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Abstract. Let m, m/, r, v/, t, t' be positive integers with r, ' > 2. Let L, denote the ring
that is universal with an invertible 1x7 matrix. Let M,,(L2") denote the ring of m x m
matrices over the tensor product of ¢ copies of LL,.. In a natural way, M,,(L%") is a partially
ordered ring with involution. Let PU,,(L%") denote the group of positive unitary elements.
We show that PU,,(L%") is isomorphic to the Brin-Higman-Thompson group tV,,; the
case t=1 was found by Pardo, that is, PU,,(L,) is isomorphic to the Higman-Thompson
group V.

We survey arguments of Abrams, Anh, Bleak, Brin, Higman, Lanoue, Pardo, and
Thompson that prove that ¢V, = tV,,, if and only if ' =r, ' =t and ged(m/,r'—1) =
ged(m,r—1) (if and only if M,,(LE") and M,,(LE") are isomorphic as partially ordered
rings with involution).
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1 Introduction

The notation we use will be explained in the next section.
Throughout, fix r, 7" € [2Too[, m, m/, t, t’ € [1Too[, and fix symbols x and y, and let

transp 1

. trans
L, = Z< L1r]s Y[1re] ‘ m[nﬂ]p Y] = I, and Y] - x[[lTr]] >

Toyr w2y2) \0 1
the symbol L in recognition of Leavitt’s pioneer work on these rings in [14], [15]. We let
L¥ =1L, ®z L, ®z --- ®z L,, the ring obtained by forming the tensor product over Z of

Thus, for example, Ly = Z{x1, Z9, Y1, y2 ‘<x1y1 xlyQ):<1 O),ylxl + yoxo = 1). We use
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t copies of L,. We shall be interested in the mxm matrix ring M,,(L%"). The mnemonic
is that r is for ‘ring’, ¢ is for ‘tensor’, and m is for ‘matrix’. In a natural way, M,,(LZ")
is a partially ordered ring with involution. We then let PU,,(L%") denote the subgroup of
positive unitary elements in the group of units of M,,(L&).

Abrams, Anh and Pardo [1], [17] found that if ged(m/, r—1) = ged(m, r—1), then M,,,/(L,)
and M,,,(LL,) are isomorphic as partially ordered rings with involution; we shall observe that
it then follows easily that M,,,(L®") and M,,(L%") are isomorphic as partially ordered rings
with involution, and that the groups PU,(L%") and PU,,(L%") are isomorphic. We shall
give self-contained proofs of all these isomorphisms.

Pardo [17] discovered a connection between these rings and certain famous groups. In [11],
Higman constructed a group V.., with the properties that the abelianization of V,.,,, has order
ged(2,7—1) and the derived group of V., is a finitely presentable, infinite, simple group;
see also [20]. The group Va; is Thompson’s group V. In [8], Brown showed that V, ,, is of
type FP. Pardo [17] found that V,,, = PU,,(L,); hence, if ged(m’,r—1) = ged(m, r—1),
then the above isomorphism PU,,(L,) = PU,,(L,) gives the converse of Higman’s result
that Vs v =V, only if ' = r and ged(m/,r'—1) = ged(m, r—1); see [11, Theorem 6.4].

In [6, Section 4.2], Brin constructed a group tV,,, which can be considered as a
t-dimensional analogue of the Higman-Thompson group V.., (= 1V,,,). In [6], he proved
that 2V5; is simple and that 2V5; 2 V,.,,, and other results. In [7], he proved that ¢V is
simple. In [10], Hennig and Matucci gave a finite presentation of ¢V5;. In [4], Bleak and
Lanoue showed that #'Vo; = tV,; if and only if ¢ = ¢. In [13], a description of ¢V, along
the lines of Higman’s construction [11], [20], was given, and it was used to show that 2V5;
and 3V, are of type FP.

The main purpose of this article is to show that tV,,, = PU,,(L%"). Straightforward
adaptations of known arguments then show that the following are equivalent.

(a) " =7, t =t and ged(m/, 7" —1) = ged(m, r—1).

(b) M (LEY) and M,,(L&") are isomorphic as partially ordered rings with involution.

(¢) Vit ZtV, .

Thus, with r and ¢ fixed and m varying, the set of isomorphism classes of the groups tV, ,,
is in bijective correspondence with the set of positive divisors of r—1.

The structure of the article is as follows. In the first part, we work exclusively with
M,,(L&).

In Section 2, we summarize the notation that we shall be using, and endow M,,( L")
with the structure of a partially ordered ring with involution.

In Section 3, we give a streamlined proof of the crucial Abrams-Anh-Pardo result [1] that
if m > r > 3 and ged(m,r—1) = 1, then M,,(L,) and L, are isomorphic as partially ordered
rings with involution.

In Section 4, following Pardo [17], we show that if ged(m/,r—1) = ged(m,r—1) then
M, (L&) and M,,(L&") are isomorphic as partially ordered rings with involution, and,
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hence, PU,,/(L%") = PU,,(L%").

In the second part of the article, we concentrate on tV, ,.

In Section 5, we prove our main result that the Brin-Higman-Thompson group tV;.,, is iso-
morphic to PU,,(L&"); the case t = 1 was found by Pardo [17], that is, the Higman-Thompson
group V., is isomorphic to PU,,(L,). It then follows that if ged(m’,r—1) = ged(m, r—1),
then tV, ., =tV .

In Section 6, we find that arguments of Higman show that if ¢'V,. ,,» = tV,.,,, then ' =r
and ged(m/,r'—1) = ged(m, r—1).

In Section 7, we find that arguments of Bleak, Brin, Lanoue and Rubin show that if
tl‘/;«/7m/ = t‘/;nm“ then t/ =t.

In Section 8, we summarize much of the foregoing by recording the above equivalence
(a) < (b) < (c). We conclude with a sketch of unpublished results of Ara, Bell and Bergman
that show that ¢, r and ged(m,r—1) are invariants of the isomorphism class of M,,,( L") as

ring, and thus the foregoing equivalent conditions are further equivalent to
(b') M, (LEY) and M,, (L") are isomorphic as rings.

2 Notation

We will find it useful to have a vocabulary for intervals in Z.

2.1 Notation. Let i, j € Z. We define the vector

1] = | (i Lo i = L) €27 i<,
()ez® if i > j.

The underlying subset of Z will be denoted [:1j]. Similar notation applies for [i]oo].
Let v be an integer-indexed symbol. We define the vector

(Vis Vig1, -+ 5 vj1,05) i<,
Vlitg] = e
[+13] () if 1> 7.

The underlying set will be denoted vj;1).
When vy, s is a doubly indexed symbol, we write

Vitgixlirtg) = {ver | k€ [iT], K € ['15]}.

Let R be a ring with a unit.

For any subset Z of R, we let ((Z)) denote the multiplicative submonoid of R generated
by Z.

Suppose that m, n € [1To0].
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We let ™R™ denote the set of mxn matrices over R and we write M,,(R) := "R™.

For ¢ € [1Tm] and j € [1Tn], we let e;; € ™Z" denote the m x n matrix whose (i, j)
coordinate is 1, and all other coordinates are zero. This notation applies only where the
ranges of ¢ and j are clearly specified. We think of ™R"™ as ™Z" ®z R and use the same
symbol e; ; to denote the image in ™R".

We define an additive ¢ranspose map ™Z" — "Z™, U + U*, such that €} ; = e;;. We
endow ™Z" with the structure of a partially ordered abelian group in which the positive cone
P(™Z") (the set of elements > 0) is the additive monoid generated by efijm)x[11n]-

In particular, M,,(Z) has the structure of a ring with involution p — p*, and the structure
of a partially ordered abelian group. We note that the positive cone P,,(Z) == P(™Z™)
contains 1 and is closed under multiplication and the involution. Thus M,,(Z) has the
structure of a partially ordered ring with involution.

2.2 Notation. Throughout, fix r € [2Too[, and fix symbols z and y, and let

L, = Z<x[1Tr]7y[lTT‘} | xﬁiﬁp Yyt = L and ypige !Eﬁiﬁp =1).

Here xp1,q and ypiq,) are 1 X 7 row vectors, xﬁﬁilﬁp denotes the r x 1 transpose of xp1,], and
I, denotes the r X r identity matrix.

Leavitt [14] showed that each element of L, has a unique normal form, which is an
expression as a Z-linear combination of elements of ({11, Uyp1,)) which do not contain any
contiguous subword of the form z,yy (= 0s5), s, §' € [1]7], or y,x, (=1 — ZsE[lT(r—l)] YsTs)-
By Leavitt’s normal-form result, the multiplicative monoid ((xpy,)) is freely generated by
xpipr), and similarly for ((ypg))-

We endow L, with the involution p +— p* which is the unique anti-automorphism which
interchanges xpi1,) and ypi1,-

We endow L, with the structure of a partially ordered abelian group in which the positive
cone P(L,) is the additive monoid generated by the set of monomials ({11, U y11,)). This
is a partial order since a nonempty sum of monomials is not zero. To see this notice that for
any row vector of zeros and monomials, some of which have positive x-degree, multiplying
on the right by a suitable y; leaves a nonzero vector of smaller largest z-degree, and the
result follows by induction. We note that the positive cone contains 1 and is closed under
multiplication and the involution. Thus L, has been endowed with the structure of a partially
ordered ring with involution.

Let m, n, t € [17o0].

We extend the involutions on each of the t+1 factors to the conjugate-transpose map
ML @y LE' — "Z™ @y LE', U — U*. Recall that we identify mZ" @7z L& = ™(L¥)".
Let U(™(L%")™) denote the set of Y € ™(LY")™ such that Y - Y* =1, and Y*-Y = 1,,.
The elements of U(™(L%")™) are called the unitary m X n matrices over LY. We write
U, (L% == U(™(L&")™), a subgroup of the group of units of M,,(L&").
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We extend the partial order on each of the ¢t+1 factors to all of ™Z" @7 LY by taking
as the positive cone P(™Z" ®7 L%") the additive submonoid generated by the product of
the positive cones of the factors; as before, a nonempty sum of monomials is not zero. We
write P, (L&) .= P(™(L%")™), a multiplicative submonoid with involution in the ring with
involution M,,(L%"). Thus M,,(L%") has been endowed with the structure of a partially
ordered ring with involution.

Let PU(™(L®")™) = P(™(L&)™) N U(™(L&")™) and PU,,(LY") == PU(™(L%)™). Then
PU,,(L%") = P,,(L®") N U,, (L"), an intersection of multiplicative monoids with involution,
and hence itself a multiplicative monoid with involution. Since PU,, (L&) lies in U,,(LZ*)
the involution acts as inversion and PU,,,(L%") is a multiplicative group. We call PU,,,(LZ*)
the group of positive unitary m x m matrices over L&

3 The crucial ring isomorphism

This following beautiful result of Abrams, Anh and Pardo has the unusual property that it
shows that two naturally defined rings are isomorphic without giving a natural reason, and
there may not be one. We shall be giving their proof but shall incorporate a permutation of Z
that will automate much of their book-keeping. Although the proof we shall give uses r # 2
and r < m, we shall see in the next section that the result holds without these restrictions.

3.1 Theorem [1, Theorem 4.14]. Let r € [3Too[ and m € [(r+1)Too[ with ged(m,r—1) = 1.
Then L, and M,,,(LL,.) are isomorphic as partially ordered rings with involution.

Proof. Let L := L. Define n: Z — Z by

i+r if i = 0 (mod m),
i— 1" = ¢i+r—2 if i =1 (mod m),
i+r—1 if i # 0,1 (mod m).

Thus 7 shifts every element of Z up by r—1, except that certain adjacent pairs (¢m, fm+1)
are carried to (ém+r,fm+r—1), that is, they are shifted by r—1 and then interchanged.
Notice that 7 is bijective.

We claim that [2]7] is a set of (7 )-orbit representatives in Z. Because 7 shifts every
element of Z up by at most r and by at least r—2(>1), it follows that each ( )-orbit
meets [17r]. Now 1™ =r—1(>2) which lies in [2]r]|. Hence, each (7 )-orbit meets [27]7r].
Since 2™ = r+1 and 7 shifts every element of Z up by at least r—2, we see that no (7 )-orbit
meets [27r] twice. This proves the claim.

Now any sequence of r—1 consecutive integers is a set of {7 )-orbit representatives unless
two elements are in the same (7 )-orbit, and the only pairs in the same (7 )-orbit that
are at distance less than r—1 are of the form ¢m-+1 — ¢m+r—1. If our sequence of r—1



6 Isomorphisms of Brin-Higman-Thompson groups

consecutive integers does not start at an ¢m+1, then it cannot contain two elements in the
same (7 )-orbit. Hence, for each k € Z, [(k+1)T(k+r—1)] is a set of (7 )-orbit representatives
in Z if and only if £ £ 0 mod m.

Let s € [21r] and j € [1T(m—1)]. Since ged(m,r—1) = 1, we have (r—1)j # 0mod m.
Hence, [(14+(r—1)7)1((r—1)(j+1))] is a set of (7 )-orbit representatives in Z and therefore
contains a unique element in the (7 )-orbit of s. We denote that element by s#j. Thus
s#i € (0D ((r—1)(+1)] and (s#5)™ = st7. In L, define yuppysm = 4 vs
Define 4, 1 = y" . For each k € [(r+m—1)T(mr)], define z;, = y;. We claim that
we have defined ¥[;+m—1)1(mr] With underlying set yﬁo“m””y[m U {y'}. For each
j € [17(m—1)], varying s € [2]r], we see that

21l = [(A+(r=1))T(r=1)(G+1)];

and then
27r]#) +m = [(14+(r=1)j+m) T ((r=1)(j+1)+m)],
and we have defined yja4(—1)j+m)1((r—1)(j+1)+m)] With underlying set y{flymr]. By then
varying j € [1T(m—1)], we obtain ytm)tomn) With underlying set ygm(m_z}y[gm. Thus we
have defined ¥(4m—1)1(mr] With underlying set yﬁm(m*”]y[m U{y '} It is easy to see that
Yir4m-1)1ury) € PUCTLITDEOZUH),
Let

Ylire] 0 0
Y = ypr © L2 © Y[omtr—1)1(mr)] = 0 I, 0 e PU(™L™).
0 0 Yimir—1)1(mn)]

We identify ™L™ = (M,,(L))", and let Y[y, denote the resulting partition of Y, that is,
Y =Yg € (ML)
We then have a well-defined homomorphism L. — M,,(L) that sends ypi1,q to Y[y, and

transp

sends @ p1" (= (yprey)~h) to X[H?f]]s" =Y l=Y"

This homomorphism is nonzero with torsion-free image, and hence is injective on Z,
and hence is injective, by the following argument of Leavitt [15, Theorem 2]. Consider any
nonzero element of the kernel. By multiplying on the left by a suitable z-monomial, we
get a nonzero element in the free z-subalgebra. By multiplying on the right by a suitable
y-monomial, we get a nonzero element of Z, which is the desired contradiction.

Let S denote the image of P;(L), that is, the additive monoid that is generated by the
multiplicative monoid that is generated by ¥[17,jUYj;,) in My,(L). Clearly S* =5 C P, (L).
It remains to show that P,,(L) C S, for then the injective map L. — M,,,(LL) is surjective
and the resulting inverse map carries P, (L) into P;(L).

Since m > r > 2

(1) Yi= > wyei;+ D, €i—ri1s
JETr] JE[(r+1)Tm]
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(2) Vo= > €iimrity T D YirmCmys
JENT(r—2)] JEl(r=1)1m]
(3) Y= 3 Yjr(s—1)mem,; for each s € [317],
JeTm]
« (D)
(4) Y= 30 miegit+ D0 e,
jenr] JEI(r+1)Tm]
« (1),(4)
(5) Ny = > g
JET(m—r+1)]
) 4 .
(6) Yie; ;Y7 1LY €j—r+1,j—r+1 for each j € [(r+1)Tm],
(7) 61,1)/143]'7]‘ (:) Yje1,; for eachj S [1TT‘],
1 .
(8) €jri1j-r+1Y1€j5 = €j_py15 for each j € [(r+1)Tm],
« (2
9) Y= X €gimerti T D Tjim€im,
JET(r—2)] Jel(r=1)1m]
« (2),09) .
10 Yae;;Ys "= €jpmrt1jtm—r+1 for each j € [17(r—2)],

Cjtm—rt1,j4m—r+1Y2€j; = €jpm—rt1,; for each j € [17(r—2)],
CmmY2€j; = Yjtmem,; for each j € [(r—1)Tm],

€m.mYs€j @ Yjt+(s—1)mem,; for each j € [1Tm], s € [377].

3.1.1 Definition. The m-cycle j — (j—r+1)[mod m].

For each j € Z, let j[mod m| denote the representative of j+mZ in [1Tm].

Since it is a unit in Z,,, (r—1)+mZ additively generates a subgroup of order m in Z,,,
and hence shifting down by r—1 determines an m-cycle on Z,,. Hence j +— (j—r+1)[mod m)|
determines an m-cycle on [1Tm]. We think of this m-cycle as an m-gon with two distinguished
sides, r—1 +— m and r — 1.

(14) 1

r—1 <«

1

— o 3

3.1.2 Claim. Both ¢,; and e, ,, lie in S.
For each ¢ € [1Tm], let E; = > e;; and Bl = Y  e;; = L,,—E;. We shall show
Je[rd] JEl(i+1)Tm]
that E; € S and E! € S by letting ¢ travel around (14) from m to r—1. This claim is clear
for i =m.
Now suppose that i € [11(r—2)] U [rTm] such that E;, E! € S.
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If i € [17(r—2)], then

E; = > ejj, and (i—r+1)[mod m] = i+m—r+1,
JEMT]C1T(r—2)]

Eiomrit = VaBY5 + Bt 2 VY7 + Y2EY5 € S,
Lot = I Bim i = X VY: - ViY; - EY; —VEY; + Y ViYreS.
se[177] s€[37r]
If i € [rTm], then
E! = > ejj, and (i—r+1)[mod m| = i—r+1,

JE+1L,m]C[(r+1)Tm]

B OVENY + B, EVENT + Y YYres,

s€[277]
Evi=Li—E_ ., = ¥ YY'-ViEY;— ¥ Y.V =ViEY' €5
sE€[117] sE[217]
It now follows by induction on path-length in (14) that, for each i € [1Tm], E; € S and

E! € S. Hence, e;; = E; € S and e,,,, = E/,_; € S. We could have stopped when we had
reached whichever came later of 1 and m—1.

3.1.3 Claim. Each ¢;; lies in S.

Let j € [1Tm]. We shall show that e; ; € S by letting j travel along the top of (14) from
m to r and along the bottom of (14) from 1 to r—1. We have proved the claim for j = m
and j = 1. Now suppose that j € [1T(r—2)] U [(r+1)Tm] such that e;; € S.

If j € [17(r—2)], then

(j—r+1)[mod m] = j+m—r+1 and €j41m—ri+1jtm—rt1 = Yse,; Yy € S.
If j € [(r+1)Tm], then
(j—r+1)[mod m] = j—r+1 and €;_,+1 j—r+1 © Yie; ;Yi" € S.

It now follows by induction on path-length in (14) that e;; € S for all j € [1Tm)].

3.1.4 Review. The ¢;;Y,e;; lie in S.
We have now shown that for all 4, j € [1Tm], and all s € [117], e;,;Yse;; € S. This has
the following consequences.

(7)
(15) For each j € [117], yje1; € S.

(8)
(16) For each j € [(r+1)Tm], €j_r+1,; € S.

(11)
(17) For each j € [11(r—2)], €j4m-rt1; € S
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. (12)
(18) For each j € [(r—1)Tm], Yjsmem,(j+m)mod m] = Yj+mem,; € S-
) (13)
(19) For each j € [1Tm] and s € [317], Yjt(s—1)mEm,(j+(s—1)m)[mod m] = Yj+(s—1)mEm,j € S.
(18),(19)
(20) For each k € [(r—1+m)T(mr)], Yk€mimod m] €
- (20)
(21) Yi €m,r—1 = Yr—14+mCm, (r—1+m)[mod m)] € S
(22) For j € [17(m—1)], s € [277], y{_lysem(s#j)[mod m]

(20)
= Y(s#5)+mEm,((s#5)+m)[mod m)] c S

3.1.5 Claim. All the ¢;; lie in S.

It follows from (16) and (17) that for each edge j — j’ in the top of diagram (14), we
have e; ; € S. Since e;, j,€j,j; = €j,.j;, We see that for any subpath j +— .- +— j’ of the
top of diagram (14), we have ey ; € S, and ¢;; = ¢}, ; € S. Thus if j,j' are two points on
the top of the diagram (14), then e;; € S. The same result holds for the bottom of the
diagram (14). To obtain epm)xi1m] € S, it now suffices to show that ey, € S.

Recall that for s € [2]r] and j € [17(m—1)], s and s#j lie in the same (7 )-or-
bit. It is clear that 7 induces an action modulo m, and hence induces a permutation m,,
of [1Tm]. Hence s and (s#j)[mod m] lie in the same (m,, )-orbit. On [2](m—1)], 7, acts as
i — (i+r—1)[mod m], while 1 — r—1 and m — r. It follows that there are two (m,, )-orbits
and they are given by the top and the bottom of the diagram (14). Hence €s,(s#)[mod m] € 5.

InL, 1=y 24+ Sy ysasal™h). Hence, in M,,(L),

jeim—1)] se1r]

€1m = yT_le_lel,m + > > (y{_lysxsx{_lel,M)
JE[11(m—1)] s€[217]

= (ylel,l)m_l(61,T_1)($71n_167~_1’m)

+ Z Z (y1€1,1)j71(3/561,5)(65,(5#j)[mod m])(xsm{_le(s#]’)[mod m},m)
JE[LT(m—1)] s€[277]
Using (15), (21), and (22), and the fact that S = S*, we see that e, € S.
Now epiimixtm] € S. By (15), ypr€pntmixpim) €S- Hence Py, (L) € S. This completes
the proof. n

3.2 Example. Let us illustrate the proof of Theorem 3.1 by considering the case r = 3 and
m = 5; here ged(m,r—1) = ged(5,2) = 1 and M;(Lj) = Ls.
We find that the cycle decomposition of 7 is (...,0,3,5,8,10,...)(...,1,2,4,6,7,9,...).
NOW Ypir_1 = y" ', that is, y; == yi.
Now consider s € [2]r] = [273] and j € [1T(m—1)] = [114]. We defined

{s#7} =1+ (r=D)HI((r=1)G+1))] N s™ = [(1+2))T(2j+2)] N s™.
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Thus {s#1} = [314]Ns™, {s#2} = [676]Ns™, {s#3} = [718]Ns™ and {s#4} = [9710]Ns™. For
s =2, weareintheset {...,4,6,7,9,...}, and for s = 3, we arein the set {...,3,5,8,10,...}.
Thus

W1 =4, 2H2=6, 2#3=7T, 244=09,

3#1 =3, 3#2=05, 3#3=8 3#4=10.
We define y(sujy4m = y{_lys, that is, y(suj)+5 = y{_lys. Thus

Yo = Y2, Y11 = Y1Y2, Y12 = y%yg, Y1a = y%ym

Ys = Y3, Y10 = Y193, Y13 = Yiys and yi5 = yiys. Hence
Y7 = Z/i& Ys = Y3, Yo = Y2, Y10 = Y1Y3, Y11 = N1¥Y2, Y12 = y%yz, Y13 = y%y?n y14=yf’y2, y15=yfy3-
ThUS Yirim-1)1mn] = Yiriis) = (Y Y3, Yo, Y1Y3, Y1Ya, Y1z, Y1Ys, Yiv2, y7ys). Now we take
Y = ynir) © Iz @ Y[r4m-1)16mr)] = Y113] © Is @ ypryas). Hence

y1y2 30000 00 0 0 0 O 0 O
(0001000000 0 0 0 ©0 0)

Y=|000010000 0 0 0 0 0 O .
00 0001000 0O O O O 0 O
00 0000 2ys y3

Y3 Y2 Y1¥3 v1¥2 Yiy2 vivs yive yius

Now we partition Y as

200 00 0 0 O 0 0 0 0 0

VN o B I B I IV O I A
=L o988y 2=41000 0 )"~ 0o 0o 0o 0 o0 |-

000 04 3 Yy 2 2 3 3

1 1 1 1 1

0 0 Y1 Y3 Y2 Y1y 1Y2 Y192 Y193 Y192 Y193
We let X; =Y
Now
y1 Y2 9300 210000 10000
00010 220000 01000
YiXs=[00001 230000 | = | 00100 | = E3
00000 01000 00000
00 00O 00100 00000
Thus, F5 = Y1 X;. Hence, £ = Y5 X5 + Y3.X5.

phans\ (10080 (ao0as
Z2
=|o00001 230000 | = (00100 | = E{—FEj.
00000 01000 00000
00000 00100 00000

Hence Ff = Y1E. X, + B = V1Y, X0 Xi + Y1Y3X5X5 + Y5 Xs + Y3.X;5 which we abbreviate to
B =Y12X01 +Y13X51 + Y2 X0 + Y3X5. Hence By =Y 1X7 1.

Similar straightforward calculations show that Y, F; Xy = F,—F3. Hence
Ey=Es+Y,E1 Xy = Y1 Xy + Y211X1,12. Hence
E,=Y512X010+ Y213X312+ Y22X00 + Yo3X55 4+ Y3.Xs5.

Similarly, Y1 E} X, = Ef, — E}. Hence E = Y1 E} X, + E}. Hence
By =Y1212X0121+Y1213X3121+Y122X221+Y123X321+Y13X31+Y2Xy+Y3X3. Hence
E, =Y 1 X171 +Yi211X1121.
Now
€11 = b = Y1,1X1,1-
€44 = Y§€1,1X2 = Y2,171X1,1,2-
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€29 = Y1€4,4X1 = Y172,1,1X1,1,2,1-

ess =By =Y510X010+ Y213X510 + Y20 Xo0 4+ Yo 3 X350 + V5X;.

e33 = Yie55X1 = Yi1212X0121 + Y1213X3121+ Yio2Xoo1 +Y123X301 +Y13X57.
The interested reader can calculate the expressions for the remaining e; ;.

4 The Abrams-Anh-Pardo Theorem

The following is a straightforward consequence of the Chinese remainder theorem; the earliest
mention of it that we have found is [12, p. 466, line 9].

4.1 Lemma. Let my, may, s € Z. If ged(my, s) = ged(mea, s), then there exists u € 7 such
that um; = mgy mod s and ged(u, s) = 1.

Proof. Note first that if s = 0 then m; = +my and we can take v« = +1. Thus we may
assume s # 0.

Let g == ged(my,s) = ged(me,s). There exist ny, ny € Z such that n;g = m; and
neg = my. By Euclid’s lemma, there exist ki, ko € Z such that mik; = gmod s and
moky = gmod s.

Let R =7, a = mq + sZ, b := my + SZ, ¢ = ni1ks + sZ, d == ngky + sZ.

We have a, b, ¢, d € R such that ad = b and bc = a, and it suffices to find some unit
r =u+ sZ € R such that ax = b.

Eliminating b, we then have a, ¢, d € R such that a(l—cd) = 0, and it suffices to find
some unit x € R such that ax = ad.

If R = Z,m where p is a prime number and m > 1, then either ¢ = 0 and here we can
take z = 1 as a solution, or a # 0 and then 1—cd is a zerodivisor, hence (1—cd)™ = 0, hence
1 — (1—cd) is a unit, hence cd is a unit, hence d is a unit, hence z = d is a solution.

By the Chinese remainder theorem, R is a direct product of a finite number of rings
of the form Z,» where p is a prime number and m > 1. By the preceding paragraph, we
can find a suitable unit in each of these factors, and then form a suitable unit in R. This
completes the proof. Il

The following is also well known.

4.2 Lemma. Letr € [2Too] and m, m’' € [1Too[. If m' = m mod (r—1), then M,,»(L,) and
M,.(L,) are isomorphic as partially ordered rings with involution.

Proof. Let L :==L,.
Consider first the case where there exists some Y € PU(™L™). We then have a map
My (L) - M(L), M +— Y* M Y | and it is easily seen to be a homomorphism
m/ xm/

mxm/ m/xm’ m/'xm
of partially order rings with involution. Using Y™ in place of Y, we get a map in the reverse
direction, and the two maps are mutually inverse. Thus it suffices to prove that PU(™L™+"~1)
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is nonempty. Now ypy,; € PU('L") and I,,,_; € PU,,,_1(L) = PU("™ 'L™"!). Here, we have
the diagonal sum

' 0 mim m—+r—
y[[lTT] S Im—l = (y[[g ! I > € PU( L * 1)‘
1xr (m—1)x(m—1) m—1
This completes the proof. Il

4.3 The Abrams-Anh-Pardo Theorem [17]. Let r € [20c] and m, m', t € [1100].
If ged(m/,r—1) = ged(m,r—1), then M, (L%") and M,,(LE") are isomorphic as partially
ordered rings with involution, and, hence, PU,, (L&) = PU,, (L"),

Proof. For the purposes of this proof, let us write = to indicate “isomorphic as partially
porwi

ordered rings with involution”.
We claim that M, (L,) = M,,(L,). If » = 2, this holds by Lemma 4.2; thus we may

porwi
assume that r > 3. By Lemma 4.1, there exists v € Z such that m’u = m mod (r—1) and

ged(u,r—1) = 1. By adding some multiple of 7—1 to u, we may further assume that u > r.
By Theorem 3.1, L, = M,Z)®zL,. It is well known that M,/(Z) @z M(Z) = M,.(Z).
porwi

porwi

By Lemma 4.2, M,,(Z) ®z L, = M,,(Z) ®zL,. It then follows that
porwi

Mm/(Z) ®Z ]Lr = Mm’(Z) ®Z Mu(Z> ®Z ]Lr = Mm’u(Z> ®Z ]Lr = Mm<Z) ®Z ]L‘ru

porwi porwi porwi

and the claim is proved.
Now, for ¢ > 2, applying (—) ®z L2¢-D gives the desired result. O

5 The Brin-Higman-Thompson group tV,,, is PU,, (L)

We now consider the Brin-Higman-Thompson groups. To lead into the definition gradually,
we consider first the Higman-Thompson groups.

5.1 Definitions. Let r € [2Too] and m € [1Too[. We now recall one of the constructions of
the Higman-Thompson group V,.,, from [11]; see also [20].

Let L. := L,. By Leavitt’s normal-form result, the multiplicative submonoid ({yp1,)) of
L is the free monoid on yj11,). We view the Cartesian product epjmxq1y X ((yj112))) as the
product epjm)x {13 ((Yn)) S Mun(L).

Let A be any finite subset of ef11mx {1} ((y11+]))- For any a € A, the ath expansion of A is

0a(A) = (A\{a}) Uaynin C empmxy{ynim))-
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Let B,, denote the smallest set of (finite) subsets of epjmxq1}{((yptr)) such that
entmx{1y € Bm and B, is closed under taking expansions, that is, whenever A € B,
and a € A, then 9,(A) € B,,. An element of B,, is called a basis.

For any A € 9B,,, we can apply suitable expansions and arrive at an element B € 9%5,,
whose elements all have the same length, and then we have all of the elements of
enpm)x 1} ((¥p1r))) of this length. Any such B is called a homogeneous element of B,,.

We now consider the set of maps that are bijections between elements of 98,,,

¢ ={p:A— B,a—a? | A B € B, ¢ bijective}.

We shall construct V; ,, using equivalence classes in ®.

Suppose that A % B is an element of ®, and that a € A, and let b == a?. We de-
fine 0,(¢) : 0u(A) — Op(B) in the natural way, that is, J,(p) acts as ¢ for the bijection
A\ {a} — B\ {b}, and sends ays to by, for each s € [17r]. We call 9,(¢) the ath expansion
of .

We define the set V., to consist of the equivalence classes in ¢ obtained by identifying
each element of ® with all of its expansions.

We define a binary operation on V; ,,, as follows. For any ¢, ¢ € ®, we can take successive
expansions of ¢! and ¢ until they have homogeneous domains of the same length, in
particular until they have the same domain. We may then compose ¢ 1. We then obtain a
well-defined binary operation on V,.,,,. This concludes the definition of the Higman-Thompson
group Vi .

Let us mention some subgroups of V,,,. We give 6[1Tm]x{l}<<y[1Tr]>> the lexicographic
ordering. If A, B € %B,, have the same size and A % B is the unique bijective map that
respects the induced orderings, then all the expansions of A % B will also respect the
induced orderings. The set of elements of V,.,, represented by order-preserving maps form
a subgroup of V,.,,, denoted F, ,,. Similarly, we can allow A %, B to be one of the maps
that respects the induced orderings cyclically. We then get the subgroup 7 ,, of V,,, that
contains F}. ,,; see [11] or [8]. Here, F5; and T5; are Thompson’s group F' and T, respectively.

5.2 Definitions. Let m,t € [1Too] and r € [2Too[. We now define the Brin-Higman-

Thompson group tV,,, along the same lines as in the above definition of the Higman-
Thompson groups.

Let L == L,. For ¢ € [17t], k € [11 7], we define y,; := 1°¢"Y @ ¢, ® 199 € L and
Top = Yip = 1901 @ 1, @ 1200 ¢ L® . We view the Cartesian product
efttmlx{1} X (Y

as the product 6[1Tm]><{1}<<y[1Tt]><[1Tr]>> C M( L®t)-
We consider t different kinds of expansions on a finite subset A of e1m)x 13 ((Yprgx(110)))
as follows. For each ¢ € [11t], a € A, let

6€,a(A) =A\{a} U ayYiey<11r]-
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Let BY) be the smallest set of subsets of enpm)x {1} ((Wnrgxpie)) such that eppmxqiy € DA I

and B is closed under taking expansions of all kinds. The elements of B are called bases.

A subset A of epmyx1y ((Yprgxite)) is said to be unitary if it satisfies Y (a-a*) = Ly,
acA
and, for all a, b € A, if a # b, then a*-b = 0 (and thus a is not a prefix of b). It is not

difficult to show that every expansion of a unitary set is unitary. Notice that the question
of multiplicity does not arise since, in a unitary set, no element is a prefix of another. Since
€11m]x{1} 18 a unitary set, we see that every basis is unitary.

Each b € eppm)x {13 ({Yn1gxpir)) can be expressed uniquely as a product b = e;1by - - - by,
where each by lies in ((yge3x11+])), for each £ € [17¢]. The length of by is called the ¢-length
of b.

A finite subset A of eqi1m)x 13 ((Wnrgxpie)) is multi-homogeneous if, for each £ € [11t], all
the elements of A have the same (-length. Clearly, any finite subset of e[ jm)x {13 ((Yp1gx110))
can be expanded to a multi-homogeneous subset. In particular, any basis can be expanded
to a multi-homogeneous basis, which will then have all the elements that have the specified
(-length, for each ¢. (See also [13] Lemma 3.2.)

If B is a multi-homogeneous unitary set, then B lies in a unique multi-homogeneous
basis C. If B # C, then, with respect to the partial order on M,,(L®"), we would have

L,=>(b-0*) < > (c-c¢*) =1, which is a contradiction. Thus, B = C. Hence, each
beB ceC
multi-homogeneous unitary set is a basis. Hence, each unitary set can be expanded to a

multi-homogeneous basis.
We now consider the set of maps that are bijections between elements of %%),

d:={A% B|ABecBY, ¢bijective}.

We construct the Brin-Higman-Thompson group ¢V, ., as the set of equivalence classes in @
in the same way that we defined the Higman-Thompson group V; ,, in Definitions 5.1.

For ¢ > 2, the symbols ¢F,,, and tT,,, have not been assigned definitions; Brin [6,
Remark 4.9] discusses his unsuccessful efforts to define a 2F,; with desirable properties.

5.3 Remarks. If t = 2, then every unitary set is a basis. To see this, suppose that B is
unitary. It suffices to consider the case m = 1. Recall that each b € B has a factorization
b = biby = baby with b; € ((ygiyxpin)) for i = 1,2. Consider first the case where, for some
b € B, we have by = 1 and by # 1. Here, for each ¢ € B, if ¢ # b, then ¢y -b* = 0 and ¢y # 1.
Then B is a disjoint union of ys By, for each k € [17r]|. Each By, is unitary, and by induction
is a basis. Hence B is a basis. In the remaining case, for each b € B, we have b; # 1, and
then B is a disjoint union of y; By for each k € [117], and, by the same argument, B is a
basis.

Similarly, if ¢ = 1, then each unitary set is a basis.

Fort =3, m=1,andr =2, {y21Y31, Y1,1Y2,1Y3.2, Y1,1Y2,2, Y1,2Y2.2Y3.1, Y1,2Y3,2} is a unitary
set that is not a basis.
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We now come to our main result. In [17], Pardo found this result for Higman-Thompson
groups, i.e., in the case t = 1.

5.4 Theorem. Let r € [2Too[ and m, t € [1Too[. Then PU,,(L%") is isomorphic to the
Brin-Higman-Thompson group tV, .

Proof. We use the notation of Definitions 5.2.
For each (A % B) € @, we define (4 & B)* = S (a- (a®)*) € P,,(L#). It is readily

acA
verified that « has the same value on all the expansions of (4 % B). Also,

(B A)2 = Y (- a*) = (A S B)o).

acA

Thus we have a well-defined map of sets a: V., — P, (L®"). It is a morphism of multiplica-

tive monoids, since the identity maps to the identity, and, for any (A % B), (B 2, C) e d,

(AL By (BS O = Y (a-(a9)) - L(b-(0¥)) = X (a- (@9)) - (@ - ((a*)*)")

acA beB acA
— Y (a- (a#¥)) = (A £5 O).
acA

In particular, (B ¥, A)* = ((A %5 B)*)~!; as we have already seen that (B 7, A)* =
(A % B))*, we sce that (A % B)* € PU,(L®). In summary, we have a well-defined
homomorphism a: tV,,, — PU,(L®) which sends the equivalence class of (A 2 B) to

2 (a-(a?)).

acA

We next prove surjectivity of a: tV;,, — PU,,(L®").

Consider an arbitrary u € PU,,(L%"). Since u € P, (L®"), we have an expression
of v as a sum of elements of the form e;;-w-2* with w, 2 € ((yuyx11,)); notice that
e j-w-z" = (e;1-w)-(ej1-2)*. By repeatedly inserting > (yei-zex) (= 1) between suit-

ke[117]
able w and z*, we can arrange for all the ws to have the same (-length, for each ¢ € [11¢],

and obtain an expression u = »_ a - p, where A € SB%), multi-homogeneous, and, for each
acA
a € A, p, is a sum of elements from epm)x 13 ((Wnrgxpin))- It is not difficult to see that if p,

has at least two summands then e;; < (pf) - (po). Since it is a basis, A is a unitary set. Let
B = {p, | a € A}, and let A % B be given by a — p,. We shall show that B is a unitary set
and that ¢ is injective. Let a, a’ € A. Since u is a unitary matrix, u-u* = I,,, and, hence,

(%) (par) = (a*-u)- (u*-ad')=a" 1, -d =a*-d =e1 1040
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In particular, (pf)-(p.) = e11, and we see that p, has exactly one summand, that is,
B C eppmx (13 {(Wnrgxpin))- If @’ # a, we have (p})- (por) = 0; in particular, ¢ is injective
and, hence, bijective. We also have

2 (0-b) =3 (pa-py) = (X pa-a®) (X a'-py) =u-u=1I.

beB acA acA a’€A

Thus B is a unitary set. We may expand B to a multi-homogeneous set B’, and B’ is again
a unitary set, and is then a basis; see Definitions 5.2. By considering the corresponding
expansion of p~! we get an expansion A’ of A, which is again a basis, and an expansion
A2 B of ¢. Then (A’ #, BYe®and Y (d-(a¥)*) = 3 (a-(a®)*) = u. This proves
that a: tV,.,, — PU,,(L®") is surjective. ¢'€4’ acA

It remains to show that a: tV,,, — PU,,(L%) is injective. Suppose that (A % B) € ®

and » (a-(a¥)*) = I,,. For each a € A, right multiplying the latter equation by a¥ gives
acA
a = a¥. This proves that a: tV,,, — PU,,(L%") is injective. O

6 Higman’s proof of invariance of r and gcd(m,r—1)
We use the notation of Definitions 5.2.

6.1 Background. Here we quickly review the main points of Higman’s analysis of conjugacy
classes of finite subgroups of tV,.,,. The arguments are easily adapted from the articles [11],
[16], both of which are set in a broader framework where two bases need not have a common
ancestor.

For each n € [17oo[, there exists some B € BY with |B| = n if and only if
n =m mod (r—1).

By working with minimal common expansions, one can show that each finite subgroup H
of tV,.,, permutes the elements of some B € %S?; moreover, the conjugacy class of H in tV,,,
is then determined by the decomposition of B into H-orbits modulo identifying expansions
of entire H-orbits. Here we will be counting the number of isomorphic copies of an orbit
modulo r—1 except that we must distinguish between the number of isomorphic copies of
an orbit being zero and being a nonzero multiple of r—1.

Conversely, for any finite group H, any finite H-set of cardinal congruent to m mod (r—1)

can be identified with some B € ’Bﬁ? and hence give a homomorphism from H to tV,,,.

6.2 Conclusions. Let us now recall Higman’s recovery of r and ged(m,r—1) from the
isomorphism class of tV;. ,.

Let p be a prime number, let a € [1Too[, and let cc(p®,tV,,,) denote the number of
conjugacy classes of cyclic subgroups of ¢V, ,, whose order divides p®. Then cc(p®,tV, ) is



Warren Dicks and Conchita Martinez-Pérez 17

an invariant of the isomorphism class of tV; ,,. It follows from Background 6.1 that

(23) cc(p®,tV,.m) is equal to the number of sequences nygqp € [07(r—1)]*"
such that >~ (n;p?) = m mod (r—1), and n; # 0 for some i € [07a].
=0

(i). Let p® be the highest power of p dividing r—1. Let p® denote the highest power of p
b

dividing ged(m, r—1). We shall show that cc(p®,tV,,,) = > (p'r*™).

i=0
By rewriting (23) ignoring leading zeros in njo4), we see that

cc(p® tVim) = i% {npirag € ([07(r — 1)])** =4 3 (nyp?) = m mod (r—1), and n; # 0}].

j=i
If b < a, then xp®*! = m mod (r—1) has no solutions, and now, since b < a, we see

b . a .
cc(p® tVim) = 2 {npirag € (01(r—=1)])*™ " : 3= (n;p?) = m mod (r—1) and n; # 0}|.
i=0 j=i
Here, the solutions of n;p* = m — > (n;p?) mod (r—1), n; # 0, are given by all possible
j=it1
r*~" choices for nit1yq € ([07(r—1)])*"*, and then p* choices for n; in the set [17(r—1)] of
b
representatives of Z,_;. Hence cc(p?, tV,. ) = . (p'r®™*), as claimed.
i=0
(il). Now suppose that p does not divide r—1.

By arguing as in (i), we can show that cc(p®,tV, ) = S"r®% The case a = 1 shows
i=0

that for all but finitely many primes p, there are exactly r conjugacy classes of subgroups
of order exactly p in tV, ,,,. It now follows that r is an invariant of the isomorphism class of
tVim.

It then follows from (i) that ged(m,r—1) is also an invariant of the isomorphism class

of tVym.

7 The Bleak-Brin-Lanoue proof of invariance of ¢

We use the notation of Definitions 5.2.

In [4], Bleak-Lanoue developed arguments of Brin [6], [5] to prove that if ¢V, = tV5;
then ¢ = t. In this section we shall give a straightforward adaptation of their arguments
to our language and show that if ¢V, =V, ,,, then t' = ¢. Here, tV,,, will be viewed
as a group of self-homeomorphisms of a Cantor set 8%7)71; since the elements of 8,(0% involve
one-sided infinite words, we follow the standard practice of using left actions on right-infinite
words.
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7.1 Definitions. Let X be a topological space and let GG be a group of self-homeomorphisms
of X acting on the left, g : x — g-x.

Let z € X. We let N(x) denote the set of all open neighbourhoods of z in X, a downward
directed system. We write Fix(z;G) == {g € G | g-x = x} < G. For each subset U of X,
we write Fix(U; G) = () Fix(u; G) < G. We write

uelU

Fix°(z;G) = | Fix(U;G) < Fix(z;G) and Germs(z; G) = Fix(z; G)/ Fix°(z; G),
Ue N(x)

called the groups of germs of G which fix x.
We say that G is locally dense if, for each nonempty, open subset U of X and each v € U,
the closure of the orbit Fix(X\U; G) - u contains some nonempty, open subset of U.

To recall Rubin’s theorem, we copy the following paragraph from [6] and add to Rubin’s
theorem a phrase from [4] about germs.

7.2 Background ([6], [4]). The following is essentially Theorem 3.1 of [19] where it is
described as a combination of parts (a), (b) and (c) of Theorem 3.5 of [18]. The hypothesis
that there be no isolated points was inadvertently omitted from [19] where it is needed.
The terminology locally dense is not used in either [19] or [18]. However, in the absence of
isolated points, it implies the notion of locally moving that is used in [19]. The absence of
isolated points seems to correspond to the assumption of “no atoms” in the Boolean algebras

of [18].

7.2.1 Rubin’s theorem [19]. Let G, resp. H, be a locally dense group of self-homeo-
morphisms of a locally compact, Hausdorff topological space without isolated points X,
resp. Y. For each isomorphism p: G — H, there exists a unique homeomorphism 7: X — Y
with the property that, for each g € G, o(g9) = 7977, and then, for each v € X,
Germs(z; G) = Germs(7(z); H). O

7.3 Remarks. We shall recall below that ¢V, ,, can be viewed as a locally dense group of
self-homeomorphisms of a Cantor set 85«% which is a compact, Hausdorff topological space
without isolated points. We shall show that the set of isomorphism classes of groups given
by {Germs(v;tV,,,) : v € 8%1} equals the set of isomorphism classes of groups given by
{Z" : n € [07t]}. It will then follow from Rubin’s theorem that if t'V,. ,,,, = tV,.,,, then t’ = t.

In [6], Brin showed that 2V5; 2 V,,, by using Rubin’s theorem and a delicate analysis
of dynamics and orbit sizes. In an earlier article [5], Brin had considered germs to study
Thompson’s groups F' and T'. Bleak-Lanoue [4] combined these two approaches. They found
the set of isomorphism classes of groups given by {Germs(v;tVs;) : v € 8§“1} and deduced
that if tV5q = t'Va 4, then ¢ = t. Our proof closely follows theirs.
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7.4 Definitions. For each ¢ € [11¢], let €, denote the set of right-infinite words in Yoy <177
We view &, as a metric space with d(3,~) := (1 + | largest common prefix of 3, v|)~!. We
view e[11m]x{1} as a discrete space. Let

S,fm = €[1tm]x{1} X 81 X oo X 8t,
and let 8% have the product topology. Then 89271 is a compact, Hausdorff space without
isolated points.

We write each v = (e; 1, f1,...,0:) € 8%@ as a formal product v = ¢, 13 - - - 3, thought of
as a limit of elements of e; 1 ((yj114x[11r))) Which have long factors in each ((y(yx1r)). With
this formal-product viewpoint, we can define the set of elements of epm)x {1} ((Ynrgxpin))
that are prefizes of v. Let b € eppm)xq1y ((Wrgxpre)). We define the shadow of b, denoted
(b«), to be the set of all elements of &@n that have b as a prefix. If B is any basis, then 85%
is the disjoint union of the shadows of the elements of B. Then (b«) is a closed and open
subset of 87(337),1, and the set of all shadows forms a basis for the open topology on 85%

Let Z[c‘:&tln] denote the free abelian group on 87({52,1, with the elements of Z[e%] expressed
as formal sums > n,-v, with n, = 0 for all but finitely many v € 8?271 We think of the

veelt),
elements of Z[&%] as matrices that can be approximated arbitrarily closely by elements of
M, (L®) e11. In this way, 7[€),] has the structure of a topological left M,,( L®)-module.
We shall see that PU,,(L®!) acts on the Z-basis €},

Let v € E,Qn and let a, b € epm)x 13 ((Ypigx i) -

If b is not a prefix of v, then b*-v = 0.

If v € (b«), we have b*-v € 85«%, with first factor e;;, and we have a-b*-v € 8%@
The element a-b* € M,,(L®") uniquely determines a, b € eqipmyx {13 {((Ynrgxpre))- We shall
be viewing a - b* as a homeomorphism (b«) — (a<), 1t — a-b* - p, that replaces the prefix
b with the prefix a. This homeomorphism is an identity map if and only if a = b. As
homeomorphisms, a-b* and b-a* are mutually inverse.

Let u € PU,,(L®"). Then there exist bases A, B € B and a bijective map A % B such

that u = 3 (b¥ -b*). Recall that the set of all such (A % B) forms a single equivalence
beEB
class for the smallest equivalence relation which identifies expansions. We view u as being

this equivalence class, and we write (A % B) € u. Let v € 85% Then there is a unique
element by of B which is a prefix of v, and u-v = bf o by -v € 8% Left multiplication
by u then gives a self-homeomorphism of &Qn which acts as b¥ - b* on (b, for each b € B.
The action of u on &@n is trivial only if w = 1. Thus tV,.,,, identified with PU,,(L%"), is a

group of self-homeomorphisms of 8&%

7.5 Lemma (Brin [6]). The group tV,,, of self-homeomorphisms of &@n is locally dense.
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Proof. Consider an open subset of 87@2” and then choose a smaller open subset of the
form (b<). Let H = Fix(€X, \ (b=); tVym). Then H acts on (b«). Consider any v € (b<).
We shall show that the closure of the orbit H -v is all of (b«t), which will show that tV,.,, is
locally dense.

Choose any v’ € (b«). We want to approximate v’ arbitrarily closely by various u - v
with u € H. Choose an open neighbourhood of v’ in (b«), and then choose a smaller open
neighbourhood of the form (V' «). It suffices to find u € H such that u-v € (b'<).

Now b is a prefix of b’ which is a prefix of v’. Let B be a basis containing b, and expand
B to a basis B’ by expanding b towards b, that is, B\ {b} C B’ and b’ € B’. There exists a
unique a € B’ such that a is a prefix of v, and then b is a prefix of a. Choose a bijective map
B' % B’ that fixes B\ {b} and sends b’ to a. Then (B’ % B') lies in a unique u € tVj,,.
Now u € H, and u carries (a«) to (b’«). In particular, u-v € (b'«), as desired. O

7.6 Conclusions. Let v = (e;1,01,...,0:) € 85% We want to analyse Germs(v, tV,. ).

Consider any u € Fix(v;tV,,,), and consider any (A % B) € u. There exist a unique
a € A and a unique b € B such that ¢ and b are prefixes of v. Since u € Fix(v;tV,,,),
we have b® - b*-v = v, or, equivalently, (b“o_l)*-u = b*-v, or, equivalently, we have two
factorizations v = b¥ - v’ = b- v’ with the same tail v'. Thus a® = b. Notice that u acts
as a-b* on (b«). Moreover, any element of the coset u- Fix((b«);tV,,,) will also act as
a-b* on (b«). If in place of (A % B) we choose an expansion of (A % B) in u, then in
place of a-b* we get an element of the form a-c-c¢*-b*, where ¢ is a prefix of v’; we then
say that a-c-c*-b* is an expansion of a-b* towards v. Here all the elements of the coset
u- Fix(((b-c)4);tV,. ) act asa-c-c*-b* on ((b- c)«). Thus longer and longer expansions of
a- b* towards v determine larger and larger cosets within the germ of u.

This leads us to consider the set {a-b* | a,b € e;1((yugxnn)), a-b*-v = v} modulo
the smallest equivalence relation that identifies expansions towards v. This set of equiva-
lence classes is a group, denoted rep(v), with the multiplication that is induced from the
multiplication of compatible representatives, (a-b*)-(b-c*) = a-c*.

It follows from the foregoing that we have an injective homomorphism

Germs(v; tV, ) — rep(v).

To see that this homomorphism is also surjective, notice that it is a straightforward matter
to construct an element of ¢V, ,, which carries one given prefix of v to another as follows. We
choose one basis containing each, and if the bases are not the same size, the smaller basis
can be expanded without removing the specified prefix until the bases are the same size.
Then we choose any bijection between the bases that carries the first chosen prefix of v to
the second chosen prefix of v.

The next step is to compute rep(v).

Let ¢ € [11t]. We say that (3, is rational if there exist wy, 20 € ((Yraxppr))) with 2z, # 1
such that 3y = wy-2;°; otherwise, 3, is irrational.
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For the purpose of exposition, we may assume that there exists some n € [07¢] such that
B¢ is rational if £ € [1Tn] and [, is irrational if £ € [(n+1)7t]. Thus we may write

V= (ei,lawl'zfoa' e awn'zzo7ﬁn+1 o 'ﬁt)v

and we may further assume that each z, is not a proper power.
With u, a and b as before, we can expand the prefixes a, b of v to longer prefixes and
arrange that
av=>0-v=_(e11,27,...,2°, Bi1, 0, ), and then

a=e1(wrzf) - (Wp 2l ) Wnyr - wy,

!
b g 6271(w1.2(1]1) PR (wnzgl;)wn—&—l .. .wt’

where g, qf1, € ([0Too[)™ and By = we- ), € € [(n+1)1t]; notice that irrationality
implies that tails match up with unique prefixes, while the fact that z, is not a proper power

implies that the tail 2z matches up with a prefix that is unique up to right multiplication
by a power of z,. Then

(24) a-b* = em»(wl-zfl'z)fq/“wf) oo (W28 2Ty,

Thus every element of rep(r) contains an element of the form (24). Conversely, every element
of the form (24) lies in some element of rep(v).

It is now straightforward to show that Germs(v, tV,,,) = Z", with elements represented
by the expression (24) corresponding to (¢1— ¢, - .., ¢g.—q,,) € Z".

Let us now show that, for each n € [07t], there exists some v € 8”,1 such that
Germs(v,tV,.,,) = Z™. Since there are only countably many rational right-infinite words,
there exists some v = (e11, Y75, Ysis > Yids Bntt, *o+ 5 Bn) € 87(3”, such that, for each
¢ € [(n+1)1t], B, is irrational. By the foregoing, Germs(v,tV,.,) = Z".

We have now shown that the set of isomorphism classes of groups given by the set
{Germs(v; tV,,,) 1 v € 87(~t2n} equals the set of isomorphism classes of groups given by the set
{Z" : n € [07t]}. It now follows from Theorem 7.2.1 that if t'V,s .,y = tV, ,,, then t’ = t.

In fact, we can say more. The class of groups isomorphic to Z" is closed under taking
subgroups of finite index. Any (conjecturally rare) subgroup of finite index in tV,,, is a

locally dense group of self-homeomorphisms of E&)n and has the same t+1 types of germs as
tVym. Thus, if 'V, ., and tV,,, are commensurable, then ¢’ = t.

8 Summary

The following builds on work of Abrams, Anh, Bleak, Brin, Higman, Lanoue, Pardo, and
Thompson.
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8.1 Theorem. Let 1y, ry € [2700[, my, ma, t1, ts € [1Toc[. The following are equivalent.
(a). r1 =19, ged(my, r1—1) = ged(ma, 19—1), and t; = ts.

(b). My, (L2") and M,,,(L2"?) are isomorphic as partially ordered rings with involution.
(C>‘ tl‘/ﬁ,ml = t2v7“2,m2'

Proof. (a) = (b) by Theorem 4.3.

(b) = (c). Suppose that M,, (L¥") and M,,,(L%") are isomorphic as partially or-
dered rings with involution. Then PU,, (L2") = PU,,,(LZ"). Now by Theorem 5.4,
Ve my = PUs (L) = PU oy (IL572) 2 62V i,

(c) = (a). Suppose that ¢V, m, = t2V;,m,. By Conclusions 7.6, t; = t,. By Conclu-
sions 6.2, 1 = r9 and ged(my,r1—1) = ged(msg, ra—1). O

8.2 Remarks. Let r € [2Toc[, m, t € [1Too[, and let R := M,,(LZ").
(i). Pere Ara has shown that r and ged(m, r—1) are invariants of the isomorphism class

of R within the class of rings; we sketch his argument in (ii) below.

Also it follows from work of Jason Bell and George Bergman that ¢ is an invariant of the
isomorphism class of R within the class of rings; see (iii) below.

Hence the conditions in Theorem 8.1 are further equivalent to
(b). My, (L") and M,,,,(L2"?) are isomorphic as rings.
Here, (b) = (b') is clear, while (b’) = (a) is a consequence of the foregoing results of Ara,
Bell and Bergman. Consequently, with r and ¢ fixed, and m varying, the set of isomorphism
classes of the rings M,,,(IL¥") is in bijective correspondence with the set of positive divisors
of r—1.

(ii). Here we record the argument of Ara.

Let ¢ € Z and let A be any ring. We shall use the homotopy algebraic K-theory groups,
KH;(A), introduced by Weibel [21].

When we apply the Ara-Brustenga-Cortinas result [2, Theorem 8.6] to the quiver E with
one vertex and r loops, where L4(F) := L, ®7 A, we obtain an exact sequenece

mult. by r—1 mult. by r—1
e ey e e

KH;(A) KH;(A) 2222 KH,(L, ®7 A) — KH;_;(A) KH,_;(A).

If A=7Z, then KH;(A) =0 if i < 0, while KHy(A) = Z, with the class of A in KHy(A)
corresponding to 1; see [21, Example 1.4]. Tt then follows by induction on ¢ that if A = L%
then KH;(A) = 0ifi < 0, while KHy(A) = Z,_; with the class of A in KHy(A) corresponding
to the class of 1 in Z,_;.

Recall that R denotes M,,(L%"). It now follows that KHy(R) & Z,_; with the class of
R corresponding to the class of m in Z,_;. Thus KHy(R) is cyclic of order r—1 and the
class of R in KHy(R) has order W’Ll). Hence r and ged(m,r—1) are invariants of the
isomorphism class of the ring R, as desired.

(iii). Here we build on unpublished work of Bell and Bergman.
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Let K be a commutative field, and let I' .= K ®z L,.

Let I'°P denote the opposite ring of I'. Let I'® =" ®x ['°P. Where K is understood, the
projective dimension of the left I'>-module I" is denoted dimI". Bergman-Dicks [3, (17) and
(4)] showed that there exists an exact sequence of left I'*-modules 0 — (I*)" - I'* — I' — 0.
Thus dimI" < 1.

Straightforward normal-form arguments show that the element x;—1 of I' does not have
a left inverse and is not a left zerodivisor; thus w.gl.dimI" > 1.

Since dimT" < 1 and w. gl. dimT" > 1, the Eilenberg-Rosenberg-Zelinsky result [9, Propo-
sition 10(2)] implies that, for each K-algebra A, L. gl. dim(A ®x ') = 1 + L. gl. dim(A), that
is, . gl. dim(A ®z L) = 1 + 1. gl. dim(A).

Now 1. gl. dim(K ®z R) = 1. gl. dim(M,,,(K) ®z L") = ¢, by induction on ¢. Thus ¢ is an
invariant of the isomorphism class of the ring R.
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