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Abstract. Let G be a group and H be a subgroup of G. We say that H is left relatively
convex in G if the left G-set G/H has at least one G-invariant order; when G is left orderable,
this holds if and only if H is convex in G under some left ordering of G.

We give a criterion for H to be left relatively convex in G that generalizes a famous
theorem of Burns and Hale and has essentially the same proof. We show that all maximal
cyclic subgroups are left relatively convex in free groups, in right-angled Artin groups, and
in surface groups that are not the Klein-bottle group. The free-group case extends a result
of Duncan and Howie.

More generally, every maximal m-generated subgroup in a free group is left relatively
convex. The same result is valid, with some exceptions, for compact surface groups. Maximal
m-generated abelian subgroups in right-angled Artin groups are left relatively convex.

If G is left orderable, then each free factor of G is left relatively convex in G. More
generally, for any graph of groups, if each edge group is left relatively convex in each of its
vertex groups, then each vertex group is left relatively convex in the fundamental group;
this generalizes a result of Chiswell.

All maximal cyclic subgroups in locally residually torsion-free nilpotent groups are left
relatively convex.

1. Outline

Notation 1. Throughout this article, let G be a multiplicative group, and G0 be a subgroup
of G. For x, y ∈ G, [x, y] := x−1y−1xy, xy := y−1xy, and yx := yxy−1. For any subset X
of G, X±1 := X ∪X−1, 〈X〉 denotes the subgroup of G generated by X, 〈XG〉 denotes the
normal subgroup of G generated by X, and G/CXB := G/〈XG〉. When we write A ⊆ B we
mean that A is a subset of B, and when we write A ⊂ B we mean that A is a proper subset
of B.

In Section 2, we collect together some facts, several of which first arose in the proof of
Theorem 28 of [Berg90]. If G is left orderable, Bergman calls G0 ‘left relatively convex in G’
if G0 is convex in G under some left ordering of G, or, equivalently, the left G-set G/G0 has
some G-invariant order. Broadening the scope of his terminology, we shall say that G0 is left
relatively convex in G if the left G-set G/G0 has some G-invariant order, even if G is not
left orderable.
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We give a criterion for G0 to be left relatively convex in G that generalizes a famous
theorem of Burns and Hale [BH72] and has essentially the same proof. We deduce that if
each noncyclic, finitely generated subgroup of G maps onto Z2, then each maximal cyclic
subgroup of G is left relatively convex in G. Thus, if F is a free group and C is a maximal
cyclic subgroup of F , then F/C has an F -invariant order; this extends the result of Duncan
and Howie [DH91] that a certain finite subset of F/C has an order that is respected by
the partial F -action. Louder and Wilton [LW14] used the Duncan-Howie order to prove
Wise’s conjecture that, for subgroups H and K of a free group F , if H or K is a maximal
cyclic subgroup of F , then

∑
HxK∈H\F/K rank(Hx ∩K) 6 rank(H) rank(K). They also gave

a simple proof of the existence of a Duncan-Howie order; translating their argument from
topological to algebraic language led us to the order on F/C. More generally, we introduce
the concept of n-indicability and use it to show that each maximal m-generated subgroup of
a free group is left relatively convex.

In Section 3, we find that the main result of [DS14] implies that, for any graph of groups, if
each edge group is left relatively convex in each of its vertex groups, then each vertex group is
left relatively convex in the fundamental group. This generalizes a result of Chiswell [Chi11].
In particular, in a left-orderable group, each free factor is left relatively convex.

One says that G is discretely left orderable if some infinite (maximal) cyclic subgroup
of G is left relatively convex in G. Many examples of such groups are given in [LRR09]; for
instance, it is seen that among free groups, braid groups, surface groups, and right-angled
Artin groups, all the infinite ones are discretely left orderable. In Section 4 below, we show
that all maximal cyclic subgroups are left relatively convex in right-angled Artin groups
and in compact surface groups that are not the Klein-bottle group. More generally, we show
that, with some exceptions, each maximal m-generated subgroup of a compact surface group
is left relatively convex, and each maximal m-generated abelian subgroup of a right-angled
Artin group is left relatively convex.

At the end, in Section 5, we show that all maximal cyclic subgroups in locally residually
torsion-free nilpotent groups are left relatively convex.

2. Left relatively convex subgroups

Definitions 2. Let X be a set and R be a binary relation on X; thus, R is a subset of
X ×X, and ‘xRy’ means ‘(x, y) ∈ R’. We say that R is transitive when, for all x, y, z ∈ X,
if xRy and yRz, then xRz, and here we write xRyRz and say that y fits between x and z
with respect to R. We say that R is trichotomous when, for all x, y ∈ X, exactly one of
xRy, x = y, and yRx holds, and here we say that the sign of the triple (x,R, y), denoted
sign(x,R, y), is 1, 0, or −1, respectively. A transitive, trichotomous binary relation is called
an order. For any order < on X, a subset Y of X is said to be convex in X with respect to <
if no element of X−Y fits between two elements of Y with respect to <.

Now suppose that X is a left G-set. The diagonal left G-action on X ×X gives a left
G-action on the set of binary relations on X. By a binary G-relation on X we mean a
G-invariant binary relation on X, and by a G-order on X we mean a G-invariant order on X.
If there exists at least one G-order on X, we say that X is G-orderable. If X is endowed with
a G-order, we say that X is G-ordered. When X is G with the left multiplication action,
we replace ‘G-’ with ‘left’, and write left order, left orderable, or left ordered, the latter two
being hyphenated when they premodify a noun.
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Analogous terminology applies for right G-sets.

Definitions 3. For K 6 H 6 G, we recall two mutually inverse operations. Let x, y ∈ G.
If < is a G-order on G/K with respect to which H/K is convex in G/K, then we define

an H-order <bottom on H/K and a G-order <top on G/H as follows. We take <bottom to be
the restriction of < to H/K. We define xH <top yH to mean (∀h1, h2 ∈ H)(xh1K < yh2K).
This relation is trichotomous since xH <top yH if and only if (xH 6= yH) ∧ (xK < yK); the
former clearly implies the latter, and, when the latter holds, K < x−1yK, and then, by the
convexity of H/K in G/K, h1K < x−1yK, and then y−1xh1K < K, y−1xh1K < h2K, and
xh1K < yh2K. Thus, <top is a G-order on G/H.

Conversely, if <bottom is an H-order on H/K and <top is a G-order on G/H, we now define
a G-order < on G/K with respect to which H/K is convex in G/K. We define xK < yK
to mean (xH <top yH) ∨

(
(xH = yH) ∧ (K <bottom x−1yK)

)
.

It is clear that < is a well-defined G-order on G/K. Suppose xK ∈ (G/K)− (H/K). Then
xH 6= H. If xH <top H, then xK < hK, for all h ∈ H, and similarly if H <top xH. Thus,
H/K is convex in G/K with respect to <.

In particular, G/K has some G-order with respect to which H/K is convex in G/K if and
only if H/K is H-orderable and G/H is G-orderable. Taking K = {1} and H = G0, we find
that the following are equivalent, as seen in the proof of Theorem 28 (vii)⇔(viii) of [Berg90].

(3.1) G has some left order with respect to which G0 is convex in G.
(3.2) G0 is left orderable, and G/G0 is G-orderable.
(3.3) G is left orderable, and G/G0 is G-orderable.

This motivates the terminology introduced in the following definition, which presents an
analysis similar to one given by Bergman in the proof of Theorem 28 in [Berg90]. Unlike
Bergman, we do not require that the group G is left-ordered.

Definition 4. Let Ssg(G) denote the set of all the subsemigroups of G, that is, subsets of G
closed under the multiplication. We say that the subgroup G0 of G is left relatively convex
in G when any of the following equivalent conditions hold.

(4.1) The left G-set G/G0 is G-orderable.
(4.2) The right G-set G0\G is G-orderable.
(4.3) There exists some G+ ∈ Ssg(G) such that G±1+ = G−G0; in this event, G+ ∩G−1+ = ∅

and G0G+ = G+G0 = G0G+G0 = G+.
(4.4) For each finite subset X of G−G0, there exists S∈Ssg(G) such that X⊆S±1⊆G−G0.

We then say also that G0 is a left relatively convex subgroup of G. One may also use ‘right’
in place of ‘left’.

Proof of equivalence. (4.1)⇒(4.3). Let < be a G-order on G/G0, and set

G+ := {x ∈ G | G0 < xG0};

then G−1+ = {x ∈ G | G0 < x−1G0} = {x ∈ G | xG0 < G0} and G0 = {x ∈ G | G0 = xG0}.
Hence, G±1+ = G−G0. If x, y ∈ G+, then G0 < xG0, G0 < yG0 and G0 < xG0 < xyG0; thus
xy ∈ G+. Hence, G+ ∈ Ssg(G).

Now consider any G+ ∈ Ssg(G) such that G±1+ = G−G0. Then G+ ∩ G−1+ = ∅, since G+

is a subsemigroup which does not contain 1. Also, G0G+ ∩G0 = ∅, since G+ ∩G−10 G0 = ∅,
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while G0G+ ∩G−1+ = ∅, since G0 ∩G−1+ G−1+ = ∅. Thus G0G+ ⊆ G+, and equality must hold.
Similarly, G+G0 = G+.

(4.3)⇒(4.1). Let x, y, z ∈ G. We define xG0 < yG0 to mean (xG0)
−1(yG0) ⊆ G+, or,

equivalently, x−1y ∈ G+. Then < is a well-defined binary G-relation on G/G0. Since x−1y
belongs to exactly one of G+, G0, and G−1+ , we see that < is trichotomous. If xG0 < yG0 and
yG0 < zG0, then G+ contains x−1y, y−1z, and their product, which shows that xG0 < zG0.
Thus < is a G-order on G/G0.

(4.2)⇔(4.3) is the left-right dual of (4.1)⇔(4.3).
(4.3)⇒(4.4) with S = G+.
(4.4)⇒(4.3). Bergman [Berg90] observes that an implication of this type follows easily from

the Compactness Theorem of Model Theory; here, one could equally well use the quasi-com-
pactness of {−1, 1}G−G0 , which holds by a famous theorem of Tychonoff [Tych30]. The case
of this implication where G0 = {1} was first stated by Conrad [Con59], who gave a short
argument designed to be read in conjunction with a short argument of Ohnishi [Ohn52].
Let us show that a streamlined form of the Conrad-Ohnishi proof gives the general case
comparatively easily.

Let 2G−G0 denote the set of all subsets of G−G0. For each W ∈ 2G−G0 , let Fin(W ) denote
the set of finite subsets of W , and 〈〈W 〉〉 denote the subsemigroup of G generated by W .
For each ϕ ∈ {−1, 1}G−G0 and x ∈ G−G0, set ϕ̃(x) := xϕ(x) ∈ {x, x−1}. Set

W :=

{
W ∈ 2G−G0 |

(
∀W ′∈ Fin(W )

) (
∀X∈ Fin(G−G0)

)(
∃ϕ ∈ {−1, 1}G−G0

)(
G0 ∩

〈〈
W ′ ∪ ϕ̃(X)

〉〉
= ∅
) }

.

It is not difficult to see that (4.4) says precisely that ∅ ∈W. Also, it is clear that

(∀W ∈ 2G−G0)
((
W ∈W

)
⇔
(
Fin(W ) ⊆W

))
.

It follows that W is closed in 2G−G0 under the operation of taking unions of chains. By
Zorn’s Lemma, there exists some maximal element W of W.

We shall prove that 〈〈W 〉〉±1 = G−G0, and thus (4.3) holds. By taking X = ∅ in the
definition of ‘W ∈W’, we see that 〈〈W 〉〉 ⊆ G−G0, and thus W±1 ⊆ 〈〈W 〉〉±1 ⊆ G−G0. It
remains to show that G−G0 ⊆ W±1. Since W is maximal in W, it suffices to show that

(∀x ∈ G−G0)
(
(W ∪ {x} ∈W) ∨ (W ∪ {x−1} ∈W)

)
.

Suppose then W ∪ {x} 6∈W; thus, we may fix Wx∈ Fin(W ) and Xx∈ Fin(G−G0) such that(
∀ϕ ∈ {−1, 1}G−G0

) (
G0 ∩

〈〈
Wx ∪ {x} ∪ ϕ̃(Xx)

〉〉
6= ∅
)
.

Let W ′∈ Fin(W ) and X∈ Fin(G−G0). As W ∈W, there exists ϕ ∈ {−1, 1}G−G0 such that
G0 ∩

〈〈
Wx ∪W ′ ∪ ϕ̃({x} ∪Xx ∪X)

〉〉
= ∅.

Clearly, ϕ̃(x) 6= x. Thus, ϕ̃(x) = x−1 and
G0 ∩

〈〈
W ′ ∪ {x−1} ∪ ϕ̃(X)

〉〉
= ∅.

This shows that W ∪ {x−1}∈W, as desired. �

The Burns-Hale theorem [BH72, Theorem 2] says that if each nontrivial, finitely generated
subgroup of G maps onto some nontrivial, left-orderable group, then G is left orderable.
The following result, using a streamlined version of their proof, generalizes the Burns-Hale
theorem in two ways. Namely, the scope is increased by stating the result for an arbitrary
subgroup G0 (in their case G0 is trivial) and by imposing a weaker condition (in their case
〈X〉 is required to map onto a left-orderable group).
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Theorem 5. If, for each nonempty, finite subset X of G−G0, there exists a proper, left rela-
tively convex subgroup of 〈X〉 that includes 〈X〉 ∩ G0, then G0 is left relatively convex in G.

Proof. For each finite subset X of G−G0, we shall construct an SX ∈ Ssg(〈X〉) such that
X ⊆ S±1X ⊆ G−G0, and then (4.4) above will hold. We set S∅ := ∅. We now assume that
X 6= ∅. Let us write H := 〈X〉. By hypothesis, we have an H0 such that H ∩G0 6 H0 < H
and H0 is left relatively convex in H. Notice that H−H0 ⊆ H−(H ∩G0) ⊆ G−G0 and
X ∩H0 ⊂ X, since X * H0. By induction on |X|, we have an SX∩H0 ∈ Ssg(〈X ∩H0〉)
such that X ∩H0 ⊆ S±1X∩H0

⊆ G−G0. By (4.3) above, since H0 is left relatively convex

in H, we have an H+ ∈ Ssg(H) such that H0H+H0 = H+ and H±1+ = H−H0. We set
SX := SX∩H0 ∪H+. Then SX ∈ Ssg(H), since SX∩H0 ⊆ H0 and H0H+H0 = H+. Also,

X = (X ∩H0) ∪ (X−H0) ⊆ S±1X∩H0
∪ (H−H0) = S±1X ⊆ G−G0. �

Remark 6. Theorem 5 above has a variety of corollaries. For example, for any subset X
of G, we have a sequence of successively weaker conditions: 〈X ∪G0〉/CG0B maps onto Z;
〈X ∪G0〉/CG0B maps onto a nontrivial, left-orderable group; there exists a proper, left
relatively convex subgroup of 〈X ∪G0〉 that includes G0; and, there exists a proper, left
relatively convex subgroup of 〈X〉 that includes 〈X〉 ∩ G0. The last implication follows from
the following fact. If A and B are subgroups of G and A is left relatively convex in G, then
A ∩B is left relatively convex in B.

Definition 7. A group G is said to be n-indicable, where n is a positive integer, if it can be
generated by fewer than n elements or it admits a surjective homomorphism onto Zn.

A group G is locally n-indicable if every finitely generated subgroup of G is n-indicable.

Note that some authors require in the definition of indicability that G admits a surjective
homomorphism onto Z, while here 1-indicable means that G is trivial or maps onto Z,
2-indicable means that G is cyclic or maps onto Z2, and so on.

Example 8. Free abelian groups of any rank and free groups of any rank are locally
n-indicable for every n.

The notion of n-indicability is related to left relative convexity through the following
corollary of Theorem 5.

Corollary 9. Let n > 2. If G is locally n-indicable group then each maximal (n−1)-generated
subgroup of G is left relatively convex in G.

In particular, in a free group, each maximal cyclic subgroup is left relatively convex.

Proof. If the subgroup G0 is maximal (n − 1)-generated subgroup of G, then, for any
nonempty, finite subset X of G−G0, 〈X ∪G0〉 maps onto Zn, and 〈X ∪G0〉/CG0B maps
onto Z. �

The idea of Corollary 9 can be used to show that certain maximal κ-generated abelian
subgroups are left relatively convex, where κ is some cardinal.

Definition 10. A group G is nasmof if it is torsion-free and every nonabelian subgroup of
G admits a surjective homomorphism onto Z ∗ Z.

Example 11. The class of nasmof groups contains free and free abelian groups and it is
closed under taking subgroups and direct products. Residually nasmof groups are nasmof,

5



and in particular residually free groups are nasmof. Every nasmof group G is 2-locally
indicable, and by Corollary 9, maximal cyclic subgroups are left relatively convex.

Corollary 12. Let κ be a cardinal. If G is a nasmof group then each maximal κ-generated
abelian subgroup of G is left relatively convex in G.

In particular, in a residually free group, each maximal κ-generated abelian subgroup is left
relatively convex.

Proof. Let G0 be maximal κ-generated abelian subgroup of G and X a nonempty finite
subset of G−G0. By maximality, if 〈X ∪G0〉 is abelian, then it is not κ-generated and κ
must be a finite cardinal. In this case, 〈X ∪G0〉 is a finitely generated, torsion-free abelian
group of rank greater than κ. If 〈X ∪G0〉 is nonabelian, then it maps onto Z ∗ Z. In both
cases, 〈X ∪G0〉/CG0B maps onto Z. �

3. Graphs of groups

Definitions 13. By a graph, we mean a quadruple (Γ , V, ι, τ) such that Γ is a set, V is a
subset of Γ , and ι and τ are maps from Γ−V to V . Here, we let Γ denote the graph as
well as the set, and we write VΓ := V and EΓ := Γ−V , called the vertex-set and edge-set,

respectively. We then define vertex, edge ιe
e−→−τe, inverse edge τe

e−1

−−→−ιe, path

(13.1) v0
e
ε1
1−−→− v1

e
ε2
2−−→− v2

e
ε3
3−−→− · · ·

e
εn−2
n−2−−−→− vn−2

e
εn−1
n−1−−−→− vn−1

eεnn−−→− vn, n > 0,

reduced path, and connected graph in the usual way. We say that Γ is a tree if V 6= ∅ and, for
each (v, w) ∈ V ×V , there exists a unique reduced path from v to w. The barycentric subdi-

vision of Γ is the graph Γ (′) such that VΓ (′) = Γ and E Γ (′) = EΓ × {ι, τ}, with e
(e,ι)−−→− ιe

and e
(e,τ)−−→− τe.

We say that Γ is a left G-graph if Γ is a left G-set, V is a G-subset of Γ , and ι and τ are
G-maps. For γ ∈ Γ , we let Gγ denote the G-stabilizer of γ.

Let T be a tree. A local order on T is a family (<v | v ∈ VT ) such that, for each v ∈ VT ,
<v is an order on linkT (v) := {e ∈ ET | v ∈ {ιe, τe}}. By Theorem 3 of [DS14], for each
local order (<v | v ∈ VT ) on T , there exists a unique order <

T
on VT such that, for each

reduced T -path expressed as in (13.1) above,

sign(v0, <T
, vn) = sign

(
0, <Z ,

n∑
i=1

εi +
n−1∑
i=1

sign(ei, <vi , ei+1)
)
,

where the sign notation is as in Definitions 2 above. We then call <
T

the associated order,∑n
i=1 εi the orientation-sum, and

∑n−1
i=1 sign(ei, <vi , ei+1) the turn-sum. If T is a left G-tree,

then, for any G-invariant local order on T , the associated order on VT is easily seen to be a
G-order.

Theorem 14. Suppose that T is a left G-tree such that, for each T-edge e, Ge is left relatively
convex in Gιe and in Gτe. Then, for each t ∈ T , Gt is left relatively convex in G. If there
exists some t ∈ T such that Gt is left orderable, then G is left orderable. Moreover, if the
input orders are given effectively, then the output orders are given effectively,

Proof. We choose one representative from each G-orbit in VT . For each representative v0, we
choose an arbitrary order on the set of Gv0-orbits Gv0\ linkT (v0), and, within each Gv0-orbit,
we choose one representative e0 and a Gv0-order on Gv0/Ge0 , which exists by (4.1) above;
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since our Gv0-orbit Gv0e0 may be identified with Gv0/Ge0 , we then have a Gv0-order on Gv0e0,
and then on all of linkT (v0) by our order on Gv0\ linkT (v0). We then use G-translates to
obtain a G-invariant local order on T . This in turn gives the associated G-order on VT as in
Definitions 13 above. In particular, for each T-vertex v, we have G-orders on Gv and G/Gv.
By (4.1) above, Gv is then left relatively convex in G. For each T-edge e, Ge is left relatively
convex in Gιe by hypothesis, and then Ge is left relatively convex in G by Definitions 3 above.
Thus, for each t ∈ T , Gt is left relatively convex in G.

By (3.2)⇒(3.3) above, if there exists some t ∈ T such that Gt is left orderable, then G is
left orderable. �

Example 15. Let F be a free group and X be a free-generating set of F . The left Cayley
graph of F with respect to X is a left F -tree on which F acts freely. Thus, the fact that free
groups are left orderable can be deduced from Theorem 14 above; see [DS14].

Bearing in mind that intersections of left relatively convex subgroups is left relatively
convex, we can generalize the previous example to the case that a group acts freely on some
orbit of n-tuples of elements of T .

Corollary 16. Suppose that T is a left G-tree such that, for each T-edge e, Ge is left
relatively convex in Gιe and in Gτe. Suppose that there exists a finite subset S of T with
∩s∈SGs = {1}, then G is left orderable.

Definitions 17. By a graph of groups (G,Γ ), we mean a graph with vertex-set a fam-
ily of groups (G(v′) | v′ ∈ V Γ (′)) and edge-set a family of injective group homomorphisms

(G(e)
G(e′)−−−→ G(v) | e e′−→−v ∈ E Γ (′)), where Γ is a nonempty, connected graph and Γ (′) is its

barycentric subdivision. For γ ∈ Γ (′), we call G(γ) a vertex group, edge group, or edge map if
γ belongs to VΓ , EΓ , or EΓ (′), respectively. One may think of (G,Γ ) as a nonempty, con-
nected graph, of groups and injective group homomorphisms, in which every vertex is either
a sink, called a vertex group, or a source of valence two, called an edge group. We shall use
the fundamental group and the Bass-Serre tree of (G,Γ ) as defined in [Ser77] and [DD89].

Bass-Serre theory translates Theorem 14 above into the following form.

Theorem 18. Suppose that G is the fundamental group of a graph of groups (G,Γ ) such that

the image of each edge map G(e)
G(e′)−−−→ G(v) is left relatively convex in its vertex group, G(v).

Then each vertex group is left relatively convex in G. If some vertex group is left orderable,
then G is left orderable. Moreover, if the input orders are given effectively, then the output
orders are given effectively. �

Remarks 19. Theorem 18 above generalizes the result of Chiswell that a group is left
orderable if it is the fundamental group of a graph of groups such that each vertex group is
left ordered and each edge group is convex in each of its vertex groups; see Corollary 3.5 of
[Chi11].

The result of Chiswell is a consequence of Corollary 3.4 of [Chi11], which shows that a
group is left orderable if it is the fundamental group of a graph of groups such that each edge
group is left orderable and each of its left orders extends to a left order on each of its vertex
groups. (If, moreover, each edge group and vertex group is left ordered, and the maps from
edge groups to vertex groups respect the orders, then the fundamental group has a left order
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such that the maps from the vertex groups to the fundamental group respect the orders.)
This applies to the case of cyclic edge groups and left-orderable vertex groups.

Corollary 3.4 of [Chi11] is, in turn, a consequence of Chiswell’s necessary and sufficient
conditions for the fundamental group of a graph of groups to be left orderable. As his proof
involved ultraproducts, his orders were not constructed effectively.

Example 20. Let A and B be groups, C be a subgroup of A, and x : C → B, c 7→ cx,
be an injective homomorphism. The graph of groups A← C → B, where the maps are the
inclusion map and x, has as fundamental group A ∗C B := A ∗B/C{c−1·cx | c ∈ C}B, called
the free product with amalgamation with vertex groups A and B, edge group C, and edge
map x. We then view A and B as subgroups of A ∗C B. In particular, cx = c.

If C is left relatively convex in each of A and B, then A and B are left relatively convex
in A ∗C B, by Theorem 18 above.

In detail, suppose that G = A ∗C B, that <
A

is an A-order on A/C, and that <
B

is a

B-order on B/C. The Bass-Serre left G-tree T for A← C → B has vertex-set G/A ∪̇G/B
(where ∪̇ denotes the disjoint union) and edge-set G/C, with gA

gC−→−gB. Then <
A

and
<
B

determine a G-invariant local order on T , and we have the associated G-order <
T

on V T , as in Definitions 13 above. Let us describe the G-order <
T

on G/A. Consider
any gA ∈ G/A, and write gA = a1b1a2b2 · · · anbnA, n > 0, where a1 ∈ A, a2, . . . , an ∈ A−C,
b1, b2, . . . , bn ∈ B−C. We then have a reduced T -path

A
a1C−−→− a1B

(a1b1C)−1

−−−−−−→− a1b1A
a1b1a2C−−−−→− a1b1a2B

(a1b1a2b2C)−1

−−−−−−−−→− . . .

. . .
a1b1a2b2···anC−−−−−−−−→− a1b1a2b2 · · · anB

(a1b1a2b2···anbnC)−1

−−−−−−−−−−−−→− a1b1a2b2 · · · anbnA = gA.

The orientation-sum equals zero, and we have only the turn-sum, which simplifies by the
G-invariance of the local order to give

sign(A,<
T
, gA) = sign

(
0, <Z ,

n∑
i=1

sign(C,<
B
, biC) +

n∑
i=2

sign(C,<
A
, aiC)

)
.

We record the case where C = {1}.

Corollary 21. In a left-orderable group, every free factor is left relatively convex. �

Example 22. In a free group, every free factor is left relatively convex, by Example 15
above.

Example 23. Suppose that A and B are free groups, or, more generally, groups all of whose
maximal cyclic subgroups are left relatively convex; see Corollary 9 above. If C is a maximal
cyclic subgroup in both A and B, then A and B are left relatively convex in A ∗C B, by
Example 20 above.

Example 24. Let A be a group, C be a subgroup of A, and x : C → A, c 7→ cx, be an
injective homomorphism. The graph of groups C ⇒ A, where the maps are the inclusion map
and x, has as fundamental group A ∗C x := A ∗ 〈x | ∅〉/C{x−1·c−1·x·cx | c ∈ C}B, called the
HNN extension with vertex group A, edge group C, and edge map x. We then view A and
〈x | ∅〉 as subgroups of A ∗C x. In particular, cx = x−1cx.

If C and C x are left relatively convex in A, then A is left relatively convex in A ∗C x, by
Theorem 18 above.
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If G = A ∗C x, then the Bass-Serre left G-tree T for C ⇒ A has vertex-set G/A and

edge-set G/C, with gA
gC−→−gxA.

4. Surface groups and raags

The following applies to all noncyclic compact surface groups.

Example 25. Let G = 〈{x} ∪̇ {y} ∪̇ Z | x−1yεxyw〉 with ε ∈ {−1, 1} and w ∈ 〈Z | ∅ 〉. By
Example 22 above, both 〈 y 〉 and 〈 y w〉 are left relatively convex in 〈{y} ∪̇ Z | ∅ 〉, which

in turn is left relatively convex in the HNN extension G, by Example 24 above. Here the
Bass-Serre left G-tree T has vertex-set G/〈{y} ∪ Z〉 and edge-set G/〈y〉.

Notice that 〈{x} ∪ Z 〉 is not left relatively convex in 〈{x} ∪̇ {y} ∪̇ Z | (xy)2 = x2w−1〉.
Proposition 26. (a) Every compact orientable surface group G of genus g > 1 is locally

n-indicable, for every n > 1.
(b) Every compact non-orientable surface group G of genus g > 2 is locally n-indicable,

for 1 6 n 6 g − 1.

Proof. (a) Let G be a compact orientable surface group of genus g > 1, n > 1, and let H
be an m-generated subgroup of G that cannot be generated by fewer than m elements, for
some m > n. If H is of infinite index in G, then H is free of rank m, and if it is of finite
index, then it is a compact orientable surface group of genus m/2 > g. In both cases, H
admits a homomorphism onto Zm, and therefore also onto Zn.

(b) Let G be a compact non-orientable surface group of genus g > 2, n > 1, and let H
be an m-generated subgroup of G that cannot be generated by fewer than m elements, for
some m > n. If H is of infinite index in G, then H is free of rank m, and if it is of finite
index, then H is a compact non-orientable surface group of genus m > g > n + 1. In the
former case, H admits a homomorphism onto Zm, and therefore also onto Zn. In the latter
case, H admits a homomorphism onto Zm−1 and, since in this case m− 1 > n, H admits a
homomorphism onto Zn. �

The following applies to all noncyclic surface groups except the Klein-bottle group.

Corollary 27.
(a) Let G be a compact orientable surface group G of genus g > 1. Every maximal m-generated
subgroup of G is left relatively convex in G.
(b) Let G be a compact non-orientable surface group G of genus g > 3. Every maximal
m-generated subgroup of G, for 1 6 m 6 g − 2 is left relatively convex in G.

Proof. Follows from Proposition 26 and Corollary 9. �

Definitions 28. Let X be a set, R be a subset of [X,X] in 〈X | ∅ 〉, and G = 〈X | R 〉. We
say that G is a right-angled Artin group, or raag for short. For example, free groups and free
abelian groups are raags.

Let Y be a subset of X. The map X → G which acts as the identity map on Y and
sends X−Y to {1} induces well-defined homomorphisms G→ G and G/CX−YB→ G.
Moreover, the natural composite G/CX−YB → G → G/CX−YB is the identity map,
since it acts as such on the generating set Y . Thus we may identify G/CX−YB with
its image 〈Y 〉 in G. It follows that 〈Y 〉 is a raag. We let π〈X〉→〈Y 〉 denote the map
G → G/CX−YB = 〈Y 〉.
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For each x ∈ X, G = A ∗C x where A = 〈X−{x}〉, C = 〈{y ∈ X−{x} | [x, y] ∈ R±1}〉, and
x : C → A, c 7→ cx, is the inclusion map. In essence, this was noted by Bergman [Berg76].

It is not difficult to show that 〈Y 〉 is left relatively convex in G; since (4.4) above is a
local condition, it suffices to verify this for X finite, and here it holds by induction on |X|
and Example 24 above. In particular, G is left orderable and, hence, torsion-free.

By [AM15, Corollary 1.6], raags are nasmof and therefore locally 2-indicable. By Corol-
lary 12, we have the following.

Corollary 29. Let G be a subgroup a right-angled Artin group and κ a cardinal. Every
maximal κ-generated abelian subgroup of G is left relatively convex in G.

In particular, maximal abelian subgroups of G are left relatively convex in G.

Example 30. There exists an example, attributed by Ashot Minasyan [Min12] to Martin
Bridson, of a subgroup G of finite index in the right-angled Artin group F2 × F2 such that
G/G′ is not torsion-free. This implies that there exists n > 2 such that the right-angled
Artin group F2 × F2 is not locally n-indicable.

We do not know if raags have the property that their maximal n-generated subgroups are
left relatively convex.

5. Residually torsion-free nilpotent groups and left relative convexity

Corollary 9, combined with the next few observations, provides many examples of left
relatively convex cyclic subgroups.

Proposition 31. If G is a finitely generated, nilpotent group with torsion-free center, then
G is 2-indicable.

Proof. Let G be any group (not necessarily nilpotent or with torsion free center), Z1 be its
center, and Z2 be its second center, that is, Z2/Z1 is the center of G/Z1.

For g ∈ G and a ∈ Z2, the commutator [a, g] is in Z1. From the identity [ab, g] = [a, g]b[b, g],
we obtain, for a, b ∈ Z2, [ab, g] = [a, g][b, g]. Therefore, for any element g ∈ G, a 7→ [a, g] is a
homomorphism from Z2 to Z1, and a 7→ ([a, g])g∈G is a homomorphism from Z2 to

∏
g∈G Z1

with kernel Z1, which implies that Z2/Z1 embeds into a power of Z1.
We now let G be a finitely generated, nilpotent group with torsion free center and we

argue by induction on the nilpotency class c of G.
If c = 0, then G is trivial, and hence 2-indicable. Assume that c ≥ 1. Since Z2/Z1

embeds into a power of Z1, which is a torsion-free group, Z2/Z1 itself is a torsion-free group.
Therefore G/Z1 is a finitely generated, nilpotent group of class c− 1 with torsion-free center
Z2/Z1. By the inductive hypothesis, G/Z1 is 2-indicable. If G/Z1 is noncyclic, then G/Z1

maps onto Z2, and so does G; thus we may assume that G/Z1 is cyclic. In that case, G/Z1

is trivial, G is a free abelian group, and, hence, G is 2-indicable. �

Remark 32. Note that, under the assumption that Z1 is torsion free, the observation
that Z2/Z1 embeds into some power of Z1 yields that Z2/Z1, the center of G/Z1, is itself
torsion-free. Inductive arguments then quickly yield that each upper central series factor
Zi+1/Zi, for i > 0, is torsion-free, each quotient Zj/Zi, for j > i > 0, is torsion free, and
under the additional assumption that G is nilpotent, each quotient G/Zi, for i > 0, is
torsion-free; these are well-known results of Mal′cev [Mal49] and we could use them to skip
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the first part in the proof of Proposition 31 and move directly to the inductive part of the
proof.

Proposition 31 also follows from Mal′cev’s result on quotients, together with Lemma 13
in [BBEŠ12], which states that every finitely generated, nilpotent group that is not virtually
cyclic maps onto Z2 (the proof of this result relies on the fact that torsion-free, virtually
abelian, nilpotent groups are abelian, which easily follows from the uniqueness of roots in
torsion-free nilpotent groups; another result of Mal′cev from [Mal49]).

With all these choices before us, we still opted for the proof of Proposition 31 provided
above, because it is short and self-contained.

Proposition 33. Every locally residually torsion-free nilpotent group is locally 2-indicable.

Proof. Let G be a locally residually torsion-free nilpotent group and H a finitely generated
subgroup of G. Then H is residually torsion-free nilpotent group. If H has a noncyclic,
torsion-free, nilpotent quotient, then this quotient maps to Z2 by Proposition 31, and so
does H. Otherwise, H is residually-Z, which implies that it is abelian. Since H is finitely
generated and torsion-free, it is free abelian, hence 2-indicable (in fact, H is cyclic in this
case, since we already excluded the possibility of noncyclic quotients). �

Remark 34. Note that if G is residually torsion-free nilpotent then it is also locally residu-
ally torsion-free nilpotent. In particular, for finitely generated groups there is no difference
between being residually torsion-free nilpotent or being locally residually torsion-free nilpo-
tent.

Example 35. If G is a

• residually free group [Mag35],
• right-angled Artin group or a subgroup of a right-angled Artin group [Dro83],
• 1-relator group with presentation

〈 X, a, b | [a, b] = w 〉,
where a, b 6∈ X and w is a group word over X, including fundamental groups of all
compact surfaces other than the sphere, the projective plane, and the Klein bot-
tle [Bau62, Fre63, Bau10],
• free group in any polynilpotent variety, including free solvable groups of any given

class [Gru57], or
• pure braid group [FR88],
• 1-relator groups with presentation

〈x1, . . . , xm, y1, . . . , yn | u = v〉,
where v ∈ 〈y1, . . . , yn〉, v 6= 1, u ∈ A = 〈x1, . . . , xm〉, u ∈ γd(A) for some d such that
u is not a proper power modulo γd+1(A), where γk(A) is the kth term of the lower
central series of A [Lab15].

then G is a residually torsion-free nilpotent group.
By Proposition 33, such a group G is locally 2-indicable and, by Corollary 9, each maximal

cyclic subgroup of G is left relatively convex.

Acknowledgments. We thank Jack Button for his valuable input and, in particular, for
pointing Example 30 to us. Corollary 16 is added at the suggestion of the referee.
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