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Abstract

Let R be a ring, let F be a free group, and let X be a basis of F .
Let ε : RF → R denote the usual augmentation map for the group ring RF ,

let X∂ := {x − 1 | x ∈ X} ⊆ RF , let Σ denote the set of matrices over RF
that are sent to invertible matrices by ε, and let (RF )Σ−1 denote the universal
localization of RF at Σ.

A classic result of Magnus and Fox gives an embedding of RF in the
power-series ring R〈〈X∂〉〉. We show that if R is a commutative Bezout do-
main, then the division closure of the image of RF in R〈〈X∂〉〉 is a universal
localization of RF at Σ.

We also show that if R is a von Neumann regular ring or a commutative
Bezout domain, then (RF )Σ−1 is stably flat as an RF -ring, in the sense of
Neeman-Ranicki.
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1 Outline

Throughout, let R be a ring (associative, with 1). Except where otherwise speci-
fied, we will work with left modules, and linear maps between left modules will be
written on the right of their arguments. We denote by N the set of finite cardinals,
{0, 1, 2, 3, . . .}.

Let Σ be a set (or even a class) of R-linear maps between finitely generated
projective R-modules. It is well-known that the universal localization of R at Σ,
denoted RΣ−1, need not be flat as a right or left R-module, in general. A much
less demanding condition is stable flatness of RΣ−1 as an R-ring, meaning that,
for each positive integer n, TorR

n (RΣ−1, RΣ−1) = 0. In the case where all the
elements of Σ are injective and RΣ−1 is stably flat as an R-ring, Neeman and
Ranicki [18, Theorem 0.11], [19] showed that Schofield’s K-theory exact sequence
for universal localization [21, Theorem 4.12] can be extended to a long exact se-
quence involving the K-groups of R, of RΣ−1, and of the exact category H(R, Σ)
of projective-dimension-at-most-one Σ-torsion R-modules.

For the remainder of this section, let us fix the following notation. Let X be a
set, let F denote the free group on X, let RF denote the corresponding group ring,
and let ε : RF → R denote the R-ring map which sends every element of F to 1.
Let Σ denote the set of matrices over RF that are sent to invertible matrices by ε.
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Ranicki and Sheiham [20, Theorem 5(ii), Section 0] used the above-mentioned
results of [18], [19] to provide a description of the K-theory of (RF )Σ−1, in the case
where F is finitely generated and (RF )Σ−1 is stably flat as an RF -ring. In Section 4
below, we show that if R is a von Neumann regular ring or a commutative Bezout
domain, then (RF )Σ−1 is stably flat as an RF -ring, and, therefore, the results of
Ranicki-Sheiham [20] apply in these cases.

Let X∂ = {x − 1 | x ∈ X}, and let R〈〈X∂〉〉 denote the corresponding
power-series ring; thus R〈〈X∂〉〉 can be viewed as the (X∂)-adic completion of the
free R-ring R〈X∂〉, R〈〈X∂〉〉 = lim

←−
n∈N

R〈X∂〉/((X∂)n).

In Section 2, we review, in ideal-theoretic language, the Magnus-Fox embedding
of RF in R〈〈X∂〉〉; we felt that there seemed to be some confusion in the literature
about what had been proved by the arguments of Magnus [17] and Fox [11], and that
a brief survey might be useful. The Magnus-Fox embedding was the earliest example
of a non-commutative universal localization being embedded in a power-series ring.

In Section 3, we show that if R is a commutative Bezout domain, then the
division closure of the image of RF in R〈〈X∂〉〉 is a universal localization of RF at Σ.
For R a commutative principal ideal domain, this was proved by Dicks-Sontag [9,
Theorem 24], and, independently, by Farber-Vogel [10, Theorem 5.1]. The assertion
also holds if R is a division ring; see [5, p.416].

2 Group rings of free-groups and series

In this section, we recall, in detail, the proof of the Magnus-Fox embedding theo-
rem [17, 11] which shows that, in the notation of Section 1, the universal localization
of R〈X〉 at X is embedded in R〈〈X∂〉〉. Of course, R〈X〉 = R〈X∂〉 and the universal
localization of R〈X〉 at X is the group ring R〈X〉X−1 = RF .

2.1 Notation. Let A be a ring and let M be a free left A-module.
We let M∗ denote the right A-module M∗ = HomA(AM, AA).
If (bx | x ∈ X) is a left A-basis of M , we shall let (b∗x | x ∈ X) denote its dual;

thus, for each x ∈ X, b∗x ∈ M∗, and, for each m ∈ M , m =
∑

x∈X

(m)b∗x · bx, and this

sum is finite.

We begin by recalling the following standard result about multiplying free ideals.

2.2 Lemma. Let A be a ring.
Let I be a two-sided ideal of A such that I is free as a left A-module, let

(bx | x ∈ X) be a left A-basis of I, and let (b∗x | x ∈ X) denote its dual.
Let J be a left ideal of A such that J is free as a left A-module, let (cy | y ∈ Y )

be a left A-basis of J , and let (c∗y | y ∈ Y ) denote its dual.
Then IJ is a left ideal of A which is free as a left A-module, and

(bxcy | (x, y) ∈ X × Y )

is a left A-basis of IJ ; its dual ((bxcy)∗ | (x, y) ∈ X × Y ) is given by (d)(bxcy)∗ =
((d)c∗y)b∗x for all d ∈ IJ .

Proof. We have an isomorphism

(2.2.1) J ∼−→ ⊕
y∈Y

A, c 7→ ((c)c∗y | y ∈ Y ).

Since I is a right ideal of A, left multiplying (2.2.1) by I gives an additive isomor-
phism

IJ ∼−→ ⊕
y∈Y

I, d 7→ ((d)c∗y | y ∈ Y ).
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Now the result follows easily.

The Magnus-Fox embedding is based on the following general fact.

2.3 Lemma. Let R be a ring, let A be an augmented R-ring, and let I denote
the augmentation ideal of A. Suppose that Y is an R-centralizing left A-basis of I.
Then there exists a (unique) R〈Y 〉-ring embedding A/(

⋂
n≥0

In) → R〈〈Y 〉〉.

Proof. Let Â denote the I-adic completion of A, that is, Â = lim
←−
n∈N

A/In. We will

show that the natural map R〈Y 〉 → A induces an isomorphism R〈〈Y 〉〉 ∼−→ Â.
Suppose n ∈ N. Using induction and Lemma 2.2, one can show that Y ×n indexes

a left A-basis of In, namely Y n. Now,

In/In+1 ' (A/I)⊗A (In) ' R⊗A (
⊕

w∈Y ×n

A) ' ⊕
w∈Y ×n

R.

Thus Y ×n indexes a left R-basis of In/In+1, namely the image of Y n. In particular,
there exists an R-linear splitting A/In+1 ' (A/In)⊕ (In/In+1).

Using induction, one can then show that the disjoint union
n−1∨
i=0

(Y ×i) indexes a

left R-basis of A/In, namely
n−1⋃
i=0

(Y i). This means that the induced map

R〈Y 〉/((Y )n) → A/In

is an isomorphism. On taking inverse limits, we get an induced isomorphism

lim
←−
n∈N

R〈Y 〉/((Y )n) ∼−→ lim
←−
n∈N

A/In,

that is, R〈〈Y 〉〉 ∼−→ Â.
Now the natural embedding A/(

⋂
n≥0

In) → Â gives the desired result.

We use the following, throughout the remainder of this section.

2.4 Notation. Let R be a ring, let X be a set, let F be the free group on X, let RF
denote the group ring of F with coefficients in R, and let I denote the augmentation
ideal of RF .

Let ε : RF → RF,
∑

w∈F rww 7→ ∑
w∈F rw, be the augmentation map viewed

as an endomorphism. Then ε is an idempotent ring endomorphism of RF , im ε = R,
and ker ε = I.

Let ∂ : RF → RF denote id−ε, the idempotent R-linear endomorphism comple-
mentary to ε. Thus (

∑
w∈F rww)∂ =

∑
w∈F rw(w − 1) =

∑
w∈F rw · w∂, im ∂ = I,

and ker ∂ = R. For each w ∈ F , w̄∂ = −w̄ · w∂, where w̄ denotes w−1.
Let Z denote the centre of R, and view ZF as a subring of RF .

2.5 Definition. Suppose that Notation 2.4 applies.
A left R-linear map d : RF → RF satisfying

(2.5.1) (fg)d = (fd · gε) + (f · gd) for all f, g ∈ RF

is called a left derivation for RF .
In this event, d restricts to a left RF -linear map I → RF .
Notice that the endomorphism ∂ is a left derivation for RF .
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We will now see that a left derivation for RF is uniquely determined by its values
on X, and these can be arbitrary in ZF .

2.6 Lemma. With Notation 2.4, each map of sets X → ZF extends uniquely to a
left derivation for RF .

Proof. Let d : X → ZF , x 7→ xd, be a map of sets. Let M2(RF ) denote the ring
of 2 × 2 matrices over RF . By universal properties, there exists a unique ring

homomorphism φ : RF → M2(RF ) which sends each x ∈ X to
(

1 0
xd x

)
, and sends

each r ∈ R to
(

r 0
0 r

)
; moreover, φ can be naturally expressed in the form

(
ε 0
d id

)
: RF → M2(RF ), f 7→

(
fε 0
fd f

)
.

The (2, 2)-component, id, is the identity map on RF ; the (1, 2)-component, 0, sends
every element of RF to 0; and the (1, 1)-component, ε, is the augmentation map.
The (2, 1)-component, d : RF → RF , is the unique left R-linear map that extends
the given map d : X → ZF and satisfies (2.5.1).

2.7 Definitions. Suppose that Notation 2.4 applies.
Consider any x ∈ X.
By Lemma 2.6, the map

δx,− : X → RF, y 7→ δx,y :=

{
1 if y = x,
0 if y 6= x,

extends to a unique left derivation for RF ; it is denoted ∂
x∂ : RF → RF , and called

the left Fox derivative with respect to x.
Now X := {x̄ | x ∈ X} is also a basis for F , and the left Fox derivative with

respect to x̄ is ∂
x̄∂ := − ∂

x∂ x; it is the left derivation for RF which sends y to −δx,yx,
and ȳ to δx,y, for each y ∈ X.

We now show that restricting ( ∂
x∂ | x ∈ X) gives a dual of a basis.

2.8 Lemma. With Notation 2.4, I is free as left RF -module, both X∂ and X∂ are
R-centralizing left RF -bases of I, and, for each f ∈ I,

f =
∑

x∈X

f∂
x∂ · x∂ =

∑
x∈X

f∂
x̄∂ · x̄∂.

Proof. Both (−)∂ and
∑

x∈X

(−)∂
x∂ · x∂ are left derivations for RF , and they agree

on X; hence they are equal. Thus f = f∂ =
∑

x∈X

f∂
x∂ · x∂.

Now, if (fx | x ∈ X) is some element of
⊕

x∈X

RF such that
∑

x∈X

fx · x∂ = 0, then,

for each y ∈ X,

0 = (
∑

x∈X

fx · x∂) ∂
y∂ =

∑
x∈X

fx · (x∂) ∂
y∂ =

∑
x∈X

fx · δy,x = fy.

The same arguments apply with X in place of X.

We will next show that
⋂

n∈N
In = {0}, by considering word lengths.
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2.9 Definitions. Suppose that Notation 2.4 applies.
Let X±1 denote X ∪X−1.
Consider any d ∈ N, and any p = (xη1

1 , . . . , xηd

d ) ∈ (X±1)×d. We say that p has
length d and ends with xηd

d . We say that p is reduced if, for each i ∈ {1, . . . , d− 1},
(xi+1, ηi+1) 6= (xi,−ηi). We say that p is an expression for the element xη1

1 · · ·xηd

d

of F .
By using left Fox derivatives in ZF , one can show that the empty product is the

only reduced expression for the identity element.
Consider any w ∈ F . By the foregoing, there exists a unique reduced expression

p for w. We define the X-length of w, deg(w), to be the length of p. We say that
w ends with xη if p ends with xη.

Consider any f =
∑

w∈F

rww ∈ RF . We define the support of f and the degree of

f to be, respectively,

supp(f) := {w ∈ F | rw 6= 0} and deg(f) := max{deg(w) | w ∈ supp(f)},
with the convention that deg(0) = −∞. The dominant component of f is

dom(f) :=
∑

{w∈F |deg(w)=deg(f)}
rww.

2.10 Lemma. Suppose that Notation 2.4 holds. Suppose further that x, y ∈ X,
η ∈ {1,−1} and f ∈ RF − {0}. Then the following hold.

(i). deg( f∂
xη∂ ) ≤ deg(f).

(ii). If deg( f∂
xη∂ ) = deg(f), then some element of supp(dom(f)) ends with x̄η, and

all elements of supp(dom( f∂
xη∂ )) end with x̄η.

(iii). deg( f∂2

x∂·ȳ∂ ) < deg(f), where f∂2

x∂·ȳ∂ denotes ( f∂
x∂ ) ∂

ȳ∂

(iv). For each n ∈ N, if f ∈ I2n − {0} then deg(f) ≥ n.

Proof. (i)–(iii). Let w be an element of F , and let (xη1
1 , . . . , xηd

d ) be its unique
reduced expression. Then

w∂
xη∂ =

d∑
i=1

xη1
1 · · ·xηi−1

i−1 · x
ηi
i ∂

xη∂

=
∑

{i|1≤i≤d, (xi,ηi)=(x,η)}
xη1

1 · · ·xηi−1
i−1 − ∑

{i|1≤i≤d, (xi,ηi)=(x,−η)}
xη1

1 · · ·xηi−1
i−1 xηi

i .

It is now straightforward to prove (i) and (ii), and then (iii) follows easily.
(iv). We proceed by induction on n. Clearly the implication in (iv) holds for

n = 0. Now suppose that, for some n ≥ 1, the implication in (iv) holds with n− 1
in place of n.

By Lemmas 2.8 and 2.2, we have a left RF -linear isomorphism

I2 ∼−→ ⊕
(x,y)∈X2

RF, f 7→ ( f∂2

x∂·ȳ∂ | (x, y) ∈ X ×X).

On left multiplying by I2n−2, we obtain a left RF -linear isomorphism

I2n ∼−→ ⊕
(x,y)∈X2

I2n−2, f 7→ ( f∂2

x∂·ȳ∂ | (x, y) ∈ X ×X).

Now suppose that f ∈ I2n − {0}. Then there exists (x, y) ∈ X × X such that
f∂2

x∂·ȳ∂ ∈ I2n−2 − {0}. By the induction hypothesis, deg( f∂2

x∂·ȳ∂ ) ≥ n − 1. By (iii),
deg(f) ≥ n. This proves (iv).
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2.11 The Magnus-Fox embedding theorem. Let R be a ring, let X be a set,
let F be the free group on X, let X∂ be a set given with a bijective map X → X∂,
x 7→ x∂, and let φ = φ(R, X) : RF −→ R〈〈X∂〉〉 be the unique R-ring map such that,
for each x ∈ X, xφ = 1 + x∂ and, hence,

x̄φ = (1 + x∂)−1 = 1− ∂x + (∂x)2 − (∂x)3 + · · · .

Then φ is injective.

Proof. Suppose that Notation 2.4 holds. It is clear from Lemma 2.10(iv) that⋂
n≥0

In = {0}. Now the result follows from Lemmas 2.8 and 2.3.

2.12 Historical remarks. In 1935, Wilhelm Magnus [17, Satz I] proved that
φ(Z, X) embeds F in the group of units of Z〈〈∂X〉〉.

This embedding has many important applications. For example, F can then be
ordered, since it is easy to order the group of those units of Z〈〈∂X〉〉 which have
constant term 1; see, for example, the first paragraph of [1].

Luis Paris has pointed out to us that, for any prime integer p, a natural analogue
of Magnus’s argument shows that φ(Zp, X) embeds F in the group of units of
Zp〈〈X∂〉〉, where Zp = Z/pZ. It then follows that if R is any nonzero ring, then
φ(R,X) embeds F in the group of units of R〈〈X∂〉〉.

In 1953, Ralph H. Fox [11, Theorem 4.3] proved that φ(Z, X) is injective. In
this section, we have verified the well-known fact that Fox’s argument works with
any ring in place of Z. This was noted, for example, by Sheiham [24, Lemma 2.6].

2.13 Remarks. Suppose that Notation 2.4 holds, and let R = Z.
Let M be any Z-module. Let MF denote the induced left ZF -module ZF ⊗ZM .
It is straightforward to translate the arguments of this section from RF to MF

and deduce that
⋂

n≥0

(InMF ) = {0}; the translation amounts to applying −⊗R M

to the maps in the proof of Lemma 2.10.
As in the work of Brian Hartley [12], it then follows easily that the wreath

product

F oM = MF o F =
(

1 0
MF F

)

is residually nilpotent.

3 Rational series and universal localizations

In this section, we will consider the following situation.

3.1 Notation. Let R be a ring, and let Y be a set. We shall think of the elements
of Y as R-centralizing indeterminates.

Let R〈Y 〉 be the free R-ring on the R-centralizing set Y . Let ε : R〈Y 〉 → R be
the R-ring map which sends every element of Y to 0. Let I denote the kernel of ε.

Let R〈〈Y 〉〉 denote the power-series R-ring on the R-centralizing set Y . We
think of R〈〈Y 〉〉 as the I-adic completion of R〈Y 〉, R〈〈Y 〉〉 = lim

←−
n∈N

R〈Y 〉/In. It is not

difficult to show that the I-adic completion map R〈Y 〉 → R〈〈Y 〉〉 is injective; we
shall view R〈Y 〉 as a subring of R〈〈Y 〉〉.

Let Rrat〈〈Y 〉〉 denote the division closure of R〈Y 〉 in R〈〈Y 〉〉, that is, Rrat〈〈Y 〉〉
is the smallest subring of R〈〈Y 〉〉 which contains R〈Y 〉 and is closed under taking
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inverses of elements that are invertible in R〈〈Y 〉〉. The elements of Rrat〈〈Y 〉〉 are
called rational power series.

A matrix A over R〈Y 〉 is said to be sent to an invertible matrix by ε if Aε, the
coordinate-wise image of A under ε, is invertible over R. Let Σ denote the set of
matrices over R〈Y 〉 that are sent to invertible matrices by ε. Then Σ is also the set
of matrices over R〈Y 〉 that are invertible over R〈〈Y 〉〉.

Suppose that A is a matrix over Rrat〈〈Y 〉〉 that is sent to an invertible matrix by
the induced augmentation map ε̂ : R〈〈Y 〉〉 → R. It is easy to see that A is invertible
over R〈〈Y 〉〉, and we claim that A is invertible over Rrat〈〈Y 〉〉. By viewing R as a
subring of R〈〈Y 〉〉, we can view (Aε̂)−1 as a matrix over Rrat〈〈Y 〉〉. By replacing
A with (Aε̂)−1A, we may assume that (A is square and) Aε̂ is an identity matrix.
Thus, the diagonal entries of A are invertible in R〈〈Y 〉〉, and, hence, are invertible
in Rrat〈〈Y 〉〉. By applying to A a suitable sequence of row operations consisting of
adding a left multiple of some row to another row, we may further assume that A
is diagonal. It follows that A is invertible over Rrat〈〈Y 〉〉, as claimed. In particular,
Σ is the set of matrices over R〈Y 〉 that are invertible over Rrat〈〈Y 〉〉.

Let ψ : R〈Y 〉 → R〈Y 〉Σ−1 denote the universal ring homomorphism such that the
elements of Σ are sent to invertible matrices by ψ. We call R〈Y 〉Σ−1 the universal
localization of R〈Y 〉 at Σ.

By the universal property, there exists a unique R〈Y 〉-ring homomorphism

τ = τ(R, Y ) : R〈Y 〉Σ−1 → Rrat〈〈Y 〉〉.

It follows from [4, Proposition 7.1.3] that the image of τ is division closed in
Rrat〈〈Y 〉〉, and, hence, τ is surjective.

3.2 Historical remarks. Suppose that Notation 3.1 holds.
Desmond Sheiham [22, Proposition 1.2] showed that τ(R, Y ) need not be an

isomorphism, by constructing an elegant example in which the kernel of τ(R, Y )
contains a nonzero element of the form a(1− by)−1c, with a, b, c ∈ R and y ∈ Y .

Cohn-Dicks [5, p.416] showed that if R is a division ring, then τ(R, Y ) is an
isomorphism.

Cohn [3, Theorem 5] conjectured that if R is a commutative integral domain,
then τ(R, Y ) is an isomorphism; Linnell [16, Problem 3.2] has recently resuscitated
this problem.

Dicks-Sontag [9, Theorem 24] showed that if R is a commutative principal ideal
domain, then τ(R, Y ) is an isomorphism. We now extend this to the case where R
is a commutative Bezout domain, that is, a commutative integral domain in which
every finitely generated ideal is principal.

3.3 Theorem. If R is a commutative Bezout domain and Y is any set, then the
map τ(R, Y ) : R〈Y 〉Σ−1 → Rrat〈〈Y 〉〉 of Notation 3.1 is an isomorphism.

Proof. Let K denote the field of fractions of R. By [6, Theorem 3.3], there exists
a homomorphism φ from R〈Y 〉 to a division ring U(R〈Y 〉) such that φ preserves
inner ranks of matrices. In particular, φ : R〈Y 〉 → U(R〈Y 〉) sends the nonzero
elements of R to invertible elements. Hence, φ factors through the natural map
ψ : R〈Y 〉 → K〈Y 〉, and, therefore, ψ, also, preserves inner ranks of matrices.

Thus, the conclusion of [9, Theorem 13] holds when R is a commutative Bezout
domain. Now the proof of [9, Theorem 24] applies verbatim to show that τ(R, Y )
is an isomorphism.

3.4 Remark. Let ε : S ³ R be a surjective ring homomorphism.
Let Σ denote the set of all square matrices over S which are sent to invertible

matrices by ε.
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Let Σ′ denote the class consisting of all S-linear maps between finitely generated
projective S-modules that are sent to invertible maps by ε, that is, applying Rε⊗S−
gives an R-linear isomorphism. The proof of [20, Proposition 3.1] shows that every
element of Σ′ is also sent to an invertible map by the universal localization map
S → SΣ−1 . It follows thus there is a natural S-ring identification of the universal
localizations, SΣ−1 = SΣ′−1.

Thus, it makes no difference whether we consider square matrices, matrices, or
arbitrary maps between finitely generated projective modules; the resulting univer-
sal localizations are all the same. We shall work with matrices.

We can extend Theorem 3.3 by using the following result.

3.5 Lemma (Sheiham [23]). Let φ : S → R be a ring homomorphism, and let Σ
denote the set of matrices over S that are sent to invertible matrices by φ.

Let Σ0 be any subset of Σ. Let Σ2 denote the set of matrices over SΣ−1
0 that

are sent to invertible matrices by the induced homomorphism SΣ−1
0 → R. Then the

natural map SΣ−1 → (SΣ−1
0 )Σ−1

2 is an isomorphism.

Proof. Clearly, there exist S-ring maps

S → SΣ−1
0 → SΣ−1 → R.

Each element of Σ is sent to an invertible matrix by the composition

S → SΣ−1
0 → R,

and, hence, each element of Σ is sent to an element of Σ2 by the map S → SΣ−1
0 .

This then gives us an S-ring map SΣ−1 → (SΣ−1
0 )Σ−1

2 . We will construct its
inverse.

Now, Σ2 is the set of matrices that are sent to invertible matrices by the com-
position

SΣ−1
0 → SΣ−1 → R.

By [22, Lemma 3.1], every matrix over SΣ−1 which is sent to an invertible matrix by
the map SΣ−1 → R is already invertible over SΣ−1. Thus, Σ2 is the set of matrices
that are sent to invertible matrices by the first factor, SΣ−1

0 → SΣ−1. By universal
properties, there exists an S-ring map (SΣ−1

0 )Σ−1
2 → SΣ−1, which is easily seen to

be the inverse of the above map SΣ−1 → (SΣ−1
0 )Σ−1

2 , as desired.

3.6 Theorem. Let R be a division ring or a commutative Bezout domain, let Y be
a set, and let S = R〈Y 〉. Let ε : S → R denote the R-ring map which sends every
element of Y to 0.

Let Σ0 be any set of matrices over S that are sent to invertible matrices by ε.
Let Σ2 denote the set of matrices over SΣ−1

0 that are sent to invertible matrices
by the induced map SΣ−1

0 → R. Then there exists a (unique) S-ring isomorphism
(SΣ−1

0 )Σ−1
2

∼−→ Rrat〈〈Y 〉〉.
Proof. Let Σ denote the set of matrices over S that are sent to invertible matrices
by ε. Thus Σ0 is a subset of Σ.

By Lemma 3.5, there exists a (unique) S-ring isomorphism

SΣ−1 ∼−→ (SΣ−1
0 )Σ−1

2 .

If R is a division ring, resp. a commutative Bezout domain, then, by [5, p.416],
resp. Theorem 3.3, there exists a (unique) S-ring isomorphism

τ(R, Y ) : SΣ−1 ∼−→ Rrat〈〈Y 〉〉.
Now the result follows.
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3.7 Corollary. Let R be a division ring or a commutative Bezout domain, and let
F be a free group. Let ε : RF → R denote the R-ring map that sends every element
of F to 1

Let Σ denote the set of matrices over RF that are sent to invertible matrices
by ε.

Let X be a basis of F , and let X∂ be a set given with a bijective map X → X∂,
x 7→ x∂.

Then there exists a (unique) R〈X〉-ring isomorphism (RF )Σ−1 ∼−→ Rrat〈〈X∂〉〉
where each x ∈ X corresponds to x ∈ (RF )Σ−1 and to 1 + x∂ ∈ Rrat〈〈X∂〉〉.
Proof. Let S = R〈X∂〉, let Σ0 = X = {x∂ + 1 | x∂ ∈ X∂}, and let Σ2 = Σ. Now
SΣ−1

0 = (R〈X∂〉)Σ−1
0 = R〈X〉X−1 = RF . Applying Theorem 3.6, we obtain the

desired result.

3.8 Remarks. (i). By the Magnus-Fox embedding theorem 2.11, RF itself em-
beds in Rrat〈〈X∂〉〉, although this information is not used in the above proof of
Corollary 3.7.

(iii). The case of Corollary 3.7 where R is a commutative principal ideal domain
was obtained by Farber-Vogel [10, Theorem 5.1]; notice their result is equivalent
to [9, Theorem 24], by Sheiham’s Lemma 3.5.

3.9 Open Questions. Let R be a commutative Bezout domain, let F be a free
group, and let Y be a set. By [6, Theorem 3.3], R〈Y 〉 is a Sylvester domain. This
suggests the following questions.
(1). Is RF a Sylvester domain?
(2). Is Rrat〈〈Y 〉〉 a Sylvester domain?
(3). Is R〈〈Y 〉〉 a Sylvester domain?

Even for R a commutative principal ideal domain, we do not know the answers to
any of these questions.

3.10 Digression. Although the referee of [10] did not draw the authors’ attention
to [5], [11], [9], or [6], said referee did mention a deep result of Jacques Lewin,
see [10, Remark 5.4], and it is worth elaborating on this.

Let R be a division ring.
(i). Let G be an ordered group, and let R〈〈G〉〉 denote the Mal’cev-Neumann

power-series ring of G, consisting of all functions G → R with well-ordered support,
where the functions are written, multiplied and added as formal sums over the
elements of G.

Both A. I. Mal’cev and B. H. Neumann showed that R〈〈G〉〉 is a division ring;
see, for example, [8, Corollary 2.2].

Let Rrat〈〈G〉〉 denote the division closure of the group ring RG in R〈〈G〉〉; thus,
Rrat〈〈G〉〉 is an RG-division ring.

F. W. Levi [14, p.201] showed that G is locally indicable. Ian Hughes [13, top
of page 183] showed that the isomorphism class of the RG-ring Rrat〈〈G〉〉 does not
depend on the ordering of G; the main part of Hughes’ argument has been recast
in [7].

(ii) Let F be a free group. Let ε : RF → R denote the usual augmentation map.
As we saw in Remarks 2.12, the free group F can be ordered. By (i), there exists

an RF -division ring Rrat〈〈F 〉〉, unique up to RF -ring isomorphism.
P. M. Cohn showed that RF is a semifir, and, hence, that there exists a universal

RF -division ring, U(RF ), and that U(RF ) has the form (RF )Φ−1, where Φ denotes
the set of all full square matrices over RF ; see [4].
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Jacques Lewin [15, Theorem 2] used results of Cohn and Hughes to show that
U(RF ) and Rrat〈〈F 〉〉 are isomorphic as RF -rings.

Let Σ denote the set of matrices over RF that are sent to invertible matrices
by ε. By [9, Proposition 4] with (R, Σ, S, T ) = (RF, Σ, RF,RFΦ−1), the natural
map

(RF )Σ−1 → (RF )Φ−1

is injective.
Let X be a basis of F . By the foregoing, together with Corollary 3.7, there exists

a (unique) R〈X〉-ring embedding of Rrat〈〈X∂〉〉 in Rrat〈〈F 〉〉, where it is understood
that each x ∈ X is mapped to 1 + x∂ ∈ Rrat〈〈X∂〉〉 and to x ∈ Rrat〈〈F 〉〉.

4 Stable flatness

In this section we apply Corollary 3.7 to obtain new examples of stable flatness.

4.1 Definition. Let R → S be an arbitrary ring homomorphism, that is, S has the
structure of an R-ring. We say that S is a stably flat R-ring, if, for each positive
integer n, TorR

n (SR, RS) = 0. This extends the usage, introduced by Neeman and
Ranicki [19, Theorem 0.7], from universal localizations to arbitrary ring homomor-
phisms.

Obviously S is stably flat as an R-ring whenever R is a von Neumann regular
ring, or, more generally, whenever S is flat as a left or a right R-module.

4.2 Lemma. Let R be a ring, let F be a free group, and let Σ be a set of
RF -linear maps whose domains and codomains are finitely generated projective left
RF -modules.

If (RF )Σ−1 is stably flat as an R-ring, then (RF )Σ−1 is also stably flat as an
RF -ring.

In particular, if R is a von Neumann regular ring, or, more generally, if
(RF )Σ−1 is flat as a left R-module, then (RF )Σ−1 is stably flat as an RF -ring.

Proof. Let S = (RF )Σ−1 and let n be a positive integer. Recall that we want to
show that TorRF

n (S, S) = 0.
Bergman and Dicks [2, (95)] showed that TorRF

1 (S, S) = 0; a simpler proof was
given by Dicks, Dlab, Ringel, and Schofield [21, pp. 57–58].

Thus it remains to show that TorRF
n+1(S, S) = 0.

Let X be a basis of the free group F .
There exists an exact sequence of R〈X〉-bimodules of the form

0 → ⊕
x∈X

(R〈X〉 ⊗R R〈X〉) → R〈X〉 ⊗R R〈X〉 mult−−−→ R〈X〉 → 0;

see, for example, [2, (17)].
There exists an exact sequence of RF -bimodules of the form

0 → ⊕
x∈X

(RF ⊗R RF ) → RF ⊗R RF
mult−−−→ RF → 0;

see, for example, [2, (4)].
There exists an exact sequence of left RF -modules of the form

0 → ⊕
x∈X

(RF ⊗R S) → RF ⊗R S → S → 0;

see, for example, [2, (62)].
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The long exact sequence resulting from applying TorRF
∗ (S,−) to this short exact

sequence contains

(4.2.1) TorRF
n+1(S,RF ⊗R S) → TorRF

n+1(S, S) → TorRF
n (S, ⊕

x∈X
RF ⊗R S).

Now RF is free, and, hence, flat, as a right R-module; thus any flat, left R-resolution
of S lifts to a flat, left RF -resolution of RF ⊗R S. It follows that (4.2.1) can be
rewritten as

TorR
n+1(S, S) → TorRF

n+1(S, S) → ⊕
x∈X

TorR
n (S, S).

By hypothesis, S is a stably flat R-ring, and, hence, TorR
n (S, S) = TorR

n+1(S, S) = 0.

Thus, TorRF
n+1(S, S) = 0, as desired.

4.3 Review. In the proof of the next result, we shall use the well-known fact that
if R is a commutative Bezout domain, and M is a torsion-free R-module, then M
is a flat R-module. This fact can be proved as follows.

It suffices to show that, for each finitely generated ideal I of R, the multiplication
map I ⊗R M → M is injective. Here I = aR for some a ∈ R, and we may assume
that a is nonzero. Thus IR ' RR, and I ⊗R M ' M , and the map I ⊗R M → M is
equivalent to the map M → M given by multiplying by a. Since M is torsion-free,
the latter map is injective.

4.4 Theorem. Let R be a ring, let F be a free group, let ε : RF → R be the R-ring
map which sends each element of F to 1, and let Σ denote the set of matrices over
RF that are sent to invertible matrices by ε.

If R is a von Neumann regular ring or a commutative Bezout domain, then
(RF )Σ−1 is stably flat as an RF -ring.

Proof. If R is a von Neumann regular ring, then (RF )Σ−1 is stably flat as an
RF -ring, by Lemma 4.2.

Now, let R be a commutative Bezout domain. Let X be a basis of F . By
Corollary 3.7, there exists an isomorphism of R〈X〉-rings (RF )Σ−1 ∼−→ Rrat〈〈X∂〉〉,
and, as an R-module, Rrat〈〈X∂〉〉 is obviously torsion-free. Thus, as an R-module,
(RF )Σ−1 is torsion-free. Hence, by Review 4.3, (RF )Σ−1 is flat as left R-module.
By Lemma 4.2, (RF )Σ−1 is a stably flat RF -ring.
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