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Abstract

We determine the L?-Betti numbers of all one-relator groups and all sur-
face-plus-one-relation groups. We also obtain some information about the
L?-cohomology of left-orderable groups, and deduce the non-L? result that,
in any left-orderable group of homological dimension one, all two-generator
subgroups are free.
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1 Notation and background

Let G be a (discrete) group, fixed throughout the article.

We use R U {—00,00} with the usual conventions; for example, é = 0, and
3 — 00 = —oo. Let N denote the set of finite cardinals, {0,1,2,...}. We call
NU{oo} the set of vague cardinals, and, for each set X, we define its vague cardinal
|X| € NU{co} to be the cardinal of X if X is finite, and to be oo if X is infinite.

Mappings of right modules will be written on the left of their arguments, and
mappings of left modules will be written on the right of their arguments.

Let C[[G]] denote the set of all functions from G to C expressed as formal
sums, that is, a function a: G — C, g — a(g), will be written as 3 .5 a(g)g.
Then C[[G]] has a natural CG-bimodule structure, and contains a copy of CG as
CG-sub-bimodule. For each a € C[[G]], we define ||a|| := (3, ¢ la(g)[*)/? € [0, 0],
and tr(a) :=a(1) € C.

Define

1*(G) := {a € C[[G]] : [lal| < oo}.
We view C C CG C I2(G) C C[[G]]. There is a well-defined external multiplication
map

*(G) x I*(G) = C[[G]], (a,b)—a-b,

where, for each g € G, (a-b)(g) := >, cc a(h)b(h™'g); this sum converges in C, and,
moreover, |(a-b)(g)| < |la]|||b]|, by the Cauchy-Schwarz inequality. The external
multiplication extends the multiplication of CG.

The group von Neumann algebra of G, denoted N (G), is the ring of bounded
CG-endomorphisms of the right CG-module (?(G); see [19, §1.1]. Thus [?(G) is an
N(G)-CG-bimodule. We view N (G) as a subset of I>(G) by the map a — «a(1),
where 1 denotes the identity element of CG C [?(G). It can be shown that

N(G) ={a € P(G) | a-I*(G) S P(G)},
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and that the action of N'(G) on I(G) is given by the external multiplication. Notice
that V(GQ) contains CG as a subring and also that we have an induced ‘trace map’
tr: N(G) — C. The elements of AN(G) which are injective, as operators on I2(G),
are precisely the (two-sided) non-zerodivisors in N'(G), and they form a left and
right Ore subset of N'(G); see [19, Theorem 8.22(1)].

Let U(G) denote the ring of unbounded operators affiliated to N'(QG); see [19,
§8.1]. It can be shown that U(G) is the left, and the right, Ore localization of N'(G)
at the set of its non-zerodivisors. For example, it is then clear that,

if 2 is an element of G of infinite order, then  — 1 is invertible in (G). (1.0.1)

Moreover, U(G) is a von Neumann regular ring in which one-sided inverses are
two-sided inverses, and, hence, one-sided zerodivisors are two-sided zerodivisors;
see [19, §8.2].

There is a continuous, additive von Neumann dimension that assigns to every
left 2(G)-module M a value dimy gy M € [0, 00]; see Definition 8.28 and Theorem
8.29 of [19]. For example,

if e is an idempotent element of N'(G), then dimy ) U(G)e = tr(e);  (1.0.2)

see Theorem 8.29 and §§6.1-2 of [19].
Consider any subring Z of C, and any resolution of Z by projective, or, more
generally, flat, left ZG-modules

— Ph— P — Py — Z —0, (1.0.3)
and let P denote the unaugmented complex
c— P — P — Py — 0.

By Definition 6.50, Lemma 6.51 and Theorem 8.29 of [19], we can define, for each
n € N, the nth L?-Betti number of G as

bP(G) = dimy ) Ha(U(G) @26 P),
where U(G) is to be viewed as a U(G)-ZG-bimodule. Of course,
H,(U(G) ®z6 P) = Tor%(U(G), Z) =~ Tory° (U(G), Z) = H,(G;U(G)),

where, for the purposes of this article, it will be convenient to understand that
H, (G;—) applies to right G-modules. Thus the L?-Betti numbers do not depend
on the choice of Z, nor on the choice of P.

1.1 Remark. If G contains an element of infinite order, then (1.0.1) implies that
UG) @zg Z = 0, and U(G) ®z¢ P — U(G) ®z¢ Ph — 0 is exact, and
Ho(G;U(G)) = 0, and b?(G) = 0. O

1.2 Remarks. In general, there is little relation between the nth L?-Betti number,
ble)(G) = dimy(¢) Hn (G5 U(G)) € [0,00], and the nth (ordinary) Betti number,

by (G) := dimg H,,(G; Q) € [0, o0].
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We say that G is of type FL if, for Z = Z, there exists a resolution (1.0.3) such
that all the P, are finitely generated free left ZG-modules and all but finitely many
of the P,, are 0.

If G is of type FL, then it is easy to see that the L2-Euler characteristic

XP(G) = (=1)"bP (@)

n>0

is equal to the (ordinary) Fuler characteristic

X(G) = (=1)"ba(G).

n>0

We say that G is of type VFL if G has a subgroup H of finite index such that H
is of type FL. In this event, the (ordinary) Euler characteristic of G is defined as

X(G) = [G}H] X(H); this is sometimes called the virtual Euler characteristic. Here

again, x?)(G) = x(G); see [19, Remark 6.81]. O

2 Summary of results

In outline, the article has the following structure. More detailed definitions can be
found in the appropriate sections.

In Section 3, we prove a useful technical result about U(G) for special types of
groups.

In Section 4, we calculate the L2-Betti numbers of one-relator groups. Let us
describe the results.

For any element x of a group G, we define the exponent of x in G, denoted
expg(z), as the supremum in Z U {oo} of the set of those integers m such that
x equals the mth power of some element of G. Then exps(z) is a nonzero vague
cardinal. We write G/{x ) to denote the quotient group of G modulo the normal
subgroup of G generated by x.

Suppose that G has a one-relator presentation (X | ). Thus r is an element of
the free group F on X, and G = F/(r).

Set d := |X| € [0,00], m := expp(r) € [1,00], and x :=1—d + L € [~o0,1].

It is known that if d < oo then G is of type VFL and x(G) = x. If d = oo,
then G is not finitely generated and y = —oo; here we define x(G) = —oo, which is
non-standard, but it is reasonable.

In general, max{x(G),0} = ﬁ

In Theorem 4.2, we will show that,

max{x(G),0} ifn=0,
forneN, b2(G) = max{—x(G),0} ifn=1, (2.0.1)
0 if n > 2.

Liick [19, Example 7.19] gave some results and conjectures concerning the L2-Betti
numbers of torsion-free one-relator groups, and (2.0.1) shows that the conjectured
statements are true.

In Section 5, we calculate the L2-Betti numbers of an arbitrary surface-plus-one-
relation group G = m1(X)/{a)). Here ¥ is a connected orientable surface, and « is
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an element of the fundamental group, 71(X2). The surface-plus-one-relation groups
were introduced and studied by Hempel [12], and further investigated by Howie [15];
these authors called the groups ‘one-relator surface groups’, but we are reluctant to
adopt this terminology.

If ¥ is not closed, then 7 (X) is a countable free group, see [20], and G is a
countable one-relator group. In light of Theorem 4.2, we may assume that ¥ is a
closed surface.

Let ¢ denote the genus of the closed surface X, and let m = expm(z)(a). It is
not difficult to deduce from known results that G is of type VFL and

1 if g=0,
xX(G) =40 if g =1,
2-29+ 2L ifg>2

Then x(G) € (—o0,1] and max{x(G),0} = ﬁ In Section 5, we will show
that (2.0.1) is also valid for surface-plus-one-relation groups.
For any group G, b((]z)(G) = ﬁ; see [19, Theorem 6.54(8)(b)]. It is obvious that

if G is finite then bg,?)(G) =0 for all n > 1. Thus, in essence, the foregoing results
assert that if G is an infinite one-relator group, or an infinite surface-plus-one-rela-

tion group, then
" 0 if n #1,

and we emphasize that, in this case, we understand that x(G) = —oo if G is not
finitely generated.

In Section 6, we consider a variety of situations where Z is a nonzero ring
and there exists some positive integer n such that P, = ZG? in a projective
ZG-resolution (1.0.3) of ,,Z. For example, this happens for two-generator groups
and for two-relator groups.

Thus, in Corollary 6.8, we recover Liick’s result [19, Theorem 7.10] that all the
L?-Betti numbers of Thompson’s group F vanish; see [6] for a detailed exposition
of the definition and main properties of F'.

2.1 Definitions. Recall that G is left orderable if there exists a total order < of
G which is left G-invariant, that is, whenever g, z,y € G and « < y, then gz < gy.
One then says that < is a left order of G. The reverse order is also a left order.
Since every group is isomorphic to its opposite through the inversion map, we see
that ‘left-orderable’ is a short form for ‘one-sided-orderable’.

A group is said to be locally indicable if every finitely generated subgroup is
either trivial or has an infinite cyclic quotient. Burns and Hale [5] showed that
every locally indicable group is left orderable. This often provides a convenient way
to prove that a given group is left orderable.

Recall that the cohomological dimension of G with respect to a ring Z, de-
noted cd, G, is the least n € N such that P, 11 = 0 in some projective ZG-resolu-
tion (1.0.3) of ,Z. The cohomological dimension of G, denoted cd G, is cd,, G. A
classic result of Stallings and Swan says that the groups of cohomological dimension
at most one are precisely the free groups.
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Similarly, the homological dimension of G with respect to a ring Z, denoted
hd, G, is the least n € N such that P,y = 0 in some flat ZG-resolution (1.0.3) of
2% The homological dimension of G, denoted hd G, is hd,, G. O

We understand that Robert Bieri, in the 1970’s, first raised the question as to
whether the groups of homological dimension at most one are precisely the locally
free groups. Notice that a locally free group has homological dimension at most
one, since the augmentation ideal of a locally free group is a directed union of
finitely generated free left submodules. Recently, in [16], it was proved that if the
homological dimension of G is at most one and G satisfies the Atiyah conjecture (or,
more generally, the group ring ZG embeds in a one-sided Noetherian ring), then G
is locally free. In Corollary 6.12, we show that if G is locally indicable, or, more
generally, left orderable, and the homological dimension of G is at most one, then
every two-generator subgroup of G is free.

Finally, in Proposition 6.13, we calculate the first three L?-Betti numbers of an
arbitrary left-orderable two-relator group of cohomological dimension at least three.

2.2 Notation. We will frequently consider maps between free modules over a
ring U, and we will use the following format.

Let X and Y be sets.

By an X X Y row-finite matriz over U we mean a function (ug,): X XY — U,
(x,y) — ug,y such that, for each x € X, {y € Y | uy, # 0} is finite.

We write ®x U to denote the direct sum of copies of U indexed by X. If n € N,
and X = {1,...,n}, we identify X = n and also write @, U as U". An element of
@ xU will be viewed as a 1 x X row-finite matrix (u1,) over U. Then @ xU is a left
U-module in a natural way.

A map ®xU — ®yU of left U-modules will be thought of as right multipli-
cation by a row-finite X x Y matrix (us,) in a natural way, and we will write

oxU 222 o U 0

3 Preliminary results about U(G)

For a = 3 c5alg)g € C[[G]], we let a* = 3 _;a(g~')g where Z indicates the
complex conjugate of z. This involution restricts to C(G) and N (G), and extends
in a unique way to U(G). Furthermore, if a,b € N(G), then (ab)* = b*a* and
a*a = 0 if and only if a = 0.

In Sections 4 and 5, we shall see that the narrow hypotheses of the following
result hold whenever G is a one-relator group or a surface-plus-one-relation group.

3.1 Theorem. Suppose that G has a normal subgroup H such that H is the semidi-
rect product F' x C of a free subgroup F by a finite subgroup C, and that G/H is
locally indicable, or, more generally, left orderable.

Letm = |C|, and lete = L > c € CG.

ceC
Then the following hold.
(i) Each torsion subgroup of G embeds in C.

(ii) Fach nonzero element of eCGe is invertible in el (G)e.
(iii) For allx e U(G)e and y € eCG, if xy =0 then x =0 or y = 0.
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Proof. (i) Each torsion subgroup of G lies in H and has trivial intersection with F,
and therefore embeds in C.

(ii) Notice that e is a projection, that is, e is idempotent and e* = e. Clearly,
tr(e) = L. Also, eld(G)e is a ring and eCGe is a subring of eU(G)e. Moreover, in
eld(G)e, one-sided inverses are two-sided inverses.

Let a € eCGe — {0}. We want to show that a is left invertible in el (G)e.

Let T be a transversal for the right (or left) H-action on G, and suppose that
T contains 1. Write a = t1a1 + - - - + t,,a, where the ¢; are distinct elements of T,
and, for each 4, a; € C(H)e — {0}.

Let < be a left order for G/H. We may assume that t1H < --- < ¢, H. To
show that a is left invertible in el(G)e, it suffices to show that (eait;e)a is left
invertible in el (G)e. On replacing a with (eait;'e)a = ait;  a, we see that we may
assume that ¢; = 1 and ay € eCHe — {0}.

By (i), m is the least common multiple of the orders of the finite subgroups
of H. Now the strong Atiyah conjecture holds for H; see [18] or [19, Chapter
10]. Hence dimy gy U(H)ay > = = tr(e). Of course, U(H)ay C U(H)e, and thus
dimyy gy U(H )ay < dimy gy U(H )e = tr(e). Hence dimy gy U(H)ay = tr(e).

Also, U(H)(a1 +1—e) =U(H)ay ®U(H)(1 — e). Hence

dimM(H) UH)(a1+1—¢) = dimu(H) U(H)ar + dimu(H)U(H)(l —e)
=tr(e) +tr(l —e) =1.

This implies that a; + 1 — e is invertible in U (H). The *-dual of [17, Theorem 4]
now implies that a+1—e = 1(ay + 1 —¢e) + taas + - - - + tna, is invertible in U(G).
It is then straightforward to show that a is invertible in eld(G)e.

(iii) Suppose that y # 0. Then z*zyy* = 0, yy* € eCGe—{0} and z*z € el (G)e.
By (ii), yy* is invertible in eld(G)e. Hence z*z =0 and = = 0. O

3.2 Remark. The above proof shows that the conclusions of Theorem 3.1(ii)

and (iii) hold under the following hypotheses: H is a normal subgroup of G; G/H

is left orderable; the strong Atiyah conjecture holds for H; and, e is a nonzero pro-
1

jection in CH such that w0 is the least common multiple of the orders of the finite

subgroups of H. O

The degenerate case of Theorem 3.1(ii) where H = F' = C = 1 follows directly
from [17, Theorem 2].

3.3 Theorem. If G is locally indicable, or, more generally, left orderable, then
every nonzero element of CG is invertible in U(G). O

4 One-relator groups
We shall now calculate the L2-Betti numbers of one-relator groups.

4.1 Notation. Suppose that G is a one-relator group, and let (X | r) be a one-re-
lator presentation of G.

Here 7 is an element of the free group F on X and G = F/{r).

Let m = expp(r) and let d = |X|. These are vague cardinals. Here m # 0;
moreover, m = oo if and only if » = 1, in which case G = F.
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If m < oo, then r = ¢ for some ¢ € F. Let ¢ denote the image of ¢ in G, and
let C' = (c) < G. Then C has order m. Let e = = > _ z € CG.

If m = oo, we define e = 0 € CG.

In any event e is a projection and tr(e) = %

There is an exact sequence of left ZG-modules

0 — &xZ2G — 272G — Z — 0 if m = oo,
0 —Z|G/C]—Z—0 if d=1and m < oo,
0 —Z[G/C] — &xZG — ZG — 7Z — 0 if d > 2 and m < co.

see [7], specifically, Lemma 6.21 and (x) on p. 167 in the proof of Theorem 6.22. In
all cases, there is then an exact sequence of left CG-modules
0 — CGe ), g vcq &Y, 06 — ¢ —0; (4.1.1)
for each z € X, by is the image of x — 1 in CG, and a,  is the left Fox derivative
% = (me)% € eCG.
If d < o0, then G is of type VFL and

x(G)=1—-d+ % € (—o0,1]; (4.1.2)

see Theorem 6.22 and Corollary 6.15 of [7], for the cases where m < co and m = oo,
respectively.

In the case where d = oo, that is, G is a non-finitely-generated one-relator group,
we define x(G) := —oo. This is non-standard, but it extends (4.1.2).

It is easy to verify that ﬁ = max{x(G),0}. In fact, by abelianizing G, we see
that G is finite if and only if either d =1 and m < oo, or d = 0 (and hence m = co).

O
We shall now prove the following.
4.2 Theorem. If G is a one-relator group, then, for n € N,
max{x(G),0} (= &) ifn =0,
b2 (G) = § max{—x(G),0} ifn=1, (4.2.1)
0 ifn>2.
Proof. Suppose that Notation 4.1 holds.
Unaugmenting (4.1.1) and applying U(G) ®cg — gives
0 — U@e L o @) L2 ua@) — o (4.2.2)
the homology of (4.2.2) is then H,.(G;U(Q)).
We claim that
if y e U(G)e — {0} and a € eCG — {0}, then ya # 0. (4.2.3)

This is vacuous if m = oo.
If m < oo, let H denote the normal subgroup of G generated by c¢. Then
G/H = (X | q) is a torsion-free one-relator group. Hence G/H is locally indicable
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by [3, Theorem 3], [13, Theorem 4.2] or [14, Corollary 3.2]. Also H is the free
product of certain G-conjugates of C, by [11, Theorem 1]. By mapping each of
these conjugates of C' isomorphically to C, we obtain an epimorphism H — C.
Applying [8, Proposition 1.4.6] to this epimorphism, we see that its kernel F' is free.
Clearly, H = F x C. Now (4.2.3) holds by Theorem 3.1(iii).

Since (a14) is injective in (4.1.1), either e = 0 or there is some zy € X such
that a1, # 0. It follows from (4.2.3) that (a;,) is injective in (4.2.2), and
hence Hy(G;U(G)) = 0. On taking U(G)-dimensions, we find bf)(G) = 0, and
dimy (g im((a1,0)) = -

If either d > 2, or d = 1 and m = oo, then, by abelianizing, we see that there
is some z; € X whose image in G has infinite order. By (1.0.1), we see that (b, 1)
is surjective in (4.2.2), and hence Ho(G;U(G)) = 0. On taking U(G)-dimensions,
we find that by (G) = 0, dimy(q im((by,1)) = 1, and dimgq) ker((by1)) = d — 1.
Now

. . . 1
(@) = dimy(g) ker((by,1)) — dimy ey im((a; 4)) = d — 1 — — = —x(0).
Thus (4.2.1) holds.
This leaves the cases where either d =0 or d = 1 and m < co. Here G is finite
cyclic, and again (4.2.1) holds. O

5 Surface-plus-one-relation groups

We next calculate the L?-Betti numbers for an arbitrary surface-plus-one-relation
group G = m(X)/{a), where ¥ is a connected orientable surface, possibly with
boundary and not necessarily compact, and {«a is the normal closure of a single
element o € m1(95).

By the results of the previous section, we may assume that the implicit presen-
tation of G has more than one relator. As explained in Section 2, ¥ must a closed
surface. Let g denote the genus of 3. Then g € N and

7r1(2):< L1,X2,...,T29—1,2L2g | [$1,$2H~T3,IE4]"'[Cﬂzg—l,fzg] >,

where [z,y] denotes xyz~'y~!. Since this is a one-relator presentation, we have

a # 1. In particular, g is nonzero. The non one-relator cases are included in the
following.

5.1 Theorem. Let ¥ be a closed orientable surface of genus at least one, let
S =m1(X), let a be a nontrivial element of S, and let G = S/{«a).

Let g denote the genus of &, let m = expg(), and let Q be a nonzero ring in
which % is defined, that is, if m < oo then m@Q = Q. Then the following hold.

ifg=1
(i) G is of type VFL and x(G) = min{2 — 2g + =0} = {(2)—2g+ 1 Z‘Z . 2i

(i) cdo G = min{2,g} = {; ?fcz ; ;
(ifi) For n € N, b7(G) = =6,,1x(G) = {(;X(G) ZZZ ;:é 1
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Proof. We break the proof up into a series of lemmas and summaries of notation.

5.2 Notation. As in [8, Examples 1.3.5(v)], the expression S; xg, s will denote an
HNN extension, where it is understood that .Sy is a group, Sy is a subgroup of S;
and s is an injective group homomorphism s: Sy — 57, a — a®. The image of this
homomorphism is denoted S§. O

5.3 Lemma (Hempel). If ¢ > 2, then there exists an HNN-decomposition
S = 51 *g, s such that Sy is a free group, « lies in S1, and the normal subgroup of
S1 generated by o intersects both Sy and S§ trivially.

Hence, G = S/{a) has a matching HNN-decomposition S/{a) = S1/{a) *s, s.

Proof. This was implicit in the proof of [12, Theorem 2.2], and was made explicit
in [15, Proposition 2.1]. O

5.4 Lemma (Hempel). If m < oo, there exists § € S such that 0™ = «, and the
image of B in G has order m.

Proof. As this is obvious for ¢ = 1, we may assume that g > 2. Thus we have
matching HNN-decompositions S = Sy *g, s and G = S/{a]) = S1/{a) *s, s, as in
Lemma 5.3.

Let m' = expg, a. Since a # 1 and S is free, we see that m’ < co. Choose
B € S; such that ™ = a. Let ¢ denote the image of 3 in G, and let C = (c) <G.
Then C has order m/, and every torsion subgroup of S1/{«a) embeds in C. From
the HNN decomposition for GG, we see that any finite subgroup of G is conjugate to
a subgroup of S1/{a), and hence has order dividing m’.

A similar argument shows that for any positive integer i, S/{ o’ ) has a matching
HNN decomposition, and therefore has a subgroup of order m/s and a subgroup of
order i. It follows that if & = 77 for some positive integer j then S/{a) has a
subgroup of order 7, and hence j divides m’. It now follows that m = m’ < co. [

5.5 Notation. Let § denote an element of S such that g™ = «.

Let ¢ denote the image of 5 in G. Let C' = {(c), a cyclic subgroup of G of order m.
Let e = L3 -, an idempotent element of CG with tr(e) = -1; we shall also
view e as an idempotent element of QG.

Let H denote the normal subgroup of G generated by ¢; thus, G/H ~ S/{3).

O

5.6 Lemma. (i) H has a free subgroup F such that H=F x C.
(ii) G/H is locally indicable.

(iii) Ewvery torsion subgroup of G embeds in C.

(iv) If x e U(GQ)e — {0} and y € eCG — {0}, then zy # 0.

Proof. (i). As this is clear for g = 1, we may assume that g > 2.

By Lemma 5.3 with 3 in place of «a, there exists an HNN-decomposition
S = 51 %5, s where S; is a free group, § lies in S, and the normal subgroup
of S; generated by [ intersects both Sy and S§ trivially. Hence « lies in 57, and
the normal subgroup of S; generated by « intersects both Sy and S trivially. It
follows that we can make identifications

G=S5/la)=5/{a) s s and G/H =S5/{3)=5/{5)*s, 5.
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Thus we have matching HNN-decompositions for S, G and G/H.

Let us apply Bass-Serre theory, following, for example, [8, Chapter 1]. Consider
the action of H on the Bass-Serre tree for the above HNN-decomposition of G.
Then H acts freely on the edges. Let Hy denote the normal subgroup of S;/{a)
generated by c¢. Then Hj is a vertex stabilizer for the H-action, and the other vertex
stabilizers are G-conjugates of Hy. By Bass-Serre theory, or the Kurosh Subgroup
Theorem, H is the free product of a free group and various G-conjugates of Hy.

By [11, Theorem 1], Hy itself is a free product of certain S7/{« )-conjugates
of C.

Thus H is the free product a free group and various G-conjugates of C. If we
map each of these G-conjugates of C' isomorphically to C, and map the free group
to 1, we obtain an epimorphism H — C. Applying [8, Proposition 1.4.6] to this
epimorphism, we see that its kernel F' is free. Clearly, H = F x C. This proves (i).

(ii). Since G/H = S/{B) and § is not a proper power in S, G/H is locally
indicable by [12, Theorem 2.2].

(iii) and (iv) hold by Theorem 3.1. O

Let us dispose of the case where g = 1, which is well known and included only
for completeness.

5.7 Lemma. If g =1, then the following hold.
(i) H =C and G/C is infinite cyclic generated by xC' for some x € G.

(ii) 0 — Z[G/C] SN Z|G/C) — Z — 0 is an exact sequence of left ZG-mod-
ules.

(iii) 0 — QGe z-l, QGe — @ — 0 is an exact sequence of left QG-modules.

(iv) (z) is an infinite cyclic subgroup of G of finite index, G is of type VFL,
X(G) = 0 andcdg G =1.

(v) The homology of 0 — U(G)e 2= U(G)e — 0 is H (G5 U(G)).

(vi) For eachn € N, bg)(G) =0. O

5.8 Remark. For g = 1, Lemma 5.7(ii) gives the augmented cellular chain complex
of a one-dimensional E(G) which resembles the real line. O

5.9 Notation. Henceforth we assume that g > 2.

Let X = {z1,22,...,%29-1,%24}, let F be the free group on X, and let
r = @1, @2) -+ [Tog—1, T2g] € F. Then S = (X | ry).

Let g2 be any element of F' which maps to § in S, and let ro = ¢3*. Then
G = <X | 7‘1,T2>.

Fori e {1,2}, j € {1,...,2¢9}, we set a; ; := g;] € ZG, the left Fox derivatives,
and bj71 =T — 1eZG.

Notice that me =) .2 € ZG and ay; = g—;’; = (me)g%i. O

5.10 Lemma (Howie). The sequence of left ZG-modules

0— 2G o 2[G/C) 2, 762 ) ga 7 (5.10.1)

is exact.
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Proof. Howie [15, Theorem 3.5] describes a K(G,1), and it is straightforward to
give it a CW-structure as follows.

We take a K(S,1) with one zero-cell, 2g one-cells, and a two-cell which is a
2g-gon, and then the exact sequence of left ZS-modules arising from the augmented
cellular chain complex of the universal cover of the K (S, 1) is

0— 78 9, 7620 G 7g L7 g

where we view the a1 ; and b; 1 as elements of ZS.

We take a K(C,1) with one cell in each dimension such that the infinitely re-
peating exact sequence of left ZC-modules arising from the augmented cellular chain
complex of the universal cover of the K(C,1) is

e e Shgo Mo Lo — 7 — 0.

By [15, Theorem 3.5], we get a K(G,1) by melding the one-skeleton of our
K(C,1) into the one-skeleton of our K(S5,1) in the natural way; the attaching
map of the two-cell at the homology level is then (as ;). The exact sequence of left
ZG-modules arising from the augmented cellular chain complex of the three-skeleton
of the universal cover of the K(G,1) is

76 O poe @) 5oy G pe oo

The lemma now follows easily. O

We now imitate the proof of [11, Theorem 2].
5.11 Lemma. G is of type VFL and x(G) =2 —2g + %

Proof. Let p be a prime divisor of m. It was shown in [1] that S is residually a
finite p-group; see [10, Theorem B] for an alternative proof. Hence there exists
a finite p-group P = P(p) and a homomorphism S — P whose kernel does not
contain §7, and we assume that P has smallest possible order. The centre Z(P)
of P is nontrivial. By minimality of P, 87 lies in the kernel of the composite
S — P — P/Z(P). Thus 3%, and 3™, are mapped to Z(P). By minimality of P,
[™ is mapped to 1 in P.

By considering the direct product of such P(p), one for each prime divisor p
of m, we find that there is a finite quotient of S in which the image of 8 has order
exactly m.

Hence there exists a normal subgroup N of G such that IV has finite index in G
and N NC = {1}. It follows that N acts freely on G/C. The number of orbits is

IN\(G/C)| = IN\G/C| = [(N\G)/C| = |G : N]/m,

where the last equality holds since C' acts freely on N\G, on the right.
Now (5.10.1) is a resolution of Z by free left ZN-modules. Thus N is of type
FL, and, in particular, NV is torsion-free. It is now a simple matter to calculate

X(G) (= gy X(N)). 0

Together Lemma 5.7(iv) and Lemma 5.11 give Theorem 5.1(i).
By Lemma 5.10, the following is clear.
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5.12 Corollary. The sequence of left QG-modules

0 — QG o QGe 22 e 2 oo — @ — 0

is exact. O]

5.13 Lemma. cdg G = 2.

Proof. By Corollary 5.12, cdg G < 2. It remains to show that cdg G > 1. Let us
suppose that cdg G < 1 and derive a contradiction.

By Notation 5.5 and Lemma 5.6(ii), H is the (normal) subgroup of G generated
by the elements of finite order. By Dunwoody’s Theorem [8, Theorem IV.3.13], G
is the fundamental group of a graph of finite groups; by [8, Proposition 1.7.11], H is
the normal subgroup of G generated by the vertex groups. From the presentation
of G as in [8, Notation 1.7.1], it can be seen that G/H is a free group.

Since G/H = S/(3), the abelianization of G/H has Z-rank 2g or 2g — 1. Thus
the rank of the free group G/H is 2g or 2g — 1. Hence x(S/{3)) is 1 —2g or 2 — 2g.

But x(S/{8)) =3 —2g by Lemma 5.11. This is a contradiction. O

Together Lemma 5.7(iv) and Lemma 5.13 give Theorem 5.1(ii).
By Corollary 5.12 with @ = C, the following is clear.

5.14 Corollary. The homology of

g (bj,1)

0 — UG) UG 22 y(G)? UG) — 0

is H, (G3U(G)). 0

We now come to the subtle part of the argument.
5.15 Lemma. U(G) & U(G)e {8id), U(G)? is injective.

Proof. Let (u,v) be an arbitrary element of the kernel. Thus, (u,v) € U(G)BU(G)e
and
for each j € {1,...,2¢g}, way; +wvaz; =0 in U(G). (5.15.1)

Consider first the case where u does not lie in vCG. We shall obtain a contra-
diction.
We form the right CG-module W = U(G)/(vCG), and let w = u + vCG € W.
By (5.15.1),
for each j € {1,...,2¢g}, way,; =0in W. (5.15.2)

Let K = {z € G | we = w}. Clearly, K is a subgroup of G.

We claim that K = G; it suffices to show that {x1,...,29,} C K.

We will show by induction that, if j € {0,1,...,¢}, then {x1,...,29,} C K.
This is clearly true for j = 0. Suppose that j € {1,...,¢} and that it is true
for j —1. We will show it is true for j. Let k = [z1, 2] - [€2j_3,Z2j_2]; then
k lies in K by the induction hypothesis. Recall that ri = [21,22] - [T2g—1, Z2g)-
By (5.15.2) and Notation 5.9,

87“1
-1
0= way 25j—-1 =W = wk:(l — xgj_1$2j$2j71)
3$2j—1
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and

87“1

j— e — . — . 71 71

0=wa2; =w = wkxgj_1(1 T2jTo; 1 Tg; ).
8$2j

Since K = {z € G | w(1 — z) = 0}, we see that K contains
k(xgj,lxgjmgjl_l)k_l and (kacgj,l)(fvgjxgjl_lx;jl)(kxgj,l)_l.
Thus K contains
Igj_ll’gjﬂf;jl_l and .ng_l(l'ng;jl_ll';jl)IQ_jl_l,

and it follows easily that K contains x;jlx;jlfl, Z2;—1 and x2;. This completes the
proof by induction.

Hence, K = G, and w is fixed under the right G-action on W. Thus, the subset
u 4+ vCG of U(G) is closed under the right G-action on U(G). We denote the set
u + vCG viewed as right G-set by (u + vCG)g. Notice that v + vCG does not
contain 0.

By Lemma 5.6(iv), the surjective map eCG — vCG, x — vz, is either injective
or zero. In either event, vCG is a projective right CG-module. By the left-right
dual of [9, Corollary 5.6] there exists a right G-tree with finite edge stabilizers and
vertex set (u4vCG)g. It follows that there exists a (left) G-tree T with finite edge
stabilizers and vertex set ¢(u + vCG)* C ¢(U(G) — {0}).

Each vertex stabilizer for T is torsion, by (1.0.1), and hence embeds in C, by
Lemma 5.6(iii). By [8, Theorem IV.3.13], cdg G < 1 which contradicts Lemma 5.13;
in essence, T' is a one-dimensional E(G). Alternatively, one can use T' to prove that

béQ)(G) = 0 and deduce that (u,v) = (0,0), which is also a contradiction.
Thus u lies in vCG, and there exists y € eCG such that u = vy.
We consider first the case where v # 0. For each j € {1,...,2g},

v(yar; + az ;) = uay j +vag; =0

by (5.15.1), and, by Lemma 5.6(iv), 0 = ya1 j+a2 ; = ya1 j+eaq ;. Hence, (y, e) lies

in the kernel of CG®CGe ASLEIN CG?9; since this map is injective by Corollary 5.12,

we see e = 0, which is a contradiction.
Thus v = 0, and hence u = 0. O

By Lemma 5.15 and Remark 1.1 it is straightforward to obtain the following.
5.16 Lemma. The U(G)-dimensions of the kernel and the image of the map
UG)dU(G)e )N U(G)? are 0 and 1 + =, respectively.

The U(G)-dimensions of the image and the kernel of the map

UG)* M U(G) are 1 and 2g — 1, respectively.

29-1)-(1++) ifn=1,
0 if n# 1.

Together Lemma 5.7(vi) and Lemma 5.16 give Theorem 5.1(iii). This completes
the proof of Theorem 5.1. O

Forn €N, bi?(G) = { O
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6 Left-orderable groups

Throughout this section we will frequently make the following assumption.

6.1 Hypotheses. There exist nonzero rings Z and U such that ZG is a subring of
U and each nonzero element of ZG is invertible in U.

This holds, for example, if G is locally indicable, or, more generally, left order-
able, with Z being any subring of C, and U being U(G), by Theorem 3.3.

Notice that ZG has no nonzero zerodivisors, and hence G is torsion free. O

6.2 Lemma. Let U be a ring, and let X and Y be sets.

Let A and B be nonzero row-finite matrices over U in which each nonzero entry
1s invertible, such that A is X x2, B is 2XY , and the product AB is the zero X XY
matrix.

Then &xU SN LI @y U is an exact sequence of free left U-modules.

Moreover, U? has a left U-basis vy, vy such that ker B = im A = Uv, and B
induces an isomorphism Uvy ~ im B.

Proof. Write A = (ay;) and B = (b; ).

There exists o € X such that (az,,1,0z,,2) 7 (0,0). We take v = (agy.1, Gy 2)-
Clearly Uv; C im A C ker B. Without loss of generality, there exists yg € Y such
that by ,, is invertible in U. We take vy = (1,0).

. —1
Since AB = 0, ay,,101,yy + Gug,202,49, = 0. Thus ag,1 = —azo’gbg’yobl’yo. Hence
az,,2 cannot be zero, and is therefore invertible.
. . 2 -1 _ 1
Hence v1, vg is a basis of U=, and bg,y,b1 = —a, 90z ,1-

Consider any (ai,az) € ker B. Then a1b; 4, + a2bs 4, = 0, and

(al, ag) = (—a2b27y0b1_7?1!0, (12) = ag(—bz,yobiéo, 1)

= (0, 50001, 1) = 02055 5 (0.1, 0ap,2) = G205 501 € Uy,
as desired. Finally, Uvy ~ (Uvy + Uvy)/Uvy = U?/ker B ~ im B. O

6.3 Remark. We see from the proof that the hypotheses that A and B are nonzero
and every nonzero entry in A and B is invertible can be replaced with the hypotheses
that some element of the first row of B is invertible, and some element of the second
column of A is invertible.

There are other variations, but the stated form is most convenient for our pur-
poses. O

6.4 Proposition. Suppose that Hypotheses 6.1 hold, and suppose that there exists
a positive integer n and a resolution (1.0.3) of Z by projective left ZG-modules such
that P, = ZG?. Then ecither the map P,y1 — P, in (1.0.3) is the zero map or
H,.(G;U) =0.

Proof. We may assume that P,,;1 — P, is nonzero. Then we have an exact sequence
Pn+1 — Pn — Pnfl, (641)
and we want to deduce that

U®zg Poi1 = UQ®zg P —UQzg Pu (6.4.2)
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remains exact.

This is clear if P, — P,,_1 is the zero map. Thus we may assume that the maps
in (6.4.1) are nonzero.

By adding a suitable ZG-projective summand to P, 1 with a zero map to P,,, we
may assume that P, is ZG-free without affecting the images. Similarly, we may
assume that P,_; is ZG-free without affecting the kernels. Thus we may assume
that we have specified ZG-bases of P11, P, and P, _1, and that the maps in (6.4.1)
are represented by nonzero matrices over ZG.

The maps in (6.4.2) are then represented by nonzero matrices over U with all
coefficients lying in ZG. Now we may apply Lemma 6.2 to deduce that (6.4.2) is
exact, as desired. O

6.5 Remark. In Proposition 6.4, if we replace the hypothesis P, = ZG? with the
hypothesis P, = ZG*, then it is easy to see that at least one of the maps P, 11 — P,,
P,, — P,,_1 is necessarily the zero map. O

Applying Proposition 6.4 with U = U(G), together with Theorem 3.3, we obtain
the following two results.

6.6 Corollary. Let G be a left-orderable group, and let Z be a subring of C. Suppose
that there exists a positive integer n and a resolution (1.0.3) of Z by projective left

ZG-modules such that P, = ZG?. Then either cdz G <n or bg)(G) =0. O
6.7 Corollary. If G is a left-orderable group, and there exists an exact CG-sequence
of the form

Beqr e e 2oce S C—0 (6.7.1)

in which all the 0y, are nonzero, then all the bg)(G) are zero.

Proof. Since 0y is nonzero, we see that G is nontrivial. Since G is torsion-free,
b2 (G) = 0. For n > 1, b (G) = 0 by Proposition 6.4. O

6.8 Corollary (Liick [19, Theorem 7.10]). All the L?-Betti numbers of Thomp-
son’s group F' vanish.

Proof. This follows from Corollary 6.7 since F is orderable, see [6], and has a reso-
lution as in (6.7.1), see [4]. O

We now look at situations where we can deduce that a two-generator group is
free.
6.9 Proposition. Suppose that Hypotheses 6.1 hold. The following are equivalent.
(a) G is a two-generator group, and Hy(G;U) = U.
(b) G is a two-generator group, and Hy(G;U) # 0.
(¢) G is free of rank two.
Proof. (a) = (b) is obvious.
(b) = (c). Let {z,y} be a generating set of G. Then we have an exact sequence
of left ZG-modules
z—1
y—1

®rZG — ZG? —5 ZG — Z — 0,
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where R is the set of relators which have a nonzero left Fox derivative in ZG. By
Proposition 6.4 with n = 1, we see that R is empty, and that the augmentation
ideal is left ZG-free on z — 1 and y — 1.

A result of Bass-Nakayama [21, Proposition 1.6] then says that G is freely gen-
erated by  and y. This can be seen geometrically, as follows. Let I' = T'(G, {z, y})
denote the Cayley graph of G with respect to the subset {z,y}. The above ex-
act sequence is precisely the augmented cellular Z-chain complex of I'. It is then
straightforward to show that I is a tree, and that G is freely generated by x and y.

(¢) = (a) is straightforward. O

6.10 Corollary. The following are equivalent.

(a) G is a two-generator left-orderable group and b:(LQ)(G) £ 0.
(b) G is free of rank two. O

6.11 Theorem. Suppose that Hypotheses 6.1 hold. If hd, G < 1 then every
two-generator subgroup of G is free.

Proof. Since the hypotheses pass to subgroups, we may assume that G itself is
generated by two elements, and it remains to show that G is free.

We calculate H,(G; U) in the case where G is not free.

By Hypotheses 6.1, G is torsion free. As in Remark 1.1, if Ho(G;U) # 0, then
G is free of rank zero. Thus we may assume that Ho(G;U) = 0.

By Proposition 6.9, if Hy(G,U) # 0, then G is free of rank two. Thus we may
assume that H; (G;U) = 0.

Since hd , G <1,H,(G;U)=0for all n > 2.

In summary, we may assume that H,(G;U) = 0.

By [2, Theorem 4.6(b)], since G is countable and hd, G < 1, we have
cd, G < 2; in essence, the augmentation ideal w of ZG is a countably-related
flat left ZG-module, hence the projective dimension of ,  w is at most one. Since G
is a two-generator group, we have a resolution of Z by projective left ZG-modules

0—P—2G* — ZG — Z — 0.
Since H,(G;U) = 0, we have an exact sequence of projective left U-modules
0—U®ze P —U>—U—0.

This sequence splits, and we see that U(U ®zq P) is finitely generated.

Hence , . P is finitely generated, by the following standard argument. Let R be
a set such that P is a ZG-summand of g ZG, that is, P is a ZG-submodule of
@®rZG and we have a ZG-linear retraction of @ ZG onto P. We may assume that
R is minimal, that is, for each r € R, the image of P under projection onto the rth
coordinate is nonzero. Then U ® z¢ P is a U-submodule of $rU, and here also R
is minimal. Since ,, (U ®z¢ P) is finitely generated, R is finite, as desired.

Now ,.Z has a resolution by finitely generated projective left ZG-modules.
By [2, Theorem 4.6(c)], cd , G < 1; in essence, ,w is finitely related and flat, and
is therefore projective. Since G is torsion free, G is free by Stallings’ Theorem; see
Remark I1.2.3(ii) (or Corollary IV.3.14) in [8]. O

6.12 Corollary. Suppose that G is locally indicable, or, more generally, that G is
left orderable. If hd G <1 then every two-generator subgroup of G is free. O
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We now turn from two-generator groups to two-relator groups.

6.13 Proposition. Suppose that G is left orderable, that G has a presentation
(X | R) with |R| =2, and that cd G > 3.
Then b (G) = 0, 8 (G) = | X| — 2, and b (G) = 0.

Proof. The given presentation of G yields an exact sequence of ZG-modules

~—>@yZGi>ZG2£>@XZG£>ZG—>Z—>O.

Then H,(G,U(G)) is the homology of the sequence
oy UG) B UG axu@) S uG) —o. (6.13.1)

Since G is left orderable, G is torsion free. Since cd G # 0, G is non-trivial.
Hence G has an element of infinite order. By Remark 1.1, b(()Q)(G) = 0 and the
U(G)-dimension of ker C' in (6.13.1) is | X| — 1.

Since G is left orderable, all nonzero elements of CG are invertible in U(G)
by Theorem 3.3. Since cdG > 3, b§2)(G) = 0 by Corollary 6.6. Moreover, by
Lemma 6.2, the U (G)-dimension of im B in (6.13.1) is one.

Finally, b?) is the difference between the U(G)-dimensions of ker C' and im B
in (6.13.1), that is, | X|—2. Of course, the hypotheses clearly imply that | X| > 2. O

Suppose that G is a left-orderable two-relator group. We know the first three
L?-Betti numbers of G if cd G > 3 by Proposition 6.13. If cd G < 1, then G is free,
and again one knows the L?-Betti numbers. There remains the case where cd G = 2;
here all we know are the L?-Betti numbers of torsion-free surface-plus-one-relation
groups; these groups are left-orderable by [12, Theorem 2.2] and they are clearly
two-relator groups.
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