgetful morphism down to M 0,4 ≃ P1. Let (p1, p2 | p3, p4) denote the divisor in
M 0,n+4(X, β) which is the sum of all boundary divisors having p1 and p2 on one
twig while p3 and p4 are on the other twig. Such a sum of divisors is sometimes
called a special boundary divisor. The irreducible components of (p1, p2 | p3, p4)
correspond to all ways of distributing the remaining n marks on the two twigs,
and all (non-negative) degree partitions β = β ′ + β ′′. The important thing to
note, however, is that (p1, p2 | p3, p4) is the pull-back of the irreducible divisor
(p1, p2 | p3, p4) of M 0,4 along the forgetful morphism.

Now since every two divisors on M 0,4 ≃ P1 are linearly equivalent, (and since
such an equivalence is preserved under pull-back), we get the following identity in
A1

(
M 0,n+4(X, β)

)
:

(p1, p2 | p3, p4) = (p2, p3 | p1, p4) in A1(M 0,4).

5.3.2 Integrating over a special boundary divisor. Now let us integrate a
product τk1,a1τk2,a2τk3,a3τk4,a4 τ

s over the divisor (p1, p2 | p3, p4). We can simply
apply the splitting lemma 5.2.1 to each of the irreducible components of the di-
visor. The irreducible components correspond to all the ways of distributing the
remaining marks (those corresponding to the product τ s) and the degree. The
ways of distributing marks corresponds to choosing two arrays s′ and s′′ such that
s′ + s′′ = s, namely such that the marks corresponding to s′ belong to the left-
hand twig, and the marks of s′′ belong to the right-hand twig. But for each such
partition, there are

(
s

s′

)
ways of actually distributing the marks. We get

∑

β′+β′′=β

∑

s′+s′′=s

(
s

s′

) ∑

e,f

〈 τk1,a1τk2,a2τ0,e τ
s
′

〉β′ gef 〈 τk3,a3τk4,a4τ0,f τ
s
′′

〉β′′.

The summation over e and f comes of course from the splitting lemma, which
also accounts for the appearance of the factors τ0,e and τ0,f .

5.3.3 WDVV equation for a particular product. Now doing the same for the
equivalent special boundary divisor (p2, p3 | p1, p4) we get a quadratic relation
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among the Gromov-Witten invariants, namely

∑

β′+β′′=β

∑

s′+s′′=s

(
s

s′

) ∑

e,f

〈 τk1,a1τk2,a2τ0,e τ
s
′

〉β′ gef 〈 τk3,a3τk4,a4τ0,f τ
s
′′

〉β′′ =

∑

β′+β′′=β

∑

s′+s′′=s

(
s

s′

) ∑

e,f

〈 τk2,a2τk3,a3τ0,e τ
s′ 〉β′ gef 〈 τk1,a1τk4,a4τ0,f τ

s′′ 〉β′′ .

Now this is not very nice to look at, but when formulated in terms of the
Gromov-Witten potential, it looks like this, which of course is much better, and
should suffice to appreciate the concept of generating functions:

5.3.4 Proposition. (WDVV equations.) The (genus zero) Gromov-Witten po-
tential 〈〈 1 〉〉 satisfies the following partial differential equation

∑
e,f

〈〈 τk1,a1τk2,a2τ0,e 〉〉 gef 〈〈 τk3,a3τk4,a4τ0,f 〉〉 =
∑
e,f

〈〈 τk2,a2τk3,a3τ0,e 〉〉 gef 〈〈 τk1,a1τk4,a4τ0,f 〉〉 .

Proof. It is just a rewrite of the previous statement; the proof amounts to (on each
side of the equation) multiplying two formal series, extracting the coefficients, and
comparing them with the coefficients of the other side of the equation. For each
coefficient, the equation is just the one of the previous lemma. Let us write out
the left-hand side:

∑
e,f

〈〈 τk1,a1τk2,a2τ0,e 〉〉 gef 〈〈 τk3,a3τk4,a4τ0,f 〉〉 =

∑

e,f

(∑

β′

qβ′
∑

s′

ts
′

s′!
〈 τk1,a1τk2,a2τ0,e · τ

s′ 〉β′

)
gef

(∑

β′′

qβ′′
∑

s′′

ts
′′

s′′!
〈 τk3,a3τk4,a4τ0,f · τ

s′′ 〉β′′

)

=
∑

e,f

gef
∑

β′+β′′

qβ′+β′′
∑

s′+s′′

ts
′+s′′

s′!s′′!
〈 τk1,a1τk2,a2τ0,e · τ

s
′

〉β′ 〈 τk3,a3τk4,a4τ0,f · τ
s
′′

〉β′′

so the coefficient of qβ t
s

s!
is

∑

β′+β′′=β

∑

s′+s′′=s

(
s

s′

) ∑

e,f

〈 τk1,a1τk2,a2τ0,e τ
s
′

〉β′ gef 〈 τk3,a3τk4,a4τ0,f τ
s
′′

〉β′′,

which is just the left-hand side of the previous lemma. Similarly, the corresponding
coefficient on the right-hand side of the claimed identity is just the right-hand side
of the previous lemma. ✷
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5.4 Topological recursion

The second important set of recursion relations satisfied by the Gromov-Witten
potential is topological recursion. It is a simple generalisation of the topological
recursion relations we established for stable curves in 3.5.3: The point is simply
that (assuming n ≥ 3) each time there is a psi class in a top product, we can
write it as a sum of boundary divisor (cf. 5.1.8), and then compute the integral
by restricting the remaining factors to each of the boundary divisors, using the
splitting lemma.

5.4.1 Topological recursion relation. (for any k1, k2, k3, and any sequence s):

〈 τk1+1,a1τk2,a2τk3,a3 · τ
s 〉β =

∑

β′+β′′=β

∑

s′+s′′=s

(
s

s′

)∑

e,f

〈 τk1,a1τ0,e · τ
s′ 〉β′ gef 〈 τk2,a2τk3,a3τ0,f · τ

s′′ 〉β′′.

The big sum over all possible partitions of the sequence s, corresponds to all the
possible ways of distributing the remaining marks, and for each partition there
are

(
s

s′

)
ways to distribute the corresponding marks to the two parts.

Proof. Write the first psi class as (p1|p2, p3) (cf. 5.1.8). Each term in this expres-
sion corresponds to a term in the big sum of the theorem. Now restrict the rest
to each of these boundary divisors. ✷

Now that we are getting experienced with generating functions in general,
and the Gromov-Witten potential in particular, we can easily write this recursion
relation in terms of a partial differential equation for 〈〈 1 〉〉 :

〈〈 τk1+1,a1τk2,a2τk3,a3 〉〉 =
∑

e,f

〈〈 τk1,a1τ0,e 〉〉 g
ef 〈〈 τk2,a2τk3,a3τ0,f 〉〉 .

The moral is that if we have a recursion among 〈 〉 involving sums over all
partitions, and where the binomial coefficients occur at the right place then we
can translate it into a relation among the partial derivatives of 〈〈 1 〉〉 and thus
avoid all the summations. . .

5.4.2 Reconstruction for descendants. Together, these equations are suffi-reconstruction
cient to reduce any gravitational descendant to a Gromov-Witten invariant: In-
duction on the number of psi classes: if there are three or more marks, use the
topological recursion relation to reduce the number of psi classes. Otherwise, use
first the divisor equation (backwards) to introduce more marks. (Note that this
step may introduce rational coefficients.)

XXXX Small and big phase space. . . ?
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6 Gromov-Witten theory in higher genus
higher

That case requires the construction of a virtual fundamental class, a certain ho-
mology class living in the expected dimension, which plays the rôle of the usual
topological fundamental class. The expected dimension of M g,n(X, β) is

(3− dimX)(g − 1) +

∫

β

c1(TX) + n.

These mapping to a point spaces are the simplest examples of how a space can
fail to have the expected dimension: M g,n×X is a irreducible space of dimension
3g − 3 + n + dimX , while the expected dimension of M g,n(X, 0) is only (3 −
dimX)(g − 1) + n. So the expected dimension is g · dimX less than the actual
dimension!

As a concrete example, consider the case g = 1, n = 1, which is one of the
minimal stable spaces. In this case the actual dimension ofM 1,1(X, 0) is 1+dimX ,
while the expected dimension, the virtual dimension is 1.

We will return to a discussion of this excessive dimension, and of the virtual
classXXX.

On the other hand we see that in genus 0, there is no problem with these
constant maps. This is one indication that everything is nicer in genus 0. In fact:

6.1 The virtual fundamental class

6.1.1 Spurious components of excessive dimension. XXXX With g ≥ 1
occur phenomena similar to those in the case of a non-convex target space: the
moduli spaces are in general reducible and have components of too high dimension.

Example M 1,0(P
2, 3) which has a component of excessive dimension. The

problem is when a twig of positive genus contracts, because then the moduli of
that twig can vary freely. The following example will be the red thread of the
exposition.

cubics 6.1.2 Example. Consider the space M1,0(P
2, 3). Its locus of irreducible maps is

birational to the P9 of plane cubics, and thus of dimension 9. But in addition to
this good component (the closure of this locus), there is a component of excessive
dimension, namely the “boundary” component consisting of maps having a ratio-
nal twig of degree 3 and an elliptic twig contracting to a point. The dimension of
this component is

dimM 0,1(P
2, 3) + dimM 1,1 = 9 + 1 = 10.
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(The marks are the gluing marks.)
XXXXIn fact these two components we have just described are in fact irre-

ducible. For the first one, we just accept that as a fact, for the second one, note
that it is the image of a map from this product, so it should be irr???

In the example above there is no doubt about what is meant by ‘expected
dimension’: we know that the space of all cubics is of dimension 9, and that they
generically are of genus 1.

6.1.3 The expected dimension of M g,n(X, β), which is called the virtual di-
mension is

vdimM g,n(X, β) = (dimX − 3)(1− g) +

∫

β

c1(TX) + n

The explanation for this is the following. Surely, n marks contribute n to the
dimension, so for simplicity, put n = 0. Let µ : C → X be a general point of
M = Mg,0(X, β), so we assume that C is smooth and that µ is an immersion.
The there is a well-behaved normal bundle of µ denoted Nµ, defined by the short
exact sequence

0 → TC → µ∗TX → Nµ → 0. (6.1.3.1) Nmu

Assuming furthermore that M is smooth at this point then the Kodaira-Spencer
map provides an isomorphism between the tangent space ofM at µ andH0(C,Nµ),
the space of first order infinitesimal deformations of µ. Now we get by Riemann-
Roch (e.g. Fulton [5], Ex. 15.2.1):

h0(C,Nµ)− h1(C,Nµ) = (dimX − 1)(1− g) +

∫

C

c1(Nµ)

= (dimX − 1)(1− g) +

∫

C

c1(µ∗TX)−

∫

C

c1(TC)

= (dimX − 1)(1− g) +

∫

β

c1(TX)− 2(1− g)

= (dimX − 3)(1− g) +

∫

β

c1(TX).

Now we furthermore assume that the first order deformations are unobstructed,
i.e., thatH1(C,Nµ) is zero. Then h0(C,Nµ) = (dimX−3)(1−g)+

∫
β
c1(TX), which

is therefore the dimension of M near µ, and that is what we call the ‘expected
dimension’.
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In any case, we see that the number h1(C,Nµ) is the difference between the
actual dimension and the expected dimension at [µ].

6.1.4 Some more deformation theory. In the long exact sequence coming
from (6.1.3.1),

0 →H0(C, TC) →H0(C, µ∗TX)→ H0(C,Nµ)→

→ H1(C, TC) →H1(C, µ∗TX)→ H1(C,Nµ) → 0
(6.1.4.1) long

all the spaces have a distinct interpretation in deformation theory. A good ref-
erence for these questions is Harris-Morrison [14], Section 3B. The two left-most
spaces depend only on the source curve C and not on the map: H0(C, TC) is the
space of infinitesimal first order automorphisms of C, and H1(C, TC) is space of
first order deformations of C, i.e., the tangent space of M g,0 at C. The two middle
spaces describe the deformations of the map that leave C fixed: H0(C, µ∗TX) is
the space of such deformations, and H1(C, µ∗TX) are the obstructions to such de-
formations. Finally, the two most important spaces are, as we have already talked
about: H0(C,Nµ) is the space of deformations of the map µ, i.e., the tangent
space of M g,0(X, β) at µ, while H1(C,Nµ) is the obstruction space.

6.1.5 Concerning the marks. In genus zero and with no marks, we see that
the first space is non-zero, indeed h0(P1, TP1) = 3, corresponding to the three
dimensions of automorphisms. This reflects that P1 is not a stable curve (indeed,
one characterisation of stable curve is ‘no global vector fields’).

If we now put three marks on it then it becomes stable. How can we arrange
things in order to reflect this in the deformations spaces just described? Note that
for pointed curves, the characterisation of stableness is ‘no global vector fields have
zeros exactly at the marked points’; in other words, h0(P1, TP1(−p1−p2−p3)) = 0.
Similarly, if we want the various deformations spaces to be those that fix the
marked points, we must twist the normal bundle sequence by OC(−

∑
pi). Even

though this certainly changes all??? (XXX what about the middle spaces?) the
dimension of the spaces in the long exact sequence, the principle of it remains the
same, and in the sequel for simplicity we will not write any twists

6.1.6 The obstruction bundle. Now instead of looking at all these tangent and
obstruction spaces for each individual map, the right thing to do is of course do
to it relative to the universal map, i.e., assemble all these spaces into bundles (or
more precisely: sheaves) over M g,n(X, β). Since the maps and their source curves
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can be ugly, the good notions are not tangent bundles and normal bundles —
the ‘normal bundle’ is no longer necessarily locally free. So it’s better to express
things in terms of sheaves of differentials. After these modifications, the long
sequence of cohomology sheaves still exists, and its third term is the tangent sheaf
of M g,n(X, β). The sixth and last sheaf is called the obstruction bundle, denoted
E , although it is not necessarily locally free (?)XXXX.

In particular, E is the quotient of the sheaf R1π∗µ
∗TX , so if this sheaf is zero,

then the moduli space is of expected dimension.

6.1.7 Genus zero and convex varieties. As an example of this, we can now
exhibit a large class of target spaces X for which the moduli space M0,n(X, β) is
of expected dimension. A variety X is called convex if for all maps µ : P1 → X we
have H1(P1, µ∗TX) = 0. One can show that this condition implies H1(C, µ∗TX) =
0 for all stable maps in genus zero. So in this case R1π∗µ

∗TX , and thus E , is zero.
So if X is convex, M 0,n(X, β) is of expected dimension.

A common reason to be convex is that the tangent bundle is generated by
global sections. This is the case for example for homogeneous varieties.

In higher genus, there are always reducible maps µ : C → X such that
H1(C, µ∗TX) 6= 0, for example maps that contracts a twig of positive genus,
as illustrated in the guiding example.

6.1.8 The virtual fundamental class. Let s denote the virtual dimension
of M g,n(X, β). There is a well-defined homology class of dimension s, called
the virtual fundamental class, which stands in for the topological fundamental
class. In case the obstruction bundle vanishes, the virtual fundamental class
coincides with the topological fundamental class. A good introduction to the
virtual fundamental class is the survey of Behrend [2].

In general it is not so easy to describe the virtual class of a moduli space.
In practice, what is really important is that it is known how it transforms under
those operations that are central to the theory: forgetting marks, restricting to
divisors, etc. In this way, knowledge of the virtual class is given indirectly by
knowledge of spaces in lower genus or of lower degree. For convex varieties, one
pillar for this recursive knowledge is the case of genus zero, since in that case
the virtual class coincides with the topological one. Another pillar is the case of
degree zero, which we now proceed to treat.

More generally, in the following case, there is a good hold of the virtual class.
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obstr 6.1.9 Lemma. (Behrend) If the obstruction bundle E is locally trivial of rank e,
then M is smooth of dimension e+ vdimM , and in that case its virtual class is

[M ]virt = ce(E) ∩ [M ]

6.1.10 Mapping to a point. As illustrated by the guiding example, the problem
of excessive dimension often arises in connection with contracting twigs. Therefore
it is very important to study the special case of degree zero carefully. At the same
time it provides the easiest example of a virtual class computation.

It is easy to see that there is a natural isomorphism

M g,n(X, 0) ≃ M g,n ×X.

Indeed, since the whole map goes to the same point in X , all the evaluation
morphisms coincide. So there is a map toX . There is also the forgetful morphisms
to Mg,n. So there is a morphism to the product as claimed. Now it should not be
difficult to check that it’s an isomorphism.

Let d = dimX . NowM g,n×X is an irreducible space of dimension 3g−3+n+d.
On the other hand, the expected dimension of the space as a moduli stack is only
(d − 3)(1 − g) + n. So the difference, g · d should be the rank of the obstruction
bundle.

We will show that the obstruction bundle is

E ≃ E∨
⊠ TX .

locally trivial of rank g · d, so by Lemma 6.1.9 the virtual class of Mg,n(X, 0) is

[M g,n(X, 0)]virt = cgd(E
∨
⊠ TX) ∩ [Mg,n ×X ]

under the identification above.
Consider the long cohomology sequence. Note first that H0(C, TC) = 0 by

stability (in degree 0, stability of the map is equivalent to stability of the source
curve). And recall that stability is equivalent to this. Actually, if there are marked
points on the curve we must use TC(−

∑
pi) throughout. . .

We first claim that H0(C,Nµ) → H1(C, TC) is surjective (for any map µ :
C → Q ∈ X). Here the notation is awkward: the notion of normal bundle
is dubious for constant maps. . . (?) But anyway, it is true that the space in
question is the space of deformations of the map, and the next one is the space of
deformations of the source curve alone. Now since M g,n(X, 0) is just a product, its
tangent space is just the product. In other words, the space of deformations is the
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direct product of the space of deformations of C and the space of deformations
of the image point Q in X . In conclusion, the tangent space of M g,n(X, 0) is
H1(C, TC) ⊕ TQX . And the coboundary map H0(C,Nµ) → H1(C, TC) is just
the projection and hence surjective. So the long exact sequence breaks into two
sequences: 0 → H0(C, µ∗TX) → H0(C,Nµ) → H1(C, TC) → 0, and next (by
exactness)

0 → H1(C, µ∗TX) → H1(C,Nµ) → 0.

So it remains to compute H1(C, µ∗TX). To this end, by Serre duality,

H1(C, µ∗TX) ≃
(
H0(C,ωC ⊗ µ∗T∨

X)
)∨

Now, µ∗TX is just the trivial bundle TQX , so we can take it outside the global
section functor, getting

(
H0(C,ωC)⊠ TQX

∨
)∨

≃ H0(C,ωC)
∨
⊠ TQX.

Now if you are careful and skilful with these direct image sheaves, you should be
able to carry out this same argument to show that in fact on the level of sheaves
on M g,n(X, 0) we have

E ≃ E∨
⊠ TX .

Where E = π∗ωπ is the Hodge bundle. (The bundle whose fibre over a moduli
point [C] is the space H0(C,ωC). Now by Serre duality, this space is isomorphic
to H1(C,OC). So the Hodge bundle can also be described as E = R1π∗Oπ, where
π : C → M g,n is the universal curve. So the Hodge bundle is understood to have
been pulled back from M g,n (and in fact from M g,0) while of course TX is the
pull-back of the tangent bundle of X .

6.1.11 Example. Consider the case g = 1, n = 1, which is one of the minimal
stable spaces. Let d denote the dimension of X . In this case the actual dimension
of M 1,1(X, 0) is 1 + d, while the expected dimension, the virtual dimension is 1.
The obstruction bundle E = E∨

⊠ TX is of rank d. So the virtual fundamental
class of M 1,1(X, 0) is

[M1,1(X, 0)]virt = cd(E
∨
⊠ TX) ∩ [M 1,1 ×X ]

Now E∨ has Chern polynomial 1− λ1t, so

cd(E
∨
⊠ TX) = 1⊠ cd(TX)− λ1 ⊠ cd−1(TX).
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Now we can compute our first integral and prove the special case of the dilaton
equation:

∫

[M1,1(X,0)]virt
ψ1 =

∫
ψ1 ∪ cd(E

∨
⊠ TX) ∩ [M 1,1 ×X ]

=

∫

[M1,1]

ψ1 ·

∫

X

cd(TX)

=
1

24
χ(X)

where χ(X) =
∫
[X]

cd(TX) is the Euler class of X .

Similarly, we get the special case of the divisor equation. Let h denote a divisor
class on X ; then

∫

[M1,1(X,0)]virt
ν∗1 (h) =

∫
ν∗1 (h) ∪ cd(E

∨
⊠ TX) ∩ [M 1,1 ×X ]

=

(∫

[M1,1]

−λ1

)(∫

X

h ∪ cd−1(TX)

)

= −
1

24

∫

X

h ∪ cd−1(TX)

6.2 Virtual boundary divisors
virtualdiv

Now in general, we don’t need to know the virtual class, since it is very rare
that one actually computes an integral directly on the moduli space. In practice,
integrals are always computed in indirect ways; by recursions which relate the
integral to integrals over the boundary (and thus over smaller moduli spaces).
Another way to compute integrals is by localisation techniques (which have not
been touched upon in these notes: briefly, one need the action of a torus, and then
the formula expresses the integral over the whole space as a sum of contributions
from all the fixed point loci, so what you really need in this case is knowledge of
how the obstruction bundle restricts to such loci, and here Lemma 6.1.9 seems to
be central.

Here we are mostly concerned with recursions, i.e., we want to compute inte-
grals over the boundary. The wonderful thing here is that there is a compatibility
between the virtual class of an ambient moduli stack and the virtual classes of the
substacks corresponding to boundary strata

Discussion of boundary divisors.
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Now in this space there is a boundary divisor D0 which consists of maps
whose source curve is a uninodal irreducible curve (geometric genus 0, arithmetic
genus 1). Now what does it mean that it is a divisor, in a space which is not
equidimensional?

Now here is a better description: it is the image of the clutching map that
takes a stable map of genus 0 and degree 3, and identifies the two inverse images
of the node. To be more precise, we must put marks on this map, so consider the
locus N ⊂ M0,2(P

2, 3) consisting of maps such that µ(p1) = µ(p2). This ambient
space is of dimension 8 + 2, and we’d expect the locus N to be of codimension
2, because after all it is the inverse image of the diagonal in P2 × P2 under the
product of the two evaluation morphisms, and since the diagonal has codimension
2, we expect N to have codimension 2 as well. Now it happens that although
the two evaluation morphisms each are flat, their product is not! And the inverse
image of ∆ is not of the expected dimension. In addition to the good locus of
honest immersions whose two marks map to the same point, there is the locus of
reducible maps, such that one twig is of degree 3 and maps as it pleases, while
the other twig contracts to a point and carries the two marks. Then certainly
the images of the two marks coincide, and therefore by definition we are in the
inverse image of ∆ and thus in N . Since we are just talking about one of the
boundary divisors, surely this bad component has codimension 1. So the space
N is not equidimensional: it has an expected dimension 8, but it comprises a
spurious component of dimension 9.

This is a set-up we are familiar with from intersection theory

N ⊂ ✲ M 0,2(P
2, 3)

P2
❄

⊂

∆
✲ P2 × P2

ν1 × ν2
❄

Then we know there is a refined intersection class, supported on the physical
intersection N , and it is denoted ∆!M0,2(P

2, 3). In more concrete terms, the
class is simply obtained by pulling back bundle that defined ∆ in P2 × P2. So
the refined class — or the virtual class — of N is the class ν∗1 (h

0) ∪ ν∗2 (h
2) +

ν∗1 (h
1) ∪ ν∗2 (h

1) + ν∗1 (h
2) ∪ ν∗2 (h

0). The pull-back of the diagonal, the Künneth
splitting class, or whatever you prefer to call it.

OK, all this to say that a boundary divisor, in this case D0, inside the strange
space M1,0(P

2, 3) is in fact a codimension-1 thing inside each irreducible compo-
nent. In the good component the maps in D0 arise by tying together two points of
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a rational curve, an honest immersion. In the spurious component it is obtained by
taking a fake map from N and simply tying the two marks on the contracting P1

together, such that it becomes a contracting nodal curve, and thus a contracting
curve of arithmetic genus 1.

So in this way, inside the strange space (whose virtual class we don’t know
yet) we know a virtual divisor, and this divisor has a virtual class, and that is
just the virtual class of N . This is an axiom: virtual classes of boundary divisors
are just the virtual classes coming from their factors. In the case we just saw,
there is only one factor, and as such it is a special example. But it is the most
illustrative, since in a two-twig divisor we would state that the virtual class would
be the virtual class of the factors, but then one of the twigs would be of genus 1,
and then we would still not know how to compute the virtual class. . .

Now in general, virtual classes are indeed a kind of a generalisation of this
concept: its the top Chern class of some bundle. . .

Should come before: Now we can compute our first integral.

∫

[M1,1(X,0)]virt
ψ1 =

∫

[M1,1(X,0)]virt

1

24
D0

=
1

24

∫
1 ∩ [D0]

virt

=
1

24

∫
1 ∩ [N ]virt

=
1

24

∫
ν∗1 (∆) ∩ [M0,3(X, 0)]

=
1

24

∫
∆!∆ ∩ [X ]

=
1

24
Euler class of X

=
1

24

∫

X

ctop(TX)

(Recall that ctop(TX) is called the Euler class of X .)
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N ⊂ ✲ M0,3(X, 0)

X
❄

⊂

∆
✲ X ×X

ν1 × ν2
❄

We need ∆!M0,3(X, 0). In more down to earth terms we can think of it as the
pull-back of the diagonal via the product of the evaluation maps

(ν1 × ν2)∗∆

Now in the identification ofM 0,3(X, 0) withM 0,3×X ≃ X , each evaluation map is
just the projection to X , so the product is identified with the diagonal embedding
itself. So in the end we are talking about the self-intersection of the diagonal.
This is nothing but the Euler class.

Good references: Kontsevich-Manin [23] and Getzler-Pandharipande [12]

6.2.1 XXXX genus 1 Let ε : M g,n(X, β) → M g,n denote the forgetful morphism
that forgets the X-structure. On either of these spaces, let Bi denote the sum of
all boundary divisors such that pi is on a rational twig. Let Ei denote the sum of
all boundary divisors such that pi is alone on a rational twig. Then (cf. 5.1.9)

ε∗ψi = ψi − Ei

and also

ε∗Bi = Bi − Ei.

Now in genus 1, we have ψi =
1
12
D +Bi on any M 1,n, so the two comparison

results imply

ψi =
1
12
D +Bi

on M 1,n(X, β).
This yields the following topological recursion relation (cf. also Getzler [10]):

〈〈 τk+1,a 〉〉1 =
∑

e,f

〈〈 τk,aτ0,e 〉〉0g
ef 〈〈 τ0,f 〉〉1 +

1

24

∑

e,f

gef 〈〈 τk,aτ0,eτ0,f 〉〉0
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. . . sections that might come some day. . .

Psi classes and enumerative geometry

— plans for this section:
tangency conditions and psi classes (jet bundles)
my own work [13], [19], [20]
introduction to the work of Andreas Gathmann [7] on multiple contacts and relative Gromov-

Witten invariants. . .

Psi classes in equivariant quantum cohomology

I hope to write something about this soon. . .
something about how gravitational descendants arise as fundamental solutions in Givental’s

quantum differential equation. . . and Gromov-Witten invariants of hypersurfaces in Pr, and
torus actions, and localisation formulae. . . The famous J-function. . .

reference: Pandharipande [27]

Virasoro constraints

as soon as I understand a little bit, I’ll write something about the Virasoro conjecture, which
states that (the exponential of) the generating function of the gravitational descendants (all
genus) is annihilated by some differential operators that form (half of) the Virasoro algebra. . .Good
reference: Getzler [11]. When X is a point, the Virasoro conjecture is equivalent to Witten’s
conjecture, so the proof of Kontsevich is also a proof of the Virasoro conjecture for a point.
One can separate the genus contributions, like for Witten’s conjecture, and thus speak of ‘Vi-
rasoro conjecture up to genus g’. It has been shown that the conjecture hold up to genus 0
(Eguchi, Hori, Xiong, Dubrovin, Zhang?), and perhaps genus 1 is done too. Katz has shown the
conjecture holds for Calabi-Yau threefolds. . . Even for simple varieties like P1, it is not known. . .
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