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Abstract. Let F be any finite-rank free group, and R be any finite subset of
{
g, [g] : g ∈ F−{1}

}
, where

[g] := {fgf−1 : f ∈ F}. By an R-allocating F -factorization we mean a set H of nontrivial subgroups of F

such that ∗
H∈H

H = F and R ⊆
{
h, [h] : h ∈ H,H ∈ H

}
. We show that Whitehead’s (fast) cutvertex al-

gorithm inputs the pair (F,R) and outputs a maximum-size R-allocating F -factorization. Richard Stong

showed this in the case where R ⊆ F or R ⊆ {[g] : g ∈ F}, thereby unifying and generalizing a collection of

results obtained by Berge, Bestvina, Lyon, Shenitzer, Stallings, Starr, and Whitehead. Our proof is based
on the interaction between two normal forms for the elements of F , rather than the algebraic topology of
handlebodies, trees, or graph folding.

1. Outline

Throughout this article, let F be any finite-rank free group, X be any F-basis, and R be any finite set
that consists of nontrivial F-elements and nontrivial F-classes. (An F-basis is a free-generating set for F , an
F-element is an element of F , and a (nontrivial) F-class is the conjugacy class of a (nontrivial) F-element.)

For f, g ∈ F and B ⊆ F , we write fg := fgf−1, Fg := {hg : h ∈ F}, and {F}B := {Fb : b ∈ B}.
Suppose that H is a multiset of subgroups of F such that the induced map ∗

H∈H
H → F is an isomorphism.

Here, we say that H is an F-factorization, and call the elements of H the factors. Sometimes we also say
that the expression ∗

H∈H
H is an F-factorization. We say that the F-factorization H is R-allocating if each

element of H is nontrivial and R ⊆ {h, Fh : h ∈ H,H ∈ H}. If, moreover, no proper free-product refinement
of ∗

H∈H
H is R-allocating, we say that the R-allocating F-factorization H is atomic. Since F has finite rank,

atomic R-allocating F-factorizations exist, and we want to be able to find one as quickly as possible.
In §2, we review the earlier results on this topic, starting with Whitehead’s cutvertex lemma.
In §3, we show that atomic R-allocating F-factorizations are all as similar to each other as may reasonably

be expected. When R ⊆ F , each atomic R-allocating F-factorization gives the unique inclusion-smallest
free-product factor of F which includes R; this is the only information it gives when |R| = 1, where we may
as well assume that R ⊆ F .

In §4, we give a careful treatment of concepts introduced by Whitehead(1936-01, §2). We denote by
P(X;R) the finest partition of X that respects the X-support of each element of R, which means that
the F-factorization ∗

Y∈P(X;R)
⟨Y ⟩ is R-allocating; this appeared in work of Hoare &Karrass &Solitar(1971, §2)

with different notation and terminology. Using P(X;R) and Whitehead’s graphs, we define R-cutvertex-free
F-bases. We then present Whitehead’s cutvertex algorithm, §4.6 below, which inputs the pair (X,R) and
outputs an R-cutvertex-free F-basis. (By an algorithm we mean a procedure with choices whose possible
outputs have some specified property.)

In §5, we present the general cutvertex lemma, §5.2 below, which says

(1) if X is R-cutvertex-free, then the R-allocating F-factorization ∗
Y∈P(X;R)

⟨Y ⟩ is atomic.

In summary, we show that Whitehead’s (fast) cutvertex algorithm inputs the pair (X,R) and outputs an
atomic R-allocating F-factorization.
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2. Chronology of proofs of cases of the general cutvertex lemma

• Whitehead(1936-01) proved the case of (1) where R is a subset of B or {F }B for some F -basis B; in
detail, he used the algebraic topology of a certain three-manifold to prove that if X is R-cutvertex-free here,

then R is a subset of X ∪X−1 or {F }(X ∪X−1) respectively. This is called Whitehead’s cutvertex lemma,
§5.3 below. Gersten(1984, Example) announced that graph-theoretic machinery he had developed could be
used to prove the R ⊆ X ∪X−1 result, and Hoare(1988, Theorem 3) provided such a proof.

Put together, Whitehead’s cutvertex algorithm and cutvertex lemma constituted the first-ever sub-basis
algorithm, by which we mean an algorithm which extends a given finite subset of F to an F-basis or determines
that that is not possible, and analogously for a given finite set of F-classes.

• Shenitzer(1955, Corollary) used another result of Whitehead(1936-10, Theorem 3) to prove the case
of (1) where |R| = 1 and X is R-minimizing; the latter concept is defined in §5.4 below.

• Lyon(1980, Theorem 1) developed Shenitzer’s method to prove the case of (1) where R is a subset of
F or {F }F and X is R-minimizing.

• Starr(1992) gave cutvertex arguments which, in the form distilled by Wu(1996, §1), and in the light of a
result of Lyon(1980, Theorem2), prove what is the case of (1) where R is the set of F-classes determined by a
finite set of disjoint simple closed curves on the boundary of a handlebody which has F as fundamental group.
It was Stallings(1999, §3) who realized that Whitehead’s cutvertex algorithm was being given a completely
new application here.

• John Berge, in a 1993 preprint, proved the case of (1) where |R| = 1, by using the algebraic topology
of Whitehead’s three-manifold; see Stallings(1999, Corollary 2.5). Nataša Macura kindly informed me that
Mladen Bestvina independently proved the same case, by analyzing infinite paths in a Cayley tree; see
Martin(1995, Theorem49).

• Stong(1997, Theorem3) proved the case of (1) where R ⊆ {F }F , by analyzing bi-infinite paths in a
Cayley tree. Independently, Stallings(1999, Theorem2.4) proved the same case, by using the algebraic
topology of Whitehead’s three-manifold. An elegant graph-theoretic folding proof was given by Wilton(2018,
Lemma 2.10) and, independently, by Heusener &Weidmann(2019, §3).

• Stong(1997, Theorem10) proved the case of (1) where R ⊆ F , by using the algebraic topology of a
handlebody. A Bass-Serre-theoretic two-tree proof was given by Dicks(2014, §2).

3. Atomic R-allocating F-factorizations

Recall that F is a finite-rank free group and R is a finite subset of
{
g, Fg : g ∈ F−{1}

}
.

3.1. Definitions. Artin(1926) gave the normal form for an element of a free product of groups, as presented
by Serre(1977, I.1.2.1). This may be used to prove that if H is any F-factorization, then, for any H1,H2 ∈ H

and g1, g2 ∈ F , if g1H1 ∩ g2H2 ̸= {1} in F , then g1H1 = g2H2 in F , and H1 = H2 in H and in F . This
implication may also be viewed as a consequence of the result of Serre(1977, I.5.3.12) that if H ̸= ∅, then the
disjoint union of the left F-sets F/H, H ∈ H, is the vertex-set of a left F-tree with trivial edge stabilizers.

Recall that an F-factorization H is said to be R-allocating if each element of H is nontrivial, each
F-element r ∈ R is an element of some H ∈ H, and each F-class r ∈ R contains an element of some H ∈ H,
which implies that r∩H is an H-class; in each case, we now see that the element H of H is uniquely
determined by r, and we shall say that r is allocated to the factor H. For each H ∈ H, we write R|H,H

to denote the set of elements of R which are allocated to H, sometimes viewed as a set of H-elements and
H-classes. Notice that {R|H,H : H ∈ H} − {∅} is a partition of R.

If F = {1}, then R = ∅, and ∅ is the unique R-allocating F-factorization. If F ̸= {1}, then {F} is an
R-allocating F-factorization; if it is the only one, then we say that F is an R-atom. Thus, an R-allocating
F-factorization H is atomic if and only each H ∈ H is an R|H,H-atom. �
3.2. Proposition. All the atomic R-allocating F-factorizations have the same number of factors. They all
induce the same partition of R. For each r ∈ R, they all have the same F-conjugacy orbit of the factor to
which r is allocated, and if r is an F-element, they all have the same factor to which r is allocated. All the
factors with no elements of R allocated to them are free subgroups of rank one.

Proof. Consider any two atomic R-allocating F-factorizations H and K, and any H ∈ H. The subgroup
theorem of Kurosch(1934) gives an H-factorization H0 ∗ ∗

K∈K
∗

a∈AH,K

(H ∩ aK) where H0 is a free group
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and, for each K ∈ K, AH,K is a certain subset of F such that 1 ∈ AH,K and the map AH,K → H\F/K,
a 7→ H·a·K, is bijective; see, for example, Serre(1977, I.5.5.14). Kurosch’s theorem may be used to prove
the result of Nielsen(1921) that H is a free group.

Consider any r ∈ R|H,H. There exists a (necessarily unique) K ∈ K such that if r is an F-element,
then r ∈ H and r ∈ K, while if r is an F-class, then r contains an H-element h and a K-element k. In
the former event, r ∈ H ∩ 1K. In the latter event, since r is an F-class, h = gk for some g ∈ F , and then

g = h′·a·k ′ for some (h′, a, k ′) ∈ H ×AH,K ×K, and then r contains h′−1

h = a·k′
k ∈ H ∩ aK. Thus, we obtain

an R|H,H-allocating H-factorization from H0 ∗ ∗
K∈K

∗
a∈AH,K

(H ∩ aK) by omitting all the trivial factors.

Since H is an atomic R-allocating F-factorization, H is an R|H,H-atom, and there are three possibilities. If
R|H,H = ∅, then the rank of H is 1. If R|H,H contains an H-element, then H = H ∩K and R|H,H ⊆ R|K,K;
by symmetry, K = K ∩H = H and R|H,H = R|K,K. If R|H,H is nonempty and consists of H-classes, then
H = H ∩ aK and R|H,H ⊆ R|K,K; by symmetry, K is also included in an F-conjugate of H, and we see that
H = aK and R|H,H = R|K,K. The result now follows. �

3.3. Corollary (Stong). If R is a subset of B or {F }B for some F -basis B, then each atomic R-allocating
F -factorization equals ∗

x∈X
⟨x⟩ for some F -basis X such that R is a subset of X or {F }X respectively. �

4. Whitehead’s cutvertex algorithm

Recall that F is a finite-rank free group, X is an F-basis, and R is a finite subset of
{
g, Fg : g ∈ F−{1}

}
.

4.1. Notation. We write X±1 := X ∪X−1 and X0,±1 := {1}∪X±1.
If r is any F-element (resp. nontrivial F-class), then by an X±1-word for r we mean any finite sequence

(x1, x2, . . . , xn) of elements of X±1 such that r equals (resp. contains) the product x1x2 · · ·xn; here, we
set x0 := 1 (resp.x0 := xn) and xn+1 := 1 (resp.xn+1 := x1). There exists some X±1-word (x1, x2, . . . , xn)
for r such that x−1

i ̸= xi+1 for each i ∈ {0, 1, 2, . . . , n}, and such a word is unique (resp. unique up to cyclic
permutation), which allows us to define

X-length(r):=n, X-turns(r):=
{
(x0

−1, x1), (x1
−1, x2), . . . , (xn

−1, xn+1)
}
, X-support(r):={x1, x2, . . . , xn}±1∩X.

We call each element of X-turns(r) an X-turn of r. If r is the trivial F-class, we define X-length(r):=0,
X-turns(r) := ∅, and X-support(r):=∅. It is not difficult to see that if r is any F-class, then, for each g ∈ r,
X-turns(r) ⊆ X-turns(g2).

Let R′ be any subset of F ∪ {F }F . We write

X-length(R′) :=
∑

r∈R′
X-length(r) ∈ {∞, 0, 1, 2, . . .} and X-turns(R′) :=

∪
r∈R′

X-turns(r) ⊆ X0,±1×X0,±1.

We call each element of X-turns(R′) an X-turn of R′. We denote by P(X;R′) the finest partition of X such
that, for each r ∈ R′, some element of the partition includesX-support(r). We define an operation which takes
a set of subsets of X with two overlapping elements and replaces those two subsets with their union, thereby
reducing the number of subsets; if we start with the (finite) set {X-support(r) : r ∈ R′} ∪

{
{x} : x ∈ X

}
and apply this operation as often as possible, then we obtain P(X;R′). �
4.2. Definitions. For any set V and any element (v, w) of V×V , we say that (v, w) meets each subset of V
which contains v or w; we say also that (v, w) meets v and w.

By a graph Γ, we mean a set V together with a subset E of V×V . Then V is called the vertex-set of Γ,
denoted VΓ, and its elements are called Γ-vertices, while E is called the edge-set of Γ, denoted EΓ, and
its elements are called Γ-edges. A Γ-vertex v† is said to be a cutvertex of Γ (in the sense of Whitehead) if

VΓ−{v†} equals the union of two disjoint nonempty subsets V1 and V2 such that V1
Γ↮ V2, where this symbol

means “ no Γ-edge meets both V1 and V2”. We shall use corresponding depictions of related phrases.
We let W(X,R) denote the graph whose vertices are those elements of X0,±1 which are met by some

X-turn of R and whose edges are the X-turns of R. A cutvertex of W(X,R) is called an X-cutvertex of
W(X,R) if it lies in X±1, that is, it does not equal 1.

For each Y ∈P(X;R), we set R|Y,X := {r ∈ R : X-support(r) ⊆ Y }; then {R|Y,X : Y ∈P(X;R)}−{∅} is
a partition of R. We sometimes view the elements of R|Y,X as ⟨Y ⟩-elements and ⟨Y ⟩-classes; here,
P(Y ;R|Y,X) = {Y }. We say X is R-cutvertex-free if, for each Y ∈P(X;R), W(Y,R|Y,X) has no Y-cutvertices.

An F -basis X ′ is a Whitehead neighbour of X if X ′ ⊆ {1, y−1}·X·{1, y} for some y ∈ (X ∩X ′)±1. �
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4.3. Examples. If X = {x, y} and R = {x, Fy}, then EW(X,R) =
{
(x−1, 1), (1, x), (y−1, y)

}
and W(X,R)

has four X-cutvertices. Here, P(X;R) =
{
{x}, {y}

}
, and X is R-cutvertex-free.

IfX={x, y} andR={x2yx−1y−1}, then EW(X,R)=
{
(1, x), (x, y−1), (y−1, x−1), (x−1, y), (y, 1), (x−1, x)

}
and W(X,R) has no cutvertices. Here, P(X;R) = {X}, and X is R-cutvertex-free. �
4.4. Remarks. In W(X,R), each vertex is met by some edge; each edge meets two vertices since 1 ̸∈ R;
VW(X,R) = ∅ if and only if R = ∅; and 1 ∈ VW(X,R) if and only if R contains some F-element.

By partitioning X manually, we reduce our study to the case where P(X;R) = {X}. With the exception
of the famous final phrase in the statement of Whitehead’s cutvertex lemma, §5.3 below, we shall work with
W(X,R) only in the case where P(X;R) = {X}. One consequence is that connectivity is not mentioned in
our arguments.

Suppose that P(X;R) = {X}. Here, X ̸= ∅. If R = ∅, then |X| = 1 and VW(X,R) = ∅. If R ̸= ∅,
then X±1 ⊆ VW(X,R) ⊆ X0,±1. If W(X,R) has an X-cutvertex, then Subroutine 4.5 below constructs a
Whitehead neighbour X ′ of X such that X ′-length(R) < X-length(R). If W(X,R) has no X-cutvertices,
then Theorem 5.1 below says that F is an R-atom (Gr.

,
άτoµ-oς ‘no cut’). �

Whitehead, Stong, Stallings, and others gave cases of the following, using similar ideas.

4.5. Subroutine. When P(X;R) = {X} and W(X,R) has an X-cutvertex, the following three-step procedure
outputs a Whitehead neighbour X ′ of X such that X ′-length(R) < X-length(R).

Step 1. We set Γ := W(X,R). We shall see that X±1 ⊆ VΓ ⊆ X0,±1. We shall find a y† ∈ X±1 and an

expression of VΓ−{y†} as the union of two disjoint subsets Y− and Y+ such that y−1
† ∈ Y−

Γ↮ Y+
Γ↔ y†.

Here, X±1 ⊆ VΓ ⊆ X0,±1 since P(X;R) = {X} and VΓ ̸= ∅. Since Γ has an X-cutvertex, we may find
some x† ∈ X±1 and express VΓ−{x†} as the union of two disjoint nonempty subsets X− and X+ such

that x−1
† ∈ X−

Γ↮ X+. If X+
Γ↔ x†, then setting y† := x†, Y− := X−, and Y+ := X+ gives the desired re-

sult; thus, we may assume that X+
Γ↮ x†. Here, VΓ equals the union of two disjoint nonempty subsets

Y− := X− ∪ {x†} and X+ such that Y−
Γ↮ X+. For each v ∈ X+, v

Γ↔ X+−{v}; in particular, X+ ̸= {1}.
Since P(X;R) = {X}, the set {⟨X+⟩, ⟨Y−⟩} is not an R-allocating F-factorization induced by a partition
of X, which means that there exists some y† ∈ X+ such that y−1

† ∈ Y−. Now VΓ−{y†} equals the union of

two disjoint subsets Y− and Y+ := X+−{y†} such that y−1
† ∈ Y−

Γ↮ Y+
Γ↔ y†. Step 1 is completed. We have

no further need of the two original hypotheses.

Step 2. We have found y† ∈ X±1, and we shall construct an ℓ ∈ {−1, 0} and a map χ : X0,±1 → {ℓ, ℓ+1},
v 7→ χ(v), such that the following hold: χ(1) = 0; χ(y†) = χ(y−1

† ) = ℓ; at least one X-turn (v, w) of R is χ-cut

in the sense that χ(v) ̸= χ(w); and every χ-cut X-turn of R meets y†.
We set ℓ := −

∣∣{1} ∩ Y+

∣∣, and form the map χ which carries {1} to {0}, Y− ∪ {y†} to {ℓ}, and Y+ to
{ℓ+1}; our choice of ℓ ensures that χ is well-defined. The χ-cut X-turns of R are then the Γ-edges which
meet y† and Y+, of which there exists at least one. Step 2 is completed. We have no further need of Step 1.

Step 3. We shall construct a Whitehead neighbour X ′ of X such that X ′-length(R) < X-length(R).

We set x′ := y
−χ(x)
† ·x·yχ(x−1)

† for each x ∈ X±1, and set X ′ := {x′ : x ∈ X}. Then (x′)−1 = (x−1)′,
y′† = y†, and X ′ is a Whitehead neighbour of X. We consider an arbitrary r ∈ R, and let (x1, x2, . . . , xn)

be a shortest possible X±1-word for r. Then n > 1. If r is an F-element, we set x0 := xn+1 := 1; if r is an
F-class, we set x0 := xn and xn+1 := x1. For each i ∈ {0, 1, . . . , n}, (x−1

i , xi+1) is an X-turn of r, and we let

ki denote the unique element of the subset χ
(
{x−1

i , xi+1} − {y†}
)
of {ℓ, ℓ+ 1}. For each i ∈ {1, 2, . . . , n}, we

set gi := y
−ki−1

† xiy
ki

† , and we then have the following trichotomy:

Possibility 1: xi = y† and (x−1
i−1, xi) is χ-cut; equivalently, ki−1 ̸= χ(xi).

Here ki = χ(x−1
i ) since x−1

i ̸= y†, and then gi = y
−ki−1

† xiy
ki

† = y
−(ℓ+1)+(1)+(ℓ)
† = 1.

Possibility 2: xi = y−1
† and (x−1

i , xi+1) is χ-cut; equivalently, ki ̸= χ(x−1
i ).

Here ki−1 = χ(xi) since xi ̸= y†, and then gi = y
−ki−1

† xiy
ki

† = y
−(ℓ)+(−1)+(ℓ+1)
† = 1.

Possibility 3: ki−1 = χ(xi) and ki = χ(x−1
i ).

Here gi = y
−ki−1

† xiy
ki

† = y
−χ(xi)
† xiy

χ(x−1
i )

† = xi
′.
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Since n = X-length(r), we see that X ′-length(g1g2 · · · gn) 6 X-length(r) and that if some X-turn of r is χ-cut,
then X ′-length(g1g2 · · · gn) < X-length(r). Now

g1g2 · · · gn = (y−k0

† x1y
k1

† )(y−k1

† x2y
k2

† ) · · · (y−kn−1

† xny
kn

† ) = y−k0

† x1x2 · · ·xny
kn

† .

If r is an F-element, then k0 = χ(x−1
0 ) = χ(1) = 0 and kn = χ(xn+1) = χ(1) = 0; here, g1g2 · · · gn = r. If r is

an F-class, then k0 = kn; here, g1g2 · · · gn ∈ r. Thus, X ′-length(r) 6 X ′-length(g1g2 · · · gn). Since at least
one X-turn of R is χ-cut, we see that X ′-length(R) < X-length(R). �
4.6. Whitehead’s cutvertex algorithm. Given (X,R), we ask if there exists some Y ∈P(X;R) such
that W(Y,R|Y,X) has a Y-cutvertex. If yes, then Subroutine 4.5 outputs a Whitehead neighbour Y ′ of Y
such that Y ′-length(R|Y,X) < Y -length(R|Y,X), and we start anew with X replaced with its Whitehead

neighbour X ′ :=
(
X−Y

)
∪ Y ′, for which X ′-length(R) < X-length(R). If no, we output X, and then stop.

This algorithm eventually outputs an R-cutvertex-free F -basis, and then stops. �
4.7. Notes on Whitehead’s article. In the types of graphs constructed by Whitehead(1936-01,§2), each
edge is given a multiplicity and each copy of the edge is divided into at least three edges by adding new
vertices. It is important for his arguments that cutvertices are added to his versions of, for example,
W
(
{x}, {Fx}

)
and W

(
{x, y}, {x, y}

)
.

In the one sentence where he dealt with connected subgraphs, Whitehead overlooked one case, and we
work with P(X;R) largely to handle that case. Stong(1997) and, independently, Stallings(1999) handled it
by working with connected subgraphs (where their term “cut vertex” conforms to standard usage). With
any of these straightforward rectifications, Whitehead’s argument gives a valid algorithm. �

5. The general cutvertex lemma

Whitehead, Stong, Stallings, and others proved cases of the following, using mainly the algebraic topology
of handlebodies; we use the interaction between two normal forms.

5.1. Theorem. If P(X;R) = {X} and F is not an R-atom, then W(X,R) has an X-cutvertex.

Proof (essentially following Dicks(2014, §2)). Set Γ := W(X,R). As P(X;R) = {X}, we have F ̸= {1} and,
also, if |X| ̸= 1 then VΓ ⊇ X±1. As F is not an R-atom and F ̸= {1}, there exists some R-allocating
F-factorization H1∗H2. Thus, VΓ ⊇ X±1 since |X| ̸= 1.

In the case where VΓ = X±1, R consists of F-classes, hence aR = R for each a ∈ F , and, by replacing
{H1,H2} with a suitable {aH1,

aH2}, we may assume that the shortest X±1-word (y1, y2, . . . , yn0
) for some

element of (H1 ∪H2)−{1} has yn0
̸= y−1

1 . Taking y := y1 and y′ := y−1
n0

, we have

(2) if VΓ ̸= X0,±1, then there exist X-turns (1, y) and (y′, 1) of H1 ∪H2 with 1 ̸= y ̸= y′ ̸= 1.

For f ∈ F = H1∗H2, there exists a unique finite sequence (h1, h2, . . . , hm) of nontrivial elements ofH1∪H2

such that h1h2· · ·hm = f and neither H1 nor H2 contains two consecutive terms of the sequence. Here, we
set

δ(f) :=
{
h−1
j h−1

j−1···h
−1
1 : j ∈ {1, 2, . . . ,m−1}

}
and χ(f) :=

{
1 if f ̸= 1 and h1 ∈ H1,

0 otherwise.
Clearly,

(3) δ(f) is finite and, also, δ(f) = ∅ if and only if f ∈ H1∪H2.

We have defined a map χ : F → {0, 1}, g 7→ χ(g), and it is not difficult to use induction on m to prove that

(4) δ(f) =
{
g ∈ F : g ̸= 1, gf ̸= 1, and χ(g) ̸= χ(gf)

}
.

Since P(X;R) = {X}, the R-allocating F-factorization H1∗H2 is not induced by a partition of X; hence,
there exists some x ∈ X−(H1∪H2), and then δ(x) ̸= ∅ by (3). Also, X±1 is finite, and, for each x ∈ X±1,
δ(x) is finite by (3). Thus there exists some pair (x̂, ĝ) such that x̂ ∈ X±1, ĝ ∈ δ(x̂), and, subject to those
two constraints, X-length(ĝx̂) is as large as possible. By (4), ĝ ∈ δ(x̂) means ĝ ̸= 1, ĝx̂ ̸= 1 and χ(ĝ) ̸= χ(ĝx̂);
by (4), this means ĝx̂ ∈ δ(x̂−1). Thus X-length(ĝx̂) > X-length(ĝ) by the maximality of X-length(ĝx̂).

Let x† denote the element of X±1 such that X-length(ĝx†) < X-length(ĝ). It suffices to show that x† is
a cutvertex of Γ. Notice that x† ̸= x̂. Now X0,±1−{x†} equals the union of two disjoint nonempty subsets
X1 and X2 with χ(ĝX1) = {χ(ĝ)} and χ(ĝX2) = {χ(ĝx̂)}; here 1 ∈ X1 and x̂ ∈ X2.
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We next prove that

(5) no X-turn of H1∪H2 meets both X1 and X2.

Consider an arbitrary h ∈ H1∪H2. Let (x1, x2, . . . , xn) be the shortest X±1-word for h. Set
x0 := xn+1 := 1. Each X-turn of h equals (x−1

i , xi+1) for some i ∈ {0, 1, . . . , n}, and to prove (5)

it suffices to show that (x−1
i , xi+1) does not meet both X1 and X2. We may assume that

x† ̸∈ {x−1
i , xi+1}, and it then suffices to show that χ(ĝx−1

i ) = χ(ĝxi+1). Set h′ := x−1
i x−1

i−1 · · ·x
−1
1

and h′′ := xi+1xi+2 · · ·xn. It suffices to show that χ(ĝx−1
i ) = χ(ĝh′) = χ(ĝh′′) = χ(ĝxi+1).

We first show that ĝh′′ ̸= 1 and χ(ĝh′′) = χ(ĝxi+1). If i = n, then h′′ = xn+1xn+2 · · ·xn = 1 while
xi+1 = xn+1 = 1. The case where i = n is now clear. If i ̸= n, then xi+1 ∈ X±1−{x†}, and, hence,

X-length(ĝ) < X-length(ĝxi+1) < X-length(ĝxi+1xi+2) < · · · < X-length(ĝxi+1xi+2···xn).

By the maximality of X-length(ĝx̂), ĝxi+1 ̸∈ δ(xi+2). By (4), χ(ĝxi+1) = χ(ĝxi+1xi+2). Continuing
in this way, we see that

χ(ĝxi+1) = χ(ĝxi+1xi+2) = · · · = χ(ĝxi+1xi+2···xn).

Since xi+1xi+2 · · ·xn = h′′, the case where i ̸= n is now clear also.
By using h′ in place of h′′ in the preceding argument, we see that ĝh′ ̸= 1 and χ(ĝh′) = χ(ĝx−1

i ).
By (3), δ(h) = ∅. By (4), χ(ĝh′) = χ(ĝh′′) since (ĝh′)h = ĝh′′. Thus, (5) holds.

Notice thatX-turns(R) ⊆ X-turns(H1∪H2), since each r ∈ R equals-or-contains some b ∈ H1∪H2, whence
X-turns(r) ⊆ X-turns({b, b2}). Since EΓ = X-turns(R), it follows from (5) that no Γ-edge meets both
X1 and X2. Since X2 ∪ {x†} ⊆ X±1 ⊆ VΓ ⊆ X0,±1, it suffices to show that X1 ∩VΓ ̸= ∅. We may then
assume that VΓ ̸= X0,±1, and here {y, y′}−{x†} ⊆ X1 ∩VΓ by (2) and (5). This proves Theorem 5.1. �

5.2.The general cutvertex lemma. If F is a finite-rank free group, R a finite subset of
{
g, Fg :g ∈F−{1}

}
,

and X an R-cutvertex-free F-basis, then ∗
Y∈P(X;R)

⟨Y ⟩ is an atomic R-allocating F-factorization.

Proof. For each Y ∈P(X;R), we know that P(Y ;R|Y,X) = {Y } and that W(Y,R|Y,X) has no Y-cutvertices;
hence ⟨Y ⟩ is an R|Y,X -atom by Theorem 5.1. �
5.3. Whitehead’s cutvertex lemma. Let F be a finite-rank free group, B and X be F -bases, and R be a
subset of B (resp. {F }B). If X is R-cutvertex-free, then R is a subset of X±1 (resp. {F }(X±1)). Contrapos-
itively, if R is not a subset of X±1 (resp. {F }(X±1)), then X is not R-cutvertex-free, whence W(X,R) has
an X-cutvertex.

Proof (Stong). This follows from Lemma 5.2 and Corollary 3.3. �
5.4. More notes on Whitehead’s article. Each F-basis has only finitely many Whitehead neighbours.
We say that X is R-minimizing if X ′-length(R) > X-length(R) for each Whitehead neighbour X ′ of X.
Whitehead’s minimizing algorithm constructs, by trial and error, a Whitehead-neighbour-choosing sequence
which starts at X, makes length(R) smaller with each step, and arrives at an R-minimizing F-basis in
at most X-length(R)− |R| steps. Whitehead’s cutvertex algorithm, §4.6 above, shows that R-minimizing
F-bases are R-cutvertex-free. The only fact highlighted by Whitehead(1936-01) was that his minimizing
algorithm and his cutvertex lemma, when put together, constituted a sub-basis algorithm which could be
applied to the study of three-manifolds. His cutvertex algorithm produces a faster sub-basis algorithm that
is somewhat overlooked, perhaps because Whitehead(1936-10, Theorem 3) later proved an extremely useful
result about R-minimizing F-bases. (Although stated for the case where R ⊆ F or R ⊆ {F }F , the result was
proved for the case where R ⊆ F ∪ {F }F ; see, for example, Dicks(2017).) If matches had been invented after
the cigarette lighter, they would have been the sensation of the twentieth century, and if Whitehead had
written (1936-01) after (1936-10), his cutvertex algorithm would have become the gold standard of sub-basis
algorithms.

The marvellous Quote Investigator gives several published variants of the assertion about matches; the
earliest one is attributed to Charles Norris. https://quoteinvestigator.com/2017/12/06/matches/ �
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