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NEVANLINNA'S COEFFICIENTS AND DOUGLAS
ALGEBRAS

ARTUR NICOLAU AND ARNE STRAY

Some relations between Douglas algebras and coefficients
appearing in Nevanlinna's matrix parametrization of the so-
lutions of the Nevanlinna Pick interpolation problem are stud-
ied.

1. Introduction.

Let U denote the analytic functions bounded by one in D = {z : \z\ <
1}. Given a sequence {zn} C D, we consider the classical Nevanlinna Pick
interpolation problem

(NP) f(zn)=wn, n = l , 2 , . . . , feU.

If this problem has more than one solution, R. Nevanlinna [4] found ana-
lytic functions P,Q,R and S such that the set of all solutions is given by

The functions P,Q,R and S are unique subject to the normalization

5(0) = 0 and PS - RQ = π, where

— Z

is the Blaschke product corresponding to {zn}.
While the funcions P,Q,R and S arose from classical function theory, it

turns out that they are also connected with more recent developments. It
is part of Nevanlinna's theory that the functions P/R, Q/R, S/R and 1/R
belong to U and are linked with π in many ways. (See Lemma 1.)

Suppose (NP) has a solution / 0 satisfying sup{|/0(z)|, z E D} < 1. Our
main result is that then P/R, Q/R, S/R and 1/R all belong to a certain
subalgebra of H°° depending only on π which we shall denote by CDAπ.
This algebra is part of the theory of Douglas algebras through the work of
S.Y. Chang and D.E. Marshall ([1], [2?]). Our results in particular answer
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a problem raised by V. Tolokonnikov in [11] where other relations between
Douglas algebras and the Nevanlinna Pick problem are studied.

Our methods are based on Nevanlinna's ideas in [4] and last but not least
on the more recent treatment of the Nevanlinna Pick problem given by J.
Garnett in [2], where dual extremal methods are used. We also give a new
proof of a recent result of Tolokonnikov concerning questions whether (NP)
has a unique solution.

Next we introduce some notations and well known results.
Let m denote normalized Lebesgue measure on the unit circle T = {z :

\z\ = 1}. lϊ I < p < oo, Hp denote the Hardy space consisting of all / G
Lp(m) whose harmonic extension to D is analytic there. If p — oo, the norm
||/||p in Lp(m) can also be given by

Il/Iloo = sup{|/(*)|: ZED} f€H°°.

For basic properties of Hp, we refer to Garnett's book [2].
We recall that / G H°° is called an inner function if |/(e i α) | = 1 almost

everywhere with respect to m. Any Blaschke product is inner, but there are
many others ([2, p. 75]).

Considering H°° as a subalgebra of L°°(ra), let Dπ = [H°°,π] be the
Douglas algebra generated by H°° and the restriction π | τ of W to T. Then let
QDπ — Dπ Π Dπ be the maximal C*-subalgebra of Dπ. Define also QDAπ =
QDπΠH°° and let CDAπ denote the subalgebra of H°° generated by all inner
functions / invertible in Dπ. It is evident that CDAπ C QDAπ. For more
about these algebras, see [1], and [2] for example. Let / be an inner function.
The property of / being invertible in Dπ has a very concrete formulation: If
{C»} C D and |π(Cn)| -> 1, then |/(Cn)| -> 1.

The special solutions Ia to (NP) given by

_P-Qeia

•* 0c

R - Seia

play an important role in this theory. Nevanlinna showed that each Ia is
inner [4], and in fact almost all Ia are Blaschke products [9]. A Nevanlinna
Pick problem is called scaled if it has a solution /0 satisfying ||/o||oo < l

For general properties of Douglas algebras and more on the Nevanlinna
Pick problem, Garnett's book [2] is a good reference.

The letter d will be used for different absolute constants, while C(t\
indicates a constant depending on the parameter t.
Acknowledgements. We thank the referee for several helpful remarks
which have improved our work. Theorem 2, which is stronger than our pre-
vious result, is due to him. This work was done during a visit to University
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of Bergen by the first author and to CRM in Barcelona by the second au-
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working conditions.

2. Main result.

If (NP) has more than one solution, R. Nevanlinna considered the "Wertevor-
rat" A(z) = {f(z) : / is a solution of (NP)}, z eΏ. Using (1.1), one can eas-
ily check that A(z) is a disc of center c(z) = (-Q(z)S(z)+P(z)R(z))(\R(z)\2

-\S(z)\η~\ and radius p(z) = \φ)\(\R(z)\2 - \S(z)\2)-\
For later use, we collect some of the properties of Nevanlinna's coefficients.

Lemma 1. Assume (NP) has more than one solution and consider the
Nevanlinna's coefficients P, Q,i?, S appearing in (1.1). Then
(i) P, Q, i?, S have radial limit almost everywhere and Q = —πi?, P =

—πS, |i?|2 — |5 | 2 = 1, QS — PR — 0, almost everywhere on the unit
circle.

(ii) \R(z)\" - \S{z)\* > 1, |i?(*)|2 - |P(*) | 2 > 1, ̂ D .

(iii) For any eiθί £ <9O, (R - Seίoc)~2 is an exposed point of H1.

(iv) IfueUandf = (P- Qu)(R- Su)~\ one has

S/R-u

1-uS/R
1 L°°(dΌ)

(v) // (NP) is scaled, one has p(z) -> 1 as \π(z)\ -ϊ 1.

(vi) // (NP) is scaled and 7 = inf{||/0||oo f is a solution of (NP)}, then

ReHp for dip < π(arcsin(7))-1.

Proof, (i), (ii), (iii) are well known (see [8] and the references there given to
[2]). Using the relations in (i)

P-Qu,

R-Su Ry

S/R-u

P/Q-u
1-uS/R

1-uS/R
a.e. eiθ E 3D,

and this is (iv). A proof of (v) can be found in [10]. Now, let us prove (vi).
Consider Ia = (P - Qeia)(R - Seia)~\ for fixed α, 0 < a < 2π. Using (i).
one can easily check

\(R -
a.e. on 8D.
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Since 7 = dist(/απ, H°°) < 1, there exists g G H°° satisfying

R-Seia)~2 II

4
Since Jα(0) G 0Δ(O), one has dist(/απ,flj°) = 1, where #0°° = {f e H°° :
/(0) = 0}. The proof of Lemma 4.3 in ([2, p. 386]) shows \g(z)\ > 1 - 7 , z G
D. Let Arg( z) be the principal branch of the argument. One has,

|Arg (g~ι(R - Seia)~2) \ < arcsin(7), a.e. on dD.

So, the same is true on D and using a result in ([2, p. 114]), one gets

(g-1(R-Seia)-2)~'1 eHp, p< - ^-7-τ .
2arcsm(7)

Hence {R - Seia)2 G Hp, for p < π(2arcsin(7))~1 and it follows R G i P , for
p < π(arcsin(7))~1. This finishes the proof of Lemma 1. D

Let (NP) be an scaled Nevanlinna problem, V. Tolokonnikov proved that
the extremal solutions Ia are invertible in Dπ [11]. Our next result is an
extension of this.

Proposition . Let (NP) be a scaled Nevanlinna Pick problem and Ia one
of its extremal solutions, 0 < a < 2π. Then Dia = Dπ.

Proof As mentioned before, it is known that Ia is invertible in DΈ. We
present another proof of it. Prom (v) of Lemma 1, p(z) —> 1 whenever
\π(z)\ -> 1. Since Ia(z) G dA(z), one gets |/α(^) | -» 1. Hence, Ia is invertible
in Dπ and DIa C Dπ.

For the converse assume

Since the Nevanlinna Pick problem (NP) is scaled, the "Wertevorrat" A(zn)
must meet a fixed disc inside the unit disc. Actually, /o(^n), Ia(zn) £ Δ(zn),
where f0 is a solution to (NP) with ||/o||oo < l Hence, for large n,

\n(zn)\>p(zn)>^(l-\\f0\\oo)>0

and one deduces that π is invertible in Dja.
The Proposition can also be immediately deduced from the proof of The-

orem 2.1 in [1]. D
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Remark. The hypothesis on the scaling of the Nevanlinna Pick problem
is essential. In fact, there exist non scaled Nevanlinna Pick problems and
points βn E D such that

sup{M : w E A(βn)} —> 0, \π(βn)\ —> 1

see [5]. Then, Ia(βn) —> 0, 0 < a < 2π, and no Ia is invertible in Dπ.
The following result is known although we have not found it in the liter-

ature. We thank the referee for pointing out it to us.

Lemma 2. Given u, \u\ — 1 and z, \z\ < 1, one has that

ί2π z-ueia da

Jo 1 - zueia 2π

can be uniformly approximated by its Riemann sums.

Proof. Multiplying by ΰ if necessary, one may assume u = 1. For w — e2πιn ,
one has

1 ^—Λ, Z — W n—1 — I I II

n ~ 1 — tί ̂ z 1 — z nz
n

This can be shown expanding in a series and using

unless p = 0 mod n. By continuity the same holds if Ί71 φ 1. Now, the
inequalities

z — wk

whz

1 + 1*1 ^ 2
1 + l^l"1 + + |>2τ|—(̂ —i) ~~ n

finish the proof. D

Assume (NP) is scaled. In [11] it is proved that the functions P/R,
πR~2{S/R)k, k>0, belong to CDAπ and it is asked if R~ι <E CDAπ. Next,
we complete these results.

Theorem 1. Let (NP) be a scaled Nevanlinna Pick problem, E the set of
its solutions and
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its Nevanlinna's parametrization. Let Dπ be the Douglas algebra generated by
H°° andW\τ. Then, the functions P/R, Q/R, S/R,l/R belong to the algebra
CDAπ.

Proof. Since \S/R{eiθ)\ < 1, Lemma 2 shows

-?- Γ Ia(eiθ) da = P/R(eiθ), a.e. eίθ e T,
£π Jo

and the integral can be uniformly approximated by its Riemann sums. Since

Ia are inner functions invertible in Dπ, one gets P/R £ CDAπ.

Since Q/R is an inner function, one only has to show that Q/R is invertible

in Dπ. If \π(z)\ —> 1, by (v) of Lemma 1, the disc A(z) tends to the unit

disc, that is to say,

\Q/R(z)-P/R(z)S/R(z)\
P{Z) ~ 1 - \S/R{z)\* ' l

P/R(z)-Q/R(z)S/R(z)
C[Z)- 1-\S/R{z)\>

Hence,

P/R(z)S/R(z) - Q/R(z)

° < 1-\S/R(z)\* + Q/R{Z)

= P/R(z)S/R(z) - Q/R(z)\S/R(z)\2

1-\S/R(z)\*

and one gets \Q/R(z)\ -> 1. Therefore Q/JΪ E CDAn.

Since by (i) of Lemma 1 QS = PR a.e. on the unit circle, one has

S/R = (P/R) (Q/R) e CDΈ and since it is analytic, S/R e CDAπ.

Using R = Qπ a.e. on the unit circle, one gets (1/R)Q/R = π/i? G i ϊ 0 0 .

Then, for 0 < δ < 1,

R~ 2πJ0 1 + ei

uniformly on the unit circle. Since Q/R is an inner function invertible in

Dπ, so is

Q/Re^S/R e i a

l + eia(δ/R)Q/R

and one gets R'1 e CJDAπ. D
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3. An example.

The results of last section may suggest that if one takes w E CDAπ, w E U
in Nevanlinna's formula, the resulting function / = (P — Qw)(R — Sw)~1

may also belong to CDA^. This is of course the case if ||w||oo < 1, because
of the relation

oo

f = (P/R-wQ/R)Σ(wS/R)n.
n=0

It has been surprising to us that for general w E U Π CDAπ, the function /
may not belong to CDA^. In fact, / may not belong to the bigger algebra
ζ)-Aπ, which consists of the holomorphic functions in the unit disc which
belong to Dπ Π Dπ. To show this, we need to construct a scaled Nevanlinna
Pick problem such that the corresponding function R is not bounded. We
will do the construction in the upper half plane.

Consider zn = iyn, where yn+ϊ < cyn, for some fixed 0 < c < 1 and
z* = xn -f- iyn, where xn > 0 is a decreasing sequence, snpxny~ι is a small
number to be chosen later, xny~ι —> 0 as n —» oo, but

(3.1) Σ(xny?)2 =+oo.
n

Let B and B* be the Blaschke products in the upper half plane with zeros
{zn} and {2:*} and BUB{ the Blaschke products with zeros {φ(zn)}, {φ(z*n)},
where φ is a conformal map from the upper half plane to the unit disc.

L e m m a 3. With the notations above, the Nevanlinna Pick problem

(*) f{φ{zn))=Bl(φ{zn)), n = l , 2 , . . . , / G U

is scaled. Moreover, if

{fEH°°:f solves (*)} =

is Nevanlinna's parametrization of the set of its solutions, one has

lim |i?(e^)( - +00.

Proof. We will prove the Lemma in the upper half plane. Let x E M, as in

([2, p. 432]), one can compute



548 ARTUR NICOLAU AND ARNE STRAY

Now, if F G H1, one has

< 2 £ Γ \F(t + iyn)\dt <
n J°

because the linear measure σ on U[iyn, xn + iyn] is a Carleson measure, with
n

σ(Q) < snpn(xny~ι)l(Q) where Q is a square lying on the real line and l(Q)

is the length of its side. So, given ε > 0, if supn xnyΰl *s sufficiently small,

one gets | | kτg(B*/B)\\BMO < ε, and hence

(3.3) Arg(B*/B)=u + υ, \\u\U < Cε, \\v\U < Cε,

where v is the conjugate function of υ and C is an absolute constant ([2, p. 248]).

Now,

hence

(3.4) dist(B7S, H°°) <2Cε<l

and (*) is scaled.

On other hand,

\\B/B*-e-v- iϊ|oo<2Cε,

SO

(3.5) dist(B/B% H°°) < 2Cε < 1.

Now, (3.4) and (3.5) give that B* is an extremal solution of (*), that is to

say, there exists 0 < a < 2π,

P - Qe*

R - Seia"

Thus, applying (3.3) and (i) of Lemma 1,

(R-Seia)-2

exp(i(u + ΰ)) = B*/B =

Consider H = exp(iu — ϋ, + v + iv) E H1 and hence

H (R- Seia)-2
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By (iii) of Lemma 1 (JR — Seia)~2 is an exposed point of H1, so

H = M(R - Seia)~2, M e C ,

and \M(R - Seia)~2(x)\ = exp(v(x) - ΰ(x)). Now, by (3.3),

Now, let x > 0. Using the inequality ln^" 1) < c(ί)(l — £) for δ < t < 1, one
gets

Σ

<c

a;|<x

2a;Tϊa; —.n

i

X xn:\xn-x\<x

On the other hand, considering k with xk > 2x > Xk+i one has

V X ^V / n = l

^ ^ ^ g ) - 2 - 2

r 2 . ?y2 ^ °
n = l X ^Vn n=l

Also, if z < 0, v(x) - u(x) > - C 3 + v(-x) - u(-x). So, (3.1) gives

lim\(R-Seia)-2(x)\ =+00,

and thus lim^o \S/R(x)\ = 1. So, by (i) of Lemma 1, lim^o \R(x)\ =
and this finishes the proof of Lemma 3. D

Now, consider the Nevanlinna Pick problem (*) given by Lemma 3 and

7 = inffll/lloo : / is solution of (*)}.

For 1 > t > 7, Proposition of last section gives that there exists an inner
function J, tJ — (P — Qwo){R — SWQ)'1 E CDAπ. Using Theorem 1 one
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can see that w0 € CDAπ. Now consider an interpolating sequence {αn}

approaching to 1, with | π ( α n ) | -» 1 as n -> oo, where π = i?i, and let

/ be the Blaschke product with zeros {an}. Then, by Lemma 3, R~2I is

continuous up to the circle. Also (iv) of Lemma 1 gives

(3.6)
S/R - wo

- «*>*/*

and then \wo(eiθ)\ < \S/R(eiθ)\ + c(l - |S/i2(e")|), 0 < θ < 2π, for some

fixed c = φ ) < 1. Therefore wx = w0 + {1 - c)R~2I eUΠ CDAn.

Now, assume / = (P - Qwi)(fl - Sw^'1 e QAn. Thus,

/ -tJ = π(ιy! - iϋo)(Λ ~ SwoΓ^i? - S'tϋi)-1 G QAπ.

Let σ denote the pseudohyperbolic metric, σ(z, w) = |z — tw| | 1 — ϊίJzl"1. Since

K ( α n ) | —> 1 as n —> oo, writing g — (wι —Wo)(R — Swo)~1{R — Swι)~1, from

the fact that πg E QAπ one can deduce

max \g(z)\ — min |^(z) | ->0, as n - ^ oo,
σ(^,Q!n)<r σ(z,an)<r

for any r < 1, because otherwise, taking a subsequence of {αn}, for some

fixed r < 1, there would exist δ > 0 and £n, σ(α n , zn) < r, such that

Then, by subharmonicity, for m < 1, it would follow

\g'(w)\2dm(w) > Ci(m)ί

where Dn is the disc of center zn and radius ra(l — \zn\). So,

/ |</H|2(1 - M) dm(w) > C2(m)δ(l - \zn\)

and using a result in [2, p. 381], this would contradict the fact πg £ QAn.

Since #(α n ) = 0, one gets

(3.7) max \g(z)\-+0, as n -» oo.

But, (3.6) and (v) of Lemma 1 give

11 Q / T?f >*\n n ί rs\\ •έ' f1 f-l-Λ f 1 I C / 7? ( 'y\\'^\ <^ Γ^ ί+\\ f? ( 'y^l~^ o Π 1 ' y C TΠ)

1 — D/Ih[ZJWiyZ)\ \ O i ( t) ( 1 — O/Xt^/oJ J \ ^ 1 V̂ / l-^v^/ I ? * — U, 1, -2- t : Ji>',

SO,

1 — c
max |^(^)| > -τς- max |/(^) |

Since {an} is an interpolating sequence, this contradicts (3.7). Therefore
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4. A question about uniqueness.

The question whether (NP) has a unique solution is in general delicate.
A necessary condition for uniqueness is of course that ||/||oo — 1 for a n y
solution / to (NP). If there is f0 G H°° with | | / 0 | U < ι solving the reduced
problem f(zn) — wn, n > N for some N > 2, we shall call (NP) semiscaled.
In [11], Tolokonnikov obtained the following nice result

Theorem 2. (Tolokonnikov). // a Neυanlinna Pick problem is semiscaled,
but not scaled, then any solution is inner and hence must be unique.

It should be observed that previous results due to T. Nakazi [3] an K.O.
Oyma [7] easily follow from Theorem 2.

Proof. Let us use the notation from the introduction and assume that the
Nevanlinna Pick problem (NP) is scaled. One can assume N = 1. If {zo,wo}
is an extra pair of points consider the extended problem

(*) f(zn)=wn, n = 0 , l , 2 , . . . , fβU.

One can assume z0 = 0. The sets F = {/ G H°° : \\f\\oo < 1, f(zn) =
ιyn, n > 1} and B = {/(0) : / G F, ||/||oo < 1} a r e convex. Suppose B is
non-empty and that the only functions in F with /(0) = w0 have norm 1.
We will show that such / are inner. Since the average of two inner functions
is not inner, this will also prove uniqueness.

If Il/Hoo J 1, llslloo < 1 and 0 < 6 < 1, then \\eg + (1 - e)/| |c^_< 1,
and hence B = {/(0) : / G F}. The assumptions mean that w0 G B \ B.
The proof in [2, p. 152] works verbatim, and shows that any / G F with
f(z0) G dB must be inner. D
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