
LIE FLOWS OF CODIMENSION 3

e. gallego and a. reventós

Abstract. We study the following realization problem: given a Lie
algebra of dimension 3 and an integer q, 0 ≤ q ≤ 3, is there a compact
manifold endowed with a Lie flow transversely modeled on G and with
structural Lie algebra of dimension q? We give here a quite complete
answer to this problem but some questions remain still open (cf. §2).

0 Introduction

Among the class of foliations with a transverse structure Lie folia-
tions stand out. These are foliations transversely modeled on Lie groups.
They have been studied by several authors, mainly by Fedida (cf. [3]).
Apart from its intrinsic interest the importance of this study is increased
by the fact that they arise naturally in Molino’s classification of Riema-
nian foliations ([6]).

To each Lie foliation are associated two Lie algebras, the Lie algebra
G of the Lie group on which it is modeled and the structural Lie algebra
H. The latter algebra is the Lie algebra of the Lie foliation F restricted
to the closure of any one of its leaves. In particular it is a subalgebra of
G. We remark that although H is canonically associated to F , G is not.

Thus, one natural and interesting question is to know which pairs of
Lie algebras (G, H), with H a subalgebra of G, can arise as transverse
algebra and structural Lie algebra repectively of a Lie foliation F on a
compact manifold M .

We shall study here a particular but interesting case, namely given
a Lie algebra of dimension 3 and an integer q, 0 ≤ q ≤ 3, is there a
compact manifold endowed with a Lie flow transversely modeled on G
and with structural Lie algebra of dimension q? For simplicity’s sake we
shall say that the pair (G, q) is (or is not) realizable.

By using the classification of the 3–dimensional Lie algebras and the
fact that the structural Lie algebra of a Lie flow is abelian (cf. [1]) it
becomes apparent that certain pairs (G, q) are not realizable (for instance
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(sl(2), 2) and (so(3), 2) are not realizable because sl(2) and so(3) have
no abelian subalgebras of dimension two).

Nevertheless in some cases the obstruction for certain pairs to be re-
alizable is rooted in the compactness of M and not based on purely
algebraic reasons (for instance the pair (affine, 0) is not realizable (cf.
Theorem 1)).

We classify the 3–dimenisonal Lie algebras in 6 algebras G1, . . . , G6 and
two families G7 (parametrized by k ∈ R, k 6= 0) and G8 (parametrized
by h ∈ R, h2 < 4) (cf. §1). We obtain

Theorem 1. If the structural Lie algebra is zero, i.e. F is a compact
foliation, then G1, G2, G3 and G4 are realizable. G5 and G6 are not
realizable. G7 is realizable if and only if k = −1 and G8 is realizable if
and only if h = 0.

Theorem 2. If the structural Lie algebra has dimension 1, then G1, G2,
G3, G4 and G5 are realizable. G6 and G7 are not realizable and G8 with
h = 0 is realizable.

We do not know any realization of G8 with h 6= 0 and 1–dimensional
structural Lie algebra of dimension 1.

Finally it is remarkable that the realization of the pair (G7, 2) depends
on k. In fact we have

Theorem 3. If the structural Lie algebra has dimension 2 then G1, G5
and G8 with h = 0 are realizable. G2, G3, G4, G6 and G7 with k ∈ Q are
not realizable.

We give a realization of G7 with k /∈ Q. A characterization of those k
for which G7 is realizable and the G8 case, are still open.

We wish to thank professors G. Hector and M. Nicolau for their helpful
comments during the development of this work.

1 Preliminary definitions and results

Let F be a smooth foliation of codimension n on a smooth manifold
M given by an integrable subbundle L ⊂ TM . We denote by L(M,F)
the Lie algebra of foliated vector fields, i.e. X ∈ L(M,F) if and only
if [X,Y ] ∈ ΓL for all Y ∈ ΓL. Thus, the set of sections of L, ΓL, is
an ideal of L(M,F ). The elements of X (M,F) are called basic vector
fields.

If there is a family {X1, . . . ,Xn} of foliated vector fields of M such
that the correspondig family {X1, . . . ,Xn} of basic vector fields has
rank n everywhere, the foliation is called transversely prallelizable and
{X1, . . . ,Xn} a transvers parallelism. If the vector subspace G of
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X (M,F) generated by {X1, . . . ,Xn} is a Lie subalgebra, the foliation
is called a Lie foliation.

We shall use the following structure theorems (cf. [3] and [6]):

Theorem A. Let F be a tansversally parallelizabe foliation on a com-
pact manifold M of codimension n. Then:

a) There is a Lie algebra H of dimension q ≤ n.
b) There is a locally trivial fibration π : M −→ W with compact

fibre F and dim W = n − q = m.
c) There is a dense Lie H–foliation on F such that:

(i) The fibres of π are the closures of the leaves of F .
(ii) The foliation induced by F on each fibre of π is isomorphic

to the H–foliation on F .

H is called the structural Lie algebra of (M,F), π the basic fibration
and W the basic manifold. The foliation given by the fibres of π is
denoted by F . Note that codim F + q = codim F .

Theorem B. Let F be a G–foliation on a compact manifold M and let
G be the connected simply connected Lie group with Lie algebra G. Let
p : M̃ −→ M be the universal covering of M . Then there is a locally
trivial fibration D : M̃ −→ G equivariant by Aut(p) (i.e. if D(x) = D(y)
then D(gx) = D(gy) for all x, y ∈ M̃ and g ∈ Aut(p)) such that the
foliation F̃ = p∗F is given by the fibres of D.

The natural morphism h : π1(M) −→ Diff(G) is such that Γ =
im(h) ⊂ G, where the inclusion G ⊂ Diff(G) is by left translations.

We shall also use some cohomological properties of the foliation. Re-
call that the basic forms complex is given by the forms α ∈ Ω∗(M ) such
that LXα = 0 and iXα = 0 for all X ∈ ΓL. The cohomology of this
complex, H∗(M,F), is the basic cohomology of the foliated manifold
(M,F). If Hn(M,F) 6= 0 we say that F is homologically orientable or
unimodular. We have (cf. [5]):

Theorem C. Let F be an unimodular Lie G–foliation on a compact
manifold M . Then the Lie algebra G is unimodular.

Finally we recall that the 3–dimesional Lie algebras can be classified
in eight families

– G1 (Abelian):

[e1, e2] = [e1, e3] = [e2, e3] = 0

– G2 (Heisenberg):

[e1, e2] = [e1, e3] = 0, [e2, e3] = e1
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– G3 (so(3)):

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

– G4 (sl(2)):

[e1, e2] = e3, [e2, e3] = −e1, [e3, e1] = e2

– G5 (Affine):

[e1, e2] = e1, [e1, e3] = [e2, e3] = 0

– G6:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e1 + e2

– G7:

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = ke2 k 6= 0

– G8:

[e1, e2] = 0, [e1, e3] = e2, [e2, e3] = −e1 + he2 h2 < 4

Notice that G1, G2, G3 and G4 are unimodular, G5 and G6 are not
unimodular, G7 is unimodular only if k = −1 and G8 only if h = 0.

Remark: We can think that G7 is parametrized by k ∈ [−1, 0)∪(0, 1].
In fact two of these algebras are isomorphic if and only if k · k′ = 1.

2 Lie flows of codimension 3

Let F be a Lie flow of codimension 3 on a compact manifold M . Since
the closures of the leaves of F are the fibres of a bundle (cf. Theorem
A), there are four possible cases.

1 Case codim F = 3.
In this case F is compact and the basic bundle is M −→ M/F . Thus

the basic cohomology coincides with the de Rham cohomology of the
compact manifold M/F and hence H3(M/F) 6= 0. By Theorem C, if
such a flow exists it is transversely modeled on a unimodular Lie algebra.
So G5 and G6 are not realizables, G7 is realizable (a priori) only if k = −1
and G8 only if h = 0.

We give now examples for each one of the remainder algebras.
– G1 : Just consider the trivial bundle T 1 × T 3 −→ T 3.
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– G2 : Consider the trivial bundle T 1 × M −→ M where M is the
homogeneous space N/Γ of the Heisenberg group

N =








1 a b
0 1 c
0 0 1


 ; a, b, c ∈ R





by the discret uniform subgroup Γ of N given by the matrices of
N with integer coefficients.

– G3 : Just consider the trivial bundle T 1 × S3 −→ S3.
– G4 : Consider the trivial bundle T 1 ×T1W −→ T1W where T1W

is the unit sphere bundle of the two hole torus W . T1W is the
homogeneous space PSL(2,R)/π1(W ) and therefore we have the
desired example.

– G7 (with k = −1) : Let A ∈ SL(2,Z) be a matrix with eigenval-
ues λ, 1/λ (being λ > 0 and λ 6= 1). We can give a solvable Lie
group structure on R3 = R × R2 by

(t, u).(s, v) = (t + s, At · v + u)

The Lie algebra of this group is G7 with k = −1 (cf.[4]). Moreover
the points of R3 with integer coordinates constitute a uniform
discret subgroup Γ of R3. The quotient is usually denoted by
T 3

A. Then, one example of a Lie flow transversely modeled on
G7, with k = −1, is given by the trivial bundle T 1 × T 3

A −→ T 3
A.

– G8 (with h = 0) (P. Molino) : Let us consider the flow given by
the fibres of the trivial bundle T 1 × T 3 −→ T 3. Let θ0, θ1, θ2, θ3

denote the canonical coordinates in T 1 × T 3. The parallelism
given by ∂/∂θ1, ∂/∂θ2, ∂/∂θ3 makes the fibres of the bundle an
abelian Lie foliation. But we have basic functions enough to
modify this parallelism. In fact, we can take

e1 = cos θ1 · ∂/∂θ2 + sin θ1 · ∂/∂θ3

e2 = − sin θ1 · ∂/∂θ2 + cos θ1 · ∂/∂θ3

e3 = −∂/∂θ1





to obtain a new parallelism with [e1, e2] = 0, [e1, e3] = e2,
[e2, e3] = −e1 i.e. the flow is also transversely modeled on G8
(with h = 0).

2 Case codim F = 2.
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In this case we give examples for G1, G2, G3, G4, G5 and G8 (with
h = 0). We also prove that G6 and G7 are not realizable.

– G1 : One example is given by the flow (X, 0) on T 2 × T 2 where
X is a dense linear flow on T 2.

– G2 : Let M be the homogeneous space of the Heisenberg group
considered before. The flow on M × T 1 whose integral curves
are given by

ϕt(p) = (




1 a b + t
0 1 c
0 0 1


 , t + d)

where

p = (




1 a b
0 1 c
0 0 1


 , d) and d ∈ R \ Q

is transverse to M and the closure of each leaf is T 2. Hence it is
one example of a G2–Lie flow with codim F = 2.

– G3 : As S3 = SU(3) an example can be constructed by suspend-
ing the representation

h : π1(S1) −→ Diff(S3)

given by

h(1) =
(

eiα 0
0 eiα

)

where α ∈ R \ Q.
– G4 (A. ElKacimi) : Let F0 be the transverse affine Lie flow on

T 3
A (cf.[1]). Using the fact that the affine group GA can be

considered, lifting the map
(

a b
0 1

)
−→ 1√

a

(
a b
0 1

)

of GA in SL(2,R), as a Lie subgroup of SL(2,R) and using also
that the unfolding diagram of F0 (cf. Theorem B), D0 : T̃ 3

A −→
GA, ρ0 : π1(T 3

A) −→ GA the desired foliation can be constructed
as follows:

Let M̃ = T̃ 3
A × R be the universal covering of M = T 3

A ×
S1 and define D : M̃ −→ S̃L(2,R), ρ : π1(M) −→ S̃L(2,R)
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by D(x, t) = D0x · ϕ̃(t) and ρ(γ, n) = ρ0(γ) · ϕ(n) where ϕ̃ :
R −→ S̃L(2,R) is a lift of the uniparametric subgroup ϕ : R −→
SL(2,R) given by

ϕ =
(

cos t sin t
− sin t cos t

)

It turns out, using that ϕ̃(n) is in the center of S̃L(2,R), that ρ is
an homomorphism and D is equivariant (i.e. D((γ, n).(x, t)) =
ρ(γ, n).D(x, t)). Thus the fibres of D induce the desired Lie
foliation on M (cf.[2] for details).

– G5 : Let X be the generator of the transversely affine Lie flow
on T 3

A. As we have that G5 = A + R, where A is the affine
Lie algebra of dimension 2, the vector field (X, 0) on T 3

A × S1 is
transversely modeled on G5 and codimF = 2.

– G6 and G7 are not realizables : Let F be a G6 or a G7 Lie flow on
a compact manifold M . Fix a generator X of F and a trans-
verse parallelism Y1, Y2, Y3 such that [Y1, Y2] = 0, [Y1, Y3] =
Y2, [Y2, Y3] = Y1 + Y2 for G6 and [Y1, Y2] = 0, [Y1, Y3] = Y1,
[Y2, Y3] = kY2 for G7. Let g be a Riemannian metric on M .
Then we have the orthogonal decomposition TM = TF + TF⊥

and we shall denote by Zt and Zn the tangent and the orthogonal
parts of a vector field Z on M .

The set T = {p ∈ M ;Y n
1 (p) = 0} is open. In fact, if p ∈ T ,

Y1 is tangent to F in p therefore Y n
2 , Y n

3 are independent in p.
Hence they are independent in an open neighborhood U of p and
we can writte Y n

1 = λY n
2 + µY n

3 where λ, µ are basic functions
on U . Computing now [Y n

1 , Y n
2 ] and [Y n

1 , Y n
3 ] we deduce the

following system of differential equations:

Y n
2 (λ) + µλ + µ = 0

Y n
2 (µ) + µ2 = 0

Y n
3 (λ) − λ2 = 0

Y n
3 (µ) − µλ + µ = 0





for G6 and
Y n

2 (λ) + kµ = 0

Y n
2 (µ) = 0

Y n
3 (λ) + (1 − k)λ = 0

Y n
3 (µ) + µ = 0




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for G7, with the initial conditions λ(p) = µ(p) = 0.
This implies that µ = 0 on the integral curves of Y3 and Y2.

Due to transverse transitivity µ = 0 on U . It follows in a similar
way that λ = 0 on U . Thus Y = 0 on U and T is open.

As it is also closed and M is supposed to be connected, T = ∅
or T = M .

But if T = M we arrive in both cases (G6 and G7) to a con-
tradiction. In fact, if we denote by θ0, θ1, θ2, θ3 the dual basis of
X,Y1, Y2, Y3 we have dθ2 = −θ2∧θ3 in G6 and dθ2 = kθ2∧θ3 (k 6=
0) in G7. As θ2(Z) = θ3(Z) = dθ2(Z, ·) = dθ3(Z, ·) = 0 for each
vector field Z tangent to F , the 1-forms θ2 and θ3 are projectable
on the basic manifold W = M/F .

So we would have an exact volume element on the compact
manifold W , which is a contradiction.

Therefore T = ∅.
Next we consider the set Q =

⋃
a∈R Qa where Qa = {p ∈

M ; Y n
2 (p) = aY n

1 (p)}.
Q is open: If p ∈ Q, there is a ∈ R such that Y n

2 (p) = aY n
3 (p)

and hence Y n
3 and Y n

2 are independent in p. So Y n
2 = λY n

1 +µY n
2

in an open neighborhood U of p with λ(p) = a and µ(p) = 0.
Computing now [Y1, Y

n
2 ], [Y3, Y

n
2 ] and considering their tangent

and normal parts one obtains the equations:

Y1(λ) + µ = 0

Y1(µ) = 0

Y3(λ) + 1 = 0

Y3(µ) − µ = 0





As before, this yields µ = 0 i.e. Y n
2 = λY n

1 on U . Thus every
point x ∈ U is in Qλ(x) ⊂ Q and Q is open.

Q is closed: If p /∈ Q, for each a ∈ R, Y n
2 (p) 6= aY n

1 (p).
In particular Y n

2 (p) = 0. As we have proved that Y n
1 6= 0, the

vector fields Y1, Y2 are linearly independent on p. Hence they are
independent in an open neighborhood U of p, i.e. U ⊂ M \ Q
and Q is closed.

As M is connected Q = ∅ or Q = M .
If Q = ∅, Y n

1 and Y n
2 are linearly independent in each point.

So there are differentiable functions λ and µ globally defined on
M , such that Y n

3 = λY n
1 + µY n

2 . Computing now [Y1, Y
n
3 ] we

obtain Y1(λ) = 1, but as M is compact this is impossible.
If Q = M , for each p ∈ M there is a(p) ∈ R such that Y n

2 (p) =
a(p)Y n

1 (p). This gives rise to a differentiable basic function a on
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M with Y n
2 = a·Y n

1 . Equivalently Y2−a·Y1 is everywhere tangent
to F . Since [Y3, Y2−a·Y1] must be in F we obtain Y3(a) = −1 for
G6, which is again a contradiction, and Y3(a) = (1 − k)a for G7.
If k 6= 1, the only possibility is a = 0 and so Y2 is everywhere
tangent to F . As before, this yields a contradiction because
dθ1 = −θ1 ∧ θ3, with θ1 and θ3 projectables on W = M/F . If
k = 1 it follows that a is constant over the integral curves of
Y1, Y2, Y3, i.e. a is constant. Beeing ω0, ω1, ω2, ω3 the dual basis
of X,Y2 − aY1, Y1, Y3 we obtain dω2 = −ω2 ∧ ω3 with ω2, ω3

projectables on W , again a contradiction. This proves that G6
and G7 are not realizables.

– G8 (with h = 0) : The same construction as before. If θ0, θ1, θ2,
θ3 are the canonical coordinates on T 2 × T 2, the vector field
X = ∂/∂θ0 + α∂/∂θ1, α ∈ R \ Q is transversely abelian for the
parallelism ∂/∂θ1, ∂/∂θ2, ∂/∂θ3 and has codim F = 2.

We modify this parallelism by taking

e1 = cos θ2 · ∂/∂θ1 + sin θ2 · ∂/∂θ3

e2 = − sin θ2 · ∂/∂θ1 + cos θ2 · ∂/∂θ3

e3 = −∂/∂θ2





Thus X is also transversely modeled on G8 (with h = 0).

3 Case codim F = 1.
In this case the structural Lie algebra has dimension 2. As this algebra

is abelian (cf.[2]), G3 and G4 are not realizables because they do not have
abelian subalgebras of dimension 2. Examples for the algebras G1, G2,
G5 and G8 (h = 0) are given. For the algebra G7 we prove that the only
realizable cases are when k /∈ Q, an example will be given. We also
prove that G6 is not realizable.

– G1 : Consider the flow (X, 0) on T 3 × T 1 where X is a dense
linear flow on T 3.

– G2 is not realizable : As G2 is unimodular and codim F = 1, F is
unimodular (cf. [5]) and it follows, from the results by Molino
(cf. [6]), that the central transvers sheaf C admits a global triv-
ialization, i.e. there are independent foliated vector fields v,w
tangents to the F closure which commute, as transvers fields,
with every global foliated vector field. In particular [v, ei] =
[w, ei] = 0. Writing

v =λe1 + µe2 + νe3

w =αe1 + βe2 + γ33
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we obtain v = λe1 and w = αe1 which is a contradiction.
– G5 : Let X be the generator of the transversely affine Lie flow

on T 3
A. The vector field (X,α∂/∂θ) on T 3

A × S1, with α ∈ R \ Q
and θ the coordinate function on S1, is transversely modeled on
G5 = A + R and codimF = 1.

– G8 (h = 0) : The same construction as before. If θ0, θ1, θ2, θ3

are the canonical coordinates on T 3 × T 1, the vector field X =
∂/∂θ0 + α∂/∂θ1 + β∂/∂θ2 with α, β rationally independent, ad-
mits

e1 = cos θ3 · ∂/∂θ0 + sin θ3 · ∂/∂θ1

e2 = − sin θ3 · ∂/∂θ0 + cos θ3 · ∂/∂θ1

e3 = −∂/∂θ3





as a transverse parallelism. But e1, e2, e3 is a basis of G8 with
h = 0.

– Next we study the remainder algebras G6, G7 and G8 (h 6= 0).
As the center of these algebras are trivial, the corresponding
connected simply connected groups G6, G7, G8 can be obtained
as et·ad α, α ∈ Gi with i = 1, 2, 3. We find that these groups can
be thougth as R3 = R2 × R with the product (p, t) · (p′, t′) =
(p + eΛt · p′, t + t′) and Λ depending on the algebra.

For G6

Λ =
(

1 1
0 1

)
, e−Λt =

(
e−t −te−t

0 e−t

)

For G7

Λ =
(

1 0
0 k

)
, e−Λt =

(
e−t 0
0 e−kt

)

For G8

Λ =
(

0 1
−1 h

)
, e−Λt = C(t) ·

(
cos(ϕ + t) − sin t

sin t cos(ϕ − t)

)

where C(t) = 2
α
eβt and α =

√
4 − h2, β = tan ϕ = h/α, (sinϕ =

h/2, cos ϕ = α/2).
The basis to define the algebras are given by the following left

invariant fields.
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For G6

e1 =e−t ∂

∂x

e2 = − te−t ∂

∂x
+ e−t ∂

∂y

e3 =
∂

∂t





For G7

e1 =e−t ∂

∂x

e2 =e−kt ∂

∂y

e3 =
∂

∂t





For G8

e1 =
2
α

e−βt(cos(t + ϕ)
∂

∂x
+ sin t

∂

∂y
)

e2 =
2
α

e−βt(− sin t
∂

∂x
+ cos(t − ϕ)

∂

∂y
)

e3 = − α

2
∂

∂t





Suppose now that we have a codim F = 1 realization on a
compact manifold M of one of this algebras. We shall denote
the algebra by G and the corresponding group by G. The basic
fibration is:

T 3 −→ M −→ T 1

and, as π1(T 3) = Z3, π1(T 1) = Z and π2(T 1) = 0 the corre-
ponding homotopy exact sequence is

0 → Z3 −→ π1(M ) −→ Z → 0

Since this exact sequence has a section, π1(M ) is the semidirect
product of Z3 with Z, i.e. π1(M ) is the product Z3 ×Z with the
operation (x, t) · (y, s) = (x + t · y, t + s) where t · y represents
the natural action of Z on Z3. To be precise, if ϕ : T 3 −→ T 3

is the diffeomorphism which gives the bundle, then the action
is t · y = ϕt

∗ · y where ϕ∗ : π1(T 3) −→ π1(T 3) is the morphism
induced by ϕ. We shall denote this group by Z3 ×ϕ Z.
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Since F is a Lie foliation we have the unfolding diagram:

M̃
D−−−−→ G

y

M

and the holonomy representation h : π1(M ) −→ h(π1(M)) =
Γ ⊂ G with D(γ · x̃) = h(γ) · Dx̃, x̃ ∈ M̃ , γ ∈ π1(M ).

As M/F is diffeomorphic to G/Γ (cf., for instance, [5]) we
have that Γ is a two dimensional closed subgroup of G.

The Lie algebra H of Γe (the identity component of Γ) is
named the structural Lie algebra of F and. In the case of flows
it is abelian (cf. [1]).

But it is easy to see that the only two dimensional abelian
subalgebra of G is < e1, e2 >, thus H =< e1, e2 >. Looking
at the expressions for e1 and e2 in G6, G7 and G8 we see that
H =< ∂/∂x, ∂/∂y > and hence Γ ' R2 × Zε, ε > 0.

Notice that Γe = R2 × {0} is abelian.

Lemma. Let A be an abelian subgroup of Γ. Then A is contained in
R2 × {0} or there is an element a = (a1, a2, a3) with a3 6= 0 such that
A = {an, n ∈ Z}
Proof. If A is not in R2 × {0}, then A ∩ (R2 × {0}) = 0 ∈ R3.

Otherwise there is (p, 0) ∈ A, p 6= 0, and (q, t) ∈ A, t 6= 0. As A is
abelian we have that (p, 0)(q, t) = (q, t)(p, 0). Then,

q + e−Λt · p = q + p

and this implies that t = 0, except for G8 with h = 0, but this case is
not considered here. Therefore A ∩ (R2 × {0}) = 0 ∈ R3.

In particular A has at most one element in each level R2 × {mε},
m ∈ Z. In fact, a1 · a−1

2 ∈ A ∩ (R2 × {0}) = 0 and a1 = a2.
Let a = (a1, a2, nε) be the element of A in the lower level. For each

b = (b1, b2,mε) ∈ A, we put m = nd + r, then ba−d is an element of A
in the rε level and hence r = 0, i.e. b = ad and this proves the lemma.

Proposition 1. Let the notation be as above. Then

(R2 × {0}) ∩ Γ = h(Z3)

Proof. Applying the lemma we have four possibilities:
(i) h(Z3) and h(Z) are both contained in R2 ×{0}. Then Γ, generated

by h(Z3) and h(Z), is contained in R2 × {0} which contradicts
R3/Γ = S1.
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(ii) h(Z3) is contained in R2 × {0} and h(Z) = {an, n ∈ Z} with a /∈
R2 × {0}. As h(Z3) is a normal subgroup of Γ, for each b ∈ h(Z3)
we have aba−1 = b′ which is in h(Z3). Hence, the elements of
R2 × {0} ∩ Γ can be written as

σ = b1a
r1b2a

r2b3a
r3 · · · bkark

with Σri = 0 and bi ∈ h(Z3). That is σ = b̃ · aΣri = b̃ ∈ h(Z3), i.e.
(R2 × {0}) ∩ Γ = h(Z3)

(iii) h(Z) is contained in R2 × {0} and h(Z3) = {an, n ∈ Z} with a /∈
R2 × {0}. In this case Γ is abelian because if we let h(1) = b we
have bab−1 = ak. This implies k = 1 and ab = ba. As in (ii) this
implies that Γ ∩ R2 × {0} = h(Z) which is not dense in R2 × {0}.

(iv) h(Z) = {an, n ∈ Z} and h(Z3) = {bn, n ∈ Z} with a, b /∈ R2 × {0}.
As before aba−1 = bk and therefore Γ is abelian. So the elements
of R2 × {0}) ∩ Γ can be written as an · b−n = (a · b−1)n and this is
not dense in R2 × {0}.

Remark: Three elements u,v,w ∈ R3 can generate a dense subgroup
of R2. In fact it suffices to take u = λv+µw with λ, µ and λ/µ ∈ R\Q.
So, a priori, it is possible to have h(Z) = R2 × {0}.

Proposition 2. G6 is not realizable.

Proof. If such a realization exists the subgroup h(Z3) is normal in Γ.
Let h(Z3) =< (p1, 0), (p2, 0), (p3, 0) > and h(Z) =< (p, t) > with t > 0
then the normality condition can be written as:

e−Λt · pi =
3∑

j=1

λj
i · pj

where λj
i ∈ Z.

The matrix A = (λj
i ) corresponds in fact to ϕ∗ : Z3 −→ Z3 then it is

invertible, and, as we are assuming orientability, we have det A = 1. Let
v1 = (a1, b1, c1) and v2 = (a2, b2, c2) where p1 = (a1, a2), p2 = (b1, b2)
and p3 = (c1, c2). From the above equations we have that:

Av1 =a · v1 + a log a · v2

Av2 =a · v2

}

where a = e−t.
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Completing v1, v2 to a basis {v1, v2, v3} the matrix A can be written:




a 0 α
a log a a β

0 0 a−2




and satisfies that:

2a +
1
a2 =p

a2 +
2
a

=q





with p, q ∈ Z, 0 < a < 1, and a ∈ R \ Q. But this is impossible,
because this equations implie that pa2 − 2qa + 3 = 0 and hence a =
(q±

√
q2 − 3p)/p. In particular

√
q2 − 3p ∈ R\Q. Substituting now a in

the first of the above equations we conclude, after a short computation,
that p = q = 3 which is in contradiction with a ∈ R \ Q. So G6 is not
realizable.

Proposition 3. The Lie algebras of the G7 family with k ∈ Q are not
realizables.

Proof. Proceeding as in Proposition 2 we obtain that e−t and e−kt are
eigenvalues of A.

The characteristic polynomial of A, x3 −px2 +qx−1, has three roots,
ξ, ξk and ξ−(k+1) with ξ = e−t. As t > 0 we have 0 < ξ < 1. This
implies, from standard arguments in Galois theory (see lemma below),
that k /∈ Q; i.e. the Lie algebras of G7 with k /∈ Q are not realizables.

The authors are grateful to P. Ara for his remarks about the following
lemma.

Lemma. Let f (x) = x3 − px2 + qx−1 be a polynomial with p, q ∈ Z. If
there are k ∈ R and ξ ∈ (0, 1) such that the roots of f(x) can be written
as ξ, ξk, ξ−(k+1), then k ∈ R \ Q.

Proof. First we observe that any rational root of this polynomial must
be 1 or −1, and so it is irreducible over Q. Hence the Galois group of
f (x) over Q is Z3 or the symmetric group S3. In both cases there is an
automorphism σ of the splitting field K of order 3 which is the identity
over Q. This automorphism permutes the roots, i.e.

σ(ξ) = ξk, σ(ξk) = ξ−k−1, σ(ξ−k−1) = ξ or

σ(ξ) = ξ−k−1, σ(ξk) = ξ, σ(ξ−k−1) = ξk



LIE FLOWS OF CODIMENSION 3 15

If k = p/q, using that σ(x1/q) = ±σ(x)1/q, we obtain ξ−k−1 = σ(ξk) =
σ(ξp/q) = σ((ξp)1/q) = (σ(ξ)p)1/q = ξk2

in the first case and ξ = σ(ξx) =
ξ(−k−1)k in the second. This implies that k2 + k + 1 = 0 which is
impossible. Thus ξ /∈ Q and the lemma is proved.

Example: Now we give an example of a Lie flow on a compact man-
ifold M transversely modeled over a Lie algebra G of the family G7 with
structural Lie algebra of dimemsion 2.

Let

A =




2 1 1
1 1 −1
1 0 3




be an element of SL(3;R).
The eigenvalues are λj = 2+2 cos(6πj−4π

9 ) where j = 1, 2, 3. We have
2+2 cos(8π/9) < 1 < 2+2 cos(14π/9) < 2+2 cos(2π/9). If we let ξ = λ2,
there is a k < 0 such that ξk = λ3. In this case λ1 = ξ−k−1. Here k
is the quotient of logarithms of algebraic numbers. Notice that this is a
necessary condition for the corresponding algebra to be realizable.

Thus we have the eigenvectors

uj = (λj − 3, λj(λj − 3) − 1, 1)

A computation shows that the components of this vectors are irra-
tional numbers with irrational quotient, i.e. they induce dense linear
flows in T 3.

Now we consider the compact manifold T 4
A = T 3×R/ ∼ where (x, t) ∼

(A · x, t + 1). As the direction given by u1 is invariant by A it induces a
global flow in T 4

A. This flow is transversely modeled over the Lie algebra
of G7 with k = log λ3/ log λ2 < 0. To verify this we observe that an
invariant tranverse parallelism in T 3 × R is given by

e1 =ξtu2

e2 =ξktu3

e3 = −
1

log ξ

∂

∂t





and it satisfies that [e1, e2] = 0, [e2, e3] = e1, [e1, e3] = ke2.
Remark: We do not know any realization of G8 with h 6= 0 and

codim F = 1.
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4 Case codim F = 0.
This is a trivial case because the transverse algebra coincides with the

structural algebra and so it is abelian. Only G1 is realizable (a linear
dense flow on T 4).
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