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1 Graphs

1.1 Definitions. A graph Γ consists of a set V of vertices, a set E of edges, an initial incidence function

ι : E → V , and a terminal incidence function τ : E → V . Sometimes we shall treat Γ as the set V
·
∪ E,

where
·
∪ denotes disjoint union. Other times, we shall treat Γ as a one-dimensional CW-complex in

which each edge e corresponds to the ]0, 1[ part of a copy of [0, 1] that is given with an attaching map
that carries 0 to ιe and 1 to τe.

In the free group ⟨E | ⟩, set E±1 := E ∪ E−1. For each e ∈ E, set ι(e−1) := τ(e) and τ(e−1) := ι(e).
For each v ∈ V , set linkΓ(v) := {e ∈ E±1 : ιe = v} and degΓ(v) := | linkΓ(v)|, called the degree of v in Γ.
By a Γ-path we mean a sequence γ of the form

(v0, e1, v1, e2, v2, . . . , vn−1, en, vn)

where n > 0 and, for each i ∈ {1, 2, . . . , n}, ei ∈ E±1, vi−1 = ιei and vi = τei; we sometimes find it helpful

to depict γ as v0
e1−→ v1

e2−→ v2 · · · vn−1
en−→ vn. We call n the length of γ. For each i ∈ {1, 2, . . . , n− 1},

we say that (ei, vi, ei+1) is a turn in γ, and that the turn is a backtracking if ei+1 = e−1
i . We say γ is

closed if v0 = vn, γ is reduced if it has no backtrackings, and γ is a circle-path if it is closed, reduced,
and satisfies |{v1, v2, . . . , vn}| = n > 1.

Let E±1∗ denote the free monoid on E±1, endowed with the natural inversion map. We call∏n
i=1 ei ∈ E±1∗ the Γ-label of γ, and let Labels(Γ) ⊆ E±1∗ denote the set of Γ-labels of Γ-paths. All the

Γ-paths of length 0 have Γ-label 1, while each Γ-path of positive length can be reconstructed from its
Γ-label. The subset Labels(Γ) of E±1∗ is closed under the inversion operation, but need not be closed
under the multiplication operation. We shall be performing only multiplications that do produce another
element of Labels(Γ).

A graph is connected if any two vertices lie in some path. Every graph is the disjoint union of its
maximal nonempty, connected subgraphs, called its components. A circle-graph is a finite, nonempty,
connected graph in which each vertex has degree two. A tree is a nonempty, connected graph with no
circle-subgraphs. A line-segment-graph is a finite tree in which exactly two vertices have degree one.

2 Arborizing Steinberg’s argument

The case of the following where C = {1} is due to Steinberg.

2.1 Theorem. Let G := A ∗CB with C finite and A ̸= C ̸= B, and let W denote the subsemigroup of G
generated by (B − C)(A− C). If H is a finitely generated, infinite-index subgroup of G, then there exists
some w ∈ W such that H ∩

∪
g∈G(wW ∪ {w})g = ∅; hence, each element of H is non-conjugate to each

cyclically reduced word that begins with w or w−1.

Proof. Let T denote the graph with vertex-set (G/A)
·
∪ (G/B) and edge-set G/C, with each edge gC

of T having initial vertex gA and terminal vertex gB. By Bass-Serre theory, T is a G-tree. For any
vertices v1 and v2 of T , T [v1, v2] denotes the intersection of all subtrees of T that contain {v1, v2}; if
v1 ̸= v2, then T [v1, v2] is a line-segment-subgraph.

Let S be a finite generating set for H. Set T0 :=
∪

s∈S∪{1} T [A, sA] and H·T0 :=
∪

h∈H h·T0. Then

H·T0 is an H-subgraph of T , and T0 is a finite subtree of H·T0 such that, for each s ∈ S, s·T0 ∩ T0 ̸= ∅.
Hence, the component of H·T0 which contains T0 is stabilized by S, and hence by H; it follows that H·T0
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is an H-subtree of T . Also, H·T0 is H-finite, that is, the graph H\(H·T0) is finite. Fix a ⊆-minimal
H-subtree TH of H·T0.

Consider any w ∈ W . Set (TH :T [A,wB]) := {q ∈ G : T [qA, qwB] ⊆ TH}. Write w =
∏n

i=1(biai)
where n > 1 and, for each i ∈ {1, 2, . . . , n}, bi ∈ B − C and ai ∈ A− C. Let e0 denote the edge 1C
of T . Then the reduced T -path from A to wB is

A
e0−→ B

b1·e−1
0−−−−→ b1a1A

b1a1·e0−−−−→ b1a1B · · ·
∏n−1

i=1 (biai)bn·e−1
0−−−−−−−−−−−−→

∏n
i=1(biai)·A

∏n
i=1(biai)·e0−−−−−−−−−→

∏n
i=1(biai)·B.

Here, e0 ∈ T [A,wB], and, for each q ∈ (TH :T [A,wB]), q·e0 ∈ TH . Notice that (TH :T [A,wB]) is a left
H-subset of G and we have a map

H\(TH :T [A,wB]) → H\TH , Hq 7→ Hq·e0.
Since C is finite, this map is finite-to-one. Since H\TH is finite, H\(TH :T [A,wB]) is finite.

Fix a w ∈ W that ⊆-minimizes the H-finite H-subset (TH :T [A,wB]) of G. Fix a w′ ∈ wW ∪ {w}.
It suffices to show that w′ ̸∈

∪
g∈G Hg.

Suppose this fails. Fix a q ∈ G such that w′ ∈ Hq. Then q−1·TH is a ⟨w′⟩-subtree of T . Now w′ ∈ W
and T [A,w′B] ⊇ T [A,wB]. Set T⟨w′⟩ :=

∪
n∈Z w

′n·T [A,w′B]. It can be seen that T⟨w′⟩ is a ⊆-minimal
⟨w′⟩-subtree of T , on which w′ acts by translation. If T⟨w′⟩ ∩ q−1·TH = ∅, then there exist unique vertices
v1 of T⟨w′⟩ and v2 of q−1·TH that ⊆-minimize T [v1, v2], and then w′ fixes v1 and v2, which contradicts
w′ acting by translation on T⟨w′⟩. Hence, T⟨w′⟩ ∩ q−1·TH ̸= ∅. Now T⟨w′⟩ ∩ q−1·TH is a ⟨w′⟩-subtree
of T⟨w′⟩, and hence is all of T⟨w′⟩. Thus, T [A,wB] ⊆ q−1·TH . Hence, T [qA, qwB] ⊆ TH . Since H has
infinite index in G and C is finite, H\G/C is infinite. Hence, G/C * TH . Thus, G/B * TH . Fix a
g ∈ G such that gB ∈ T − TH . Let v denote that vertex of TH which ⊆-minimizes T [gB, v]. Since TH is
the ⊆-smallest subtree of T that contains H·v, we see that TH ⊆

∪
h∈H TH [qA, h·v]. Fix an h ∈ H such

that qwB ∈ TH [qA, h·v]. Then h−1qwB ∈ TH [h−1qA, v] ( T [h−1qA, gB]. Hence, wB ∈ T [A, q−1hgB].
It follows that q−1hgB = w′′B for some w′′ ∈ W . Now we have T [A,wB] ⊆ T [A,w′′B], and, hence,
(TH :T [A,wB]) ⊇ (TH :T [A,w′′B]). Equality holds by the ⊆-minimality of (TH :T [A,wB]), and, hence,
q ∈ (TH :T [A,w′′B]). Thus, qw′′B ∈ TH . Hence, h−1qw′′B ∈ TH . Since w′′B = q−1hgB, this says that
gB ∈ TH , which is a contradiction.

2.2 Remarks. In the statement of Theorem 2.1 above, the hypothesis that H is finitely generated can
be weakened to the hypothesis that H is generated by some set S′ of the form

(2.2.1) {h1, h2, . . . , hn} ∪
(
H ∩ (Ag1 ∪Ag2 ∪ · · · ∪Agk ∪Bgk+1 ∪Bgk+2 ∪ · · · ∪Bgm)

)
, n > 0,m > k > 0,

where {h1, h2, . . . , hn} ⊆ H and {g1, g2, . . . , gk, gk+1, . . . , gm} ⊆ G, since the above proof of Theorem 2.1
remains valid if S is replaced with S′ and T0 is replaced with

T ′
0 := {A} ∪ (

∪n
i=1 T [A, hiA] ) ∪ (

∪k
j=1 T [A, g−1

j A] ) ∪ (
∪m

j=k+1 T [A, g−1
j B] ).

Collins and Turner (1994) assigned to a subgroup of a free product of groups a certain cardinal that
they called its Kurosh rank, and they pointed out that, by a result of Baer and Levi (1936), this cardinal
is uniquely determined by the subgroup and the given set of free-product factors. In the C = {1} case
of Theorem 2.1, it can be shown by Bass-Serre theory that a subgroup H of A∗B has finite Kurosh rank
if and only if H has a generating set as in (2.2.1).

3 Small-cancellation theory for amalgamated free products

In this section, we shall prove the following.

3.1 Theorem. Let G := A ∗CB with A ̸= C ̸= B, and let g0 :=
∏n

i=1(biai) ∈ G where n > 1 and, for
each i ∈ {1, 2, . . . , n}, ai ∈ A− C and bi ∈ B − C. Suppose that, for all cyclic permutations g1, g2 of the
word g0, all ϵ1, ϵ2 ∈ {−1, 1}, and all c1, c2 ∈ C,

(3.1.1) if c1g
ϵ1
1 = gϵ22 c2, then c1g

6ϵ1
1 = g6ϵ22 c1.

Let p0 be a nontrivial element of the normal closure of g60 in G. Then some G-conjugate of p0 equals

g60, or g
−6
0 , or a cyclically reduced product

∏ℓ
k=1(w

′
kw

′′
k) of nontrivial reduced words such that each w′

k is a

subword of g60 or g−6
0 of length 6n−1, 8n−1, or 10n−1, and

∑3
j=1 j·ℓj > 6, where ℓj denotes the number

of k such that w′
k has length (j + 2)2n−1. In particular, p0 is conjugate to some cyclically reduced word

that begins with g20 or g−2
0 .
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3.2 Remarks. Small-cancellation theory was initiated by Dehn, Greendlinger, and Lyndon for free
groups, by Lyndon for free products, and by Schupp for amalgamated free products. As our proof of
Theorem 3.1 amounts to one of the fundamental arguments of this theory, we take the opportunity to
present an introductory exposition of it, by writing our proof carefully in a relatively unsophisticated
language, with no attempt made to draw more than the one conclusion.

The C′( 16 ) analogue of Theorem 3.1 for free groups is due to Greendlinger, in an extension of work
of Dehn.

The case of Theorem 3.1 where C = {1} is due to Duncan and Howie; here, (3.1.1) clearly holds.
Juhász studies small-cancellation theory for amalgamated free products in the situation where the

following three conditions hold:

• C is malnormal in G;
• g0 is not a C-proper power in the sense of Juhász; and

• Ch−1C ̸= ChC for each letter h occurring in g0.
1

Together these imply that

(3.2.1) C is malnormal in G, and the set of cyclic permutations of g±1
0 meets 4n C-bi-cosets,

which in turn implies (3.1.1), for here g1 = g2, ϵ1 = ϵ2, and c1 = c2 = 1.
If C is malnormal in G and nontrivial, then both (B − C)(A− C) and (A− C)(B − C) contain at

least two C-bi-cosets. (If bca = c1bac2, then bC = c1bC and Ca = Cac2, then c1 = 1 = c2 by malnor-
mality, and then c = 1.) In the situation of interest to us, we may arrange for n to be a prime number
greater than 4, CbnanC ̸= Cbn−1an−1C, and Can−3bn−2C ̸= Can−4bn−3C. Then the set of cyclic per-
mutations of g0 meets 2n C-bi-cosets, and the set of cyclic permutations of g−1

0 meets 2n C-bi-cosets.
To ensure (3.2.1) one could further assume that, for each i ∈ {1, 2, . . . , n}, CbiaiC ̸= Cb−1

i a−1
i−1C where

a0 := an, but that is somewhat unsatisfactory; it does hold if Cb−1
i C ̸= CbiC.

3.3 Definitions. Set Ĉ := C ∪ {∞}, the Riemann sphere.
Let Γ be a finite, nonempty, connected graph engraved on C such that Γ is the one-skeleton of

a CW-structure for Ĉ and the edges of Γ are smooth curves. Thus, each component of Ĉ− Γ is a
topological open disk, called a face for Γ. Let V , E, and F , denote the sets of vertices of Γ, edges of Γ,
and faces for Γ, respectively.

Consider any v ∈ V . Some small circle ∆v in C centered at v has an induced clockwise circle-graph
structure in which the ∆v-vertices and ∆v-edges are the intersections of ∆v with the Γ-edges and Γ-faces
incident to v, with multiplicities. We identify the vertex-set of ∆v with linkΓ(v). Any edge of ∆v is
a subset of some f ∈ F , and its initial vertex e and terminal vertex e′ lie in linkΓ(v); here, we call
(e−1, v, e′) a turn for f .

If E is nonempty and f is a face for Γ, then the set of all the turns for f may be concate-
nated, yielding a sequence of the form (e1, v1, e2, v2, · · · , en, vn, e1) with n > 1. The closed Γ-path
(vn, e1, v1, e2, v2, · · · , en, vn) is called a boundary path for f . The set of boundary paths for f forms
a single orbit under cyclic shifting. In particular, f uniquely determines a conjugacy class, denoted [f ],
in ⟨E | ⟩ such that

∏n
i=1 ei ∈ [f ]. By the boundary of f we mean the subgraph of Γ with vertex-set

{v1, v2, . . . , vn} and edge-set {e1, e2, . . . , en}. The boundary of f is a circle-graph if and only if one/every
boundary path for f is a circle-path.

For any circle-subgraph ∆ of Γ, the two faces for ∆ induce a partitioning of F into two proper subsets,
and each edge of ∆ lies in the boundary of two different faces for Γ.

It follows from Lemma 2 of van Kampen (1933) that, for any enumeration (f1, f2, . . . , fm) of the
set F ,

(3.3.1) [f1]
−1 ⊆ [f2] · · · [fm] ⊆ ⟨E | ⟩;

to see (3.3.1), one finds some enumeration (f1, f2, . . . , fm) of F and some expression of 1 as an element
of [f1][f2] · · · [fm], by recursively eliminating one edge from one circle-subgraph of Γ until Γ becomes a
tree. Since [f1][f2] = [f2][f1], the choice of enumeration can then be made arbitrary.

We now start the proof of Theorem 3.1.

1Rather than this, Juhász requires that G have no elements of order two, which seems to be insufficient.
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3.4 Notation. For each X ∈ {A,B,C}, let X̃ be a set given with a bijective maps of sets X → X̃,

x 7→ x̃. Set S := Ã
·
∪ B̃

·
∪ {ẽ } where ẽ is a new symbol. Let Ω denote the graph with two vertices ιẽ and

τ ẽ, called the A-vertex and the B-vertex, respectively, and edge set S, where the incidence functions of Ω

may be depicted as ιẽ
a−→ ιẽ with a ∈ Ã, τ ẽ

b−→ τ ẽ with b ∈ B̃, and ιẽ
ẽ−→ τ ẽ; these are called the A-edges,

the B-edges, and the ẽ-edge of Ω, respectively. By sending ẽ to 1, we obtain a natural map of sets S → G,
and, hence, a morphism of monoids-with-involution S±1∗ → G, and, hence, a map π : Labels(Ω) → G.

The natural maps C̃ ±1∗ → Ã±1∗ and C̃ ±1∗ → B̃ ±1∗ will be denoted by c 7→ cA and c 7→ cB, respectively.
The Ω-label of a closed Ω-path is said to be G-reduced if it cyclically contains no subword having any of

the following forms: aa′ with a, a′ ∈ Ã±1; bb′ with b, b′ ∈ B̃ ±1; ẽ−1ẽ; ẽ ẽ−1; and ẽ−1cAẽ and ẽcB ẽ
−1

with c ∈ C̃ ±1.
By an Ω-graph we mean a graph Γ given with a graph morphism Γ → Ω. We then speak of the

A-vertices, the B-vertices, the A-edges, the B-edges, and the ẽ-edges of Γ. We have natural maps of sets
Labels(Γ) → Labels(Ω) → G, and will speak of the Ω-label and the G-label for any Γ-path. We shall
sometimes use the notation v

g→→→ w to refer to a Γ-path with G-label g, and similarly for Ω-labels and

Γ-labels. For Γ-paths of length one, we may write v
g−→ w. A closed Γ-path is said to be G-reduced if its

Ω-label is G-reduced. A Γ-path is said to be G-trivial if its G-label is 1, and G-nontrivial otherwise.
In the remainder of this section, we shall be considering a specific finite, connected Ω-graph Γ engraved

on C. In this situation, for any face f for Γ, we say that f is G-reduced if one/each boundary path for f is
G-reduced, and similar terminology applies with ‘G-reduced’ replaced with ‘G-trivial’ or ‘G-nontrivial’.
For g ∈ G, we say that f is a g-face if there exists some boundary path for f which has g as its G-label.
We say that f is an A-polygon if all the vertices in its boundary are A-vertices, and therefore all the
edges in its boundary are A-edges. Similar terminology applies with B in place of A. A circle-subgraph
∆ of Γ will be said to be G-reduced, G-trivial, or G-nontrivial if one/each of the boundary paths of
one/each face for ∆ is G-reduced, G-trivial, or G-nontrivial, respectively.

3.5 Notation. Set r0 := g60 ∈ G. We may write p0 =
∏m

j=1(hjr
ϵj
0 h−1

j ) where m > 0 and, for each
j ∈ {1, 2, . . . ,m}, hj ∈ G and ϵj ∈ {−1, 1}. We take m to be smallest possible. Since p0 ̸= 1, m > 1.

We now engrave an Ol’shanskii-van Kampen graph Γ on C that encodes the given data.

In Labels(Ω), set ĝ0 :=
∏n

i=1(ẽ b̃i ẽ
−1ãi) and r̂0 := ĝ0

6. Recall the map π : Labels(Ω) → G. For each

j ∈ {1, . . . ,m}, firstly, choose a suitable dj > 0 and some ĥj ∈ Ã(ẽ B̃ ẽ−1Ã)dj ⊆ Labels(Ω) such that

π(ĥj) = hj , and, secondly, endow each of the line segments [ 3j−3
3m , 3j−2

3m ], [ 3j−2
3m , 3j−1

3m ], and [3j−1
3m , 3j

3m ]

with the structure of a line-segment Ω-graph such that the resulting path from left to right has the

Ω-label ĥj , r̂0
ϵj , and ĥj

−1
, respectively. The overall result is an Ω-graph engraved on [0, 1]. Let Γ0

denote this graph.
It follows from our construction that no vertex of Γ0 is incident to two ẽ-edges of Γ0. As Γ0 will

contain all the vertices and all the ẽ-edges of the Ω-graph Γ on C that we are building, no vertex of Γ
will be incident to two ẽ-edges of Γ.

For each j ∈ {1, 2, . . . ,m}, we now add to Γ0 an A-edge with Ω-label 1̃A, initial vertex
3j−1
3m , and

terminal vertex 3j−2
3m , engraved as a semicircle in the lower half-plane, that is, the component of C− R

containing −i. Recall that the Γ0-path from left to right for the graph engraved on [3j−2
3m , 3j−1

3m ] has

Ω-label r̂0
ϵj . The overall result is an Ω-graph engraved on C. Let Γ1 denote this graph.

It can be seen that the number of faces for Γ1 ism+ 1; for each j ∈ {1, 2, . . . ,m}, we have an r
−ϵj
0 -face

whose boundary path at 3j−2
3m has Ω-label (r̂0

ϵj 1̃A)
−1, and we have a p0-face whose boundary path at 0

has Ω-label

ĥ1 r̂0
ϵ1 ĥ1

−1
ĥ2 r̂0

ϵ2 ĥ2

−1
· · · ĥm r̂0

ϵm ĥm

−1
ĥm 1̃A ĥm

−1
ĥm−1 1̃A ĥm−1

−1
· · · ĥ1 1̃Aĥ1

−1
.

We shall speak of the p0-face, the r±1
0 -faces, and, soon, the 1-faces. The boundary and the boundary

paths for the p0-face will be called the p0-boundary and the p0-boundary paths, respectively, and the edges
of the p0-boundary will be called the p0-edges. Analogous terminology applies with r±1

0 in place of p0.
At the moment all edges are p0-edges, but that will soon change. The r±1

0 -boundaries are circle-graphs,
and that will be maintained. The p0-boundary is not a circle-graph, but soon it will be.

The next step is to engrave a larger Ω-graph Γ2 on C by cutting corners off the r±1
0 -faces and the

p0-face until they are all G-reduced, as follows.

If v1
ãϵ

−→ v2
ã′ϵ

′

−−→ v3 occurs in a p0-boundary path, with a, a′ ∈ A, we add a semicircle with path
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v1
ãϵa′ϵ′

−−−−→ v3 across the p0-face, creating a new p0-face by cutting off a new A-edge and a new 1-face that
is an A-trigon.

There is an analogous operation with B in place of A.

If some v1
ẽ−1

−−→ v2
cA−−→ v3

ẽ−→ v4 or v1
ẽ−1

−−→ v2
(cA)−1

−−−−→ v3
ẽ−→ v4 occurs in a p0-boundary path, with

c ∈ C̃, we add a semicircle with path v1
cB−−→ v4 or v4

cB−−→ v1, respectively, across the p0-face. Similarly, if

v1
ẽ−→ v2

cB−−→ v3
ẽ−1

−−→ v4 or v1
ẽ−→ v2

(cB)−1

−−−−→ v3
ẽ−1

−−→ v4 occurs, we add v1
cA−−→ v4 or v4

cA−−→ v1, respectively,
across the p0-face. Each such corner cut off consists of an A- or B-edge and a 1-face called an ẽ-tetragon.

In the lower half-plane, we successively cut corners off the p0-face until the resulting graph has a

semicircle with path 1
1̃A−−→ 0. Thenceforth, the p0-boundary will be a circle-graph.

Now, in the upper half-plane, we successively cut corners off the p0-face until it is G-reduced. If the
p0-face is cut down to a digon, and then a monogon, the edges in these two steps cannot be represented
as semicircles and other curves will be required. However, these steps arise if and only if the p0-face is
an A- or B-polygon, that is, p0 ∈ A ∪B, and we shall see eventually that this does not happen, which
implies some cases of the Freiheitssätze of Lyndon, Schupp, Collins and Perraud, Howie, Juhász, and
others.

Turning now to the r±1
0 -faces, we cut off one A-trigon from each r±1

0 -face, and then the resulting
r±1
0 -faces are G-reduced. This completes the construction of Γ2.

The faces for Γ2 are the p0-face, the m r±1
0 -faces, and the 1-faces, each of which is an A- or B-trigon,

-digon, or -monogon, or an ẽ-tetragon, and one trigon may have two vertices. We remark that ∞ lies in
an A-trigon. The boundaries are all circle-subgraphs, except for a hypothetical two-vertex trigon.

The graph Γ we are constructing will be a subgraph of Γ2. Consider any circle-subgraph ∆ of Γ2. By
the exterior of ∆, we mean the face for ∆ that contains the p0-face for Γ2; the other face for ∆ is called
the interior of ∆. All of this terminology will have similar meanings at all stages of the construction
of Γ. We recursively search for a G-trivial A- or B-circle-subgraph ∆ of (the current) Γ2 whose interior
is not a face for Γ2, and, on finding such a ∆ we eliminate from Γ2 all the edges and vertices that lie in
the interior of ∆, thus fusing some vertices, edges, and faces into a new 1-face for the next Γ2. The new
1-face is then an A- or B-polygon. When all G-trivial A- or B-circle-subgraphs of Γ2 are boundaries of
1-faces, we have completed the construction of Γ.

3.6 Remarks. It can be seen that the G-trivial A- or B-circle-subgraphs of Γ have pairwise disjoint
edge-sets.

The faces for Γ are the p0-face, any surviving r±1
0 -faces, and the 1-faces. Each 1-face is an A- or

B-polygon or an ẽ-tetragon. It follows from (3.3.1) and the minimality of m that the number of r±1
0 -faces

is m; that is, they all survive.
All faces have boundaries that are circle-graphs, except for a hypothetical two-vertex trigon.

For the remainder of proof of Theorem 3.1, we fix the following.

3.7 Notation. Let ∆ be an arbitrary circle-subgraph of Γ. Let Υ be the subgraph of Γ obtained by
deleting all those vertices and edges of Γ that lie in the exterior of ∆. It is easy to see that Υ is nonempty
and connected. Now Ĉ is a CW-complex with the vertices and edges of Υ, and the faces for Υ.

Let p′0 ∈ G be the G-label of some boundary path of the exterior of ∆. We shall call the exterior
of ∆ the p′0-face for Υ, and call ∆ the p′0-boundary. The faces for Υ are then the p′0-face and various
1-faces and r±1

0 -faces. Let m′ denote the number of r±1
0 -faces for Υ. By (3.3.1), p′0 is a product of m′

conjugates of r±1
0 ; also by (3.3.1), p0 is a product of a conjugate of p′0 and m − m′ conjugates of r±1

0 .
Hence, m′ is minimal, since m is.

3.8 Notation. Let X denote the CW-complex obtained from the CW-complex Ĉ by the following
sequence of operations: all the A-edges and A-faces for Υ are collapsed to A-vertices, with the exception
that if ∆ is a G-trivial A-circle-graph, then the p′0-face is left untouched even though its boundary is
being collapsed to an A-vertex; then similarly, with B in place of A; at this point all edges are ẽ-edges
joining A-vertices to B-vertices and all ẽ-tetragons have been collapsed to ẽ-digons, and now each ẽ-digon
is to be collapsed to a single ẽ-edge. Notice that if ∆ is a G-nontrivial A- or B-circle-graph, then the
p′0-face is to be collapsed to a vertex; this situation was already exceptional for allowing a two-vertex
trigon, and eventually it will be an excluded case.
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Now X has a CW-structure with vertices, edges, and faces. The one-skeleton X(1) is a graph on X.
There are m′ +1 or m′ faces; these are m′ r±1

0 -faces, together with a p′0-face if it has not been collapsed.
All the X-faces have new attaching maps involving only their old ẽ-edges.

We now present the viewpoint that the cells of X are subsets of Ĉ.
A megavertex M for Υ has as its one-skeleton M (1) a component of that graph which is obtained

from Υ by deleting all the ẽ-edges, and to M (1) are added those faces for Υ whose boundaries lie in M (1),
with the exception that if ∆ is a G-trivial A- or B-circle-graph, the p′0-face is not included in M .

Each ẽ-edge of Υ is incident to exactly two faces for Υ, each of which is an ẽ-tetragon, an r±1
0 -face,

or the p′0-face, since all other faces are A- or B-polygons. By an ẽ-band for Υ we mean a component

of that topological subspace of Ĉ which is the union of all the ẽ-tetragons for Υ and all the ẽ-edges
of Υ. An ẽ-band may be an open annulus, with boundary paths having Ω-labels cA and cB for some
c ∈ C̃±1∗. The second possibility is that an ẽ-band may be an ẽ-edge that appears with its inverse in
a p′0-boundary path. The third and final possibility is that an ẽ-band may be an open disk plus two

ẽ-edges, with a boundary path of the form v0
e1−→ v1

cB→→→ v2
e−1
2−−→ v3

c−1
A→→→ v0 for some c ∈ C̃±1∗, where,

for i = 1, 2, ei is an edge with an ẽ-label, and e
(−1)i

i appears in an r±1
0 - or p′0-boundary path. Since no

vertex is incident to two ẽ-edges, the C-labelled subgraphs associated with annular, resp. disk, ẽ-bands
are circle-subgraphs, resp. line-segment-subgraphs.

We may then view the X-vertices as the megavertices for Υ, the X-edges as the ẽ-bands for Υ, and
the X-faces as the m′ r±1

0 -faces for Υ and, if it is not in a megavertex, the p′0-face for Υ.

3.9 Notation. Create from X a CW-complex Y with a different one-skeleton by recursively making
a degree-one vertex and its incident edge into interior points of the incident face until there are no
degree-one vertices left, and then recursively making a degree-two vertex that is incident to two different
edges into an interior point of a single edge, until either Y (1) has no degree-two vertices or Y (1) is a
one-edge circle graph. By the Y -length of a Y -edge, we mean the number of X-edges it contains.

Let V , E, and F , denote the sets of Y -vertices, Y -edges, and Y -faces, respectively. Then F consists
of m′ r±1

0 -faces and at most one p′0-face. For each f ∈ F , the Y -boundary of f will be denoted ∂f .
Let Fr denote the set of m′ r±1

0 -faces in Y , and let Er denote the set of Y -edges that are in
Y -boundaries of elements of Fr. Set Fp := F − Fr, and let Ep denote the set of Y -edges that are in
Y -boundaries of elements of Fp.

Set Erp := Er ∩ Ep and Err := Er − Ep. Let Frr denote the set of r±1
0 -faces whose Y -boundaries

have all edges in Err. Let Frp := Fr − Frr, the set of r±1
0 -faces whose Y -boundaries have at least one

Y -edge in Ep. For each fr ∈ Fr, set degrr(fr) := |Err ∩ ∂fr| and degrp(fr) := |Erp ∩ ∂fr|. We define
degrr(Frr) :=

∑
fr∈Frr

degrr(fr), and so on.

3.10 Lemma. With the foregoing notation, the following hold.

(i) For all f, f ′ ∈ Fr, if f ̸= f ′, then each Y -edge of ∂f ∩ ∂f ′ has Y -length at most 2n.

(ii) |V | − |E|+ |F | = 2.

(iii) If |Fr| = 0, then p′0 = 1. If |Fr| = 1, then p′0 is a G-conjugate of r0 or r−1
0 .

(iv) If |Fr| > 2, then 6|F | − 12 > 2|E|.
(v) For each f ∈ Fr, ∂f is a circle-subgraph of Y (1).

(vi) 6|Frr| 6 degrr(Frr) 6 degrr(Fr) = 2|Err|.
(vii) Every closed path in a megavertex for Υ is G-trivial.

Proof. We argue by induction on the number of faces for Υ that lie in the interior of ∆.
If there is only one face in the interior of ∆, then that face is an A- or B-polygon, an ẽ-tetragon, or an

r±1
0 -face. An A- or B-polygon gets collapsed to a vertex, while the complementary p′0-face, as a special
case, remains an open disk, and then Y is a sphere and Y (1) is a vertex. An ẽ-tetragon gets reduced to
a vertex, in stages, while the complementary p′0-face remains an open disk, and then Y is a sphere and
Y (1) is a vertex. For an r±1

0 -face, the A- and B-edges get collapsed to vertices, and then Y is a sphere
and Y (1) is a circle-graph with one edge of Y -length 12n. In all these cases, (i)–(vii) hold.

Thus, we may assume that there are at least two faces for Υ in the interior of ∆, and that, for any
circle-subgraph ∆′ of Υ, if ∆′ ̸= ∆, then the analogues of (i)–(vii) with ∆′ in place of ∆ all hold.

Two ẽ-edges that appear in an Υ-boundary path of an r±1
0 -face with only one intervening A- or

B-edge cannot lie in some ẽ-band, by the induction hypothesis applied to (vii) and the fact that no
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letter of r0 lies in C. Hence, the X-boundary path of each r±1
0 -face has no backtrackings. Hence, each

Y -boundary path of each r±1
0 -face has Y -length 12n.

(i). Suppose that (i) fails. In terms of Υ, this entails that we have all of the following data:
• γ = (v0, e0, v1, x1, v2, e1, v3, x2, v4, e2, v5, x3, . . . , x2n−1, v4n−2, e2n−1, v4n−1, x2n, v4n, e2n, v4n+1) is
an Υ-path which is the beginning of an Υ-boundary path of f . Each vi is a vertex, each ei
has an ẽ±1-label, and each xi has an (Ã ∪ B̃)±1-label. Let qi denote the G-label of xi, and set

g1 :=
∏2n

i=1 qi, which is the G-label of γ. Then g61 is the G-label of the Υ-boundary path of f that
begins with γ, and g1 is a cyclic permutation of g0 or g−1

0 .
• γ′ = (v′0, e

′
0, v

′
1, x

′
1, v

′
2, e

′
1, v

′
3, x

′
2, v

′
4, e

′
2, v

′
5, x

′
3, . . . , x

′
2n−1, v

′
4n−2, e

′
2n−1, v

′
4n−1, x

′
2n, v

′
4n, e

′
2n, v

′
4n+1) is

an Υ-path which is the beginning of the inverse of an Υ-boundary path of f ′. Each v′i is a vertex,

each e′i has an ẽ±1-label, and each x′
i has an (Ã ∪ B̃)±1-label. Let q′i denote the G-label of x′

i, and

set g′1 :=
∏2n

i=1 q
′
i, which is the G-label of γ′. Then g′−6

1 is the G-label of the Υ-boundary path of f ′

that ends with γ′−1, and g′1 is a cyclic permutation of g0 or g−1
0 .

• For each i ∈ {0, 1, 2, . . . , 2n}, v′2i
γ2i→→→ v2i

ei−→ v2i+1

γ−1
2i+1→→→ v2i+1

e′−1
i−−−→ v′2i is an Υ-boundary path

of some ẽ-band fi. (By the construction of Γ, ei ̸= e′i.) For each j ∈ {0, 1, 2, . . . , 4n+ 1}, let cj ∈ C
denote the G-label of γj . Then c2i = c2i+1.

For each i ∈ {1, 2, . . . , 2n}, the closed megavertex-path

v′2i−1

γ2i−1→→→ v2i−1
xi−→ v2i

γ−1
2i→→→ v′2i

x′−1
i−−−→ v′2i−1

lies in the interior of ∆, and, hence, is G-trivial, by the induction hypothesis applied to (vii); thus,
c2i−1qi = q′ic2i = q′ic2i+1 in G. Now

c1g1 = c1
∏2n

i=1 qi = (
∏2n

i=1 q
′
i)c4n+1 = g′1c4n+1.

By (3.1.1), c1g
6
1 = g′61 c1 = g′61 c0. We then eliminate all the ẽ-edges that lie in the band f0. This fuses

f ∪ f0 ∪ f ′ into a single face, which is a 1-face since one of its boundary paths has G-label c1g
6
1c

−1
0 g′−6

1 . In

summary, we have a new graph engraved on Ĉ, with m′ − 2 r±1
0 -faces, one p′0-face, and various 1-faces.

By (3.3.1), p′0 is then a product of m′ − 2 conjugates of r±1
0 . This contradicts the minimality of m′.

Hence, (i) holds.
(ii). It suffices to prove the analogous equality withX in place of Y , and forX it suffices to show that

each megavertex for Υ has Euler characteristic 1, and that each ẽ-band for Υ has Euler characteristic −1.
Consider any A-megavertex M for Υ.
Consider the case where ∆ ⊆ M . Then ∆ is an A-circle-subgraph of Γ. If ∆ were G-trivial, then

there would be only one face for Υ in the interior of ∆, by the construction of Γ, and we are assuming this
is not the case. Hence ∆ is G-nontrivial, and then the p′0-face also lies in M , by the construction of X.
If some edge of ∆ lies in a G-trivial A-circle-subgraph, we could find a G-nontrivial A-circle-subgraph
that is different from ∆. This contradicts the induction hypothesis applied to (vii). Hence, in all cases,
no edge in M lies in the boundary of two faces of M .

Thus we could eliminate one edge from the boundary of each face, as well as the face, eventually
transforming M into a connected graph, without changing the Euler characteristic. If this graph were
not a tree, then it would contain an A-circle-subgraph ∆′ which is not the boundary of a face of M . If
∆′ is G-trivial, then, by the construction of Γ, ∆′ is the boundary of an A-face, which is a face of M . If
∆′ is G-nontrivial, then by the induction hypothesis applied to (vii), ∆′ = ∆, and by the construction
of X, the p′0-face of X is a face of M . These are contradictions. Hence the graph that would remain
would be a tree, and M must have Euler characteristic 1.

Consider any ẽ-band N for Υ.
Consider first the case where N is an annulus. At least one boundary component ∆′ of N is not ∆.

By the induction hypothesis applied to (vii), the C-circle-subgraph ∆′ is G-trivial. By the definition of
ẽ-tetragons, the other boundary component ∆′′ of N is also G-trivial. By the construction of Γ, both
∆′ and ∆′′ are boundaries of C-polygons in the interior of ∆, and N does not exist.

It now remains to consider the case where N is not an annulus. Here, the number of edges in N is
one more than the number of faces in N , and there are no vertices in N . Thus, the Euler characteristic
of N is −1.

Since Ĉ has Euler characteristic 2, so too do X and Y .
(iii) follows from (3.3.1).
(iv). If |Fr| > 2, then, by (i), Y (1) is not a one-edge circle-graph. By the definition of Y , every

Y -vertex has degree at least three. Thus, 3|V | 6 deg(V ) = 2|E|. By (ii),

7



6|F | − 12 = 6|E| − 6|V | > 6|E| − 4|E| = 2|E|.
(v). Suppose that (v) fails. Then there exists some r±1

0 -face f and some megavertex M for Υ
that contains two A- or B-edges of the Υ-boundary of f . It follows that there exist two vertices v1, v2
in Υ, and three line-segment-subgraphs L, ∂−, and ∂+ in Υ all with endpoints v1 and v2, such that the
following hold: ∂− ∩ ∂+ = ∂− ∩ L = ∂+ ∩ L = {v1, v2}; ∂− ∪ ∂+ is the Υ-boundary of f ; L ⊆ M ; and f
lies in the interior of the circle-subgraph ∂+ ∪ L and in the exterior of the circle-subgraph ∂− ∪ L.

One of the G-labels of the circle-subgraph ∂− ∪ L is the product of an odd-length subword of a cyclic
permutation of r±1

0 and an element of A ∪B. Hence, ∂− ∪ L is G-nontrivial. By (3.3.1), |Fr| > 2. By
(iv), 6|F | − 12 > 2|E|.

It follows from the induction hypothesis applied to (v) that ∆ = ∂+ ∪ L and that there is no other
incidence of a megavertex for Υ containing two edges of the Υ-boundary of an r±1

0 -face for Υ. Although
(v) fails, no Y -edge and its inverse both occur in the Y -boundary path of an r±1

0 -face of Y . It follows
from (i) that 6|Frr| 6 degrr(Frr) 6 2|Err|.

In Y , L is collapsed to a vertex, and f becomes a pinched annulus that engulfs the interior of ∂− ∪ L.
Since ∂+ contains at least one ẽ-edge, the p′0-face does not get collapsed in X and Y . It follows that
|Fp| = 1, Frp = {f}, Er = E, and Erp consists of a single Y -edge obtained as a quotient of ∂+. Hence,
|Err| = |E| − 1 and |Frr| = |F | − 2.

Now 2|E| 6 6|F | − 12 = 6|Frr| 6 2|Err| = 2|E| − 2, which is a contradiction. Hence, (v) holds.
(vi) follows from (i) and (v).
(vii). Suppose that (vii) fails. Any closed path contains either a backtracking or a circle-subpath.

It follows that there exists a G-nontrivial A- or B-circle-subgraph ∆′ in Υ. By the induction hypothesis
applied to (vii), ∆′ = ∆. Thus, p′0 ∈ (A ∪B)− {1}. By (iii), |Fr| > 2. By (iv), 6|F | − 12 > 2|E|.

In the construction of X and Y , the p′0-face and its Υ-boundary are collapsed to a vertex. Thus, in Y ,
Fp = Ep = Frp = ∅, F = Frr, and E = Err. By (vi), 6|F | 6 2|E|, which contradicts 6|F | − 12 > 2|E|.
Hence, (vii) holds.

3.11 Notation. By Lemma 3.10(vii), ∆ is not a G-nontrivial A- or B-circle-subgraph, and, hence,
Y has a p′0-face. The p′0-face of Y will be denoted fp.

For each j ∈ {1, 2, 3}, set F (j) := {fr ∈ Frp | degrp(fr) = 1 and degrr(fr) = 4− j}.

3.12 Corollary. If |Fr| > 2 and ∂fp is a circle-subgraph of Y (1), then
∑3

j=1 j·|F (j)| > 6.

Proof. By Lemma 3.10(vii), |Fr| = |F | − 1. Since ∂fp is a circle-graph, Er = E. Since |Fr| > 2,
6|F | − 2|E| > 12, by Lemma 3.10(iv). Hence, 6|Fr| − 2|Er| = 6|F | − 6− 2|E| > 6.

By Lemma 3.10(vi), 6|Frr| 6 degrr(Frr) 6 degrr(Fr) = 2|Err|. Hence,

degrr(Frp) = degrr(Fr)− degrr(Frr) 6 2|Err| − 6|Frr|.
Clearly, degrp(Frp) = |Erp|. Now,∑

fr∈Frp

(
6− 2 degrp(fr)− degrr(fr)

)
= 6|Frp| − 2 degrp(Frp)− degrr(Frp)

> 6|Frp| − 2|Erp| − (2|Err| − 6|Frr|) = 6|Fr| − 2|Er| > 6.

Consider any fr ∈ Frp. Since ∂fp is a circle-graph, and ∂fr is a circle-graph by Lemma 3.10(v), it can
be seen that in ∂fr the Erp-edges are separated from each other by intervening Err-edges. Hence, either
degrp(fr) = 1 or degrr(fr) > degrp(fr) and 6− 2 degrp(fr)− degrr(fr) 6 0. The result then follows.

Proof of Theorem 3.1. We now take ∆ to be the p0-boundary in Γ. Then Υ = Γ, and we take p′0 = p0. Re-
call that ∆ is G-reduced, by the construction of Γ. It follows from Lemma 3.10(vii) that the X-boundary
of fp has no backtrackings; hence, the Y -length of a Y -boundary path of fp equals the length of our
cyclically reduced expression for p0.

We argue by induction on m. If m = 1, then p0 is a G-conjugate of r0 or r−1
0 , as desired. Thus, we

may assume that m > 2, and that the corresponding result holds for smaller m. There are two cases.
If ∂fp is not a circle-subgraph of Y (1), then some megavertex M for Γ contains two edges of ∆, say M

is an A-megavertex. By (3.3.1), there then exist x1, x2, y1, y2 ∈ A and p1, p2 ∈ G such that the following
hold: p1x1p2x2 is a reduced expression of a cyclic permutation of our cyclically reduced expression for p0;
p1y1 is a product of n1 conjugates of r±1

0 ; p2y2 is a product of n2 conjugates of r±1
0 ; and n1 + n2 = m.

It can be seen that p1y1 and p2y2 are nontrivial. By the induction hypothesis, there exist G-conjugates
of p1y1 and p2y2 that have factorizations of a desired form, with distinguished factors that are subwords
of r±1

0 . As it is cyclically reduced, p1x1 then has a factorization of a desired form that employs all but
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one of the distinguished factors of the G-conjugate of p1y1, and in the case where the G-conjugate of
p1y1 is r±1

0 , p1x1 has a distinguished factor of length 10n−1. If ℓ′1, ℓ
′
2, ℓ

′
3 denote the numbers of the

distinguished factors of p1x1 of lengths 6n−1, 8n−1, and 10n−1, respectively, then ℓ′1 + 2ℓ′2 + 3ℓ′3 > 3.
The analogous result holds for p2x2. Now p1x1p2x2 has been written in the desired form.

It remains to consider the case where ∂fp is a circle-subgraph of Y (1). We have |Fr| = m > 2.
Consider any j ∈ {1, 2, 3} and any fr ∈ F (j). By Lemma 3.10(i), the Err-part of ∂fr has Y -length
at most (4− j)(2n). Thus, the Erp-edge of ∂fr has Y -length at least 12n−

(
(4− j)(2n)

)
, that is,

(j + 2)2n. Hence, the G-label of the Erp-edge of ∂fr has length at least (j + 2)2n− 1, since then we are
counting megavertices. This G-label is a cyclic subword of r±1

0 , which then contains a subword of r±1
0 of

length (j + 2)2n− 1, since this is less than 10n. As in the proof of Lemma 3.10(i), up to left and right
multiplication by elements of C, this subword of r±1

0 equals a subword of a cyclic permutation of our
cyclically reduced expression for p0, since the Erp-edge of ∂fr is an edge of ∂fp. Now Corollary 3.12 gives
a desired factorization of a cyclically reduced G-conjugate of p0, since the Y -vertices of ∂fp correspond
to megavertices for Γ that give nontrivial letters, which can absorb elements of C.
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