SMALLNESS SETS
FOR BOUNDED HOLOMORPHIC FUNCTIONS

By

ARTUR NICOLAU, JORDI PAU AND PASCAL J. THOMAS*

0 Notation and definitions

Let {ax} be a discrete sequence of points in the unit disk D = {z € C: |z| < 1}.
The following notion was introduced in [Th], motivated by problems of sampling
in the usual Hardy spaces H?, 0 < p < 0o, and in the space H* of bounded analytic
functions in D.

Definition. {a,} is (H™)-thin if and only if there exists a nonidentically zero
function f € H* such that

3 (1~ JarDIf (a)] < oo.

k
A nonthin sequence is said to be thick.

A thin sequence is thus one over which the values of a nonzero bounded analytic
function may decrease fast enough. This is a weaker analogue of the Blaschke
property 3 (1 — lax|) < oo, in the sense that any sequence on which some function
in H* vanishes is obviously thin. However, the class of thin sequences is much
larger. An analogous problem, involving more general function spaces, has been
studied by Eiderman [Ei]. On the other hand, Hayman [Ha] has characterized
another type of decrease of bounded analytic functions.

Theorem (Hayman). Given a discrete sequence {ax} of points in the unit
disk, there exists a nonidentically zero function f € H*® such thatlimy_, f(ax) =0
if and only if [NT(a)| = 0.

*The first two authors are partially supported by DGES grant PB98-0872 and CIRIT grant 1998
SRG00052. The authors’ stay at the Centre de Recerca Matematica and at the Université Paul Sabatier
at Toulouse were supported by a grant in the framework of the Comunitat de Treball dels Pirineus.

119

JOURNAL D'ANALYSE MATHEMATIQUE, Vol. 82 (2000)



120 A.NICOLAU, J. PAU AND P. J. THOMAS

In the above statement, for any sequence a = {ax} C D, NT(a} denotes the
nontangential accumulation set, that is to say, the set of points ¢ € D which are
limit points of the intersection of {ax} with some Stolz angle having vertex at (,
and | - | is Lebesgue measure on the circle dD.

We restrict our attention to sequences {ax} which are separated in the Gleason
distance

zZ—w

d(z,w) =

l—u‘)z" z,weD,
that is, those for which infx; d(ax,a;) > 0.

Given a point a € D\ {0} and v > 0, we denote by I, (a) the arc of the unit circle
centered at a/|a| of length (1 — |a]). The reader may at first disregard the indices
v, since the result, as it turns out, does not depend on them. Given a sequence {ax}
of points in the unit disk, we consider the function I'y =TI',({ax}) given by

(0.1) (€)= #{k: £ € L(ax)} =) _xx(6), €€ aD,

where xi stands for characteristic function of the arc I,(ax). Also, I',(£) can be
viewed as the number of points of the sequence {ax} in the Stolz angle with vertex
at £ € JD of aperture depending on «. Observe that the Blaschke condition can be
rephrased in terms of I, because

12;(1—|ak|)=/wn-

Also, the nontangential accumulation set NT({ax}) of the sequence {a;} and the
set {¢ € dD: I,(§) = oo} differ only in a set of measure zero. So Hayman’s
theorem can also be rephrased in terms of T.,. Our first result is also stated in these
terms.

Theorem 1. Let {ai} be a separated sequence of points in the unit disk. Let
I, =T, ({ax}) be the function given by (0.1).

(a) If there exists v > 0 such that log, T', € L*(8D), then {ax} is thin.
(b) If {ax} is thin, then log, T, is weak L', that is, there exists a constant
C = C(7) > 0 such that
[{6 € [0,27) : log, T',(e*®) > A} < C/A, forallA>0,

Jorany~y > 0.
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So, we do not get a complete characterization of the thin separated sequences.
However, neither the sufficient condition (a) nor the necessary condition (b) can
be improved if we reason only in terms of the size of the function I' = T,
Furthermore, it turns out that condition (a) is not necessary, nor is (b) sufficient. A
precise statement is given in Section 2. The conditions in Theorem 1 are, roughly
speaking, a “logarithm away” from the Blaschke condition " € L! (D).

Pushing the parallel between thin sequences and Blaschke sequences a bit
further, we recall that, by a celebrated result of L. Carleson [Ca], a sequence {a}
is separated and “invariantly Blaschke”, that is to say,

sup » (1 - [¢(ax)|?) < oo,
k

where the supremum is taken over all automorphisms ¢ from the unit disk onto
itself, if and only if it is an interpolating sequence, that is, if for any bounded
sequence {wy } of complex numbers, there exists f € H>(D) such that f(ax) = w,
k=1,2,....

Using the identity

(1 - lax?)(1 - |of?)
|1 - araf?

b

1- |¢a(ak)|2 =

where ¢, is the automorphism of the unit disk interchanging 0 and a € D, the
geometric fact that {a;} is separated and invariantly Blaschke can be rephrased by
saying that

it I] 1ates) >0
this is actually the way Carleson’s theorem is often stated (see [Ga, pp. 284-287]
for an overview of equivalent conditions).
The condition that {ax} be invariantly Blaschke can also be expressed as
requiring that the measure

b= 301~ lons

(where J; denotes the Dirac mass at the point ax) be a Carleson measure, that is,

Q) < CUQ)

for any @ of the form

Q={re®: 0<1-r<i(Q), [60-6]<UQ)}.
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An equivalent characterization is that for any p € (0, o),

> (1= lax)If (ar)l” = /D |fIPdu < C(w)||fliyy»,  forall f € HP(D);

this condition is to be compared with the fact that when the sequence {a;} is thin,
there exists a function f € HP(D) such that } (1 — [ak])|f(ak)|? < oo (see [Ga,
p. 33]).

It is then natural to wonder what happens if we require a sequence of points to
be invariantly thin. The expression for 1 — |¢4(ax)|2 given above implies that the
image under any automorphism of a thin sequence will again be thin. We define
“invariantly thin” by the stronger property that there exists a nontrivial bounded
analytic function f € H*°(D) such that

sup (1 - [9(ax)])|f($(ax))] < oo,

where the supremum is taken over all automorphisms ¢ from the unit disk onto
itself.

The somewhat surprising fact is that, whereas invariantly Blaschke sequences
have the same quantitative behaviour as Blaschke sequences and are merely more
uniformly distributed, and although thin sequences are typically much “bigger”
than Blaschke sequences, our strengthening of “thin” to “invariantly thin”, in the
case of separated sequences, reduces us to the same class as invariantly Blaschke
sequences.

Theorem 2. An invariantly thin separated sequence is an interpolating
sequence.

Lyubarskii and Seip [Lu-Se] say that a nonincreasing function g from [0,1) to
(0, 00), tending to 0 as z tends to 1, is an essential minorant for H* if and only
if, given any non-Blaschke separated sequence {ax} C D, any f € H*® verifying
| f(ax)| < g(|ak|) must vanish identically. Such g are characterized by the condition

! dr
/0 Qg

Similarly, a nonincreasing function g from [0,1) to (0,00) is an essential
minorant on thick sets for H* if and only if, given any thick separated sequence
{ax} C D, any f € H™ verifying |f(ax)| < 9(|ax|) must vanish identically. Notice
that such a function g(r) must tend to 0 as r tends to 1.

The answer to the question of determining essential minorants on thick sets was
given to us by our colleague Alexander Borichev after reading an earlier version
of our paper.
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Theorem 3 (Borichev). A nonincreasing function g from [0,1) to (0,00) is
an essential minorant on thick sets if and only if

1
lim inf ﬁ(l)fo?—r#l > 0.
-

The paper is organized as follows. In Section 1, some preliminary results are
presented. Section 2 contains the notion of generations which arise naturally in our
situation and a version of Theorem 1 (and its sharpness) in terms of generations,
which is proved in Section 3 and 4. Section 5 is devoted to the proof of Theorem 2.
Section 6 concerns essential minorants on thick sets. Section 7 contains some
remarks and questions.

We would like to thank the referee for his detailed comments and suggestions.
We also thank our colleagues Alexander Borichev and Kristian Seip for their
constructive criticism of a first version of this paper. In particular, we owe thanks
to Borichev for permission to include Theorem 3 and its proof in Section 6.

1 Preliminary results

The following lemma shows that the study of thin separated sequences can be
reduced to the case of zero-free bounded holomorphic functions, and thus is really
a problem about positive harmonic functions in the disk. We denote by P, the
Poisson kernel associated to the point z € D,

1—|z)?

=|e'.9—_z|3, 0§0<27r

P.(6)

Lemma 4. If {ax} is thin and separated, then there exists a holomorphic
Jfunction g in D taking values in the right half plane such that

> (1 - Jak))le ] < 0.

k

Proof. Let f € H°(D) be such that || fljooc < 1 and 3, (1 — |ak|)|f(ar)| < oc.

Then f = Bh, where h is zero-free and B is a Blaschke product,
m bkl bk -2
Bz) =z I;I b 1—biz’
bx € D, 3, (1 — |be|) < co. Let & = inf{d(ax,a;): k # j} > 0. First notice that,

for each k, there is at most one point a; such that d(bx,a;) < 6/2. Thus for any
fl € H°°9

> (1 =laiDlfi(a)] < Cllfilleo D (1 - lba]),
k
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where the sum in the left hand side is taken over the indices j satisfying d(a;, B~*(0))
< 6/2 and C is a constant depending on 4.

Now we define a holomorphic function A, in the unit disk such that |e"1 (2)| <
|B(z)| for any z such that d(z, B~1(0)) > §/2. Let h; be the unique holomorphic
function such that Im k;(0) = 0 and

2r dé
Re hy(z) = —cp A PZ(G)EXJ;‘(Q)ZE’

where Ji := (argby — (1 — |bi]),argbx + (1 — |bk])), and ¢o is a constant to be
determined. Then, using the estimate logz=2 < Cs(1 — z2?) if 1 > = > §, one has

—log|B(2)I* = Z log

bkz

(1= [6x*)(1 = |21%)
< = .
<Cs ; 1= beaf?

Observe that there exists an absolute constant ¢; > 0 such that for any 8 € Ji,
[1—Bez| > c1]e® - 2|.
Thus the last sum can be estimated by

(1—12?) d8 Csca
62052/ |e"’—zf2§_= p” Re hy(2),

where ¢, := 27/c?. Therefore, we can pick ¢ sufficiently large to obtain the desired
inequality. If we split the sum 3~(1—|a;|)| f1(a;)| into the cases d(a;, B~(0)) < §/2
and d(a;, B~1(0)) > §/2, it is straightforward to see that f; := he® = e~9 satisfies
our requirements. O

Corollary 5. Let {z,} be a thin separated sequence. Let 0 < m < 1 and
{wn} C D satisfy d(zn, wn) < m for all n. Then {w,} is thin.
Proof. Let g be the function given by Lemma 4. Harnack’s inequality implies
that
Re g(wy) > ¢(m)Re g(z4), n=12...

Since d(z,,w,) < m, we deduce that (1 — jw,|) < C(m)(1 — |z,]) for all n. Thus

_ ~g(wn)/c(m) 1z e-96m)
Y (1 = fwa])lem ™| < C(m) Y (1 — |za]) e, 0

n



SMALLNESS SETS 125

2 Generations

It will be expedient to carry the problem of describing the thin sequences over
to the upper half plane, using the Cayley map

1-2
Y(z):=1 .
(2) Z1+z

The Gleason distance in the upper half plane is then given by

d(z,w) := e

zZ—-w

’, Imz>0, Imw>0.

Let {ax} be a sequence of points in the unit disk. Since a finite union of thin
sequences is thin, it is no loss of generality to assume that | arg ax| < 7/2. We denote
¥(ax) by a;, for brevity, and notice that the sequence {a}} is contained in some
bounded neighbourhood of the origin in the upper half plane. Furthermore, {ax} is
thin if and only if {a} } is thin on the upper half plane, that is, there exists a bounded
holomorphic function f on the upper half plane such that }°, (Im a; )| f(a})| < oo.
So it is no loss of generality to consider bounded sequences in the upper half plane.
When no confusion is possible, we shall write {ax} for {a,} in order to simplify
notation.

We now consider the following standard dyadic partition of the half plane: for
n>0,7€Z

Qn; ={2€C:27"'<Imz<2™, j2"<Rez<(j+1)27"}.

Notice that Q,, ; is the top half of the “Carleson square” with base the projection
of @y, ; to the real line, i.e.,

L;i:=[27"G+1)27").

For any given n, the intervals {I ;: j € Z} form a partition of R.

Since the Gleason distance between the points in @, ; is uniformly bounded
away from 1, a separated sequence admits only a uniformly bounded number of
points in each Q,, ;. Since a finite union of thin sequences is thin, it will be enough
to consider sequences in the upper half plane admitting at most one point in each
@n.j-

Given such a sequence {a; } in the upper halfplane, following [Ga, §7.3, p. 299],
we define the generations in the following way. Denote by Q. the unique dyadic
box @y, ; such that a; € Q,,;, and by I the corresponding dyadic interval I,, ; C R.
The first generation G, is made up of the indices so that the corresponding points
of the sequence have no other points of the sequence above them, that is, an index
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k is in the first generation if there exists no [}, j # k, such that I C I;. Then we
define the second generation ¢ as the first generation of the remainder sequence
{aj: j & G1}. The later generations G3,Gy, ... are defined recursively by

k
Gk+1 =Gi({aj: 5 ¢ U Gi})-

=0

HEEEEEBOEEEER

The points marked with dots correspond to indices in the first generation
G, while the crosses are indices in the second generation Ga.

Equivalently, k € G, if and only if n = #{k’: Ix C Ix'}. Each given generation
thus defines a disjoint family of dyadic intervals on the line, and we write

Gn = U Ik.

k€EGH

Thus
IGnl = > Il
k€C,,

Note that one can also define analogous generations from a partition of the disk,
which are not exactly the pull-back under ¥ of the above. Notation turns out to be

simpler in the half plane case.
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Let {ax} be a bounded and separated sequence in the upper half plane. Then
{a;} is a Blaschke sequence, that is,

Zlm a < 00,
k

if and only if I, ({ax }) € L*(R), where

Iy({a})(z) = #{ar sz € L(ar)} and  I(z) = (z — v,z + ).

In terms of generations, {ax} is Blaschke if and only if ) |G,| < .

Also, [INT{ax }| = 0 or equivalently I, ({ax}) is finite almost everywhere, if and
only if |G| =+ 0,asn — oo. Here NT({ax}) C Risthe nontangential accumulation
set of the sequence {ax}.

Consider

f = ZXG"’

We have not proved that log, I'({ax}) € L'(R) if and only if log, T € L'(R).
However, the function T is a precise enough tool to prove Theorem 1. A summation
by parts shows that log, T' € L!(R) if and only if

00
ZG
_I_n|<w_
n
n=1

Also, log T is weak L' if and only if |G,| = [{log, T > logn}| < C/logn, for any
n>2.
Theorem 1 (and its sharpness) will follow from

Theorem 6. (a) Let {ar} be a separated sequence of points in the upper half
plane and let {G.} be the corresponding generations. If 3 -,(1/n)|Gn| < oo,
then {ax} is thin.

(b) Given any nonincreasing sequence v, > 0 such that 3 ,(vn/n) = oo,
there exists a thick separated sequence {ax} in the upper half plane such that
Yn < |Gn| £ 9n + 27", for n sufficiently large. Here {G,} are the generations
corresponding to {ax}.

(c) If {ax} is a bounded sequence which is thin and separated and {G.,} its
corresponding generations, there exists a constant C > 0 such that

|Ga| < C/logn.
(d) There exists a thin separated sequence {ay} such that

C™'/logn < |Gn| < C/logn,
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where {G,} are the generations corresponding to {ax} and C > 1 is a numerical
constant.

Thus we have a sufficient condition (a) and a necessary condition (c). Part (b)
tells us that the sufficient condition cannot be improved if we reason only in terms
of the quantities |G,|. Similarly, part (d) tells us that the necessary condition in
(c) cannot be improved using the quantities |G,|. Furthermore, (d) shows that the
condition in (a) is not necessary; and (b) applied with ,, = (logn)~! shows that
the one in (c) is not sufficient.

Accepting Theorem 6 momentarily, we can prove the main result.

Proof of Theorem 1. We recall the notation a}, = ¥(ax), where ¥ is the
Cayley map from the unit disk to the upper half plane. Also, we recall that we may
assume that the sequence {a} } is bounded, and {ax} is thin if and only if {a} } is.

For a point z = z + iy in the upper half plane, recall the notation

I(z) = (z - vy, = +7y).

Given any v > 0, there exist 0 < 4’ < 4" such that, for all points a, as above, one
has

Ly (ay) C ¥(Iy(ax)) C Iy (az)-

So, instead of the original function T, ({ax}), we may consider its analogue defined
from the intervals I,/ (a}), which we denote again by I'..({a}}). Since {a;} is
bounded, the function I'.-({a}}) is supported on a bounded interval of the real line.

(a) For any ay, by choosing the smallest n such that 2" < 4'Im aj}, we can
make sure that there exists a j = j(k) such thatRe a}, € I, ; C I/(a}) C ¥(I,(ak)).
Set

b= +3)2 " +27".

It is easy to show d(b}, a},) < m < 1, where m depends only on . Denote by I, the
arc I,, ; determined above. Now clearly,

T({%}) = > xn STy({ak}) <Ty({ar}) o 7.
k

Therefore, the hypothesis implies that log, ['({s,}) € L'(R); and part (a) of
Theorem 6 implies that {b}} is thin. Since d(b},a;) < m, Corollary 5 implies
that {a; } is thin.

(b) We now construct a new thin sequence {b}} such that the corresponding
T({b,}) dominates T, ({az}) o ¥~ 1.
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First we must reduce ourselves to the case where for any j € Z, {a} } has at most
one point within the set @y, j := Qn j—1UQn ;UQn ;41. Since there exists m € (0,1)
such that for any @ € Qn j, @n; C {z € C: Im z > 0,d(z,a) < m}, this can be
achieved by splitting the sequence into a finite union to increase the separation
constant. Note that the result we are proving is stable under finite unions, since

I'({ar} U {b}) = T({ax}) + T({bi}).

Now for any a;, € Q,, ;, define afcl) to be the “center” of @, ;-1, i.e.,
o) == (j-Ha 4327,
and likewise afcz) to be the “center” of Qp, j+1,
o = (j+ 32"+ 327"

Denote {b}x>1 = {aj}e>1 U {ail)}kzl u {af)}kzl. The sequence {b}} is
separated and has at most one point in each Q, ;. Both sequences {afcl)} and {af)}
are thin by Corollary 5 (since d(a;,af)) < m, ¢t = 1,2, by the remark above).
Therefore, {b}} is thin and, by part (c) of Theorem 6, log,, f({b}c}) is in weak L.

For any ~ sufficiently small, one can choose v/ < 1 and thus

¥(I,(ax)) C I,#(ax) = [Re a; — 7" Im a,Re a}, ++" Im a})
Clyj .1 Ul ; Ul j4a.
Therefore,
T ({a}) 0 U0 < Ty ({B1}) < T({al}) + T({al"}) + T({aP}) = F({bi}).

To deal with larger values of v, one would have to add more companion
sequences on each side of {ax}. Details are left to the reader. a

Finally, to see that Theorem 1 is sharp, observe that the sequences in examples
(b) and (d) are chosen so that T’y /, = T' (and easy modifications of those examples
would deal with different apertures).

3 Proof of the Sufficient Condition in Theorem 6

Proof of (a). Consider T = 3. Xc, and the harmonic extension to the half
plane of ¢olog,, T,

H(z) = co-/l;P,(t) log, I~‘(t) dt,
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where ¢q is a constant to be chosen, and P,(t) denotes the Poissan kernel for the
upper half plane,
1 y .
P(t)= =-—F——, forz= .
(t) oy P Y orz=z+1y

The hypothesis means that log, T € L'(R) and ensures that H is well-defined. Let
h be the unique holomorphic function in the upper half plane such that Im A(z) =0
and Re h = —H, and let f = . To estimate |f(ax)|, notice that if k € G, then
I'(t) > nforall t € I, := I, j(ax); for such t, one has Py, (t) > ¢/|Ix|, where cis a
numerical constant. So

H(ax) 2 co | Po,(t)log, I'(t)dt > logn,
I

if we choose ¢ sufficiently large. Therefore,

3" (Im a)] (o) SZ% Y Im oo < 27—11|Gn| < 0. a

k n k€Qn n

Proof of (b). Define a sequence in the upper half plane by
Anj i =2""([—1/2) 427, 1<j<Jp:=[2"y], n=12...

where, in this proof only, [z] denotes the smallest integer greater than or equal
to the real number z. Note that it is no loss of generality to assume that «,, < 1 for
all n.
We have a.,; € Qn,; and
i=Jn
Yo ngl =27 <270y,
i=1
which ensures that the generation G, is made up exactly of the indices (n, j),
1 < j < Jy, and |G,| = 27"J,. Thus the construction implies that v, < |Gy
ST +277
We shall proceed by contradiction. By Lemma 4, we know that if {a;} were
thin, there would exist a positive harmonic function H in the upper half-plane such
that

n j=1
Now H can he written as
H(z) = +f°°1 Y au(t), z=o+i
=cy _wﬂ(x—t)2+y2 l‘l' bl - y’
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where ¢ is a positive constant and u is some positive Borel measure on the real line
such that (1 +t?)"1du(t) < oo [Ga, p. 18]. Set dpu(t) = x[-2,+2)(t)du(t) and

© ]
Hi(z) = /_m;@—_til-z—rwdul(t).

Since |Re an ;| < 1and Im a, ; < 1, we have, forany t > 2,

9 1

P, .(t) < =——;

ans (8) < wl+4t2’
therefore, for all points a,,; in the sequence,

1
1+ t2

|H1(an,;) — H(an,;)| < le| + %/ du(t) < C.

So we may replace H by H;, which will have the same properties with respect to
our sequence, that is,

Jn
Zgn < oo, whereg, = 22_"3“1{1(“"-:')'
nZO j=1

We may henceforth assume that H is given by the Poisson integral of a measure y
with finite mass supported on a compact interval of the real line.

Claim. There exists a constant C > 0 such that, for all integers n > 0 such that
|Gn| > 8-2"™/2 and g,, < (1/n)|Gyl, one has

|Gnt
/ du(t) > C|Gyp|logn.
|Gnl/2

Accepting this Claim, to be proved below, we are going to bound Y’ |Gy|/n,
which will finish the proof by contradiction. First we want to see that the indices n
that do not satisfy the hypotheses in the claim do not contribute much to the sum.
Define the following sets of indices:

E={n>0:|Gal 2nga}, F={n20:|Gs>8-27"2}.

Then

Y IGal/n<8Y 27"*n and Y |Gal/n<) ga,

ngF n>1 n¢E n

which converges by assumption. So we only need to bound the term

Z |Gr|/n.

ncENF
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To do so, we regroup the terms in such a way that the size of generations drops by
a factor of at least a half from one group of indices to the next. For a fixed N > 0,
define by downward induction the indices

n:=maxENFN{1,...,N},
ng+1:=max{n € ENFN{l,...,ng — 1} : |Gp| > 2|Gr,|},

”

where the induction stops and we set nx; = 0 when the set over which the “max
is taken becomes empty. Then, the Claim gives

Yo IGam=Y" Y |Gal/n<2) |Gn,|logns
k

neENF k npp1<nsni
e

<C‘Z/ du(t) < C™'u(R) <

|Gy 1/2

since our definition of the indices ng’s implies that |G, . ,| > |Gn,|, so the domains
of integration given above are disjoint. O

Proof of the Claim. Roughly speaking, the idea of the proof is that whenever
the value of H is large at a given point, there must be enough mass coming from
the measure u “below” the point. Since the total mass of y is finite, this will put a
cap on the number of separated points we can put into a given generation.

We now make this precise. In order to avoid “boundary effects” in the
convolution with the Poisson kernel, we want to consider points a, ; the real
part of which stays well inside (1|G,|,|G,|). Let

Ry :={j > 0: 2" }|G,| 4+ 272 < j < 2"|G,] — 27/?}.

Recall that J, = 2"|Gy,|. The fact that |G,| > 8 - 2~"/2 ensures that #R,, > J,/4.
For j € R,, one has

Gal j2 7" +27 /2
[ Prain®dut) 2 [ Pyongis)(t) du(t)
IGnl 2mn—2-n/2
o0 1
3. 2 [ Proag(t) dutt) — Zu(®)
—00

= H@™(:+ 1)) - ~4(R)

Here, in the second inequality, we have used the estimate

1

PZ#”(H'.?)(t) < pu fort ¢ [j2—"’ - 2—"/27j2—n + 2—;;/2].
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We want to restrict attention to indices corresponding to points where the values
of H are large enough, to derive the result from (3.1) by summing over j (i.e., over
the points in a single generation). The hypothesis that |G| > ng, means that

G2 Zexp (27" +4))) < Ju/n.
Let

Spi={j € Ry : e"HET"(+) < g/n}.

Chebyshev’s inequality applied to (3.2) yields
Jn/n

# (B \ S2) < 0T = /8
whence #38,, > J,,/8. Thus by (3.2), one has
n 1 J, |Gl
g2 - 2u®) T Y [ Pronan (@ dut)
( 8 =« 8 Jgs: |Gnl/2 (+)

|Gnl |Gnl

/ > Preep@du <c [ 7 dute),
/2 ez Gnl/2

by an explicit estimation of the last series. Recalling that |G| = 27" J,,, we get the
desired result. a

4 Proof of the necessary condition in Theorem 6

We actually prove part (c) under the following equivalent, but slightly more
cumbersome form.

Claim. If {a;} is a bounded sequence which is thin and separated, {G,} its
corresponding generations, and ¢ is any nonincreasing function from (2, 00) to
{0, o00) such that

* ¢(z)

dx < 00,
2 logz

then 3-,.5,; 8(n)|Gn| < co.

Proof of (c) assuming the Claim. We proceed by contradiction and assume
that the sequence of positive numbers |G| =: v, does not satisfy the desired
conclusion. It will be enough to show that given a nonincreasing sequence of
positive numbers {7, } such that

lim sup v, logn = o0,
n—00
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there exists a nonincreasing function ¢ from [2, 00) to (0, oc) such that
¢(n)
Y=L <oo and Y 4(n)rm =
n>2 logn n>2

We write ¢(n an €k, where ¢ > 0 are the terms of a convergent series to be
determined. Set

L(n): Zlogk I'(n :=kayk.

=2
Then summation by parts shows that
(k)
2  Togk kz‘;g xL(k) + ¢(n + 1)L(n),

and

n

Z¢ n—Zekr ) +é(n +1)T(n).

Since {vn} is nonincreasing, ['(n) > nvy,; and an elementary argument shows
that L(n) < Cn/logn. Therefore,

L(n) _
limsup 708 =

Pick an increasing sequence of integers {k;,j > 1} such that I'(k;) > jL(k;), and
let

€k, ° ex=0 forké¢{k;,j>1}.

1
P 52L(k;)

Then the series 3 ¢4 converges,
o o
> dk)ne =D el'(k) = oo,
2 2

and

—+L(n E

[0}
k=2 g Jk,(n j: ,->n

°°1

Proof of the Claim. Again, we want to regroup generations so that the typical
decrease from a |G,,, | to the next is halving. Define by induction the indices

ny = 2,
Ng41 = min{n: 2|Gy,| < |Gy, [}.
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S0 |Gn| > |Gril/2 for ng < n < ngyy and [Gy,,,| < |Gn,|/2. Consider the
following sets of indices:

E, ={k: |Gn,| < 1/logng41},
={k¢E :ngpr —np <y}
They correspond, respectively, to indices where generations are too small to matter

and to those where they decrease too fast. We can take care of the part of the sum
corresponding to k € E, right away:

niy1—1 Nep1—1 ¢(n ¢(n)
Z Z [Gnlé( n)<z Z log ng41 <nzlogn

keE; ny n>2 ny

It takes only a little bit more work to bound the sum for the indices k € E,, that
is, such that ng4, — nx < \/ng and |Gy, | > 1/(logng41). From the fact that ¢ is
nonincreasing and

= o) .

dr < o,
2 log:z:

we can deduce that ¢(z) < C(log z)/z for some constant C if z is sufficiently large.
Then if k € E,, one has

nrp1—1

)" [Galé(n) < ClGn, | ==

Tk

log ng

N

Now, since (log 72x4+1) ! < |{Gn,| < 27* and the function log z/+/Z is decreasing for
z large, we have

log ni k—1
E |G, <C E exp(—C12° ") < 00,
kEE; vk k>1

where C; > 0 is an absolute constant.
Now suppose k ¢ E; U E;. By Lemma 4, there exists a positive harmonic
function H in the upper half plane such that 3" _(Im a,)e~#{#=) < co. Denote

= Z (Im a,)e”H(@a)
n€Gm

‘We can assume that

Nktl

Y gm<1
ny
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and then there exists | = I(k) € [nk,nk+1) such that g; < (ng4+; — nk) ™', Let

Fi = {n € Gi: H(ay) > log ('G2—"(n,c+1 - nk))} .

By Chebyshev’s inequality,
Z Im a, < (nk—ﬂ;—n—k)lGdgz < l%"
n€G ngF,
Thus,
Z Im a, > }|Gi| > §|Gn,l.
nEFx

We define a subsequence of the original sequence first by considering points
only within the generations Gj), then by restricting attention within those to the
indices in the sets Fi, and finally by further restricting attention to the sets

Sp={neF: Z Im ¢; < NIm a,},
a;€Q(an)
where N > 0 is a constant to be chosen below. Here the sum is taken only over
points a; such that j € Fy,, for some m > k; and

Q(an) :={z+iy:0 <y <Iman, |t —Re a,| <Imag}.

This last choice forces the measure

ue= Z Z (Im ay)da,

k nESk

to be a Carleson measure [Ga, p. 31].

We need to see that, although we have removed points from the sets Fy in
order to ensure that we obtain a Carleson measure, the points we are left with are
numerous enough to account for the whole sequence. The definition of Si implies
that

Z Imans% Z Z Imaj,

n€Fx\Sk nEF,\Sk 6;€Q(an)

itself trivially bounded by

}IVZZImaJ"

T>k Jefr
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Since |Gyr12)| < 1Gix)l/2, and Fi C Gyxy, the above sum converges and is bounded
by %|G,(k)|, where C is an absolute constant. Taking N > 4C, we have

Y Iman> Y Iman— §Giw) > §IGim).
neS nEFe

Thus the sequence {a, : n € Sk} satisfies

(l) ZnES;. Im a, 2 %'G'nkl’

(i) H(az) > log (|Gi|(nk+1 — nk)/2) if n € Sk.

Since k ¢ Ey U Eq, then also ng4y — ng > /Mrs:. Thus ifn € Fi, where k is
sufficiently large, we also have

(i) H(ap) > C'log ng41,

where C' is a numerical constant.
Denote by M f(t) the nontangential maximal function [Ga, p. 28], that is,

Mf(t) := sup |f(z)],

2€T,(t)

where ', (t) is the Stolz angle with vertex at ¢ of aperture . Now we need the
following lemma.

Lemma 7. Let h be a positive harmonic function on the upper half plane and
let v : [0,+00) = (0, +00) be an increasing function such that

/mmda:(oo.
1 T

Then M(y o h) is locally integrable.

Before proving the lemma, we finish the proof of (c). Recall that if 4 is a
Carleson measure and Mf € L}(R), then f € L'(u) [Ga, p. 32]. Similarly, if p
is a Carleson measure, with compact support and Mf is locally integrable, then
f € L'(p). Thus, by (i), (ii)’ and the fact that x is a Carleson measure, we have

Y IGnJvllognis) <8 D ) (Iman)$(H(an)/C') < 0

k¢21U33 k¢E1UEQ nESy

for any function 1 satisfying the conditions in Lemma 7. If we take

¥(z) = / " s,
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for z > 1, say, and ¥ (z) is defined on [0,1) in such a way that ¢ is ificreasing, we
deduce

fre1—1

S Y IGalé(n) < oo;

kgEl UEs Nj

and the proof of (c) is complete. a
Proof of Lemma 7. Let I C R be an interval. We observe that
{teI: M@oh)(t)> A} ={teI: Mh(t) >v '(\)}.
Thus

[ Mwonwd < / it M) > v )}dA + p()]
1 ¥(1)

Since Mh is weak L! [Ga, p. 28], the last integral is bounded by a multiple of

® _dA < P(t)
/\b(l) Y=1(A) /1 g S

and the lemma is proved. O

Proof of (d). Let
L= -127"352™"), So:={an;}:={2""( - -é— +14),1<j<2"n>0},

so that Re a, ; is the center of I,, ; and Im a, ; = |I,, j| = 27". Observe that the
intervals forming the n-th generation of Sy are {I, ;,1 < j < 2"}, which form a
dyadic partition of [0,1). Define ng := 1 and

=22, k=12,....

We define a subsequence S of Sy together with its generations recursively as
follows. The point ap; € S. This defines G;. For ny < n < ngyy, an; € S
if and only if I, ; C Gn,. So, for ny < n < nx41, one has |G,| = |Gn,|. On
the other hand, the generations drop their total length by a half at the indices ny.
Precisely, if n = ng41, then a,; € S if and only if I, ; C Gy, and j is even.
S0 |Gryyil = |Gn,l/2, and Gy, , is uniformly distributed in each interval of the
previous Gy, that is, for ng < n < ng41,

IG"k+l n I"vjl = %lInva'
Observe also that

|Gy, | = 27% =log2/logni, k=1,2,...,
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and for ng < n < ng4q, we have
log2/logn < |G| < |Gr,| < 2log2/logn.

Hence, the estimate in the statement is fulfilled.
The fact that the sequence S is thin will be obtained by the following
construction.

Claim. There exists a probability measure u on [0, 1) such that for any n and
any interval I, ; of G,, one has

I
) = 1.

Proof of the Claim. The measure y is constructed as a weak* limit of the
measures u,, defined below. This is analogous to the classical construction of a
measure on the Cantor set: here we concentrate the mass uniformly on the intervals
of each generation. This method is a simplified version of the one used to prove
the necessity part in Theorem 2 of [Lu-Se]. Set

l Z XIn,; T,
J (n,j)EGn

where m is the Lebesgue measure and x the characteristic function of the interval
I. 1t is clear that u, is a probability measure and un (I, ;) = |In,;|/|Gn| for any
interval I, ; of G,. The Claim will follow as soon as we show

x5
'nI i) = * ’
L ( k,J) |Gk|

for any interval Ix ; of Gk, k¥ < n. The above construction implies that Gn is
uniformly distributed on any interval of Gy, k < n; therefore,
|Gl

|G,,nI,,,J-| = IG |

|Ik,J|

So
gl
a(l Gn NI i| = =5,
L ( k,J) IGnll kv]l |Gk|
and the claim is proved. O

To show that the sequence § is thin, consider a holomorphic function f on the
upper half plane such that

log |f(2)] = ~c /R P, (t)du(t)
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where c is a constant to be chosen later.
Fort € [z —y,z + y], we have

Pz+iy(t) 2 CO/y,

where cq is an absolute constant. We choose ¢ = (2log2)/co. Then, if a, ; € G,,
applying the above estimate to = + iy = a, j, we have

f(an)] < exp (—cﬁc"—,luun.j)) — 9-%/1al,
n,

Thus
> (Im an)|f(an)l < YJ1Gal27 1! =3 |Gy (s = )27 el
(n.5) n k

Since |G,,,| = 2% and ny = 22" this last sum converges. a

5 Inmvariantly thin sets

This section is devoted to the proof of Theorem 2. Here, we work in the unit
disk, with the generations defined there.
Let {ax} be an invariantly thin separated sequence. Let f € H*®, ||f|| < 1,

f(0) # 0, satisfy
sup (1 —|g(ax)]) |f((ar))l <1,

where the supremum is taken over all automorphisms ¢ from the unit disk onto
itself. Assume that {a)x} is not an interpolating sequence, that is, the measure
1 = (1 — |ax|)dx is not Carleson. Such sequences can also be described in terms
of generations (see [Ga, p. 200]).

Given a point a; of the sequence with k € G;, we denote by Gi (ax) the indices
l € G;+1 such that I; C I;. Given a point q; with ! € G (ax), we consider G, (a;) and
define

Ga(ax) = U Gi(ar).

leCi(an)

Subsequent generations are defined recursively:

Gn+1(ak) = U G1(ar) -

leGn(ax)



SMALLNESS SETS 141

Then, if p is not a Carleson measure, there exists a positive number n > 0, a
subsequence {b;} of {ax} and a sequence {m(j)} of positive numbers, m(j) —+ oo
as j — oo, such that

.1) > A-la)2a(t=b), n=1....m()

6k EGn(b;)
for any j. In particular, we get

1 .
T=75;] Z (1—|ag]) 200 asj— .
ax€Q(b;)
Here Q(b;) = {re®: 0 < 1 —r < 2(1 — |b;]},18 — argh;} < 2(1 - {b;}}}.
Now, considering the automorphism ¢ sending b; to the origin, we see that for
a fixed £ > 0, one has, if j is large enough,

Y-ty 3 0-lab.

ax€F ax€Q(b;)

Here F = F(b;, ) is the family of points ax € Q(b;), ar # b;, suchthat |f(¢(ar))| <
€. We now consider the subfamily G = G(b;,¢) of F formed by those points ax € F
for which

1f(¢(2))] < e,

for any z in the disc Dy = {z € D: d(z,ax) < 1/2}. We claim that for fixed ¢ > 0,
we have

(5.2) — IbJI — 3 —lax]) =3 oo

This estimate follows from

Z l—lakl _)001

1- | ay€EF
the fact that if ax € F\ G and g = f o ¢, then there exists zx, d(z, ax) < % such that
lg"(z)I(1 = [2k]) > &,

and the following lemma, which is a slight variation of a result in [Su].

Lemma 8. Let f be a function in BMOA, that is, an analytic function f in D
Jor which

p=f (W) = |w])dm(w)
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is a Carleson measure; and let ||f||? be the infimum of the positive numbers C > 0
such that 4(Q) < Cl(Q), for any square Q. Givenn > 0, let A = A(f,n) be the set
of points z € D for which there exists w, d(w, z) < 1/2 such that

L (w)l(1 = Jw]) 2 7.

Then the measure o = (1 — |z|)~!xa(2)dm(2) is a Carleson measure and, in fact,
2
0@ < o),
for any “square” Q := {re*® : 0 < 1—r < I(Q),|6 — 6| < I(Q)}. Here C is a
numerical constant.

We accept Lemma 8 (and thus (5.2)) temporarily. Then Lemma 8 and (5.1)
also give that for j sufficiently large, there exists n(j), 1 < n(j) < m(j), such that

:‘;‘)(1_ laxl) 2 21 - [b5)),

where af(j) is the set of points ax € G,(;)(b;) which are also in the family G. Now,
denoting by M = M(j) the set of indices k corresponding to points a; € a(j), we
have

w(b;,| oDk, D\ |JDx) = C(n) > 0,
M M

where C(n) is a constant depending only on 7. Here w(z, E,Q), E C 0Q, denotes
the harmonic measure at the point z € 2 of the set E in the domain . Since
|f(¢(2))| < € for any z € Dy if ax € G and log |f o ¢| is a negative subharmonic
function, one obtains

log|£(¢(2))| < (loge)w(z,| 8D, D\ | | Ds)
M M

for any z € D\ U, Di. Taking z = b;, we have
|£(0)] < €S,

which leads to a contradiction.
Proof of Lemma 8. Foreach z € A, consider D(z) = {w € D: d(w, z) < 3/4}.
Observe that for z £ A, one has by subharmonicity
Cn? < 1
(1~12])2 = m(D(2))

/ | (w)[? dm(w),
D(z)
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where C is a numerical constant. So, for any z € A, one has
(53) Cn?(1- |2)) < /D P~ whdnw).

Now we apply the Besicovich covering lemma to obtain a family of discs D(z;),
zj € A, A C U, D(2;) such that

ZXD(:_.,-) <N,
J

where N is a fixed constant. Then if Q) is a “square”, we have

@ <C Y (1-lzl).

Z;€4Q

Let A be the family of z; € 4Q. Then, using (5.3), one gets

< anz / (1 — fwl)dm(w)

<28 / | () (1 ~ | )dm(w);

and this finishes the proof. O

6 Essential minorants on thick sets

We begin with an easy observation.

Lemma 9. Assume that there exists o > 0 such that

6.1) /0 _(_ﬂ

1-7r

Then g is an essential minorant on thick sets.

Proof of Lemma 9. First notice that if g is an essential minorant on thick sets
and a > 0, then g° is too. Indeed, when a > 1, g(r)* < g(r) for r close enough
to 1, so the property is immediate. Suppose o < 1 and |f(2)| < g(|z|)* for all z
in some thick set, where f € H*. Then for any integer m > 1/a, f™ € H®,
|£(2)|™ < g(J2]), s0 f™ = 0; therefore f = 0.

This means that we may as well assume

1
/g(r)dr<oo
o 1—r1
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Now let {ax} be a thick separated sequence and f € H™, |f(ax)| < g(ax|),
k=1,2,.... Then

S (= lax)if(ar) < Y (1 = larl) g(laxl) -
k k

Let Dy be the hyperbolic disc of center ax and radius § > 0. Taking § > 0
sufficiently small, we may assume that the discs { Dy} are pairwise disjoint. Then
the last sum can be bounded by a fixed multiple of

9(l2| / g(l2)
< dm(z).
Z/Dkl—m B Jp 11 )
So the integral condition on g gives that f must vanish identically. This proves the

Lemma. O

Proof of Theorem 3. Now given g satisfying the condition in the theorem, it
is elementary to see that it satisfies the condition in the Lemma as soon as

1 lo
< 2limin ————g 1G]
<R log | log

1-r

Therefore, it is an essential minorant on thick sets.
To prove the converse, we work in the upper half plane, with the dyadic partition
given in Section 2. Assume that g satisfies

gy

log |log 7|

It will be convenient to assume that the function g measuring the decrease of f
depends on y = Im z rather than being radial, and that it be constant on dyadic
cubes. Specifically, define

Bn = —inf{log g(¥}(z+iy)): -1<z< 1,27 <y <277},

where ¥ is the Cayley map (see Section 2). We then have that 3, increases to co
and that for some C; > C; > 0,

g(1—Ci27™) > e P > g(1 —C3277);
therefore

minf 2% = 0.
nsoo logn
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If we can find f bounded and holomorphic in the upper half plane and a thick
sequence of points a,, ;, where Im @, ; = 27", such that |f(an ;)| < exp(~S,), then
g will not be an essential minorant.

The sequence a, ; will be constructed (and its thickness proved) along the
general lines of the proof of part (b) of Theorem 6. We choose an increasing
sequence of integers ny such that

Brs

<27k,
log ny

Ng41 > ni and

Define the lengths I;, as multiples of 2-[v™*=1 which are close to (logni)~!, that
is,

I = 27 lVRl-1 il
' logng |-

Here [-] stands for the integer part-of a real number. Notice that, for k large enough,
0<lgs1 < lk/2. Set

An; =2""j4+27", 0<j<2, forne€Ji:={va+1,...,n};

this guarantees that the union of the dyadic intervals I, ; corresponding to a single
“level” n € J, will be the interval [0,1;). Note that here the points at the level
n, i.e., having imaginary part equal to 2~", do not constitute the n-th generation,
because of the gaps we have introduced. So the proof of Theorem 6(b) must be
adapted to show that the sequence is thick.

We now choose a holomorphic function f which will be bounded in modulus
by g o ¥~! on the sequence an ; by requiring f(i) > 0 and |f| = e H, where H is
the Poisson integral of the boundary values

H* (I) = Cp Eﬂnp.X(lHth](z) ’
k

for ¢p > 0 some constant to be chosen. The function H* is integrable on the real
line because

3 Bl = 1) € S sl < 32 <0,
k k k

log ng

by the choice of nx. Since H*(z) > cofin, for z € (0,4], and for n € J we have
Im @, ; =27" <, an easy harmonic measure estimate yields, for 0 < j < 27,

H(aﬂ»j) 2 CCoﬂnk > ﬂﬂk 2 ﬁn [}

for ¢, well chosen. Therefore |f(an ;)| < e7P=, as required.
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To prove that {a, ;} is thick, as in the proof of Theorem 6(b), it will be enough
to show that there is no finite positive measure ¢ on the real line such that if

8(z) = A P, (8)du(t),
then

22 "Zexp S(an,;))

Suppose S satisfies the last two properties. For n € J, set

2™, —1

op:=27" Z exp (—S(an,j)) -

Jj=0

Consider the set of indices

K:={k:o,>l/n VYne }.

Claim. There exists a constant C > 0 such that, for all large enough k£ ¢ K,

I
du(t) > Cli log ng.
/2

Accepting the claim, we can finish the proof. Indeed, by our assumptions and
the definition of K,

°°>ZO'nZZ Z —>chklognk,

k€K neJi keEK

where c is a numerical constant. Since the series >, lx log n, diverges, we must

have
1
00=CY_ hlogn < / du(t),
k¢K 0

a contradiction. a

Proof of the Claim. The fact that k ¢ K means that we can fix some n € Jx
such that o, < [/ Let

Sn={j€{0,...,2"; — 1} : exp (—S(an,;)) < 4/n}.
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Then by Chebyshev’s inequality,

n L/n 2
#U{0 2~ 1\ Sa) < 5o = =7

thus #S,, > (3/4)2"l;. Furthermore, for k large enough, and any n € Jj,
I, >8- 9-lvml/2 >8- 9-n/2

Therefore, the “boundary effects” do not matter much:
#87,i= # (Sn N 320 20 — 2°/7]) > §27h.

We now finish the proof of the claim as for its counterpart in the proof of
Theorem 6(b): for j € S/,

1 j2 42 n/? 1
| Pera®aut 2 [ Panieesy(£)dut) > S0+ 7)) - u(R).

/2 j2-n~2-n/2
Summing over j € S}, and recalling that for j € S,, S(27"(i + 7)) > log(n/4), we
get

L 1 n 1
2" du(t) > =2" Z_= .
C u(t) 2 52" (IOg 1 WM(R))

/2
Thus
I 1
du(t) > Cililogn > Cy s lx log ny
1./2 2
where C; is a numerical constant. a

7 Remarks and questions

The main open problem that remains is to obtain a geometrical characterization
of separated thin sequences. Theorem 6 tells that such a description cannot be
written in terms of the length of generations. However, our arguments, applied to
the following subalgebra of H*°, give a satisfactory result.

Let A be the set of bounded analytic functions in D which can be written as
f = Bh, where B is a Blaschke product, h has no zeros and M(log k) € L' (D),
where M is the nontangential maximal function.

Theorem 10. Let {ai} be a separated sequence of points in the unit disk and
let {G,.} be the corresponding generations. Then there exists a nonidentically zero
function f € A such that

> (1 —lax])If(ar)] < o0

k=1
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if and only if

o0
G

Zl nl ¢ oo
n

n=1

The sufficiency follows from (a) of Theorem 6, and a variation of the proof in
(c) gives the necessity.
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