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0 N o t a t i o n  a n d  def in i t ions  

Let  {a/c} be a discrete sequence o f  points in the unit disk II) = {z a C: [z[ < 1}. 

The following notion was introduced in [Th], motivated by problems o f  sampling 

in the usual Hardy spaces H p, 0 < p < oo, and in the space H ~176 o f  bounded analytic 

functions in D. 

Definition. {ak } is (H ~176 i f  and only i f  there exists a nonidentically zero 

function f ~ H ~176 such that 

E ( 1  -]ak])lf(ak)l < oo. 
k 

A nonthin sequence is said to be thick. 

A thin sequence is thus one over which the values o f  a nonzero bounded analytic 

function may decrease fast enough. This is a weaker analogue o f  the Blaschke 

proper ty  )--~(1 - [ak]) < oo, in the sense that any sequence on which some function 

in H ~ vanishes is obviously thin. However,  the class o f  thin sequences is much 

larger. An analogous problem, involving more general function spaces, has been 

studied by  Eiderman [Ei]. On the other hand, Hayman [Ha] has characterized 

another type o f  decrease o f  bounded analytic functions. 

Theorem ( l- layman).  Given a discrete sequence {ak} o f  points in the unit 

disk, there exists a nonidentically zero function f E H ~ such that l i m k . ~  f ( ak ) = 0 

i f  and only i f lNT(a)l  = O. 
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In the above statement, for any sequence a = {ak} C I~, NT(a)  denotes the 

nontangential accumulation set, that is to say, the set of  points ~ E 01~ which are 

limit points of  the intersection of  {ak} with some Stolz angle having vertex at ~, 

and I " [ is Lebesgue measure on the circle 0D. 

We restrict our attention to sequences {ak} which are separated in the Gleason 

distance 

d(z,w)= z-w[ , z , w ~ D ,  

that is, those for which infkcj d(ak, aj) > O. 

Given a point a �9 D\  {0} and 7 > 0, we denote by I.r(a ) the arc of  the unit circle 

centered at a/la] of length 7(1 - laD. The reader may at first disregard the indices 

% since the result, as it turns out, does not depend on them. Given a sequence {ak} 

of  points in the unit disk, we consider the function F. r = F. r ({ak }) given by 

(0.1) = # { k :  e I (ak)} = �9 OD, 

where Xk stands for characteristic function of  the arc IT(ak). Also, F-r(~) can be 

viewed as the number of  points of  the sequence {ak} in the Stolz angle with vertex 

at ~ E 0D of  aperture depending on % Observe that the Blaschke condition can be 

rephrased in terms of  F- r because 

~/~-"~(lk -lakl) -- fop 

Also, the nontangential accumulation set NT(  { as }) of  the sequence {ak } and the 

set {~ E 0D: F.r(~) = oQ} differ only in a set o f  measure zero. So Hayman's 

theorem can also be rephrased in terms ofF .  r. Our first result is also stated in these 

terms. 

Theorem 1. Let {ak} be a separated sequence o f  points in the unit disk. Let 

F7 = F.r({ak}) be the function given by (0.1). 

(a) l f  there exists 7 > 0 such that log+ F7 E LI(OlD), then {ak} is thin. 

(b) 1]" {ak} is thin, then log+ F- r is weak L 1, that is, there exists a constant 

C = C(7) > 0 such that 

l{0e  [0,2r log+F~(e i~ >_ A}[ _< C/A, f o r a l l A  > O, 

fo r  any'r > O. 
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So, we do not get a complete characterization of the thin separated sequences. 

However, neither the sufficient condition (a) nor the necessary condition (b) can 

be improved if we reason only in terms of  the size of the function F = F.y. 

Furthermore, it rams out that condition (a) is not necessary, nor is (b) sufficient. A 

precise statement is given in Section 2. The conditions in Theorem 1 are, roughly 

speaking, a "logarithm away" from the Blaschke condition F E L 1 (o')D). 

Pushing the parallel between thin sequences and Blaschke sequences a bit 

further, we recall that, by a celebrated result ofL.  Carleson [Ca], a sequence {ak} 

is separated and "invariantly Blaschke", that is to say, 

sup E (1 -[r  2) < 00, 
k 

where the supremum is taken over all automorphisms r from the unit disk onto 

itself, if and only if it is an interpolating sequence, that is, if for any bounded 

sequence {wk } of complex numbers, there exists f 6 H ~ (I~) such that f (ak) = wk, 

k = 1,2, . . . .  

Using the identity 

1 -Ir 2 = (1 -lakl2)(1 -I~12) 
l1 - akal 2 ' 

where r is the automorphism of the unit disk interchanging 0 and a E D, the 

geometric fact that {ak } is separated and invariantlyBlaschke can be rephrased by 

saying that 

inf YI Ir > 0; 
k 

j:j•k 

this is actually the way Carleson's theorem is often stated (see [Ga, pp. 284--287] 

for an overview of  equivalent conditions). 
The condition that {ak} be invariantly Blaschke can also be expressed as 

requiring that the measure 

(where ~k denotes the Dirac mass at the point a~) be a Carleson measure, that is, 

< el(Q) 

for any Q of  the form 

Q = (fete: 0 < 1 - r < t(Q), l e -  0ol < Z(Q)}. 
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An equivalent characterization is that for any p E (0, oo), 

~-~(1 - lakl)lf(ak)l p = fD IflPd~ < C(~)llfll~,,  for all f �9 HP(D) ; 

this condition is to be compared with the fact that when the sequence {ak} is thin, 

there exists a function f �9 HP(D) such that ~ ( 1  - lakl)lf(ak)l p < oo (see [Ga, 

p. 33] ). 

It is then natural to wonder what happens if we require a sequence of  points to 

be invariantly thin. The expression for 1 - 14,~(ak)l 2 given above implies that the 

image under any automorphism of  a thin sequence will again be thin. We define 

"invariantly thin" by the stronger property that there exists a nontrivial bounded 

analytic function f �9 H ~ (D) such that 

sup ~'~'(1 -I~(ak)l)lf(~(ak))[ < oo, 

where the supremum is taken over all automorphisms ~b from the unit disk onto 

itself. 

The somewhat surprising fact is that, whereas invariantly Blaschke sequences 

have the same quantitative behaviour as Blaschke sequences and are merely more 

uniformly distributed, and although thin sequences are typically much "bigger" 

than Blaschke sequences, our strengthening of  "thin" to "invariantly thin", in the 

case o f  separated sequences, reduces us to the same class as invariantly Blaschke 

sequences. 

T h e o r e m  2. An invariantly thin separated sequence is an interpolating 

sequence. 

Lyubarskii and Seip [Lu-Se] say that a nonincreasing function g from [0, 1) to 

(0, oo), tending to 0 as x tends to 1, is an essential minorant for H ~176 if and only 

if, given any non-Blasehke separated sequence {ak } C D, any f �9 H ~176 verifying 

If (ak)[ --< g(lak l) must vanish identically. Such g are characterized by the condition 

f0 ( 1 - r ) l o g  I < oo. 

Similarly, a nonincreasing function 9 from [0,1) to (0,oo) is an essential 

minorant on thick sets for H ~176 if  and only if, given any thick separated sequence 

{ak} C D, any f �9 H ~176 verifying If(ak)l _< g(lakl) must vanish identically. Notice 

flaat such a function g(r) must tend to 0 as r tends to 1. 

The answer to the question of  determining essential minorants on thick sets was 

given to us by our colleague Alexander Borichev after reading an earlier version 

of  our paper. 
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T h e o r e m  3 (Borichev). A nonincreasing function g from [0, 1) to (0, oo) is 
an essential minorant on thick sets i f  and only i f  

log 1 
liminf > 0. 

r~ l  log I log 1_--~1 [ 

The paper is organized as follows. In Section 1, some preliminary results are 

presented. Section 2 contains the notion o f  generations which arise naturally in our 

situation and a version o f  Theorem 1 (and its sharpness) in terms o f  generations, 

which is proved in Section 3 and 4. Section 5 is devoted to the proof  o f  Theorem 2. 

Section 6 concerns essential minorants on thick sets. Section 7 contains some 

remarks and questions. 

We would like to thank the referee for his detailed comments and suggestions. 

We also thank our colleagues Alexander Borichev and Kristian Seip for their 

constructive criticism o f  a first version of  this paper. In particular, we  owe thanks 

to Borichev for permission to include Theorem 3 and its p roof  in Section 6. 

1 P r e l i m i n a r y  r e s u l t s  

The following lemma shows that the study o f  thin separated sequences can be 

reduced to the case o f  zero-free bounded holomorphic functions, and thus is really 

a problem about positive harmonic functions in the disk. We denote by  Pz the 

Poisson kernel associated to the point z E I~, 

1 - I z l  ~ o _< o < 2~. 
Pz(O) - le~0 _ zl 2 , 

L e m m a  4. I f  {ak} /s thin and separated, then there exists a holomorphic 
function g in D taking values in the Hght half plane such that 

~--~(1 -lakl)le-g(~k~l < o0. 
k 

P r o o f .  Let f E H~176 be such that Ilfllo~ < 1 and ~ ( 1  - lakl)lf(ak)l < oo. 
Then f = Bh, where h is zero-free and B is a Blaschke product, 

Ibkl b~ - z 
B(z) = z ' l - I  

k 

bk �9 D, >-'~k(1 - [bk[) < oo. Let ~ = inf{d(ak,aj): k ~ j}  > 0. First notice that, 

for each k, there is at most  one point a~ such that d(bk,aj) < ~/2. Thus for any 

f l  e H  ~ ,  

)--~(1 - laA)lfl(aj) [ < CII/lllo~ Z (  1 - Ibkl), 
k 
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where the sum in the left hand side is taken over the indices j satisfying d(a~, B-1  (0)) 

< 6/2 and C is a constant depending on 6. 

Now we define a holomorphic function hi in the unit disk such that I ehl (z)l _< 

IB(z)l for any z such that d(z,B-l(o)) > ,~/2. Let hi be the unique holomorphic 

function such that Im hi (0) = 0 and 

/0 Re hi(z) = -Co Pz(O)~-~Xj~(O) , 
k 

where Jk := (argbk - (1 - Ibkl),argbk + (1 -- Ibkl)), and co is a constant to be 

determined. Then, using the estimate logz -2 < C~(1 - x 2) i f l  > x > 6, one has 

- l o g l B ( z ) l  2 --- - ~--': log ~ 2  
I - -  OkZ k 

< C~ ~ (1 - Ibkl2)(X - Izl 2) 

Observe that there exists an absolute constant Cl > 0 such that for any O E Jk, 

11 - bkz l  > cl l  e~~ - z l .  

Thus the last sum can be estimated by 

~ f j  (1 -- N2) d0 C6c2Rehl (Z) ,  
c2C~ ~ ~-_--;-~12 2 r - co 

where c2 := 27r/cZa. Therefore, we can pick Co sufficiently large to obtain the desired 

inequality. I f  we split the sum ~(1-la~l) l fx(a~)l  into the cases d(aj, B-1 (0)) < 6/2 

and d(aj, B-X(0)) > 6/2, it is straightforward to see that f l  := he hI = e - g  satisfies 

our requirements. [] 

C o r o l l a r y  5. Let {zn} be a thin separated sequence. Let 0 < m < 1 and 

{Wn} C D satisfy d(zn, wn) < m fo r  all n. Then {wn} is thin. 

P r o o f .  Let  g be the function given by I .emma 4. Harnack's inequality implies 

that 

Re g(wn) >_ c(m)Re g(z,),  n = 1 , 2 , . . . .  

Since d(z, ,  w,,) < m, we deduce that (1 - Iw.l) _< C(m)(1 - Iz.1) for all n. Thus 

y~'(1 -Iw.I)le-g(~")/c(~)l < C(m)~-"~(1  -Iz .I) le-g(z")l .  [] 
lrL I r l  
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2 Generat ions  

It will be expedient to carry the problem of  describing the thin sequences over 

to the upper half plane, using the Cayley map 

1 - z  
~,(z) :=  i 1 +----~. 

The Gleason distance in the upper half plane is then given by 

d(z,w):= , I m z > O ,  I m w > O .  

Let {ak} be a sequence of points in the unit disk. Since a finite union of thin 

sequences is thin, it is no loss of  generality to assume that I arg ak[ _< r /2 .  We denote 

~(ak) by a~ for brevity, and notice that the sequence {aJ~} is contained in some 

bounded neighbourhood of  the origin in the upper half plane. Furthermore, {ak} is 

thin if and only if {a~;) is thin on the upper half plane, that is, there exists a bounded 

holomorphic function f on the upper half plane such that ~k ( Im a'k)lf(a'k) j < oo. 
So it is no loss of  generality to consider bounded sequences in the upper half plane. 

When no confusion is possible, we shall write {ak) for {a~:) in order to simplify 

notation. 
We now consider the following standard dyadic partition of  the half plane: for 

n)_O, j E Z ,  

Q - d : = { z E C : 2  - n - l < I m z < 2 - ' * ,  j2 - n < R e z < ( j + l ) 2 - ' ~ } .  

Notice that Q . j  is the top half of  the "Carleson square" with base the projection 

of  Q,~,j to the real line, i.e., 

I .d  := [j2-", (j + 1)2-"). 

For any given n, the intervals {l,,j : j E Z) form a partition of  R. 

Since the Gleason distance between the points in Q . j  is uniformly bounded 
away from 1, a separated sequence admits only a uniformly bounded number of  

points in each Q . j .  Since a finite union of  thin sequences is thin, it will be enough 

to consider sequences in the upper half plane admitting at most one point in each 

Q.  j .  
Given such a sequence {ak} in the upper half plane, following [Ga, w p. 299], 

we define the generations in the following way. Denote by Qk the unique dyadic 
box Q . j  such that ak E Qn,j, and by Ik the corresponding dyadic interval l. ,j  c 
The first generation GI is made up of the indices so that the corresponding points 

of  the sequence have no other points of  the sequence above them, that is, an index 
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k is in the first generation if there exists no Ij, 3 # k, such that Ik c ly. Then we 

define the second generation ~ as the first generation of  the remainder sequence 

{aj : j r ~1}. The later generations ~a, ~4,. . .  are defined recursively by 

k 

~k+l = ~ l ({a j  : j r U ~/})" 
/=0 

m m m w  
mmnmmm 

x 

I X I I 1 

The points marked with dots correspond to indices in the first generation 
~71, while the crosses are indices in the second generation ~2. 

Equivalently, k E ~,~ if  and only i fn  = #{k ' :  Ik c Ik,}. Each given generation 

thus defines a disjoint family of  dyadic intervals on the line, and we write 

G, , :=  U l k .  

Thus 

la, ,I-- ~ IIkl. 
kEG~ 

Note that one can also define analogous generations from a partition of  the disk, 

which are not exactly the pull-back under ~I, of  the above. Notation turns out to be 

simpler in the half plane case. 
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Let {ak} be a bounded and separated sequence in the upper half plane. Then 
{al,} is a Blaschke sequence, that is, 

Z Im ak < oo, 
k 

if and only ifFt({ak}) �9 LI(R), where 

rt({ak})(x) := #{ak :x  �9 It(ak)} and I t (z  ) := ( x - ' y y ,  x+'yy) .  

In terms of  generations, {ak} is Blas, chke if and only i f ~  IG.I < ~ .  

Also, ]NT{ak }1 = 0 or equivalently F-y({ak}) is finite almost everywhere, if and 
only i f lG.  I ~ 0, as n -r  o0. Here NT({a~:}) C R is the nontangential accumulation 
set of  the sequence {al,}. 

Consider 

We have not proved that log+r({ak}) E LI(R) if and only if log+F �9 LI(iR). 

However, the function F is a precise enough tool to prove Theorem 1. A summation 
by parts shows that log+ F �9 L 1 (R) if and only if 

n 
n---1 

Also, log+ F is weak L 1 if and only if IG.I = I{log+ r >_ log n}l < C~ log n, for any 
n_>2. 

Theorem 1 (and its sharpness) will follow from 

T h e o r e m  6. (a) Let {a~} be a separated sequenee o f  points in the upper hal f  

plane and let { a . }  be th'e corresponding generations. If F_,.~_l(1/n)la,d < ~ ,  
then {ak} is thin. 

(b) Given any nonincreasing sequence ~,~ > 0 such that ~.>_l('~n/n) = ~ ,  
there exists a thick separated sequence {ak} in the upper hal f  plane such that 

"r,, _< IG.I  _< "y,, + 2-", for  n sufficiently large. Here {Gn} are the generations 
corresponding to {ak}. 

(c) I f  {ak } is a bounded sequence which is thin and separated and {Gn} its 
corresponding generations, there exists a constant C > 0 such that 

IG,,I < C/logn. 

(d) There exists a thin separated sequence {ak} such that 

C-1 / logn  <_ Ian[ <_ C/logn,  
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where {G,,} are the generations corresponding to { ak } and C > 1 is a numerical 

constant. 

Thus we have a sufficient condition (a) and a necessary condition (c). Part (b) 

tells us that the sufficient condition cannot be improved if we reason only in terms 

of  the quantities [G,d. Similarly, part (d) tells us that the necessary condition in 

(c) cannot be improved using the quantities IG,d. Furthermore, (d) shows that the 

condition in (a) is not necessary; and (b) applied with % = (log n)-1 shows that 

the one in (c) is not sufficient. 

Accepting Theorem 6 momentarily, we can prove the main result. 

P r o o f  o f  T h e o r e m  1. We recall the notation a' k = ~(ak),  where r is the 

Cayley map from the unit disk to the upper half plane. Also, we recall that we may 

assume that the sequence {a~} is bounded, and {ak} is thin if and only if {a~} is. 

For a point z = x + iy in the upper half plane, recall the notation 

g ( z )  : =  (x - w ,  x + w ) .  

Given any 7 > 0, there exist 0 < 7' < 7" such that, for all points ak as above, one 

has 

I7,(a~) C ~(I7(ak)) C IT,,(a'k). 

So, instead of  the original function F- v ({ a~ }), we may consider its analogue defined 

from the intervals IT,(a~), which we denote again by r~,({a~}). Since {a~} is 
bounded, the function F 7, ({a~}) is supported on a bounded interval of  the real line. 

(a) For any ak, by choosing the smallest n such that 2-'* < .),t Im a~, we can 

make sure that there exists a j = j (k) such that Re a~ e In,j C 17, (a~) C q2 (I7 (ak)). 

Set 

1 - - n  b~ := ( j +  ~)2 + 2-'*i. 

It is easy to show d(b'k, a~) _< m < 1, where m depends only on 7. Denote by I~ the 

arc In,j determined above. Now clearly, 

= < < o 

k 

Therefore, the hypothesis implies that log+F({b~}) 6 LI(R); and part (a) o f  

Theorem 6 implies that {b~} is thin. Since d(b'k,a'k) <_ m, Corollary 5 implies 

that {ak}~ is thin. 
(b) We now construct a new thin sequence {b~} such that. the corresponding 

F({b~}) dominates FT({ak}) o ~,-1. 
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First we must reduce ourselves to the case where for any j  E Z, {a~} has at most 
one point within the set Q,,j  := Q,,j-1 uQ,~j uQ,~j+~. Since there exists m E (0,1) 
such that for any a e Q , j ,  Q,,,j c {z E C : I m  z > o, d(z, a) < m}, this can be 
achieved by splitting the sequence into a finite union to increase the separation 
constant. Note that the result we are proving is stable under finite unions, since 
I'({ak} U {b~)) = r({a~}) + r({bk}). 

Now for any a~ E Q,, i ,  define a~ 1) to be the "center" of Q,, j_I ,  i.e., 

a(X):=(j-l)2-n+.~2 ~, 

and likewise a(~ ~) to be the "center" o f Q , j + l ,  

a(2) := ( j +  ~)2-n + 3 2-hi. 

Denote {b~}k_>l = {a~}k>1 U {a(kt)}k>i U {a~2)}k>x. The sequence {b~} is 
separated and has at most one point in each Q , j .  Both sequences {a O) } and {a (2) } 
are thin by Corollary 5 (since d(a'k, a (0) _< m, i = i ,  2, by the remark above). 
Therefore, {b~} is thin and, by part (c) o f  Theorem 6, log+ F({b~}) is in weak L x. 

For any 7 sufficiently small, one can choose ,y" < I and thus 

r C I.t,,(ak ) = [Re a~ -7"Ira a~,Re a~ + 7"Ira a~) 

c I . , j_ l  u I . j  u I . j+~.  

Therefore, 

r , ( { a k } )  o r  < < + + = 

To deal with larger values of 7; one would have to add more companion 
sequences on each side of  {ak }. Details are left to the reader. [] 

Finally, to see that Theorem 1 is sharp, observe that the sequences in examples 
Co) and (d) are chosen so that F1/2 = F (and easy modifications of  those examples 
would deal with different apertures). 

3 P r o o f  o f  the  Suff ic ient  C o n d i t i o n  in T h e o r e m  6 

Proof of (a). 
plane of Co log+ F, 

Consider F = ~,~ XG. and the harmonic extension to the half 

H(z) = Co ~ Pz(t) log+ F(t) d2, 
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where co is a constant to be chosen, and P~ (t) denotes the Poisson kernel for the 

upper half plane, 

P,(t) = 1 Y for z = x + iv. 
7r ( x -  t) 2 + y2' 

The hypothesis means that log+ F E LI(R) and ensures that H is well-defined. Let 

h be the unique holomorphic function in the upper half plane such that Im h(i) = 0 
and Re h = - H ,  and let f = e h. To estimate If(ak)l, notice that if k E G,~, then 

F(t) > n for all t Elk  := In,j(ak); for such t, one has P~k(t) > c/lIkl, where c is a 

numerical constant. So 

n(ak) > Co f Pad(t)log+ F(t) d t >  logn, 
J l  k 

if we choose Co sufficiently large. Therefore, 

Z ( I m  ak)lf(ak)l <- ~n 1 Z Im ak ~_ E llGnl < 00. [] 
k n k E ~  n 

P r o o f  o f  (b).  Define a sequence in the upper half plane by 

a ,~ , j :=2-n( j -1 /2 )+2- '~ i ,  l < j < J n : = [ 2 n 3 ' , ] ,  n = l , 2 , . . .  

where, in this proof only, [x] denotes the smallest integer greater than or equal 

to the real number x. Note that it is no loss of  generality to assume that 3'n < 1 for 

all n. 

We have a,~ d E Q,~d and 

5=J~ 
1I.,51 = 2-ng .  _< 2-("-l)J(n-1),  

5=1 

which ensures that the generation ~.  is made up exactly of  the indices (n, j ) ,  

1 < j < J . ,  and ]G,,I = 2-nJn. Thus the construction implies that 3',~ < IG,~I 

< 3',, + 2 - " .  
We shall proceed by contradiction. By Lemma 4, we know that if {ak} were 

thin, there would exist a positive harmonic function H in the upper half-plane such 

that 
J,, 

E E 2-ne-H(a,,,~) < oo. 
n j = l  

NOW H can i~e written as 

H ( z )  = + - + u2 du( t ) ,  z = x + i y ,  
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where c is a positive constant and # is some positive Borel measure on the real line 

such that fR(1 + t2)-ld#(t) < ~ [Ga, p. 18]. Set d#i(t) = X[-2,+2](t)d#(t) and 

<~ l y dpl(t). H i ( z )  : =  
or ~r (x - t) 2 + y2 

Since IRe a,~,jl < 1 and Im a~d < 1, we have, for any t > 2, 

9 1 
P~.~(t) < ---" 

, - -  ,/1. 1 + t2  ' 

therefore, for all points a,~,~ in the sequence, 

IHx(a.j)- H(a.,j)l < lcl + g f T ~ d . ( t )  <_ C. 

So we may replace H by Hi ,  which will have the same properties with respect to 

our sequence, that is, 

Jn 

~-~g. < oo, where.q. = )--'~2-"e -"'(<'",'>. 
n > 0  j = i  

We may henceforth assume that H is given by the Poisson integral o f  a measure # 

with finite mass supported on a compact interval of  the real line. 

C l a i m .  There exists a constant C > 0 such that, for all integers n > 0 such that 

IG.I  ___ 8 . 2  - " /2  and g. <_ ( I / n ) I G . I ,  one has 

c la ' i  dz(t) >_ CIG,.I logn. 
,112 

Accepting this Claim, to be proved below, we are going to bound ~ IG, i/n, 
which will finish the proof by contradiction. First we want to see that the indices n 

that do not satisfy the hypotheses in the claim do not contribute much to the sum. 

Define the following sets of  indices: 

E = {n  > 0 :  IG.I  > ng, , } ,  

Then 

F = {n _> 0: IG.I > 8.2- '~/2}. 

IG,,lln < 8 ~ 2 -"/2/~ and ~ la,,lln <_ ~ g,,, 
w,~F .>1 n~E  n 

which converges by assumption. So we only need to bound the term 

IG,,ll.,,. 
nEEnF 
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To do so, we regroup the terms in such a way that the size of  generations drops by 

a factor o f  at least a half from one group of  indices to the next. For a fixed N > 0, 

define by downward induction the indices 

nl : = m a x E R F R { 1 , . . . , N } ,  

n k + l  := max{n E Ef-IFA{1, . . . ,nk  - 1} : l a ,  I > 21G.~l}, 

where the induction stops and we set nk+l ---- 0 when the set over which the "max" 

is taken becomes empty. Then, the Claim gives 

la,,l/n=Y~'~ ~ la,,l/n_~2)-~lG',,~llognk 
nEEr ' lF  k ntc+l < n < n k  k 

( C -1  I"lG"k I 
-- y ~  / dfl ( t )  ~_~ C - I . ( ] ~ )  < 00, "T JIC ,,j, I / ~  

since our definition of  the indices n k ' s  implies that �89 I > I Gn, l, so the domains 

of  integration given above are disjoint. [] 

P r o o f  o f  the  Cla im.  Roughly speaking, the idea of  the proof is that whenever 

the value of  H is large at a given point, there must be enough mass coming from 

the measure ~ "below" the point. Since the total mass o f p  is finite, this will put a 

cap on the number of  separated points we can put into a given generation. 

We now make this precise. In order to avoid "boundary effects" in the 

convolution with the Poisson kernel, we want to consider points and the real 

part of which stays well inside (~IG, I, [G,~I). Let 

R~ := {j > 0: 2"-XlG.I + 2 "/2 < j < 2"16.1 - 2"/2}. 

Recall that J ,  = 2"IG, [. The fact that IG, i > 8 . 2  -"/2 ensures that # P ~  > J,/4. 
For j ~ / ~ ,  one has 

(3.1) 

f l a . I  f J2-"+2 -"/2 P2-.(,+j)(t) a~(t) >__ P2-.(,+~)(t) d.(t) 
J IG,,I/2 J j 2 - " - 2 - " / 2  /? 1 

> P2-.(~+i)(t) d#(t) - #(x) 
oo 

= H(2-"( i  + j ) )  - I#(R) .  
11" 

1 
P 2 - . ( ~ + j ) ( t )  <__ - 

7T 
for t ~ [j2-" - 2 -"/2, j 2 - "  + 2-"/21. 

Here, in the second inequality, we have used the estimate 
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We want to restrict attention to indices corresponding to points where the values 
of H are large enough, to derive the result from (3.1) by summing over j (i.e., over 
the points in a single generation). The hypothesis that IG,] _> ng,, means that 

(3.2) 

Let 

Jvt 

E e x p ( - H ( 2 - n ( i  +j ) ) )  < J,/n.  
j = l  

Sn :-- {j  E Rn : e -H(2-'(i+j)) <_ 8/n}.  

Chebyshev's inequality applied to (3.2) yields 

# (R, \ Sn) < Jn/..._...~n = J,~/S, 
8/n 

whence #S,, > Jn/8. Thus by (3.2), one has 

( n  1 ) J n  r,a~, 
logg- -~#(a) - -8<j~sJ lO~l /2P2-~( '+J ) ( t )d#( t )  

< Z P2-~(i+j)(t) dlz(t) < d#(t), 
a IG,,II2 j ~ z  J la,., 112 

by an explicit estimation of the last series. Recalling that IG,,I -- 2-"d . ,  we get the 
desired result. [] 

4 P r o o f  o f  the  necessary  cond i t ion  in T h e o r e m  6 

We actually prove part (e) under the following equivalent, but slightly more 

cumbersome form. 

Claim. If {ak} is a bounded sequence which is thin and separated, {G.} its 
corresponding generations, and r is any nonincreasing function from [2, ~ )  to 

(0, oo) such that 

ff r r  dz < 00, 

then En>l r < oo. 

Proof of(c) assuming the Claim. We proceed by contradiction and assume 
that the sequence of positive numbers [Gnl =: 7,, does not satisfy the desired 
conclusion. It will be enough to show that given a nonincreasing sequence of 

positive numbers {%,} such that 

lira sup %, log n = oo, 
n- -4 .oo  
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L(n) := log k '  
k=2 

Then summation by parts shows that 

there exists a nonincreasing function r from [2, c~) to (0, oo) such that 

< oo and E r = oo. 
_ n>2  

We write r = ~k>,, ek, where tk _> 0 are the terms of a convergent series to be 
determined. Set 

r(n) := ~ 3'k. 
k=2 

and 

n 

~(k) = E ~kL(k ) + r + 1)L(n), 
k=2 log k k=2 

r = ekr(k) + r + 1)r(n). 
k=2 k=2 

Since {3'.} is nonincreasing, F(n) _> n3',,; and an elementary argument shows 
that L(n) < Cn/log n. Therefore, 

lira u F(n) ,,Is~ up L-~ = oo. 

Pick an increasing sequence of integers {kS, 3' _> 1} such that F(k~) >_ jL(kj),  and 
let 

ek=O f o r k ~ { k j , j > l } .  
1 

ek~ := j2L(kj ), 

Then the series ~ ek converges, 

and 

2 2 

k=2~C(k)< E l l ~  j ~ J ~ t  J l  ~ 1j _ ~ + L(~)  o2rTk~, < 7~ < ~ "  
j : k j < n  j : "  n 

[] 

Proof  of the Claim. Again, we want to regroup generations so that the typical 
decrease from a IG.~[ to the next is halving. Define by induction the indices 

n l  : =  2, 

nk+1 := rain{n: 21Gnl _< IG.~I}. 
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So IG.I > IG.~I/2 for nk < n < nk+l and [G.~+,] < IG.~I/2. Consider the 

following sets o f  indices: 

E1 = {k: la,,~l _< 1/lognk+x}, 

E2 = {k r El :  nk+l - nk _< v ~ } .  

They correspond, respectively, to indices where generations are too small to matter 

and to those where they decrease too fast. We can take care of  the pan  of  the sum 

corresponding to k G Ea right away; 

n t , + 1 - 1  n t ,+ l - -1  4 , ( n )  

- log nk+l - logn 
kfEl nk n>2 _ 

It takes only a little bit more work to bound the sum for the indices k 6 E2, that 

is, such that nk+l -- nk _< ~ and IG,kl _> 1/(lognk+x). From the fact that 4' is 

nonincreasing and 

fo~ < oo, 4'(Z) dz 
log x 

we can deduce that r <_ C(log x ) / x  for some constant C i f x  is sufficiently large. 

Then if  k 6 E2, one has 

nh+t--1 

IG.14,(n) < Cla.~ll~ 
nk 

Now, since (log nk+ l ) - i  _< IG,,~ I < 2-k and the function log x /v /~  is decreasing for 

x large, we have 

IG.,I l~ < C~exp( -C '12  k-l) < ~ ,  
k6E~ v t ~  -- k>_l 

where C1 > 0 is an absolute constant. 

Now suppose k ~ E,  t_J//72. By Lemma 4, there exists a positive harmonic 

function H in the upper half  plane such that Y~,(Im an)e -H('~') < oo. Denote 

gm := E (Ira an)e - " ( " " )  . 
-EG~ 

We can assume that 

n k + l  

E g,. < 1 
nk 
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and then there exists I = l(k) E [nk,nk+l) such that 9t < (nk+a - nk)  - x .  Let 

Yk := {n E ~l: H(an) >_ log ([-~--(nk+a --nk)) } �9 

By Chebyshev's inequality, 

Im a,~ < 
nE~l,ng.~'k 

ThUS, 

(nk+: - r k)Iatlgz < I@___! 
2 - 2 

1 
E I m  a. _> �89 __ ~la,~l. 

nE~-h 

We define a subsequence of  the original sequence first by considering points 

only within the generations Gz(k), then by restricting attention within those to the 

indices in the sets ~'k, and finally by further restricting attention to the sets 

,S~ := {n e .~'~ : E Imaj<_NIman}, 

where N > 0 is a constant to be chosen below. Here the sum is taken only over 

points aj such that j E fro, for some m > k; and 

Q(a,) := { x + i y :  0 < y < Im a , , , I x -  Re a, d < I m  an}. 

This last choice forces the measure 

. : =  (Ira o.'):o. 
k nESk 

to be a Carleson measure [Ga, p. 31 ]. 
We need to see that, although we have removed points from the sets ~'k in 

order to ensure that we obtain a Carleson measure, the points we are left with are 

numerous enough to account for the whole sequence. The definition of S\  implies 

that 

1 
E I m a n < - ~  Y]~ E Imaj, 

itself trivially bounded by 

1 

r>k jE~ 
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Since IG,(k+~)l <_ IGt(kl I/2, and.Fk C ~Z(k), the above sum converges and is bounded 
by CiGt(k)I, where C is an absolute constant. Taking N > 4C, we have 

Im a,, > ~ Im aT, - �88 >_ 
nESl, nE~ 

Thus the sequence {an : n E S~} satisfies 

(i) E~esk Im an > tIG,~kl, 

(ii) n(a,,)  > log (IGtl(nk+t - nk)/2) i f n  E Sk. 

Since k r E1 U E2, then also nk+~ -- nk > nV~-~-~. Thus if n E ~ ,  where k is 

sufficiently large, we also have 

(ii)' H(a , )  > C'lognk+l, 

where C' is a numerical constant. 

Denote by A, t f ( t )  the nontangential maximal function [Ga, p. 28], that is, 

.Ml(t)  := sup If(z)l, 
zEP,, (t) 

where F,~(t) is the Stolz angle with vertex at t of  aperture a. Now we need the 

following lemma. 

L e m m a  7. Let h be a positive harmonic function on the upper hal f  plane and 

let r : [0, +oo) ~ (0, +oo) be an increasing function such that 

/ ~  < oo. r d= 

Then A4(r o h) is locally integrable. 

Before proving the lemma, we finish the proof of (c). Recall that if # is a 

Carleson measure and .A4f E Lt(R), then f E Lx(#) [Ga, p. 32]. Similarly, if # 

is a Carleson measure, with compact support and .Mf is locally integrable, then 
f E L t (#). Thus, by (i), (ii)' and the fact that # is a Carleson measure, we have 

IG.klr < 8 ~ y ~  (Ira an)r  < oo 
k~E1uEa k~l~,l~Ea ~E,.q~ 

for any function r satisfying the conditions in Lemma 7. If we take 

~ C z 

r = r 
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for x > 1, say, and r is defined on [0, 1) in such a way that r is increasing, we 

deduce 

nk-~t--I 

IG,, lr  oo; 
k~EIuE2 rtk 

and the proof  of  (c) is complete. [] 

Thus 

P r o o f  o f  L e m m a  7. Let I c R be an interval. We observe that 

{t �9 I :  A4(r o h)(t) > A} = {t e I: 2r > r  . 

/, E A4(r o h ) ( t )d t  <_ I { t :  Mh( t )  > r + r �9 
(U 

Since .Mh is weak L 1 [Ga, p. 28], the last integral is bounded by a multiple o f  

f f r  dA = fl~ r dt < oo; 
(1) ~3-- 1 (,,~) t 

and the lemma is proved. [] 

P r o o f  o f  (rl). Let 

t i),1 < 2n,n > , I n j  := [(j - 1)2-'~,j2-n), So : =  {an,j} : =  {2-n(j  - ~ + j < _ 0} 

so that Re a , , j  is the center o f  I,~j and Im an j  = [I,,jl = 2-" .  Observe that the 

intervals forming the n-th generation of  So are {I, , j ,  1 < j < 2"}, which form a 

dyadic partition o f  [0, 1). Define no := 1 and 

nk :=2  ~k, k = 1 , 2  . . . . .  

We define a subsequence S of  So together with its generations recursively as 

follows. The point a0,1 e S. This defines Gi. For nk < n < nk+l, a n j  �9 S 

i f  and only i f  I , , j  E G,,~. So, for nk < n < nk+l, one has IGnl = IG,,~[. On 

the other hand, the generations drop their total length by a half  at the indices nk. 

Precisely, i f  n = nk+l, then a , , j  �9 S i f  and only i f  I , , j  c G,,k and j is even. 

So IG,,~+, [ = IG,,~ 1/2, and G,,k+, is uniformly distributed in each interval o f  the 

previous G,,, that is, for nk < n < nk+l, 

Observe also that 

IG.k+, n I . j I  = l l I . , j l .  

]Gnk[ = 2 -k = log2/lognk, k = 1 , 2 , . . . ,  
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and  for nk _< n < r~k+l, we  have 

log2/ logn < IG.I < IG,,~I < 21og2/logn. 

Hence, the estimate in the statement is fulfilled. 

The fact that the sequence S is thin will be obtained by the following 

construction. 

C l a i m .  There exists a probability measure/~ on [0, 1) such that for any n and 

any interval I n j  o f  Gn one has 

#(In ,~) -  II,~,~1 
IC.l" 

P r o o f  o f  t h e  C l a i m .  The measure # is constructed as a weak* limit o f  the 

measures g,~ defined below. This is analogous to the classical construction of  a 

measure on the Cantor set: here we concentrate the mass uniformly on the intervals 

o f  each generation. This method is a simplified version of  the one used to prove 

the necessity part in Theorem 2 of  [Lu-Se]. Set 

1 Z Xl.,s m, 

where m is the Lebesgue measure and Xt the characteristic function of  the interval 

I .  It is clear that g,~ is a probability measure and #,~(I-,3) = IX.,r for any 

interval I,~,r of  G,~. The Claim will follow as soon as we show 

IIk,~l 
U.(Ik,j)- IGkl' 

for any interval l k j  of  Gk, k < n. The above construction implies that Gn is 

uniformly distributed on any interval ofGk, k < n; therefore, 

IC.I Ik IG,, nIk,~l = ICkl '  ,=l. 

So 

1 II~,jl 
#,-, (/k,./ ) = , - '~ la , . ,  n/k,.~l = 

ICkl' I ~ n l  

and the claim is proved. [] 

To show that the sequence S is thin, consider a holomorphic function st on the 

upper half  plane such that 

log If(z)l = - o f  Pz(t)d~t(t), 
Jx 
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where c is a constant to be chosen later. 

For t E [z - y, z + y], we have 

Pz+~(t) >_ co~y, 

where co is an absolute constant. We choose c = (2 log 2)/c0. Then, i f  a,~,3- E Gn, 

applying the above estimate to z + iy = a,,~., we have 

,f(an,j), < exp ( - c ~ # ( l n , j ) )  = 2 -2/IC~l �9 

Thus 

- ) ~--~(:m a.,j)lY(a.,j)l < ~-~IG.12 -~/'G"I = ~--~IG..l(-k+, nk 2 -2/IG"'' 
(n,j)  n k 

Since ]G, h I = 2-k and nk = 22k , this last sum converges. [] 

5 Invariantly  thin sets 

This section is devoted to the proof of  Theorem 2. Here, we work in the unit 

disk, with the generations defined there. 

Let {ak} be an invariantly thin separated sequence. Let f E H ~176 Ilfllor < 1, 

f(0) # 0, satisfy 

sup E ( 1 -  Ir162 < 1, 

where the supremum is taken over all automorphisms r from the unit disk onto 

itself. Assume that {ak} is not an interpolating sequence, that is, the measure 

# = ~"~(1 --  ]akl)6k is not Carleson. Such sequences can also be described in terms 

of  generations (see [Ga, p. 200]). 

Given a point ak of  the sequence with k E ~j, we denote by ~x(ak) the indices 

l E ~3+1 such that It C Ik. Given a point ai with I E ~: (ak), we consider G1 (at) and 

define 

~,(a,,)= U ~,(a~). 
l~ l (ak) 

Subsequent generations are defined recursively: 

~ n + l ( a k )  =- U ~ l ( a l )  �9 
IE~n(ah) 
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Then, i f  # is not a Carleson measure, there exists a positive number r/ > 0, a 

subsequence {b~} of  {ak} and a sequence {re(j)} of  positive numbers, re(j) -+ o0 

as j ~ oe, such that 

(5,1) E ( 1 - l a ~ l )  > 7 ( 1 - I b ,  I), ,~ = 1 , . .  , re(j)  
akEg,~(bj) 

for any j .  In particular, we get 

1 
1-1bil ~ (1 -1ak l )~  a s j ~ .  

a~EQ(bj) 

Here Q(b~) = {rei~ 0 < 1 - r < 2(1 - lbjl), 10 - argbjl < 2(1 - lbl)}. 

Now, considering the automorphism r sending b~ to the origin, we see that for 

a fixed e > 0, one has, i f j  is large enough, 

1 
E (1 - l ak ] )  > ~ E ( 1 - l a k l ) -  

akE.T akeQ(bj) 

Here Y = ~(b i,  e) is the family o f  points ak �9 Q(bj), ak # b i, such that If(r < 
e. We now consider the subfamily ~ = G(bj, e) o f J  r formed by those points ak �9 .7 r 

for which 

If(r < E, 

for any z in the disc Dk = {z �9 D: d(z,ak) < 1/2}. We claim that for fixed e > 0, 

we have 

1 
(5.2) t - Ib j I  E ( 1  - la~l) J~s ~" 

This estimate follows from 

1 ) c o ,  1 -Ibl ~ (1 -lakl) . ._,~ 
akE.T 

the fact that i fak �9 .T'\ ~ and g = f o r then there exists zk, d(zk, ak) < �89 such that 

19'(zk)l(1 -Izkl) > e, 

and the following lemma, which is a slight variation of  a result in [Su]. 

L e m m a  8. Let f be a function in BMOA,  that is, an analytic function f in D 

for  which 

= If'(w)12(1 -Iwl)dm(w) 
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is a Carleson measure; and let I l f l l ,  2 be the infimum o f  the positive numbers C > 0 

such that #(Q) <_ C l(Q), for  any square Q. Given ~? > O, let A = A ( f  , 7) be the set 

o f  points z E ~) for  which there exists w, d(w, z) <_ 1/2 such that 

If'(~)l(1 - Iwl)  _> ~ 

Then the measure a = (1 - Izl)-IXA(Z)dm(z) is a Carleson measure and, in fact, 

_ c Ilfll*~ ,,.., o(Q) < - - ~ - , ~ ) ,  

for  any "square" Q := {re ia : 0 < 1 - r  < l(Q),lO-Ool </ (Q)} .  Here C is a 

numerical constant. 

We accept Lemma 8 (and thus (5.2)) temporarily. Then Lemma 8 and (5.1) 

also give that for j sufficiently large, there exists n(j),  1 <_ n(j)  < m(j) ,  such that 

y~(x  - l a s l )  _> ~(1 -Ibjl), 
a(j) 

where a( j )  is the set of  points ak E ~,~(j)(bj) which are also in the family G. Now, 

denoting by .hA = .M(j) the set of  indices k corresponding to points as E a( j) ,  we 

have 

w ( b j , U O D k , D  \ U n s )  >_ C(~}) > o, 
A4 A4 

where C(7/) is a constant depending only on 7. Here w(z, E, f~), E c 0f~, denotes 

the harmonic measure at the point z 6 fl of  the set E in the domain f~. Since 

If(r < e for any z 6 Dk i f  as 6 G and log If o ~bl is a negative subharmonic 

function, one obtains 

log II(r < (,og ~)~(z, [..j ODk, ~) \ [.J Ok) 
A4 A4 

for any z 6 D \ [.J.~ Dk. Taking z = bi, we have 

I/(0)l < ~c(,), 

which leads to a contradiction. 

ProofofLemma8. Foreachz  E A, consider D(z) = {w E D: d(w,z)  < 3/4}. 

Observe that for z ~ A, one has by subharmonicity 

Crl 2 1 fD I/'(w)l ~ din(w), 
( 1 -  Izl) 2 < m(D(z)) (,) 
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where C is a numerical constant. So, for any z E A, one has 

(5.3) Cr/2(1 - Iz l )  ___ f If'(w)12(1 - Iwl)dm(w).  
JD (z) 

Now we apply the Besicovich covering lemma to obtain a family of discs D(zj), 
z~ E A, A r Uj D(z3) such that 

Z XDCzj ~ N, 
J 

where N is a fixed constant. Then ifQ is a "square", we have 

a ( Q ) < C a  ~ ( 1 - l z j l ) .  
zj 64Q 

Let .4 be the family of  zj E 4Q. Then, using (5.3), one gets 

c, ? fo ' f ' (w )12 ( l  - l w l ) d m ( w )  ~ <- ~ (z,) 

C1N f -< ~ ./4Q If'(w)12(1 - Iwl)dm(w); 

and this finishes the proof. [] 

6 E s s e n t i a l  m i n o r a n t s  o n  t h i c k  sets  

We begin with an easy observation. 

L e m m a  9. Assume that there exists a > 0 such that 

fo g(r) adr (6.1) T---7 < c~. 

Then g is an essential minorant on thick sets. 

P r o o f  o f  L e m m a  9. First notice that ifg is an essential minorant on thick sets 

and a > 0, then g'~ is too. Indeed, when a _> 1, g(r) ~ _< g(r) for r close enough 

to 1, so the property is immediate. Suppose a < I and IS(z)l _< g(Izl)  ~ for all z 

in some thick set, where f E H ~.  Then for any integer m _> l / a ,  f,n E H ~ ,  

If(z)l" < g(Izl), so f "  = 0; therefore f = 0. 

This means that we may as well assume 

fo I g(r)dr 
i - 7  < c~. 
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Now let {ak} be a thick separated sequence and f e H ~ [f(ak)l ~ g(lak[), 

k = 1 ,2 , . . . .  Then 

~--~(1 - l a k l ) l f ( a k ) l  ~ ~ ( 1  - l a k l ) g ( l ~ k l )  �9 
k k 

Let Dk be the hyperbolic disc of  center a~ and radius ~ > 0. Taking 5 > 0 

sufficiently small, we may assume that the discs {Dk} are pairwise disjoint. Then 

the last sum can be bounded by a fixed multiple of  

~ f D ,  f=~lg([z[)din(z)< fDg(IZl) d ""  - ~ mtz)" 

So the integral condition on g gives that f must vanish identically. This proves the 

Lemma. [] 

P r o o f  o f  T h e o r e m  3. Now given g satisfying the condition in the theorem, it 

is elementary to,see that it satisfies the condition in the Lemma as soon as 

I log 1 
_ < 1_ Um inf 
a 2 ~-~1 logllogT~--;_~[" 

Therefore, it is an essential minorant on thick sets. 

To prove the converse, we work in the upper half plane, with the dyadic partition 

given in Section 2. Assume that g satisfies 

log a-~ 
lim inf = O. 

~-~' log l log 11_--~1 

It will be convenient to assume that the function g measuring the decrease of  f 

depends on y = I m  z rather than being radial, and that it be constant on dyadic 

cubes. Specifically, define 

/~n := -inf{logg(~2-X(x+iy)) : - 1  < x < 1,2 -" -1  < y < 2-"}, 

where �9 is the Cayley map (see Section 2). We then have that 13n increases to oo 

and that for some Cx > U2 > 0, 

g ( t  - c ~ 2 - " )  > e -a" > g(1 - C 2 2 - " )  ; 

therefore 

liminf./~'~ = O. 
n--+oo log n 
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If  we can find f bounded and holomorphic in the upper half plane and a thick 

sequence of  points an,j, where Im a,~,j = 2 -'~, such that If(an,j)[ _< exp(-~n),  then 

g wilt not be an essential minorant. 

The sequence and will be constructed (and its thickness proved) along the 

general lines of the proof of part (b) of  Theorem 6. We choose an increasing 

sequence of integers nk such that 

nk+l > n~ and /3"------~k < 2 -k 
log nk - " 

Define the lengths lk as multiples of 2 - [ v ~ - 1  which are close to (log nk) -1, that 

is, 

[ 2 t ' ~ + '  1 

lk := 2 - t , ~ - 1  t ~ J 

Here [.] stands for the integer part o fa  real number. Notice that, for k large enough, 

0 < Ik+l < Ik/2. Set 

a , , , j = 2 - " j + 2 - ' ~ i ,  0 < j < 2 " l ~ ,  f o r n E , T k : = { [ v / ' ~ ' ] + l , . . . , n k } ;  

this guarantees that the union of  the dyadic intervals I,~,~ corresponding to a single 

"level" n E ,7"~ will be the interval [0, l~). Note that here the points at the level 
n, i.e., having imaginary part equal to 2 -n,  do not constitute the n-th generation, 

because of  the gaps we have introduced. So the proof of Theorem 6(b) must be 

adapted to show that the sequence is thick. 
We now choose a holomorphic function f which will be bounded in modulus 

by 9 o @-x on the sequence a~,j by requiring f ( i ) >  0 and If[ = e-H, where H is 

the Poisson integral of  the boundary values 

H'(~} :-- co ~ - ~ x ~ + , , ~ l ( ~ ) ,  
k 

for co > 0 some constant to be chosen. The function H* is integrable on the real 

line because 

iogmS 
k k k 

by the choice of  nk. Since H" (x) >_ co/3,~k for x 6 (0, lk], and for n 6 Jk we have 

l m  om, j  = 2 - n  <_ lk, an easy harmonic measure estimate fields, for 0 <_ j < 2"Ik, 

H(a.,~) > cCo~,,, > 0,,, > O . ,  

for co well chosen. Therefore If(a,,,j)l <_ e -t~', as required. 
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To prove that {an,j} is thick, as in the proof of  Theorem 6(b), it will be enough 

to show that there is no finite positive measure # on the real line such that i f  

then 

S(z) := fx  P~(t)d#(t), 

2 -n ~ exp(-S(a, , j ) )  < oo. 
n j 

Suppose S satisfies the last two properties. For n e Jk ,  set 

a n . '~  2 - n  

2nlh--I 

exp(-S(an,j))  . 
j=O 

Consider the set o f  indices 

K : = { k : a n > I k / n  w e  ,:&}. 

Claim.  There exists a constant C > 0 such that, for all large enough k ~ K, 

f t l  k d#(t) >_ log nk. Cl~ 
/ 2  

Accepting the claim, we can finish the proof. Indeed, by our assumptions and 

the definition o f  K,  

n 
n k E K  n E J h  k E K  

where c is a numerical constant. Since the series ~ k  lk log nk diverges, we must 

have 

oo = C ~ lk log nk < d#(t) , 
kCK 

a contradiction. [] 

P r o o f  o f  t he  C l a i m .  The fact that k ~ K means that we can fix some n e ,.7"k 

such that a,, < l~/~. Let 

Sn := {j �9 {0 , . . . ,  2"lk - 1} : exp ( -S(a~j) )  <_ 4/n}.  
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Then by Chebyshev's inequality, 

lk/n 2nlk . 
# ({0, . . . ,2 '~/k - 1} \ S,~) <_ 2_,~4/---- ~ = -~---, 

thus #S,~ _> (3/4)2'~/k. Furthermore, for k large enough, and any n E Jk, 

lk _> 8- 2 -[v'a'~/2 > 8 .2  -n/2 . 

Therefore, the "boundary effects" do not matter much: 

#Stn :----# Snf'l[32 Ik ,2n lk -2  n/2] _> ~2 lk. 

We now finish the proof of the claim as for its counterpart in the proof of  

Theorem 6(b): for j e S ' ,  

l• j 2 - n + 2  -n/2 

>_ { p2 _ s(2--(i + i l l -  
/2 d j 2 - n - - 2  -n/2 

Summing over j E S ' ,  and recalling that for j E S,~, S(2-n(i + j)) _> log(n~4), we 

get 

C2" d ~ ( t )  >_ - ,r~(R) 
/2 

Thus 

f t l  k dl~(t) >_ Cllk logn > Cx=lk lognk, 
1 

/2 z 

where C1 is a numerical constant. [] 

7 R e m a r k s  a n d  q u e s t i o n s  

The main open problem that remains is to obtain a geometrical characterization 

of  separated thin sequences. Theorem 6 tells that such a description cannot be 

written in terms of  the length of generations. However, our arguments, applied to 

the following subalgebra of  H ~176 give a satisfactory result. 

Let A be the set of  bounded analytic functions in D which can be written as 

f = Bh, where B is a Blaschke product, h has no zeros and .&l(log h) E L 1 (011)), 

where .M is the nontangential maximal function. 

T h e o r e m  10. Let { ak } be a separated sequence o f  points in the unit disk and 
let {Gn} be the corresponding generations. Then there exists a nonidentically zero 

function f E A such that 
~o 

~-~(1 -lakl)lf(ak)l  < o0 
k = l  
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if and only if 

~ IC:.l <oo. 
n 

r t = l  

The sufficiency follows from (a) of  Theorem 6, and a variation of the proof  in 
(c) gives the necessity. 
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