
Radial Behaviour of Harmonic Bloch

Functions and Their Area Function

Artur Nicolau

Abstract. Let u be a harmonic function in the upper half space

Rn+1
+ and A(u) its (truncated) area function. Classical results of

Calderón, Stein and Zygmund assert that the following two sets {x ∈
Rn : u has non-tangential limit at x}, {x ∈ Rn : A(u)(x) < ∞} can
only differ in a set of zero Lebesgue measure. When these sets have
zero Lebesgue measure, the Law of the Iterated Logarithm proved by
Bañuelos, Klemeš and Moore, describes the maximal non-tangential
growth of u(x, y) in terms of its (doubly) truncated area function

A(u)(x, y), at almost evey point x ∈ Rn+. In this paper we show that

if u is in the Bloch space and its area function diverges at almost
every point, one can prescribe any “reasonable” radial behaviour
of u in a set of rays of maximal Hausdorff dimension. More con-
cretely, if γ : [0,∞)→ R satisfies certain regularity conditions, the set

{x ∈ Rn : limy→0 sup |u(x, y) − γ(A2(u)(x, y))| < ∞} has Hausdorff

dimension n. A multiplicative version of this result is also proved.

Introduction. Let u be a harmonic function in the upper half space Rn+1
+ =

{(x, y) : x ∈ Rn, y > 0}. For any x0 ∈ Rn, α > 0, we let Γ(x0) denote the

(truncated) cone

Γ(x0) = Γ(x0, α) = {(x, y) ∈ Rn+1
+ : |x− x0| < αy, 0 < y < 1}

and A(u)(x0) the (truncated) area function,

A2(u)(x0) = A2
α(u)(x0) =

∫
Γ(x0)

|∇u(x, y)|2y1−n dm(x) dy.
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At an individual point x0 ∈ Rn, the two conditions

sup
(x,y)∈Γ(x0)

|u(x, y)| <∞,

A(u)(x0) <∞,

are independent. However celebrated results of Calderón, Stein and Zygmund
assert that the two sets

{x ∈ Rn : u has non-tangential limit at x},

{x ∈ Rn : A(u)(x) <∞},

can only differ in a set of Lebesgue measure 0 (see [16, p. 206, 238]).

The (doubly) truncated area function is

A2(u)(x0, t) = A2
α(u)(x0, t) =

∫
Γ(x0,t)

|∇u(x, y)|2y1−n dm(x) dy,

where Γ(x0, t) is the (doubly) truncated cone

Γ(x0, t) = Γ(x0, t, α) = Γ(x0) ∩ {(x, y) ∈ Rn+1
+ : t < y < 1}.

When the area function diverges at a set of positive measure, the law of the
iterated logarithm proved by Bañuelos, Kleměs and Moore describes the non
tangential growth of a harmonic function in terms of its truncated area function,
at almost evey point of this set (see [1], [2], [3]).

A harmonic function u in Rn+1
+ belongs to the Bloch space B if the quantity

‖u‖B = sup{y|∇u(x, y)| : (x, y) ∈ Rn+1
+ }

is finite. This condition has the following geometrical interpretation: Bloch

functions map hyperbolic balls of a fixed radius in Rn+1
+ into intervals of the

real line of a fixed length. Also, by Harnack’s inequality, any bounded harmonic
function is in the Bloch space. The little Bloch space B0 is the subspace of those
u ∈ B for which

lim
y→0

y|∇u(x, y)| = 0.

The law of the iterated logarithm for a Bloch harmonic function u asserts that,

0 < lim sup
y→0

|u(x, y)|√
A2(u)(x, y) log logA2(u)(x, y)

< C,

for almost every x ∈ {x ∈ Rn : A(u)(x) =∞}. Here C is a positive constant only
depending on the dimension and the aperture α used to define the area function.
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So, at almost every ray, the maximal growth of a harmonic Bloch function is
determined by its truncated area function.

In this paper we are interested on rays along which the behaviour of the
harmonic function is completely controlled by its truncated area function. The
motivation comes from the following two recent results.

Let u be a bounded harmonic function in the half-plane R2
+. Then, Bourgain

([4], [5]) has proved that the set of points x ∈ R at which∫ 1

0

|∇u(x, y)| dy <∞,

has Hausdorff dimension 1. This solved a question by W. Rudin ([15]) who
exhibited bounded harmonic functions with infinite variation along almost every
ray. Recently, Jones and Müller ([10]) have shown that if u is a Bloch harmonic

function in the upper half plane R2
+, there exists a point x ∈ R and a constant

C = C(x) > 0 such that

u(x, y) ≥ C

∫ 1

y

|∇u(x, t)| dt− C−1,

for any 0 < y < 1. So, at any point (x, y) of this ray, the harmonic function

is controlled by the corresponding radial variation, that is, the length (counting

multiplicities) of u{(x, t); y < t < 1}. Corresponding results when n > 1 seem to

be open (see [7]).

In this paper we look for analogues of these results when the radial variation
is replaced by the area function. Our first result asserts that when the area
function diverges almost everywhere, one can prescribe any “reasonable” radial
behaviour on a set of maximal Hausdorff dimension.

Theorem 1. Let γ : [0,∞)→ R be a continuous function satisfying

lim
t→∞

sup
|h|≤1

|γ(t+ h)− γ(t)| = 0.

Let u be a harmonic Bloch function in Rn+1
+ . Assume A(u)(x) = ∞ at almost

every point x ∈ Rn. Then, the set

E = {x ∈ Rn : lim sup
y→0

|u(x, y)− γ(A2(u)(x, y))| <∞}

has Hausdorff dimension n.

Also, when the area function diverges at almost every point, one can prescribe
any “reasonable” growth along a set of rays of maximal Hausdorff dimension.
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Theorem 2. Let γ : [0,∞)→ [1,∞) be an increasing function, satisfying

sup
t>0

γ(t+ 1)− γ(t) <∞.

Let u be a Bloch harmonic function in Rn+1
+ . Assume A(u)(x) = ∞ at almost

every point x ∈ Rn. Then, the set E of points x ∈ Rn which satisfy the following
two conditions,

lim inf
y→0

u(x, y)

γ(A2(u)(x, y))
> 0,

lim sup
y→0

u(x, y)

γ(A2(u)(x, y))
< C,

has Hausdorff dimension n. Here C = C(γ, u) is a constant only depending on
γ and u.

When γ is bounded, both results tell that the function u is bounded on a set
of rays of maximal Hausdorff dimension. This was first proved using martingale
techniques by N.Makarov ([12]) when n = 1 (see also [14]) and by J. Llorente

([11]) for n > 1 (and in Lipschitz domains). Also, related results for analytic

functions in the Bloch space can be found in [14].
When γ is unbounded, the constant C can be taken as small as desired, that

is, given ε > 0, the set E = E(ε) of points x ∈ Rn where the following two
conditions are satisfied

lim inf
y→0

u(x, y)

γ(A2(u)(x, y))
> 0

lim sup
y→0

u(x, y)

γ(A2(u)(x, y))
< ε,

has Hausdorff dimension n.
The maximal order of growth of γ allowed by the conditions in Theorem 1

(Theorem 2) is

lim
t→∞

|γ(t)|

t
= 0

(
lim sup
t→∞

γ(t)

t
<∞

)
.

Considering a class of Bloch functions constructed by P. W. Jones in [9], it is
easy to see that the above orders of magnitude are best possible.

The corresponding results for the little Bloch space are the following.

Theorem 1’. Let γ : [0,∞)→ R be a continuous function satisfying

lim sup
t→∞

sup
|h|<1

|γ(t+ h)− γ(t)| = 0.
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Let u be a harmonic function in Rn+1
+ in the little Bloch space. Assume A(u)(x) =

∞ at almost every point x ∈ Rn. Then, the set

E = {x ∈ Rn : lim
y→0

u(x, y)− γ(A2(u)(x, y)) = 0}

has Hausdorff dimension n.

Theorem 2’. Let γ : [0,∞)→ [1,∞) be an increasing function, satisfying

sup
t>0

γ(t+ 1)− γ(t) <∞.

Let u be a harmonic function in Rn+1
+ in the little Bloch space. Assume A(u)(x) =

∞ at almost every point x ∈ Rn. Then for any number a ∈ R, the set E = E(a)
of points x ∈ Rn such that

lim
y→0

u(x, y)

γ(A2(u)(x, y))
= a

has Hausdorff dimension n.

These results have local versions, that is, if one assumes A(u)(x) = ∞ at
almost every point of a given cube Q ⊂ Rn, then the corresponding set E ∩ Q
has Hausdorff dimension n.

The proofs of these results consist of constructing a Cantor type set contained
in E and evaluate its dimension. Stopping time arguments and Green’s formula
are used to choose nested collections of dyadic cubes in the upper half space,
where the increment of the harmonic function can be controlled by the increment
of its corresponding truncated area function. Similar arguments have been used
in [3]. The projections of such collection of dyadic cubes give the generations of
the Cantor set.

The paper is organized as follows. Section 2 contains some preliminary facts
and the building block of the construction. Section 3 is devoted to the proofs
of Theorems 1 and 2. Finally in Section 4, the conditions on the function γ are
discussed.

It is a pleasure to thank Joaquim Bruna and Mike O’Neill for many helpful
conversations.

2. Preliminary facts. Given a cube Q in Rn, we let |Q| denote its volume,

`(Q) its side length and xQ its center. Given k = 1, 2, . . . , the dyadic subcubes of

Q of generation k are the 2kn pairwise disjoint cubes Gk = {Sj : j = 1, . . . , 2kn}

contained in Q, of equal side length `(Sj) = 2−k`(Q), j = 1, . . . , 2kn. It is clear
that

2kn∑
j=1

|Sj | = |Q|.
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The generations are nested, that is Gk+1 ⊂ Gk, k = 1, 2 . . . .

Given a cube Q in Rn, the cube Q̂ ⊂ Rn+1
+ is defined as

Q̂ = {(x, y) : x ∈ Q, 0 ≤ y ≤ `(Q)},

that is, Q̂ is the cube in the upper half space whose projection is Q. The center

of the top side of Q̂ is denoted by zQ, that is, zQ = (xQ, `(Q)) ∈ Rn+1
+ .

The hyperbolic distance between two points z, w ∈ Rn+1
+ is

ρ(z, w) = inf
γ

∫
γ

|ds|

sn+1
,

where the infimum is taken over all arcs γ in Rn+1
+ joining z to w. If S ⊂ Q are

dyadic cubes in Rn of correlative generations, it follows

ρ(zS , zQ) ≤ C(n),

where C(n) is a constant only depending on the dimension. Similarly, if

S, Q are cubes in Rn of the same size and dist(S,Q) ≤ C`(Q), then

ρ(zS , zQ) ≤ K(C, n),

where K(C, n) is a constant depending on C and the dimension.

The harmonic functions u : Rn+1
+ → R which are Lipschitz when Rn+1

+ is

equipped with the hyperbolic metric, are the Bloch functions.

Lemma 2.1. Let u be a harmonic function in Rn+1
+ . Then u ∈ B if and

only if there exists a constant C > 0 such that for any z, w ∈ Rn+1
+ , one has

|u(z)− u(w)| ≤ Cρ(z, w).

Moreover if u ∈ B, the infimum of such C is ‖u‖B.

Proof. Assume u ∈ B. If L is the hyperbolic geodesic joining z to w, one has

|u(z)− u(w)| ≤

∫
L

|∇u(ξ)||dξ| ≤ ‖u‖Bρ(z, w).

Conversely, when |w − z| < mzn+1, 0 < m < 1, one has

ρ(z, w) ≤ (1−m)−1z−1
n+1|z − w|.

So, we deduce
‖u‖B ≤ C.
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Lemma 2.2. Let Q ⊂ Rn be a cube and F = {S} a collection of pairwise
disjoint subcubes of Q which cover almost every point of Q, that is,∑

S∈F

|S| = |Q|.

Let u be a Bloch harmonic function in Rn+1
+ . Assume u is bounded in Q̂\

⋃
F Ŝ.

Then

u(zQ) =
∑
S∈F

u(zS)
|S|

|Q|
+O(1)‖u‖B ,

where O(1) is a quantity bounded by a constant only depending on the dimension,
that is, independent of u, Q and F .

Proof. We assume that u is bounded in

R = Q̂\
⋃
F

Ŝ

for technical reasons. Actually, it implies that the series in the statement is
absolutely convergent. Hence, one may assume that the collection F is finite.
Then we apply Green’s formula in the domain R to obtain,∫

∂R

y∂nu =

∫
∂R

u∂ny =

∫
Q

u(x, `(Q)) dm(x)−
∑
F

∫
S

u(x, `(S)) dm(x).

Since σ(∂R) ≤ C(n)|Q| using Lemma 2.1, one finishes the proof.

Given two cubes Q, S, in Rn, S ⊂ Q, and x ∈ S, consider the truncated cone

Γ(x, S,Q) = Γ(x) ∩ {(t, y) : `(S) ≤ y ≤ `(Q)}

and the truncated area function

A2
S,Q(u)(x) =

∫
Γ(x,S,Q)

|∇u(t, y)|2y1−n dm(t) dy, x ∈ S.

Observe that if x, x′ ∈ S one has

|A2
S,Q(u)(x)−A2

S,Q(u)(x′)| ≤ C(n, α)‖u‖2B .

So, when u is a Bloch harmonic function, the mean

A2
S,Q(u) =

1

|S|

∫
S

A2
S,Q(u)(x) dm(x),

differs at most by a bounded amount from A2
S,Q(u)(x), for any x ∈ S.

The building block of the construction is given in the following result
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Proposition 2.3. Let u be a Bloch harmonic function in Rn+1
+ , ‖u‖B = 1.

Let Q ⊂ Rn be a cube and assume A(u)(x) = ∞ at almost every point x ∈ Q.

Then there exists a constant K0 = K0(n, α) such that for any number K, K >

K0, one can find a collection F of dyadic subcubes of Q satisfying the following
properties:

(a) For any S ∈ F , one has `(S) ≤ 2−K/C`(Q).

(b)
∑
F |S| ≥

1
3 |Q|.

(c) For any S ∈ F , one has K ≤ u(zS)− u(zQ) ≤ K + C.

(d) If L is a dyadic subcube of Q which contains some cube of F , one has

|u(zL)− u(zQ)| ≤ 2K.

(e) For any S ∈ F , one has

C−1K2 ≤ A2
S,Q(u) ≤ CK2.

Here C = C(n, α) is a constant only depending on the dimension n and the
aperture α used to define the area function.

Remark. At the points associated to the cubes of F the function u has
approximately increased K units. It is clear that one can also find cubes where
u has approximately decreased K-units, that is, one can replace condition (c) by

(c’) For any S ∈ F , one has

−K − C ≤ u(zS)− u(zQ) ≤ −K.

Applying these two versions of this proposition alternately t times, one has the
following result.

Corollary 2.4. Let u be a harmonic Bloch function in Rn+1
+ , ‖u‖B = 1. Let

Q be a cube in Rn and assume A(u)(x) =∞ at almost every point x ∈ Q. Then

there exists a constant K1 = K1(n, α) such that for any large numbers K, t,
K > K1, t > K1, one can find a collection F of dyadic subcubes of Q satisfying
the following properties:

(a) For any S ∈ F , one has `(S) ≤ 2−Kt/C`(Q).

(b)
∑
F |S| ≥ 3−t|Q|.

(c) For any S ∈ F , one has K ≤ u(zS)− u(zQ) ≤ K + C.

(d) For any dyadic cube L ⊂ Q containing some cube of F one has

|u(zL)− u(zQ)| ≤ 3K.
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(e) For any S ∈ F , one has C−1K2t ≤ A2
S,Q(u) ≤ CK2t.

Here C = C(n, α) is a constant depending only on the dimension n and the
aperture α used to define the area function.

This result and Lemma 3.1 give that a harmonic Bloch function is bounded
on a set of rays of Hausdorff dimension n. As mentioned in the introduction this
was proved by Makarov ([12]) when n = 1 and Llorente for n > 1 ([11]).

As in Proposition 2.3, it is clear that one can also find cubes where u has
approximately decreased K units, that is, one can replace condition (c) by

(c’) For any S ∈ F , one has

−K − C ≤ u(zS)− u(zQ) ≤ −K.

Proof. [Proof of Corollary 2.4] We will apply the two versions of Proposition
2.3 alternately. The main difficulty is to show that one can do it in such a way
that the errors coming from estimates (c) and (c’) do not add up.

Let K1 = 2K0 and K > K1. One may assume that

−C ≤ u(zQ) ≤ 0 ,

where C is the constant appearing in Proposition 2.3. Applying the Proposition
2.3 with the constant K replaced by K−u(zQ), one gets a collection F1 of dyadic

subcubes of Q satisfying (a)-(e). In particular, (c) gives that

K ≤ u(zS) ≤ K + C ,

for any S ∈ F1. Next, in each S ∈ F1, we apply Proposition 2.3 again with the
constant K replaced by u(zS) and with condition (c’) instead of (c). Hence, one

obtains a collection F1(S) of dyadic subcubes of S satisfying (a), (b), (c’), (d)

and (e). In particular, (c’) gives

−C ≤ u(zL) ≤ 0 ,

for any L ∈ F1(S). Now, one repeats this procedure [t/2] − 1 times and, since

one wants (c), after that, one repeats the first half of the construction above.

The construction and (d) of Proposition 2.3 give (c) and (d) of the Corollary.

Also, adding up the estimates (a), (b) and (e) from Proposition 2.3, one deduces
the corresponding estimates in Corollary 2.4

Proof. [Proof of Proposition 2.3] We let Ci = Ci(n, α), i = 1, 2, . . . , denote
various positive constants only depending on n and α which may change from
line to line. We will use a stopping time argument. Consider the collection G of
maximal dyadic subcubes S of Q such that

|u(zS)− u(zQ)| ≥ K.(2.1)
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The maximality and Lemma 2.1 give that for any dyadic cube L ⊂ Q containing
some cube of G, one has

|u(zL)− u(zQ)| ≤ K + C.(2.2)

Another application of Lemma 2.1 gives `(S) ≤ 2−K/C`(Q), if S ∈ G. We will

show that at a fixed portion of cubes S in G, the truncated area function AS,Q(u)

is comparable to K.
Since u is non-tangentially bounded at almost no point of Q, one has∑

S∈G

|S| = |Q|.

Replacing, if necessary, some small portion of cubes in G by bigger ones, one
may assume that the collection G is finite. Then, of course, (2.1) will be satisfied
only for a large portion of the cubes in G, but this is all that is needed.

We will apply Green’s formula in a hyperbolic neighbourhood R of

Q̂\
⋃
G Ŝ,

R =
{
z ∈ Rn+1

+ : ρ
(
z, Q̂\

⋃
G

Ŝ
)
< C0

}
,

where C0 = C0(n, α) is chosen so that the truncated cones

Γ(x, S,Q), x ∈ S,

are contained in R for any S ∈ G. Then, Green’s formula applied to the functions

(u− u(zQ))2 and y gives

2

∫
R

y|∇u|2 =

∫
∂R

(u− u(zQ))2∂~ny −

∫
∂R

y∂~n(u− u(zQ))2.

Here, ~n denotes the inward normal. If K is sufficiently large, Lemma 2.1 and
(2.2) give that |u− u(zQ)| ≤ 2K in R and thus∫

R

y|∇u|2 ≤ CK2|Q|.

On the other hand, Fubini’s theorem gives∑
S∈G

∫
S

A2
S,Q(u)(x) dm(x) ≤ C1

∫
R

y|∇u|2

and thus ∑
S∈G

A2
S,Q(u)|S| ≤ C2K

2|Q|.
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Therefore, one has ∑
S∈G1

|S| ≤
1

100
|Q|,

where G1 is the subcollection of G formed by those cubes S satisfying

A2
S,Q(u) ≥ 100C2K

2.

Denote by G2 the subcollection of G formed by those cubes S satisfying

A2
S,Q(u) < rK2.

We will show that for sufficiently small r, one has∑
S∈G2

|S| ≤
1

100
|Q|.(2.3)

Assume (2.3) does not hold. In order to find a contradiction, we construct a

subregion of Q̂\
⋃
G Ŝ, so that from any point of it, the cubes in G2 are “visible”.

Consider the collection L of the maximal dyadic cubes L in Q containing some
cube of the family G, such that∑

S∈G2, S⊂L

|S| <
1

1000
|L|.(2.4)

The maximality gives ∑
S∈G2, S⊂2L

|S| ≥
2

1000
|L|,

where 2L is the predecessor of L in the dyadic decomposition of Q. Observe
that the family G2 ∪ L covers Q. Also, if T ⊂ Q is a dyadic subcube of Q which
contains a cube in G2∪L, then its predecessor 2T contains at least a fixed portion
of cubes in G2, that is, ∑

S∈G2, S⊂2T

|S| ≥
1

1000
|T |.

Consider the region

R = Q̂\
⋃
S∈G2

Ŝ ∪
⋃
L

ˆ2CL ,

where C = C(α) is chosen so that the tent T (z) = {x ∈ Rn : ‖x−z‖ <
√

2αzn+1}
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over any point z ∈ R contains a fixed portion of cubes in G2. Thus,∫
R
y|∇u(t, y)|2 dm(t) dy

≤ C4

∫
R
y1−n|∇u(t, y)|2

( ∑
S∈G2

∫
S

χΓ(x,S,Q)(t, y) dm(x)
)
dm(t) dy

≤ C5

∑
S∈G2

∫
S

A2
S,Q(u)(x) dm(x)

≤ C6rK
2,

(2.5)

where C2, C3, C4 are constants depending on α and the dimension.
On the other hand, if (2.3) does not hold, (2.4) gives∑

G3

|S| ≥
9

1000
|Q|,

where G3 is the collection of those cubes in G2 which are not contained in any
cube of L. Then, Green’s formula gives

2

∫
R
y|∇u|2 =

∫
∂R

(u− u(zQ))2∂~ny −

∫
∂R

y∂~n(u− u(zQ))2.

Since, by (2.1), |u(zS)− u(zQ)| ≥ K for any S ∈ G2, we deduce∫
R
y|∇u|2 ≥ CK2|Q|.

This contradicts (2.5) if r is small enough and (2.3) is proved. So, if C is

sufficiently large (depending only on α and the dimension), one has∑
G4

|S| ≥
49

50
|Q|,

where G4 is the subcollection of G formed by those cubes S satisfying

C−1K2 ≤ AS,Q(u) ≤ CK2,

where C = C(n, α). We will consider the subcollection F of G4, formed by those

cubes S for which u(zS)− u(zQ) ≥ K. Observe that Lemma 2.2 gives∣∣∣∣∣∑
S∈G

(u(zS)− u(zQ))
|S|

|Q|

∣∣∣∣∣ ≤ C‖u‖B .
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Since for any S ∈ F one has K + C‖u‖B ≥ u(zS) − u(zQ) ≥ K, applying (2.2)

we deduce ∑
F

|S| ≥
2

5
|Q|,

if K is sufficiently large.

3. Proofs. The proofs consist of constructing a Cantor type set contained
in the set E and evaluating its dimension according to the following result.

Lemma 3.1. [[8], [12]] Let 0 < ε < C < 1 be two constants and let (Fj) be

families of pairwise disjoint cubes of Rn satisfying

(a) For any Q ∈ Fj there exists a unique R ∈ Fj−1 such that Q ⊂ R. More-

over, one has `(Q) < ε`(R).

(b) If R ∈ Fj−1, one has ∑
Q∈Fj , Q⊂R

|Q| ≥ C|R|.

Then,

Dim
(⋂

j

⋃
Q∈Fj

Q
)
≥ n

(
1−

logC

log ε

)
.

The construction of such Cantor sets will be made inductively, that is, by
generations. These generations will be the projection (into Rn) of nested col-

lections of dyadic cubes of the upper half space Rn+1
+ . Such dyadic cubes are

chosen so that the increment of the harmonic function can be controlled by the
increment of its truncated area function. The main step in proving Theorems 1
and 2 is given in Lemmas 3.2 and 3.3.

Lemma 3.2. Let γ and u be as in Theorem 1. Assume γ is unbounded.
Then, there exists a constant M0 = M0(γ, u) such that whenever M > M0 and
Q is a cube in Rn such that

|u(zQ)− γ(A2(u)(xQ, `(Q)))| ≤M,

there exist constants t = t(M), r = r(M), tending to ∞ as M → ∞, and a
collection F of dyadic subcubes of Q satisfying

(a) If S ∈ F , one has `(S) ≤ 2−rt`(Q).

(b)
∑
S∈F |S| ≥ 3−t|Q|.

(c) If S ∈ F , one has |u(zS)− γ(A2(u)(xS , `(S)))| ≤M .
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(d) If L is a dyadic subcube of Q which contains some cube of F , one has

|u(zL)− γ(A2(u)(xL, `(L)))| ≤ 20M.

Proof. [Proof of Theorem 1] As mentioned in the introduction, when γ is
bounded, one has to find a set of dimension n of rays along which the function u is
bounded. This was proved by Llorente ([11]). As mentioned before, Corollary 2.4
also gives this result. So, one may assume γ is unbounded. We will show that for
sufficiently large numbers a, the set Ea of points x ∈ Rn, A(u)(x) =∞, where

lim
y→0
|u(x, y)− γ(A2(u)(x, y))| < a,

contains a Cantor set whose Hausdorff dimension tends to n as a→∞.
Fix a cube Q ⊂ Rn and M > 0 sufficiently large so that

|u(zQ)− γ(A2(u)(xQ, `(Q)))| ≤M.

The first generation G1 = G1(Q) of the Cantor set is the subcollection F given
by Lemma 3.2. Given any cube S ∈ G1 we may use Lemma 3.2 again to obtain
G1(S). Then,

G2 =
⋃
S∈G1

G1(S).

Next generations are defined recursively,

Gn =
⋃

S∈Gn−1

G1(S).

Now, estimates (a), (b) and Lemma 3.1, give

Dim
(⋂

k

Gk

)
≥ n

(
1−

log 3

r(M) log 2

)
,

while if S ∈ Gn for some n, one has

|u(zS)− γ(A2(xS , `(S)))| ≤M.

Also, if x ∈ Gn, estimate (d), Lemma 2.1 and the hypothesis on γ give that

|u(x, y)− γ(A2(u)(x, y))| ≤ 22M, 0 < y < 1,

and the proof is completed.
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Proof. [Proof of Lemma 3.2] We let Ci = Ci(n, α), i = 1, 2, . . . , denote
various positive constants which depend only on n and α but which may change
from line to line. Assume ‖u‖B = 1. Given a sufficiently large number M and a

cube Q, let ` = `(M) be the smallest positive number such that

|γ(A2(Q) + `2)− γ(A2(Q))| = 10M,

where A2(Q) = A2(u)(xQ, `(Q)). The hypothesis on γ gives that

lim
M→∞

`2/M =∞.

Assume γ(A2(Q) + `2) − γ(A2(Q)) ≥ 0. Let K(M) = K < M , K → ∞ as

M → ∞, K2 < M , KM < `2, be a large number to be fixed later and apply
Proposition 2.3 to obtain a collection F1 of dyadic cubes in Q with properties (a)-

(d). In particular, if S ∈ F1 one has

K ≤ u(zS)− u(zQ) ≤ K + C0,

where C0 = C0(n, α). We repeat this procedure in each S ∈ F1 with the constant
K replaced by

u(zQ)− u(zS) + 2K ,

to obtain the family F1(S). Thus,

2K ≤ u(zL)− u(zQ) ≤ 2(K + C0) ,

for any L ∈ F1(S). Then F2 =
⋃
F1
F1(S). In this way one obtains collections

F1 ⊃ F2 ⊃ · · · ⊃ Fn of dyadic subcubes of Q satisfying∑
Fn

|S| ≥ 3−n|Q|

and if S ∈ Fn, one has

`(S) ≤ 2−Kn/C0`(Q),

C−1
0 K2n ≤ A2

S,Q(u) ≤ C0K
2n

Kn ≤ u(zS)− u(zQ) ≤ (K + C0)n.

Moreover if L is a dyadic subcube of Q containing some cube of Fn, one has

|u(zL)− u(zQ)| ≤ 2Kn.

We now let n to be the integer part of

1

K
(γ(A2(Q) + `2)− u(zQ)) + 1.
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Thus, if S ∈ Fn one has

0 ≤ u(zS)− γ(A2(Q) + `2) ≤
C1M

K
+ (K + C0),

A2
S,Q(u) ≤ C1KM <

1

2
`2.

Now, in each S ∈ Fn, Corollary 2.4 will be applied several times, till the
truncated area function has increased ` units. Given S ∈ Fn, letK0 = K0(M,S),

t0 = t0(M,S), K0, t0 → ∞ as M → ∞, be two large numbers to be fixed
later. We will apply Corollary 2.4 with the parameters K0 and t0 several times,
alternating the conditions (c) and (c’). In each iteration, the corresponding

truncated area function will increase an amount comparable to K2
0 t0, while the

variation of u is controlled by 3K0. As in the proof of Corollary 2.4, alternating
conditions (c) and (c’) gives that the corresponding errors do not add up.

So, we apply Corollary 2.4 repeatedly in each S ∈ Fn, alternating conditions
(c) and (c’) and stop the first time we get a cube S for which

0 ≤ A2
S,Q(u)− `2 .

Since A2
S,Q(u) ≤ `2/2 for any cube S ∈ Fn and in each iteration the square of

the corresponding truncated area function is comparable to K2
0 t0, one needs to

apply Corollary 2.4 an amount of times comparable to

m = `2/K2
0 t0 .

In this way, one obtains a collection F of dyadic subcubes of the cubes of Fn
satisfying ∑

F

|S| ≥ 3−n−C2mt0 |Q|(3.1)

and if S ∈ F , one has the following estimates:

(3.2) `(S) ≤ 2−K0t0C3m−Kn/C0`(Q),

(3.3) |u(zS)− γ(A2(Q) + `2)| ≤ 3K0 +
C1M

K
+ (K + C0),

(3.4) 0 ≤ A2
S,Q(u)− `2 ≤ CK2

0 t0.

Properties (3.1) and (3.2) follow from (a) and (b) in Corollary 2.4 and the

corresponding properties of the cubes in the family Fn. Property (3.3) holds

because we are alternating (c) and (c’) and hence, we never move far away from

the original value u(zS), S ∈ Fn, which satisfied

|u(zS)− γ(A2(Q) + `2)| ≤ C1M/K + (K + C0) .
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Property (3.4) follows from the maximality of the cubes in F .
Moreover, if L is a dyadic subcube of Q containing some cube of F , one has

|u(zL)− u(zQ)| ≤ 3K0 +
C1M

K
+ 12M.(3.5)

We now choose t = n + C2mt0, r = (K0t0C3m +KC−1
0 n)(n +mt0C2)

−1. It is

clear that t, r →∞ as M →∞ and (3.1), (3.2) give (a) and (b) in the statement.

If K2
0 t0/M is sufficiently small, the hypothesis on γ and (3.4) give that for

any S ∈ F one has

|γ(A2(u)(xS , `(S)))− γ(A2(Q) + `2)| ≤
1

2
M.

Thus, if K = K(M), K0 = K0(M), K →∞, K0 →∞ as M →∞, is chosen so
that

3K0 +
C1M

K
+ 2K <

M

2
,

the estimate (3.3) gives that

|u(zS)− γ(A2(u)(xS , `(S)))| ≤M,

which is (c). Also, if L is a dyadic subcube of Q which contains a cube of F ,

(3.5) gives

|u(zL)− γ(A2(u)(xL, `(L)))| ≤ |u(zL)− u(zQ)|

+ |u(zQ)− γ(A2(Q))|+ |γ(A2(Q))− γ(A2(u)(xL, `(L)))| ≤ 20M,

which is (d). This finishes the proof.

Lemma 3.3. Let γ, u be as in Theorem 2. Assume γ is unbounded, that is,
limt→∞ γ(t) =∞. Then, given ε > 0, there exists a constant M0 = M0(γ, u, ε) >
0 such that whenever M > M0 and Q is a cube in Rn, there exist constants
t = t(M), r = r(M), t, r → ∞ as M → ∞, and a collection F of dyadic
subcubes of Q satisfying the following properties:

(a) If S ∈ F , one has `(S) ≤ 2−rt`(Q).

(b)
∑
F

|S| ≥ 3−t|Q|.

(c) If S ∈ F one has

M

2
≤ γ(A2(u)(xS , `(S)))− γ(A2(u)(xQ, `(Q))) ≤ 2M.
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(d) If S ∈ F , one has

M−1 ≤
u(zS)− u(zQ)

γ(A2(u)(xS , `(S)))− γ(A2(u)(xQ, `(Q)))
≤ ε.

(e) If L is a dyadic subcube of Q which contains some cube of F , one has

|u(zL)− u(zQ)| ≤ εM.

Proof. [Proof of Theorem 2] As mentioned in the introduction, when γ is
bounded, one has to find a set of dimension n of rays along which the function u is
bounded. This was proved by Llorente ([11]). As mentioned before, Corollary 2.4
also gives this result.

So, one may assume γ is unbounded. Given ε > 0 and a large number t, we
will show that the set Et of points x ∈ Rn where the following two estimates
hold,

lim inf
y→0

u(x, y)

γ(A2(u)(x, y))
> t−1

lim sup
y→0

u(x, y)

γ(A2(u)(x, y))
< ε,

contains a Cantor set whose Hausdorff dimension tends to n as t→∞.
Let Q be a cube in Rn. One may assume u(zQ) = 0. Fix a large number

M > 0. Lemma 3.3 provides a finite collection G1(Q) of dyadic subcubes of Q
which satisfy

M−1γ(A2(u)(xS , `(S))) ≤ u(zS) ≤ εγ(A2(u)(xS , `(S))),

for any S ∈ G1(Q). Given any cube S ∈ G1(Q), another application of Lemma 3.3

provides a finite collection G1(S) of dyadic subcubes of S. Then, the second gen-
eration is

G2 =
⋃
S∈G1

G1(S).

Next generations are defined recursively,

Gk =
⋃

S∈Gk−1

G1(S).

Observe that estimates (a), (b) of Lemma 3.3 and Lemma 3.1 give

Dim
(⋂

k

Gk

)
≥ n

(
1−

log 3

r log 2

)
,
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which tends to n, because r = r(M)→∞ as M →∞.

Also, if S ∈ Gk for some k, adding condition (d) one gets

M−1 ≤
u(zS)

γ(A2(u)(xS , `(S)))
≤ ε.

Moreover, if L is a dyadic cube, S′ ⊂ L ⊂ S, where S ∈ Gk and S′ ∈ Gk+1,

condition (e) gives

|u(zL)− u(zS)| ≤ εM,

while condition (c) gives

0 ≤ γ(A2(u)(xL, `(L)))− γ(A2(u)(xS , `(S))) ≤ 2M.

Also, applying (c) k times one gets

γ(A2(u)(xS , `(S))) ≥Mk/2.

So, if k is sufficiently large one has

1

2M
≤

u(zL)

γ(A2(u)(xL, `(L)))
≤ 2ε.

Proof. [Proof of Lemma 3.3] As before, we let Ci = Ci(n, α), i = 1, 2, . . . ,
denote various positive constants which depend only on n and α but which may
change from line to line. We may assume ‖u‖B = 1. Let ` = `(M) be the
smallest positive number such that

γ(A2(u)(xQ, `(Q)) + `2)− γ(A2(u)(xQ, `(Q))) = M.

The assumption on γ gives that there exists an absolute constant C0 such that

`2 ≥ 4C0M .

Let K = K(M) < M , K → ∞ as M → ∞, K−1 < ε, be a large number to
be fixed later. Apply Proposition 2.3 to get a collection F1 of dyadic cubes of Q
satisfying (a)-(e) (in Proposition 2.3). In particular if S ∈ F1, one has

K ≤ u(zS)− u(zQ) ≤ K + C.

We repeat this procedure in each S ∈ F1 with the constant K replaced by

u(zQ)− u(zS) + 2K .

Thus,
2K ≤ u(zL)− u(zQ) ≤ 2(K + C) ,
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for any L ∈ F1(S). Then F2 =
⋃
F1
F1(S). In this way, one obtains collections

F1 ⊃ F2 ⊃ · · · ⊃ Fn of dyadic subcubes of Q satisfying∑
Fn

|S| ≥ 3−n|Q|

and if S ∈ Fn, one has

`(S) ≤ 2−Kn/C`(Q),

C−1nK2 ≤ A2
S,Q(u) ≤ CnK2,

Kn ≤ u(zS)− u(zQ) ≤ (K + C)n.

Moreover, if L is a dyadic subcube of Q containing some cube of Fn, one has

|u(zL)− u(zQ)| ≤ 2Kn.

We now choose n so that CnK2 ∼ C0M , more precisely, n+ 1 is the integer

part of C0MC−1K−2. Then, if S ∈ Fn one has

C1M ≤ A
2
S,Q(u) ≤ C0M <

1

4
`2,

C3
M

K
≤ u(zS)− u(zQ) ≤ C2

M

K
.

Now, in each S ∈ Fn, Corollary 2.4 will be applied several times, till the
truncated area function has increased ` units. Given S ∈ Fn, letK0 = K0(M,S),

t0 = t0(M,S), K0, t0 →∞ as M →∞, K0/M < ε, be two large numbers to be
fixed later. We will apply Corollary 2.4 with the parameters K0 and t0 several
times, alternating the conditions (c) and (c’). In each iteration, the square of
the corresponding truncated area function will increase an amount comparable

to K2
0 t0, while the variation of u is controlled by 3K0. As in the proof of

Corollary 2.4, the fact that one alternates conditions (c) and (c’) imply that the
corresponding errors do not add up.

So, we apply Corollary 2.4 repeatedly in each S ∈ Fn, alternating conditions
(c) and (c’), and stop the first time we get a cube S for which

0 ≤ A2
S,Q(u)− `2 .

Since A2
S,Q(u) ≤ `2/4 for S ∈ Fn and in each iteration the square of the cor-

responding truncated area function is comparable to K0
2t0, one needs to apply

Corollary 2.4 an amount of times comparable to

m =
`2

K0
2t0

.
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In this way, one obtains a collection F of dyadic subcubes of the cubes of Fn
satisfying ∑

F

|S| ≥ 3−n−Cmt0 |Q|(3.6)

and if S ∈ F one has

(3.7) `(S) ≤ 2−K0t0mC4−Kn/C`(Q),

(3.8) 0 ≤ A2
S,Q(u)− `2 ≤ CK2

0 t0,

(3.9) C3
M

K
− 3K0 ≤ u(zS)− u(zQ) ≤ 3K0 + C2

M

K
.

Moreover, if L is a dyadic subcube of Q containing some cube of F , one has

|u(zL)− u(zQ)| ≤ C5
M

K
+ 3K0.(3.10)

We now choose t = n + Cmt0 and r = (K0t0mC4 + Kn/C)t−1. It is clear

that t, r →∞ as M →∞. Also (3.6) and (3.7) give (a) and (b) of the statement
of the lemma.

Also, if S ∈ F , (3.8) gives

γ(A2
S,Q(u) +A2(Q))− γ(A2(Q)) = o(M) + γ(A2(Q) + `2)− γ(A2(Q))

= o(M) +M,

where o(M) is a quantity that divided by M tends to 0, as M → ∞. So, (c) is

proved. Now (c) and (3.9) give

C6
1

K
− 3

K0

M
≤

u(zS)− u(zQ)

γ(A2(u)(xS , `(S)))− γ(A2(u)(xQ, `(Q)))
≤ C7

(
K0

M
+

1

K

)
which gives (d). Finally (e) follows from (3.10).

The proof of Theorems 1’ and 2’ follow from an elaboration of the previous
ones and are not presented here. We just mention that when the function u is in
the little Bloch space and Q is a cube in Rn, the constant K0 in Proposition 2.3
and Corollary 2.4 can be taken as small as desired if `(Q) is sufficiently small.

4. A class of Bloch functions. In [9], P. W. Jones constructed analytic
functions b in the upper half plane, which belong to the Bloch space and such
that there exist constants C, ε > 0 satisfying

sup{(Im z)|b′(z)| : ρ(z, w) < C} > ε(4.1)
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for any point w ∈ R2
+. Observe that by subharmonicity, one gets

A2(b)(x, y) =

∫
Γ(x,y)

|b′(w)|2 dm(w) ≥ K log y−1,

where K = K(ε, C) and the aperture of the cone has been chosen sufficiently

large, depending on the constant C in (4.1) . Observe that

|b(x+ iy)− b(x+ i)| ≤ 2‖b‖B log y−1, y > 0.

Similar estimates hold for u = Re b. Actually for any x ∈ R, 0 < y < 1, one has

|u(x+ iy)− u(x+ i)|

A2(u)(x, y)
≤

2‖u‖B
K

.

Hence in Theorem 2 the condition

lim
t→∞

γ(t)

t
<∞,

is necessary. This is the maximal order of growth allowed by the assumption on
γ. Also, for the harmonic function u described above, one has

A2(u)(x, y)−A2(u)(x, 2y) ≥ A(C, ε) > 0.

Then in Theorem 1 the condition

sup
|h|<1, t>0

|γ(t2 + h)− γ(t2)| <∞

is necessary. On the other hand, considering mu, for large m > 0, one shows
that

lim
t→∞

γ(t)

t
= 0

is also necessary in Theorem 1.
So, in both results the hypothesis on γ are not necessary but imply the

maximal possible order of growth.
When n = 1, the result of Jones and Müller mentioned in the introduction

was first proved by M. O’Neill, when dealing with analytic functions b satisfying
(4.1) ([13]). The following result describes the situation in more variables.

Proposition 4.1. Let u be a Bloch harmonic function in Rn+1
+ such that

there exist two constants C, ε > 0 satisfying

sup{y|∇u(x, y)| : ρ((x, y), z) ≤ C} > ε,
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for any z ∈ Rn+1
+ . Then, the set E of points x ∈ Rn for which there exists a

constant C = C(x) > 0 satisfying

u(x, y) ≥ C

∫ 1

y

|∇u(x, t)| dt,

for any 0 < y < 1, has Hausdorff dimension n.

Proof. Theorem 2 applied when γ is the identity map provides a set E ⊂ Rn,
dimE = n, such that for any x ∈ E, there exists a constant C = C(x) > 0 such
that

u(x, y) ≥ CA2(u)(x, y).

Since ∫ 1

y

|∇u(x, y)| dt ≤ ‖u‖B log y−1 ≤ ‖u‖BK(ε, C)−1A2(u)(x, y),

the result follows.
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