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Abstract

Let R be a ring, let F' be a free group, and let X be a basis of F.

Let e: RF — R denote the usual augmentation map for the group ring RF,
let X0:={x—1|xz € X} C RF, let ¥ denote the set of matrices over RF'
that are sent to invertible matrices by ¢, and let (RF)% ™" denote the universal
localization of RF at X.

A classic result of Magnus and Fox gives an embedding of RF in the
power-series ring R({(X0)). We show that if R is a commutative Bezout do-
main, then the division closure of the image of RF in R((X9)) is a universal
localization of RF at X.

We also show that if R is a von Neumann regular ring or a commutative
Bezout domain, then (RF)Ei1 is stably flat as an RF-ring, in the sense of
Neeman-Ranicki.
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1 Outline

Throughout, let R be a ring (associative, with 1). Except where otherwise speci-
fied, we will work with left modules, and linear maps between left modules will be
written on the right of their arguments. We denote by N the set of finite cardinals,
{0,1,2,3,...}.

Let ¥ be a set (or even a class) of R-linear maps between finitely generated
projective R-modules. It is well-known that the universal localization of R at X,
denoted RX!, need not be flat as a right or left R-module, in general. A much
less demanding condition is stable flatness of RX~! as an R-ring, meaning that,
for each positive integer n, Tor?(RX ™', RY~!) = 0. In the case where all the
elements of ¥ are injective and RX.~! is stably flat as an R-ring, Neeman and
Ranicki [18, Theorem 0.11], [19] showed that Schofield’s K-theory exact sequence
for universal localization [21, Theorem 4.12] can be extended to a long exact se-
quence involving the K-groups of R, of RE ™!, and of the exact category H(R,X)
of projective-dimension-at-most-one ¥-torsion R-modules.

For the remainder of this section, let us fix the following notation. Let X be a
set, let F' denote the free group on X, let RF denote the corresponding group ring,
and let e: RF — R denote the R-ring map which sends every element of F' to 1.
Let X denote the set of matrices over RF that are sent to invertible matrices by e.
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Ranicki and Sheiham [20, Theorem 5(ii), Section 0] used the above-mentioned
results of [18], [19] to provide a description of the K-theory of (RF)X~!, in the case
where F is finitely generated and (RF)X ! is stably flat as an RF-ring. In Section 4
below, we show that if R is a von Neumann regular ring or a commutative Bezout
domain, then (RF)X~! is stably flat as an RF-ring, and, therefore, the results of
Ranicki-Sheiham [20] apply in these cases.

Let X0 = {x =1 | ¢z € X}, and let R((X0)) denote the corresponding
power-series ring; thus R{(Xd)) can be viewed as the (X9)-adic completion of the
free R-ring R(X0), R({(X0)) = lim R(X9)/((X9)").

neN
In Section 2, we review, in idefﬂ—theoretic language, the Magnus-Fox embedding

of RF in R{{X9)); we felt that there seemed to be some confusion in the literature
about what had been proved by the arguments of Magnus [17] and Fox [11], and that
a brief survey might be useful. The Magnus-Fox embedding was the earliest example
of a non-commutative universal localization being embedded in a power-series ring.

In Section 3, we show that if R is a commutative Bezout domain, then the
division closure of the image of RF in R{{Xd)) is a universal localization of RF at X.
For R a commutative principal ideal domain, this was proved by Dicks-Sontag [9,
Theorem 24], and, independently, by Farber-Vogel [10, Theorem 5.1]. The assertion
also holds if R is a division ring; see [5, p.416].

2 Group rings of free-groups and series

In this section, we recall, in detail, the proof of the Magnus-Fox embedding theo-
rem [17, 11] which shows that, in the notation of Section 1, the universal localization
of R{(X) at X is embedded in R((Xd)). Of course, R(X) = R(X9) and the universal
localization of R(X) at X is the group ring R(X)X ! = RF.

2.1 Notation. Let A be a ring and let M be a free left A-module.
We let M* denote the right A-module M* = Homa(a M, 4 A).
If (by | v € X) is a left A-basis of M, we shall let (b% | € X) denote its dual;

thus, for each = € X, b% € M*, and, for each m € M, m = > (m)b% - b,, and this
reX
sum is finite. O

We begin by recalling the following standard result about multiplying free ideals.

2.2 Lemma. Let A be a ring.

Let I be a two-sided ideal of A such that I is free as a left A-module, let
(by | x € X) be a left A-basis of I, and let (b% | © € X) denote its dual.

Let J be a left ideal of A such that J is free as a left A-module, let (cy |y €Y)
be a left A-basis of J, and let (c;, | y € Y') denote its dual.

Then 1J is a left ideal of A which is free as a left A-module, and

(bacy | (z,y) € X xY)
is a left A-basis of 1.J; its dual ((bzcy)* | (z,y) € X xY) is given by (d)(bycy)* =
((d)c;)by, for alld € 1J.
Proof. We have an isomorphism

(2.2.1) J = @A c— () lyeY).
yey ’
Since I is a right ideal of A, left multiplying (2.2.1) by I gives an additive isomor-
phism
IJ = @I, d—((d)c,|yeY).
yey



Pere Ara and Warren Dicks 3

Now the result follows easily. O
The Magnus-Fox embedding is based on the following general fact.

2.3 Lemma. Let R be a ring, let A be an augmented R-ring, and let I denote
the augmentation ideal of A. Suppose that'Y is an R-centralizing left A-basis of I.

Then there exists a (unique) R(Y')-ring embedding A/( () I"™) — R{({Y)).
n>0

Proof. Let A denote the I-adic completion of A, that is, A= lim A/I™. We will
neN
show that the natural map R(Y) — A induces an isomorphism R((Y)) = A.
Suppose n € N. Using induction and Lemma 2.2, one can show that Y *" indexes
a left A-basis of I™, namely Y. Now,

m/mtt ~ (A/)@sa(I") =~ Rea( P A =~ P R

weYXﬂ. weYX’n,

Thus Y %" indexes a left R-basis of I"/I"*! namely the image of Y. In particular,
there exists an R-linear splitting A/I"™Y  ~ (A/I") @ (I"/I™F)).

n— .
Using induction, one can then show that the disjoint union \/ (Y**) indexes a
i=0

n—1 )
left R-basis of A/I", namely |J (Y*). This means that the induced map
i=0
RY)/(V)") — A"
is an isomorphism. On taking inverse limits, we get an induced isomorphism

lim R(Y)/((Y)") = lim A/,
neN neN

that is, R((Y)) = A.

Now the natural embedding A/( () I") — A gives the desired result. O
n>0

We use the following, throughout the remainder of this section.

2.4 Notation. Let R be aring, let X be a set, let F' be the free group on X, let RF
denote the group ring of F' with coefficients in R, and let I denote the augmentation
ideal of RF.

Let e: RF — RF, ) cpTwW— Y . cpTw, be the augmentation map viewed
as an endomorphism. Then € is an idempotent ring endomorphism of RF', ime = R,
and kere = I.

Let 0: RF — RF denote id — ¢, the idempotent R-linear endomorphism comple-
mentary to e. Thus (3, cprmow)d =3 cprw(w—1) =3 cprw -wd,imd = I,
and ker @ = R. For each w € F, w0 = —w - w0, where @ denotes w!.

Let Z denote the centre of R, and view ZF as a subring of RF'. O

2.5 Definition. Suppose that Notation 2.4 applies.
A left R-linear map d: RF — RF satisfying

(2.5.1) (fg)d = (fd-ge)+(f-gd) forall f,g € RF

is called a left derivation for RF.
In this event, d restricts to a left RF-linear map I — RF.
Notice that the endomorphism 0 is a left derivation for RE'. O
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We will now see that a left derivation for RF is uniquely determined by its values
on X, and these can be arbitrary in ZF.

2.6 Lemma. With Notation 2.4, each map of sets X — ZF extends uniquely to a
left derivation for RF.

Proof. Let d: X — ZF, © — zd, be a map of sets. Let My(RF') denote the ring
of 2 x 2 matrices over RF. By universal properties, there exists a unique ring

homomorphism ¢: RF — My(RF') which sends each z € X to (xl d 2), and sends

r

each r € R to (0

0 .
r) ; moreover, ¢ can be naturally expressed in the form

(2 Z%):RFHMQ(RF), fH(jf; 2)

The (2, 2)-component, id, is the identity map on RF’; the (1,2)-component, 0, sends
every element of RF' to 0; and the (1,1)-component, ¢, is the augmentation map.
The (2,1)-component, d: RF — RF, is the unique left R-linear map that extends
the given map d: X — ZF and satisfies (2.5.1). O

2.7 Definitions. Suppose that Notation 2.4 applies.
Consider any z € X.
By Lemma 2.6, the map

1 ify=
0p—: X = RF, Yy 0y, := ly -
' A 0 ify#ux,
extends to a unique left derivation for RF’; it is denoted £ : RF — RF, and called
the left Fox derivative with respect to x.
Now X := {Z | x € X} is also a basis for F, and the left Fox derivative with

respect to I is f—g = 7% x; it is the left derivation for RF which sends y to —d, 4,
and gy to 0y, for each y € X. O

We now show that restricting (£ | z € X) gives a dual of a basis.

2.8 Lemma. With Notation 2.4, I is free as left RF-module, both X0 and XO are
R-centralizing left RF-bases of I, and, for each f € I,

f= 8.w0=3% 15 z0.

zeX reX

Proof. Both (=)0 and Y % - 20 are left derivations for RF, and they agree

zeX
on X; hence they are equal. Thus f = fo = > % - x0.
reX
Now, if (f, | x € X) is some element of € RF such that Y f, 20 =0, then,
reX rzeX

for each y € X,

zeX reX ’ reX
The same arguments apply with X in place of X. O

We will next show that (| I™ = {0}, by considering word lengths.
neN
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2.9 Definitions. Suppose that Notation 2.4 applies.
Let X*! denote X U X1

Consider any d € N, and any p = (z',...,2") € (XE1)*d. We say that p has
length d and ends with x))*. We say that p is reduced if, for each i € {1,...,d — 1},
(Tix1,Miv1) # (m, —15). We say that p is an expression for the element z{* - - - z)*
of F.

By using left Fox derivatives in ZF', one can show that the empty product is the
only reduced expression for the identity element.

Consider any w € F. By the foregoing, there exists a unique reduced expression
p for w. We define the X-length of w, deg(w), to be the length of p. We say that
w ends with x if p ends with x".

Consider any f = > r,w € RF. We define the support of f and the degree of
weF
f to be, respectively,

supp(f) i= {w € F | r, 0} and deg(f) = max{deg(w) | w € supp(f)},

with the convention that deg(0) = —oco. The dominant component of f is

dOHl(f) = Z TwW. D
{weF|deg(w)=deg(f)}

2.10 Lemma. Suppose that Notation 2.4 holds. Suppose further that x, y € X,
n € {1l,—1} and f € RF — {0}. Then the following hold.

(i). deg(L%) < deg(f).

(ii). If deg(wa) = deg(f), then some element of supp(dom(f)) ends with ", and

all elements of supp(dom( f,aa)) end with T".

(iii). deg(xd ya) < deg(f), where x’g =5 denotes( ) -

(iv). For eachn € N, if f € I — {0} then deg(f) > n.

Proof. (i)—(iii). Let w be an element of F', and let (z7',...,2*) be its unique
reduced expression. Then

d .
= S aft el Lol
Ti—1 "0
m o, i1 mo, .. ?711771

= > Ty Tig — > T1 Tiq T

{i|l1<i<d, (zi,n:)=(=,n)} {il1<i<d, (zini)=(x,—n)}

It is now straightforward to prove (i) and (ii), and then (iii) follows easily.

(iv). We proceed by induction on n. Clearly the implication in (iv) holds for
n = 0. Now suppose that, for some n > 1, the implication in (iv) holds with n — 1
in place of n.

By Lemmas 2.8 and 2.2, we have a left RF-linear isomorphism

JRa @ RF, fH(waya\(xy)eXxX)
(z,y)€X?

On left multiplying by I?"~2, we obtain a left RF-linear isomorphism

2
s @ Pt fe (2| (ny) € X x X).
(z,y)eX?

Now suppose that f € I?" — {0}. Then there exists (, y) € X x X such that

fl(;‘?;a € I?"2 — {0}. By the induction hypothesis, deg(Ta ya) > n — 1. By (iii),

deg(f) > n. This proves (iv). O




6 Universal localizations embedded in power-series rings

2.11 The Magnus-Fox embedding theorem. Let R be a ring, let X be a set,
let F be the free group on X, let X0 be a set given with a bijective map X — X0,
x+— 20, and let = (R, X): RF — R({X0)) be the unique R-ring map such that,
for each x € X, x¢ =1+ 20 and, hence,

o = (1+20)t = 1-0z+ (0z)*— (0x)> +---
Then ¢ is injective. U
Proof. Suppose that Notation 2.4 holds. It is clear from Lemma 2.10(iv) that
) I" = {0}. Now the result follows from Lemmas 2.8 and 2.3. O
n>0

2.12 Historical remarks. In 1935, Wilhelm Magnus [17, Satz I] proved that
¢(Z,X) embeds F in the group of units of Z{(0X)).

This embedding has many important applications. For example, F' can then be
ordered, since it is easy to order the group of those units of Z{(0X)) which have
constant term 1; see, for example, the first paragraph of [1].

Luis Paris has pointed out to us that, for any prime integer p, a natural analogue
of Magnus’s argument shows that ¢(Z,, X) embeds F' in the group of units of
Z,({Xd)), where Z, = Z/pZ. It then follows that if R is any nonzero ring, then
¢(R, X) embeds F in the group of units of R{({X3)).

In 1953, Ralph H. Fox [11, Theorem 4.3] proved that ¢(Z, X) is injective. In
this section, we have verified the well-known fact that Fox’s argument works with
any ring in place of Z. This was noted, for example, by Sheiham [24, Lemma 2.6].

O

2.13 Remarks. Suppose that Notation 2.4 holds, and let R = Z.
Let M be any Z-module. Let M F' denote the induced left ZF-module ZF ®7z M.
It is straightforward to translate the arguments of this section from RF to M F
and deduce that (| (I"MF) = {0}; the translation amounts to applying — @ g M
n>0

to the maps in the_proof of Lemma 2.10.
As in the work of Brian Hartley [12], it then follows easily that the wreath
product

1 0
FZMMFNF(MF F)

is residually nilpotent. O

3 Rational series and universal localizations
In this section, we will consider the following situation.

3.1 Notation. Let R be a ring, and let Y be a set. We shall think of the elements
of Y as R-centralizing indeterminates.
Let R(Y) be the free R-ring on the R-centralizing set Y. Let e: R(Y) — R be
the R-ring map which sends every element of Y to 0. Let I denote the kernel of e.
Let R{(Y)) denote the power-series R-ring on the R-centralizing set Y. We
think of R((Y’)) as the I-adic completion of R(Y), R((Y)) = lim R(Y')/I". It is not
neN
difficult to show that the I-adic completion map R(Y) — R((Y)) is injective; we

shall view R(Y') as a subring of R{{Y)).
Let Ryt ((Y)) denote the division closure of R(Y) in R{{Y)), that is, Ryat:{({Y))
is the smallest subring of R{(Y’)) which contains R(Y) and is closed under taking
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inverses of elements that are invertible in R{(Y")). The elements of R, ((Y)) are
called rational power series.

A matrix A over R(Y) is said to be sent to an invertible matriz by € if Ae, the
coordinate-wise image of A under ¢, is invertible over R. Let 3 denote the set of
matrices over R(Y) that are sent to invertible matrices by €. Then ¥ is also the set
of matrices over R(Y) that are invertible over R{(Y)).

Suppose that A is a matrix over Ry, ((Y)) that is sent to an invertible matrix by
the induced augmentation map é: R((Y)) — R. It is easy to see that A is invertible
over R((Y)), and we claim that A is invertible over R, ((Y)). By viewing R as a
subring of R((Y)), we can view (Aé)~! as a matrix over Ry ((Y)). By replacing
A with (4¢)71A, we may assume that (A is square and) A¢ is an identity matrix.
Thus, the diagonal entries of A are invertible in R{(Y)), and, hence, are invertible
in Rt {((Y)). By applying to A a suitable sequence of row operations consisting of
adding a left multiple of some row to another row, we may further assume that A
is diagonal. It follows that A is invertible over Ry, ((Y')), as claimed. In particular,
¥ is the set of matrices over R(Y") that are invertible over Ry, ((Y)).

Let v: R(Y) — R{Y)%~! denote the universal ring homomorphism such that the
elements of X are sent to invertible matrices by 1. We call R(Y)X ™! the universal
localization of R(Y) at X.

By the universal property, there exists a unique R(Y)-ring homomorphism

7=7(R,Y): RY)S™ — Reae (V).

It follows from [4, Proposition 7.1.3] that the image of 7 is division closed in
R, ((Y)), and, hence, 7 is surjective. O

3.2 Historical remarks. Suppose that Notation 3.1 holds.

Desmond Sheiham [22, Proposition 1.2] showed that 7(R,Y) need not be an
isomorphism, by constructing an elegant example in which the kernel of 7(R,Y)
contains a nonzero element of the form a(1 — by)~'c, with a, b, c€ Rand y € Y.

Cohn-Dicks [5, p.416] showed that if R is a division ring, then 7(R,Y) is an
isomorphism.

Cohn [3, Theorem 5] conjectured that if R is a commutative integral domain,
then 7(R,Y) is an isomorphism; Linnell [16, Problem 3.2] has recently resuscitated
this problem.

Dicks-Sontag [9, Theorem 24] showed that if R is a commutative principal ideal
domain, then 7(R,Y) is an isomorphism. We now extend this to the case where R
is a commutative Bezout domain, that is, a commutative integral domain in which
every finitely generated ideal is principal. O

3.3 Theorem. If R is a commutative Bezout domain and Y is any set, then the
map T(R,Y): R(Y)X™! — Rt ((Y)) of Notation 3.1 is an isomorphism.

Proof. Let K denote the field of fractions of R. By [6, Theorem 3.3], there exists
a homomorphism ¢ from R(Y) to a division ring U(R(Y)) such that ¢ preserves
inner ranks of matrices. In particular, ¢: R(Y) — U(R(Y)) sends the nonzero
elements of R to invertible elements. Hence, ¢ factors through the natural map
¥: R{Y) — K(Y), and, therefore, 9, also, preserves inner ranks of matrices.

Thus, the conclusion of [9, Theorem 13] holds when R is a commutative Bezout
domain. Now the proof of [9, Theorem 24] applies verbatim to show that 7(R,Y)
is an isomorphism. O

3.4 Remark. Let ¢: S — R be a surjective ring homomorphism.
Let 3 denote the set of all square matrices over S which are sent to invertible
matrices by e.
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Let ¥/ denote the class consisting of all S-linear maps between finitely generated
projective S-modules that are sent to invertible maps by €, that is, applying R. ®g —
gives an R-linear isomorphism. The proof of [20, Proposition 3.1] shows that every
element of ¥’ is also sent to an invertible map by the universal localization map
S — S¥~1 . It follows thus there is a natural S-ring identification of the universal
localizations, SX~! = S/~ 1.

Thus, it makes no difference whether we consider square matrices, matrices, or
arbitrary maps between finitely generated projective modules; the resulting univer-
sal localizations are all the same. We shall work with matrices. O

We can extend Theorem 3.3 by using the following result.

3.5 Lemma (Sheiham [23]). Let ¢: S — R be a ring homomorphism, and let X
denote the set of matrices over S that are sent to invertible matrices by ¢.

Let X be any subset of . Let X denote the set of matrices over 5251 that
are sent to invertible matrices by the induced homomorphism SEal — R. Then the
natural map SE ' — (S8g )85t is an isomorphism.

Proof. Clearly, there exist S-ring maps
S —Sy,t - St - R
Each element of ¥ is sent to an invertible matrix by the composition
S — 8%, V' SR,

and, hence, each element of X is sent to an element of 3 by the map S — SZal.
This then gives us an S-ring map SE ™' — (S%;1)%5%. We will construct its
inverse.
Now, ¥ is the set of matrices that are sent to invertible matrices by the com-
position
Sy, - Syt - R.

By [22, Lemma 3.1], every matrix over SYX~! which is sent to an invertible matrix by
the map SX~! — R is already invertible over SE.~!. Thus, X is the set of matrices
that are sent to invertible matrices by the first factor, SX; ! §%~!. By universal
properties, there exists an S-ring map (5261)22_1 — SY~1, which is easily seen to
be the inverse of the above map S¥~! — (S¥; )%, ", as desired. O

3.6 Theorem. Let R be a division ring or a commutative Bezout domain, let'Y be
a set, and let S = R(Y). Let e: S — R denote the R-ring map which sends every
element of Y to 0.

Let ¥ be any set of matrices over S that are sent to invertible matrices by €.
Let ¥ denote the set of matrices over 5251 that are sent to invertible matrices
by the induced map SEal — R. Then there exists a (unique) S-ring isomorphism
(5261)251 - Rrat<<y>>'

Proof. Let ¥ denote the set of matrices over S that are sent to invertible matrices
by €. Thus ¥ is a subset of 3.
By Lemma 3.5, there exists a (unique) S-ring isomorphism

o I ) )

If R is a division ring, resp. a commutative Bezout domain, then, by [5, p.416],
resp. Theorem 3.3, there exists a (unique) S-ring isomorphism

7(R,Y): SL71 = R (V).

Now the result follows. O
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3.7 Corollary. Let R be a division ring or a commutative Bezout domain, and let
F be a free group. Let e: RF — R denote the R-ring map that sends every element
of F to 1

Let 32 denote the set of matrices over RF that are sent to invertible matrices
by e.

Let X be a basis of F, and let X0 be a set given with a bijective map X — X0,
x — 0.

Then there exists a (unique) R{X)-ring isomorphism (RF)X~Y = R, ((X3))
where each x € X corresponds to x € (RF)S™! and to 1 + 20 € Rya ((X9)).

Proof. Let S = R(X0), let ¥g = X = {20+ 1 | 20 € X0}, and let ¥y = X. Now
SYyt = (R(X0),! = R(X)X~! = RF. Applying Theorem 3.6, we obtain the
desired result. O

3.8 Remarks. (i). By the Magnus-Fox embedding theorem 2.11, RF itself em-
beds in Ry, ((X0)), although this information is not used in the above proof of
Corollary 3.7.

(iii). The case of Corollary 3.7 where R is a commutative principal ideal domain
was obtained by Farber-Vogel [10, Theorem 5.1]; notice their result is equivalent
to [9, Theorem 24], by Sheiham’s Lemma 3.5. O

3.9 Open Questions. Let R be a commutative Bezout domain, let F' be a free
group, and let Y be a set. By [6, Theorem 3.3], R(Y) is a Sylvester domain. This
suggests the following questions.

(1). Is RF a Sylvester domain?
(2). Is Rpat{{Y)) a Sylvester domain?
(3). Is R{(Y")) a Sylvester domain?

Even for R a commutative principal ideal domain, we do not know the answers to
any of these questions. O

3.10 Digression. Although the referee of [10] did not draw the authors’ attention
to [5], [11], [9], or [6], said referee did mention a deep result of Jacques Lewin,
see [10, Remark 5.4], and it is worth elaborating on this.

Let R be a division ring.

(i). Let G be an ordered group, and let R{(G)) denote the Mal’cev-Neumann
power-series ring of G, consisting of all functions G — R with well-ordered support,
where the functions are written, multiplied and added as formal sums over the
elements of G.

Both A. I. Mal’cev and B. H. Neumann showed that R((G)) is a division ring;
see, for example, [8, Corollary 2.2].

Let Ryat{{G)) denote the division closure of the group ring RG in R{(G)); thus,
R0t ((G)) is an RG-division ring.

F. W. Levi [14, p.201] showed that G is locally indicable. Tan Hughes [13, top
of page 183] showed that the isomorphism class of the RG-ring R, ((G)) does not
depend on the ordering of GG; the main part of Hughes’ argument has been recast
in [7].

(ii) Let F be a free group. Let e: RF — R denote the usual augmentation map.

As we saw in Remarks 2.12; the free group F can be ordered. By (i), there exists
an RF-division ring Ry, ((F')), unique up to RF-ring isomorphism.

P. M. Cohn showed that RF is a semifir, and, hence, that there exists a universal
RF-division ring, U(RF'), and that U(RF) has the form (RF)®~!, where ® denotes
the set of all full square matrices over RF'; see [4].
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Jacques Lewin [15, Theorem 2] used results of Cohn and Hughes to show that
U(RF) and R, ((F)) are isomorphic as RF-rings.

Let ¥ denote the set of matrices over RF that are sent to invertible matrices
by e. By [9, Proposition 4] with (R,%,S,T) = (RF,X, RF, RF®~!), the natural
map

(RF)L™! — (RF)® !
is injective.

Let X be a basis of F'. By the foregoing, together with Corollary 3.7, there exists
a (unique) R(X)-ring embedding of R,,{(X9)) in Ryat((F)), where it is understood
that each x € X is mapped to 1 + 20 € Ry ((X0)) and to & € Ry ((F)). O

4 Stable flatness

In this section we apply Corollary 3.7 to obtain new examples of stable flatness.

4.1 Definition. Let R — S be an arbitrary ring homomorphism, that is, S has the
structure of an R-ring. We say that S is a stably flat R-ring, if, for each positive
integer n, Torf (Sr, rS) = 0. This extends the usage, introduced by Neeman and
Ranicki [19, Theorem 0.7], from universal localizations to arbitrary ring homomor-
phisms.

Obviously S is stably flat as an R-ring whenever R is a von Neumann regular
ring, or, more generally, whenever S is flat as a left or a right R-module. O

4.2 Lemma. Let R be a ring, let F be a free group, and let ¥ be a set of
RF-linear maps whose domains and codomains are finitely generated projective left
RF-modules.

If (RF)X71 is stably flat as an R-ring, then (RF)X "1 is also stably flat as an
RF-ring.

In particular, if R is a von Neumann regular ring, or, more generally, if
(RF)X~1 is flat as a left R-module, then (RF)X™! is stably flat as an RF-ring.

Proof. Let S = (RF)X~! and let n be a positive integer. Recall that we want to
show that TorZ*' (S, S) = 0.

Bergman and Dicks [2, (95)] showed that Tori¥' (S, S) = 0; a simpler proof was
given by Dicks, Dlab, Ringel, and Schofield [21, pp. 57-58].

Thus it remains to show that Torffl(S, S) =0.

Let X be a basis of the free group F'.

There exists an exact sequence of R({X)-bimodules of the form

0 — o (RX)orR(X) — R(X)erR(X) L OR(X) - 0

see, for example, [2, (17)].
There exists an exact sequence of RF-bimodules of the form

0 - & (RF®yRF) — RF@rRF 2% RFr — o

zeX

see, for example, [2, (4)].
There exists an exact sequence of left RF-modules of the form

0 — @X(RF@)RS) — RF®rS — S — 0
faS]

see, for example, [2, (62)].
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The long exact sequence resulting from applying Torf“F (S, —) to this short exact
sequence contains

(4.2.1) Tor®F (S,RF®rS) — Torff (S,S) — TorfF (s, @XRF®RS).
T€

Now RF is free, and, hence, flat, as a right R-module; thus any flat, left R-resolution
of S lifts to a flat, left RF-resolution of RF ®@p S. It follows that (4.2.1) can be
rewritten as

Tor§+1(S,S) — Torffl(S,S) — @XTorf(S,S).
xE

By hypothesis, S is a stably flat R-ring, and, hence, Torf(S, S) = TorffH(S, S) =0.
Thus, Torf (S, S) = 0, as desired. O

4.3 Review. In the proof of the next result, we shall use the well-known fact that
if R is a commutative Bezout domain, and M is a torsion-free R-module, then M
is a flat R-module. This fact can be proved as follows.

It suffices to show that, for each finitely generated ideal I of R, the multiplication
map I ® g M — M is injective. Here I = aR for some a € R, and we may assume
that a is nonzero. Thus Igr ~ Rg, and I ® g M ~ M, and the map [ g M — M is
equivalent to the map M — M given by multiplying by a. Since M is torsion-free,
the latter map is injective. O

4.4 Theorem. Let R be a ring, let F be a free group, let e: RF — R be the R-ring
map which sends each element of F to 1, and let X denote the set of matrices over
RF that are sent to invertible matrices by e.

If R is a von Neumann regular ring or a commutative Bezout domain, then
(REYXL™! is stably flat as an RF-ring.

Proof. If R is a von Neumann regular ring, then (RF)Y~! is stably flat as an
RF-ring, by Lemma 4.2.

Now, let R be a commutative Bezout domain. Let X be a basis of F. By
Corollary 3.7, there exists an isomorphism of R(X)-rings (RF)S™! = R, ((X9)),
and, as an R-module, R,,+({Xd)) is obviously torsion-free. Thus, as an R-module,
(RF)X~! is torsion-free. Hence, by Review 4.3, (RF)X ! is flat as left R-module.
By Lemma 4.2, (RF)YX ! is a stably flat RF-ring. O
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