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ON #P-SOLUTIONS OF THE BEZOUT EQUATION

E R I C AMAR, JOAQUIM BRUNA AND ARTUR NICOLAU

We obtain a sufficient condition on bounded holomorphic
functions gι,g2 in the unit disk for the existence of /i,/2 in
the Hardy space Hp such that 1 = /i#i 4- f2g2. The sharpness
of this condition is also studied.

1. Let D be the unit disk in the complex plane, T its boundary. For 1 <
p < oo, Hp denotes the Hardy-space of holomorphic functions in D such that

/ 1 r2π \ ι/p

= s u p ( — / \f(reiθ)\pdθ) <+oo p < oo
r \2π Jo J

= βup|/(*)|.

It is well-known ([7, p. 57]) that if / E i P , the non-tangential maximal
function

Γ(0) being the Stolz angle with vertex eiθ, belongs to LP(Ί) .
In this paper, given <7i,#2 £ H°°, we study the Bezout equation 1 =

Ϊι9i + /2#2 Concretely, we are interested in knowing the precise condition
on <7i,#2 so that solutions /i,/2 6 Hp exist.

If \g\2 = \9i\2 + \92\\ I/I2 = I/1I2 + I/2I2, it follows from 1 = fι9ι + f2g2

that 1 < I/I \g\ and hence

(C) M(\g\-ι)eV(T).

It can be easily seen that this condition is sufficient if g\ or g2 is an inter-
polating Blaschke product. Nevertheless, we show in Section 2 that it is not
sufficient in general. In fact for each ε > 0 we exhibit gx, g2 € H°° such that
M(\g\~2Jtε) E Lp(Ί) but no Hp solutions exist.

In Section 3 we obtain a general sufficient condition implying in particular
the following:

Theorem 1. Assume that for some ε > 0
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Then there exist fi,f2 € Hp such that 1 = fιgλ + f2g2.

In Section 4, it is shown that the same method gives the following im-
provement on the problem considered by Wolff and also by Cegrell in [4].

Theorem 2. Let f,gι,g2 £ H°° be such that

1*1 / IS!" r
ε > o -

Then there are fu f2 £ H°° such that f = fλgι + f2g2.

The proofs rely essentially on: (a) An Lp-version of Wolff's criteria for the
existence of bounded solutions of the d-equation, already used in [1]. (b) An
improvement of Cegrell's result in [4] on gradients of bounded holomorphic
functions.

Both theorems hold of course for more than two generators, using the
Koszul complex technique as in [7, p. 364]. Theorem 1 holds as well in the
setting of the unit ball, but some modifications are needed (see [2]).

Finally, we mention that similar results to those stated here have been
independently obtained by K.C. Lin in [8] and [9]. The authors thank the
referee for pointing this out to them.

2. Before proceeding, we recall that a positive measure μ on D is called a
Carleson measure if there exists K > 0 such that

μ({z : \z - eiθ\ < r}) < Kr eiθ E T, r > 0.

The smallest of such K is called the Carleson norm of μ. Equivalently
([7, p. 32]) μ is a Carleson measure if and only if for all functions h in D

// D i Λ | * £ c ί
In some particular cases it is quite easy to see that the condition (C) is
sufficient. For instance, if gx is a Blaschke product with zeros zn, the question
is obviously equivalent to the interpolation problem

/2(^n) = - ^ - τ , with hew.

Indeed, 1 — f2g2 belongs then to Hv and vanishes on {zn}, so 1 — f2g2 = /iffi,
/i € Hp. In case gt is an interpolating Blaschke product, this interpolation
problem has a solution if and only if

-(l-|aιn|)<+oo,
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(see [10] and also [5]). Let δn denote the delta-mass at the point zn. Since

]ζ( l — |;zn |)ίn is a Carleson measure, (C) implies the above condition.
Next, we give examples showing that condition (C) is far from being suf-

ficient.

T h e o r e m 3. Given 1 < p < oo and ε > 0, there exist bounded analytic

functions #1,(72 with M(\g\~2+ε) EL P (T) ; such that there exist no /i,/2 G Hp

satisfying fλgλ + f2g2 = 1.

Proof We will denote by p(z, w) the pseudo-hyperbolic distance in the unit
disc, p(z, w) — \z — w\ |1 — wz[~ι , 2, w G D and /(J) the j - th derivative of a
function /. Let TV be a natural number such that (N + l)ε > 1.

Let zn — 1 - 2~n, n > 1, and take an ίΓ^-interpolating sequence {αn},
0 < p(an,zn) decreasing to 0, satisfying

(1) Σ ( ! - W)p(αn,*π)- ( Λ r + 1 ) ί ) ( 2- e ) < 00,

(2)

Let JBX and J52 be the Blaschke products with zeros {zn} and {αn}. From
now on, the letter c will denote different constants independent on n. Since
B2 is an interpolating Blaschke product, one has

inf p(z,α n ) > |J52(^)| > c in

(see [7, p. 404]).
Now as in [3] take g{ — B^+1, i = 1,2. Let In be the arc on the unit

circle centered at 1 of length 2(1 — \zn\) — 2~n + 1 . In estimating ^(jsr)!"1, for
z G Γ(β), the worst case occurs when z is one of the {zn} or {αn}. Since
p(an,zn) is decreasing, for eί6> E In\ / n+i one has

<

Hence, condition (1) implies M(|^ | " 2 + ε ) G LP(Ύ). Now, assume there exist
Λ J j e i ί p satisfying / ^ + /2g2 = l Then,

Write _

^«W = Π f 1
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where h(z) = (1 - Έnz)N+ίB2<n{z)~N-\ k(z) = (z - an)-N-\ Then

J

Using Cauchy's formula on the disk of center zn and radius 4 - 1 ( l — \zn\),
one gets

and hence

|Λω(^»)l |A;(7v-j)(^)| <c\zn- αnl

For j = 0, one gets

|Λ(*»)| \k{N)(zn)\ >

Therefore, for large n,

(3) | / 2

W ( ^ n ) | = | (BΓ"

Since /2 E i ϊ p , the function

/
Γ(β)

- \z\)2N-2drn(z))

J
belongs to LP(T) ([11, p. 216]). For eiβ 6 /„ \ / n + i , since £>n = {̂  €
\z - zn\ < 4 ' 1 (1 - |zn|)} C Γ(θ), one has

\ήN)(z)\2(l - \z\rN

> c ( l - |* n | ) 2 Λ r | / 2

( Λ °(z n ) | 2 , eiθ € /„ \

Using (3) and F e LP(Ύ), one gets

and this contradicts (2). D
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3. In this section we will prove a generalization of Theorem 1 stated in the
introduction.

Lemma 1. If g is holomorphic on D and 0 < p < 2,

/ {\g(eiθ)\p-\9(0)\p}τr<4 \g(eiθ)-g(0W^-.
Jo ^ π Jo A'K

Proof. This is a general statement for a probability measure dμ on X and
measurable φ

I \φ\p dμ- I φdμ < 4 / φ- I φdμ
Jx Jx Jx Jx

dμ.

First notice that this is trivial for p < 1 (with constant 1) and that for p = 2
there is equality with constant 1, too. In general, and assuming without loss

of generality that / φdμ = 1, it follows for real φ integrating the inequality
Jx

\φ\p-l<3\φ-l\p+p(φ-l).

For complex-valued φ = φλ + iφ2, it follows from \φ\p < \ψι\p + \ψ2\p (for
positive φ the inequality holds with constant 1). D

We start with a generalization of a result in [4]. Although we need it only
for H°° functions we state it in full generality, for BMOA functions (see [7]
for definitions). We denote by ||^||* the BMO norm of g(eiθ).

Let dμ be a positive measure on [0,1) such that / — < +oo, and
Jo Oί

write

μ(x) = / xadμ(a), x > 0 .
Jo

L e m m a 2. If g G BMOA, —^-μ(\g\2)(l — \z\2) is a Carleson measure with

wr

Carleson norm bounded by K\\g\\*, K depending on μ.

Proof. We consider the function
\z\ < 1.

For a > 0, a computation shows that A\g\2a = 4α2 |g/ |2 \g\2a~2 when g ψ 0,
hence

= 4\g'\2\g\-2μ(\g\2).
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Without loss of generality we can assume that g is holomorphic on D. We

argue like in [7, p. 327]. Let £ l 5 . . . ,ZN be the non-zero zeros in D, and let
N

Ω ε be the domain D \ ( J Δ ^ where Δ o = {\z\ < ε}, Δ , = {\z - zό\ < ε},

By Green's formula applied to the function G in Ωε

A if \gf\g\-'μ(\g\ηiog^-dA(z)=ΓG(eiθ)dθ
JJnc \z\ Jo

Γ / f) \ 1 ri / 1

~Έ \7rG)lo&-n-\G\7r(loz-n
~^JdΔj \on J \z\ on \ \z\

Let r = \z — Zj\\ then for z close to z^

\g'(z)\2\g(z)\-*μ(\g(z)\2)<Cr-*μ(rη.

Now, the hypothesis on μ translates to

/ Iog3?|cte <C -f-oo.

Jo x

Hence |5;|2|ρ|~2μ(\g\2) log — is integrable on D. Also, for \z — Zj\ — ε

fl£2a

\G{z)\ <c / -ycJμ(cO
JO Or

which tends to 0 when ε -> 0, and
c Γιε2a

\VG(z)\<- —dμ(a)
ε Jo OL

which also tends to zero when multiplied by ε|logε|. At zero we obtain

-2τr|G(0)| as limit when ε -> 0. Therefore

2 if X it M 2 I / M - 2 ^ / 1 / M 2 M l Jλf \
— // \9\z)\ \9\z)\ μ\\9\z)\ )l°gΓΊdA\z)
π J JΏ> \Z\

— — / / dμ(pί) dθ — / dμ(θLj
2iΈ Jo Jo Oί Jo Oί

— \ — r̂~ I {|^(e^)|2α "" l^(0)|2 α}— ^ (by Lemma 1)
Jo or Jo 2π
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If ψw is an automorphism of the disc, applying this inequality to j o ^ ,
changing variables in the area integral and using the invariance of the BMO
norm we get

sup // \g {z)ΐ\9{z)rU\Φ)\2){l |f)(1 H ) dA(z)

fl\\Q\\2a

JO Oί2

and the result follows, by [7, p. 239]. D

Taking for μ a delta-mass at ε we get CegrelΓs result [4] that |ρ / |2 |^ | ε~2(l —
\z\2) is a Carleson measure. Taking dμ(a) — a1+εda one gets that

H2 | iog|9ll2 + ε V ' "

is a Carleson measure for every ε > 0.
Next lemma is the Lp-version of Wolff's criteria for bounded solutions of

the d-equation ([7, p. 322]).

Lemma 3. Let 1 < p < oo; let G be a C1 function in D such that:

(a) G = ψ\φ\j where M{ψχ) G Lp and \ψi\2log — is a Carleson measure.
\z\

(b) dG = Ψ2Φ2J where M(φ2) E Lp and \ψ2\ log — is a Carleson measure.

Then there exists a C1 function u in D7 continuous on D such that

du „

and
Γπ φiθ)\pdθ<Cr

where C depends only of the Lp-norms of M(φ1),M(φ2) and the Carleson
norms of the measures in (a), (b).

Proof. We adapt Wolff's proof for the case p — 00. Let q be the conjugate
exponent of p, 1 < q < 00. By duality,

inf : k E
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where F is a priori solution, say the one given by the Cauchy kernel, which
is continuous on D. By Green's formula

w\dA(z)+? IL φ ) f l o g ¥\iA(z)=h+h-
We will prove now that if \φ\2 log — is a Carleson measure with constant

\z\
K, then

(4) / / \k\z)\ \ψ{z)\ \φ{z)\ log ij- <L4(s) < C||fc||jM</>||pK
JJΌ> \Z\

where C is an absolute constant. This will imply the required bound for Iλ.
For p = oo, q = 1 this holds true as shown by Wolff reducing the situation
to k = g2 with g G H2. Alternatively a real-analysis proof can be obtained
using the inequality, following from [6, Th. 1],

// \k'(z)\ \φ(z)\ log i , dA(z) < ΓA{k){eiθ)ι"C{φ){eiθ) dθ
JJΌ \Z\ JO

where A(k) is the area function of k

ί \1/2

A(k)(eiθ)=(ί[ \k'(z)\2dA(z))

and C(ψ) is given by

/ 1 rr 1 \
C(φ)(eίθ) = sup ( — I \φ\2log-dA)

eiθei \ μ | JJi \z\ J

\ 1 / 2

I being the tent over /. This method applies to situations where there is no
factorization.

For p = 1, q = oo, we use Schwarz inequality to bound the left member
of (4) by

\φ\ |fcf log -L dA(zή ^ 1̂ 1 |V |̂2 log j ^

If k E BMOA, \k'\2 log 7-τrf̂ L is a Carleson measure; since Carleson measures
\z\

operate on functions with integrable non-tangential maximal function, (4)
follows for p = 1, q = oo. Next, consider the operator, for fixed φ
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where Lφ(k) = // k'φψlog —dA(z)\ let T£ be the tent space ([6])
J JΌ \Z\

We have shown that L is bounded from Γ^ to (BMOA)* and from T™ to
(ίί 1)*. By interpolation, we conclude that L is bounded from T£ to (Hq)*

\Lφ(k)\<C\\k\\q\\Mφ\\pK

(alternatively, φ can be replaced by the harmonic extension of Mφ and argue
with the //-spaces rather than the tent spaces).

It remains to bound I2. But

\h\ < if \k(z)\\φ2(z)\\ψ2(z)\\og±-dA(z)
JJB \Z\

and this is easier: just note that M(kφ2) < M(k)M(φ2) is in L1 and use
again that Carleson measures operate on such functions. D

Note that the lemma holds if G, dG are linear combinations Σ φiφi with
ψi, ψi as above.

T h e o r e m 4. Let gi,g2 E # ° ° such that \g\2 = \gι\2 + \g2\
2 > 0. Let μ and μ

be as above. Assume that

Then there are /i, /2 G Hp such that figi + f2g2 = 1.

Proof. By a standard regularization argument we may assume that gλ,
holomorphic on D. The smooth solutions

satisfy M(ψi) E 2/ and the general holomorphic solutions are given by

Λ = ψι + ug2 f2 =z φ2- Ugι

where u satisfies
du = g[ gj - -g{ g2 dg

dz \g\*

We need only check that G satisfies the hypothesis of Lemma 3. For (a) we
can take, by Lemma 2, ψι to be
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and

^ ' ~ \g\2μ(\g\2)1/2

Similarly, dG is a linear combination of terms of type

W
and we may take

9kgι

9k9ι

using again Lemma 2. D

We note as a particular case of the theorem, corresponding to dμ(a) =
a1+εda, the sufficient condition

stated in the introduction.

4. Lemma 2 can be used as well to improve CegrelΓs result on the equation

Theorem 5. If f,gug2 E i/°° satisfy

I/I < M

£Λere ea;z5ί /i, /2 G H°° such that f — fxgλ + /2g2

Proof. In this case it must be shown that the equation du — G where

J(\9i\2 + \92\ψ

has a bounded solution. In this case

and |G|2(1 — \z\) is indeed a Carleson measure; similarly for dG.
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