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1 Introduction

Let D = {z ∈ C : |z| < 1} be the unit disc in the complex plane C. The Nevanlinna-Pick problem can
be stated as follows: Given a sequence of distinct points {zn} ⊂ D and a sequence of values {wn} ⊂ C,
is there an analytic function f : D→ D such that f(zn) = wn, n = 1, 2, . . .? We will discuss three types
of questions:

1. When the problem has a solution?

2. How can the set of all solutions be described?

3. How can one find solutions with certain extremal properties?

First session is devoted to questions 1 and 2. There are two classical approaches due respectively, to
Nevanlinna and Pick. We will follow Nevanlinna’s ideas which also lead to a solution of 2. At the end of
the session we will mention a modern approach to Pick’s result which leads to a different set of problems
and results. Next sessions are devoted to 3. Second session is devoted to prove Nevanlinna’s main result,
which states that if the Nevanlinna-Pick problem has more than one solution, then all extremal solutions
are inner functions. In the third section we will prove a refinement of this result due to A. Stray which
states that actually most extremal solutions are Blaschke products. Last session is devoted to extremal
solutions of scaled problems.

The Nevanlinna-Pick problem has been considered in many different spaces and extended in many
different directions. In 1968, Adamyan, Arov and Krein extended Nevanlinna’s parametrization. See
[1] or [19, p.146] or [47]. D. Sarason found deep relations between the Nevanlinna-Pick problem and
several results in operator theory, see [42] and [43, p.68]. His work has been extremely influential and
has been extended by many authors. See the monography [2]. The Nevanlinna-Pick problem has also
been considered in other spaces of analytic functions, see [2], [30], and the monography [44]. In these
lectures we will not try to review these results; instead, we will follow a geodesic which will bring us
from the classical ideas of Nevanlinna to some modern results, mainly due to Arne Stray.

This paper collects the material of the four lectures I gave at the Summerschool in Mekrijärvi, Fin-
land, in June 2014. It is a pleasure to thank the organizers for their kind invitation and to all participants
for the nice atmosphere, modulo mosquitoes, during those days at this wonderful research facility.

The author is supported in part by MINECO grants MTM2011-24606 and MTM2014-51824-P and by the grant
2014SGR 75, Generalitat de Catalunya
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2 Nevanlinna’s and Pick’s Approaches

Nevanlinna published his results a few years later than Pick but was unaware of the latter’s work due
probably to the poor communication during the First World War. The approaches of Nevanlinna and
Pick are quite different. We will follow Nevanlinna’s ideas, which are based on Schur’s algorithm. This
is a beautiful technique which can also be used in other problems such as the Caratheodory problem,
where one assigns Taylor coefficients instead of function values.

2.1 Nevanlinna’s Approach

We start with some notation. The space of bounded analytic funtions in the unit disc is denoted by H∞.
Given f ∈ H∞, consider ||f ||∞ = sup

z∈D
|f(z)|. Any function f ∈ H∞ has radial limit f

(
eiθ
)

= lim
r→1

f
(
reiθ

)
at almost every point eiθ of the unit circle and ||f ||∞ = ||f ||L∞(∂ D).

Bilinear transformations T (z) = az+b
cz+d , with ad−bc 6= 0, will be represented by the matrix

(
a b
c d

)
z. The

main advantage is the following fact: if T̃ (z) = ãz+b̃
c̃z+d̃

, ãd̃− b̃c̃ 6= 0, the composition T ◦ T̃ is represented

by the product of these two matrices:

(
a b
c d

) (
ã b̃

c̃ d̃

)
.

We use the notation ba for the automorphism of the unit disc given by ba(z) = |a|
a

a−z
1−az , where a ∈ D \{0}

is fixed. Also, b0(z) = z. We will use the following two elementary facts.

Fact 1. If f : D → D is analytic and f(a) = 0, then f(z) = ba(z)f1(z) where f1 : D → D is an

analytic function. This follows by considering the analytic function f(z)
ba(z) = f1(z) for z ∈ D and applying

Maximum Modulus Principle.

Fact 2. If
∑

(1− |an|) <∞, then B(z) =
∏
ban(z) converges uniformly on compacts of D. The function

B(z) is analytic, ||B||∞ = supz∈D |B(z)| = 1 and B(an) = 0, n = 1, 2, . . .. B(z) is called the Blaschke
product with zeros {an}. See, for instance, [19, p. 51].

We first consider Nevanlinna-Pick problems with finitely many points.
Finite Case. Assume we have a finite set of points {z1, . . . , zN} and values {w1, . . . , wN}; in other

words, given {z1, . . . , zN} ⊂ D and {w1, . . . , wN} ⊂ C, the problem can be stated as follows:

(∗)N : Find f ∈ H∞, ||f ||∞ ≤ 1 with f(zi) = wi, i = 1, . . . , N .

We will consider simultaneously questions 1 and 2:

• Case N = 1, that is, if we have a single point z1 and a single value w1. There are three cases:

– If |w1| > 1, we have no solution.

– If |w1| = 1, we have a unique solution.

– If |w1| < 1, we have infinitely many solutions. Moreover, assume f is a solution. Then by Fact 1,

f − w1

1− w1f
= bz1f1, ||f1||∞ ≤ 1,

that is,

f =
bz1f1 + w1

1 + w1bz1f1
, ||f1||∞ ≤ 1 .

Hence, the set of all solutions is

{f ∈ H∞ : ||f ||∞ ≤ 1, f(z1) = w1} =

{
f =

bz1f1 + w1

1 + w1bz1f1
: f1 ∈ H∞, ||f1||∞ ≤ 1

}
=

=

{
f =

1√
1− |w1|2

(
bz1 w1

w1bz1 1

)
f1 : f1 ∈ H∞, ||f1||∞ ≤ 1

}
.
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It will be useful to denote

U1 =
1√

1− |w1|2

(
bz1 w1

w1bz1 1

)
.

The factor in front of the matrix is chosen so that detU1 = bz1 .

• Case N > 1. We will argue inductively: f is a solution of the Nevanlinna-Pick problem with N

points z1, . . . , zN if and only if f =
bz1f1+w1

1+w1bz1f1
and f1(zj) = 1

bz1 (zj)
wj−w1

1−w1wj
for j = 2, . . . , N . Writing

w
(1)
2 = 1

bz1 (z2)
w2−w1

1−w1w2
, we have three possibilities:

– If |w(1)
2 | > 1 we have no solution.

– If |w(1)
2 | = 1 we have a unique f1 and therefore a unique solution of the Nevanlinna-Pick problem

(∗)2 with two points z1, z2.

– If |w(1)
2 | < 1, then the previous argument gives

f1 =
bz2f2 + w

(1)
2

1 + w
(1)
2 bz2f2

= U2f2

for some f2 ∈ H∞ with ||f2||∞ ≤ 1, where

U2 =
1√

1− |w(1)
2 |2

(
bz2 w

(1)
2

w
(1)
2 bz2 1

)
.

Then f = U1U2(f2), f2 ∈ H∞, ||f2||∞ ≤ 1.

Iterating this procedure we have that the problem (∗)N has more than one solution if and only if

|w(i−1)
i | < 1, i = 1, . . . , N . If |w(i−1)

i | > 1 for some i, then the problem has no solution, while if

|w(i−1)
i | = 1 and |w(k−1)

k | < 1 for k ≤ i, then the problem

(∗)i Find f ∈ H∞, ||f ||∞ ≤ 1, f(zk) = wk, k = 1, . . . , i.

has a unique solution.

We will restrict attention to Nevanlinna-Pick problems with more than one solution. If the
problem (∗)N has more than one solution, the set of all solutions to problem (∗)N is given by
f = U1 · · ·UN (fN ), where fN ∈ H∞, ||fN ||∞ ≤ 1 and

Ui =
1√

1− |w(i−1)
i |2

(
bzi w

(i−1)
i

w
(i−1)
i bzi 1

)
.

In other words, denoting

(
PN QN
RN SN

)
= U1 · · ·UN , we have

f =

(
PN QN
RN SN

)
fN .

The functions PN , QN , RN , SN are called Nevanlinna coefficients. Let us mention some of their
properties:

– PN , QN , RN , SN are rational functions with poles contained in the set { 1
zi

: i = 1, . . . , N}. This is
clear because the components of the matrices Ui satisfy it.

– PNSN −QNRN = BN , the Blaschke product with zeros z1, . . . , zN . This is clear because detUj =
bzj , j = 1, . . . , N .
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– Consider ∆N (z) = {f(z) : f solves problem (∗)N}. Then ∆N (z) is a Euclidean disc of center cN (z)
and radius ρN (z) given by

cN (z) =
PN (z)

(
−RNSN (z)

)
+QN (z)

RN (z)
(
−RNSN (z)

)
+ SN (z)

,

ρN (z) =
|BN (z)|

|SN (z)|2 − |RN (z)|2
.

Let’s prove this third property:

Proof. Fix z ∈ D. Since |w(i−1)
i | < 1, the map Ui,z = Ui : D→ D defined by

Ui(w) =
bzi(z)w + w

(i−1)
i

1 + w
(i−1)
i bzi(z)w

maps the unit disc into itself and if |z| = 1, Ui is onto. The same holds for

(
PN QN
RN SN

)
= U1 · · ·UN ,

that is, fixed z ∈ D, the map

TN,z : D→ D

w 7→ PN (z)w +QN (z)

RN (z)w + SN (z)

is into and if |z| = 1 it is onto. Consider ∆N (z) = {f(z) : f solves problem (∗)N}. Then,

∆N (z) =

{
PN (z)w +QN (z)

RN (z)w + SN (z)
: w ∈ D

}
= TN,z(D).

Hence ∆N (z) is a disc. Since TN,z

(
− SN
RN

(z)
)

=∞, by reflection, TN,z maps the point −RNSN (z) to

the center of ∆N (z). Since ρN (z) =
∣∣∣TN,z(eiθ)− TN,z (−RN (z)

SN
(z)
)∣∣∣ for any eiθ ∈ ∂ D, a calculation

shows that the radius ρN (z) of ∆N (z) is

ρN (z) =
|BN (z)|

|SN (z)|2 − |RN (z)|2
.

– On ∂ D, the following identities hold: |SN |2 − |RN |2 = 1, PNRN = QNSN , PN = BNSN , QN =
BNRN .

Proof. If |z| = 1, ∆N (z) = D, hence ρN (z) = 1, that is, |SN (z)|2 − |RN (z)|2 = 1, CN (z) =
0, that is, PN (z)RN (z) = QN (z)SN (z). Since PN (z)SN (z) − QN (z)RN (z) = BN (z), we have
that PN (z)|SN (z)|2 − QN (z)SN (z)RN (z) = BN (z)SN (z), and since QN (z)SN (z) = PN (z)RN (z)
we deduce that PN (z)|SN (z)|2 − PN (z)|RN (z)|2 = BN (z)SN (z) and we obtain that PN (z) =
BN (z)SN (z). A similar argument proves last identity.

– For z ∈ D, the following identities hold:

|SN (z)| ≥ 1,

PN (z) = BN (z)SN (1/z),

QN (z) = BN (z)RN (1/z),

max{|PN (z)|, |QN (z)|, |RN (z)|} ≤ |SN (z)|.
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Proof. Since |SN (z)|2− |RN (z)|2 ≥ 0 we deduce that SN (z) 6= 0 because otherwise RN (z) = 0 and
then PN (z) = QN (z) = 0, but BN = PNSN −QNRN , which has no double zeros. Hence SN does
not vanish at D, so 1/SN ∈ H∞ is continuous in D and |1/SN | ≤ 1 on ∂ D, because on ∂ D we have
|SN |2 = 1 + |RN |2 ≥ 1. By the maximum principle we deduce that |1/SN | ≤ 1 on D. The formula
PN (z) = BN (z)SN (1/z) follows from PN = BNSN on ∂ D by analytic continuation. The formula
QN (z) = BN (z)RN (1/z) follows similarly. Since |PN | = |SN | and |QN | = |RN | < |SN | on ∂ D and
SN has no zeros on D, we deduce that

max{|PN (z)|, |QN (z)|, |RN (z)|} ≤ |SN (z)|

for all z ∈ D.

Infinite Case. Assume we have an infinite sequence of points {zi} and values {wi} and consider
the Nevanlinna-Pick problem

(∗) Find f ∈ H∞, ||f ||∞ ≤ 1, f(zi) = wi, i = 1, 2, . . ..

Consider the Nevanlinna-Pick problem with the first N points. We know that if the problem has
more than one solution, then all solutions can be parametrized as

{f ∈ H∞ : ||f ||∞ ≤ 1, f(zi) = wi, i = 1, . . . , N} =

=

{
f =

PNϕ+QN
RNϕ+ SN

: ϕ ∈ H∞, ||ϕ||∞ ≤ 1

}
.

We can assume RN (0) = 0. This is just a normalization one can achieve replacing ϕ in Nevanlinna’s

formula by ϕ−α
1−αϕ , where α =

(
RN (0)
SN (0)

)
. In order to consider Nevanlinna’s parametrization of

the set of solutions in the infinite case we need to make sure that the infinite case problem has
more than one solution. One of the nice features of Schur’s algorithm is that it is reversible. In

our approach, given the values {wi}, we have obtained the points {w(i−1)
i }. Conversely, given

points {w(i−1)
i : i = 1, . . . , N} ⊂ D, one can obtain the values {wi : i = 1, . . . , N} and consider

the correspondent Nevanlinna-Pick problem . We shall mention the following fact, proved by
Denjoy: The Nevanlinna-Pick problem with infinite points has more than one solution if and only if∑

(1 − |zi|)/(1 − |w(i−1)
i |) < ∞, see [52, p. 300]. Nonetheless, we will not use (and we will not

prove) this result. The first main Theorem is the following.

Theorem 1. (Nevanlinna, 1919) Assume the Nevanlinna-Pick problem

(∗) Find f ∈ H∞, ||f ||∞ ≤ 1, f(zn) = wn, n = 1, 2, . . .

has more than one solution. Then the set of all solutions can be parametrized as

{f ∈ H∞ : ||f ||∞ ≤ 1, f(zn) = wn, n = 1, 2, . . .} =

=

{
f =

Pϕ+Q

Rϕ+ S
: ϕ ∈ H∞, ||ϕ||∞ ≤ 1

}
,

(1)

where P,Q,R, S are analytic functions in D which satisfy

1 Let B be the Blaschke product with zeros {zn}. Then, PS −QR = B.

2 The Nevanlinna’s coefficients P, S,Q,R belong to the Nevanlinna class N(D).

3 The set

∆(z) = {f(z) : f solves (∗)} =

{
P (z)w +Q(z)

R(z)w + S(z)
: w ∈ D

}
is a Euclidean disc of center c(z) and radius ρ(z), given by

c(z) =
P (z)

(
−RS (z)

)
+Q(z)

R(z)
(
−RS (z)

)
+ S(z)

, ρ(z) =
|B(z)|

|S(z)|2 − |R(z)|2
.

Moreover, A. Stray proved that P, S,Q and R are meromorphic in C\{1/zj}. See [46].
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4 At almost every point of ∂ D we have |S|2 − |R|2 = 1, P = BS, Q = BR and PR−QS = 0.

5 For all z ∈ D we have max{|P (z)|, |Q(z)|, |R(z)|} ≤ |S(z)|. Moreover, S is an outer function
and |S(z)| ≥ 1.

Proof. Consider the truncated Nevanlinna-Pick problem (∗)N and the corresponding Nevanlinna’s

coefficients PN , QN , RN , SN . Since RN (0) = 0, by Schwarz’s lemma, we have
∣∣∣RN (z)
SN (z)

∣∣∣ ≤ |z|. Hence,

|BN (z)|
|SN (z)|2(1− |z|2)

≥ ρN (z) =
|BN (z)|

|SN (z)|2 − |RN (z)|2
≥ |BN (z)|
|SN (z)|2

.

Since the problem has more than one solution, there exists z0 ∈ D such that limN→∞ ρN (z0) 6= 0.
Hence, |SN (z0)| 6→ ∞. Since log |SN | are positive harmonic functions, considering a subsequence
if necessary, Harnack’s principle gives that {SN} is uniformly bounded on compact subsets of D.
Since max{|PN |, |QN |, |RN |} ≤ |SN |, we deduce that there exist subsequences PNk , QNk , RNk , SNk
which converge uniformly on compacts of D. The limit functions are called P,Q,R and S. Then, the

parametrization (1) follows from the finite case. Moreover, ∆(z) =
{
P (z)w+Q(z)
R(z)w+S(z) : w ∈ D

}
and prop-

erty 3 follows as in the finite case. Also, since PNSN −QNRN = BN and max{|PN |, |QN |, |RN |} ≤
|SN | on D, we deduce 1 and max{|P |, |Q|, |R|} ≤ |S| on D. Since |S(z)| ≥ 1 for all z ∈ D, we have
1/S ∈ H∞ and then S ∈ N(D). Since S has no zeros and max{|P |, |Q|, |R|} ≤ |S|, we deduce that
P,Q,R ∈ N(D).
Property 4 will be proven as a consequence of a theorem of Nevanlinna which will be the main
topic of the next session. It remains to prove that S is outer. A function g ∈ H∞, ||g||∞ ≤ 1 is
an extreme point of the unit ball of H∞ if it can not be written as g = g1+g2

2 where gi ∈ H∞ and
||gi||∞ ≤ 1, i = 1, 2. A result by de Leeuw-Rudin, see [27], tells us that g ∈ H∞, ||g||∞ ≤ 1

is an extreme point of the unit ball of H∞ if and only if
∫ 2π

0
log(1 − |g

(
eiθ
)
|)−1 dθ = +∞.

This is related to the Nevanlinna-Pick problem because the set of solutions is clearly convex.
Hence, if there are two solutions to (∗), there exists a solution f0 ∈ H∞, ||f0||∞ ≤ 1 such that∫ 2π

0
log(1 − |f0

(
eiθ
)
|)−1 dθ < +∞. Write f0 = Pϕ0+Q

Rϕ0+S for some ϕ0 ∈ H∞, ||ϕ0||∞ ≤ 1. Consider

f1 = f0 +BE where E is the outer function whose boundary values have modulus 1− |f0|, that is,

E(z) = exp

(∫ 2π

0

eiθ + z

eiθ − z
log
(
1−

∣∣f0

(
eiθ
)∣∣) dθ

)
, z ∈ D.

Then f1 is a solution of (∗). Hence, f1 = Pϕ1+Q
Rϕ1+S for some ϕ1 ∈ H∞, ||ϕ1||∞ ≤ 1. Therefore,

BE = f1 − f0 =
Pϕ1 +Q

Rϕ1 + S
− Pϕ0 +Q

Rϕ0 + S
=

B

S2

ϕ1 − ϕ0(
R
S ϕ1 + 1

) (
R
S ϕ0 + 1

) .
We know |S| ≥ 1 on D. Assume 1

S has a singular inner factor. Then, since 1 + R
S ϕi, i = 0, 1, are

outer because they have positive real part, we deduce that BE would be divisible by a singular
inner function, which leads to contradiction.

In classical moment problems one tries to find positive measures in a half line with prescribed mo-
ments. It is worth mentioning that under suitable conditions, one can parametrize all solutions of the
problem by a formula which is analogue to Nevanlinna’s parametrization. See [29].

2.2 Pick’s Approach

In this section, we shall describe an idea due to Sarason which leads to Pick’s classical result on the
existence of solutions to the Nevanlinna-Pick problems , see [42]. A different proof can be found in [19,
p. 7].

Theorem 2. (Pick, 1916) The Nevanlinna-Pick problem (∗) has a solution if and only if the matrices(
1− wiwj
1− zizj

)
i,j=1,...,N

are positive semidefinite for any N = 1, 2, . . ..
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Proof. By normal families it is enough to prove the result for Nevanlinna-Pick problem with finitely
many points. We will only prove the necessity. Let H be a Hilbert space of analytic functions in D. For
instance, H could be the Hardy space

H = H2 =

{
f : D→ C analytic : ||f ||22 = sup

r<1

1

2π

∫ 2π

0

|f(reit)|2 dt <∞
}

and

< f, g >H=
1

2π

∫ 2π

0

f(eit)g(eit) dt.

Let MH be its multiplier space, that is, MH = {ϕ : D→ C analytic : ϕf ∈ H for any f ∈ H}. The norm
in MH is given by

||ϕ||MH
= sup
f∈H\{0}

||ϕf ||H
||f ||H

.

For instance, MH2 = H∞ and ||ϕ||MH2 = ||ϕ||∞. Assume that the evaluation at a point z ∈ D given by

H → C
f 7→ f(z)

is continuous. Then, there exists kz ∈ H, called reproducing kernel, such that f(z) =< f, kz >H for any
f ∈ H. For instance, if f ∈ H2, by Cauchy’s formula,

f(z) =
1

2πi

∫
∂ D

f(ξ)

ξ − z
dξ =

1

2π

∫ 2π

0

f(eiθ)

1− ze−iθ
dθ =< f, kz >,

where

kz
(
eiθ
)

=
1

1− zeiθ
.

The main idea is the following. Pick ϕ ∈ MH and consider the multiplication operator Mϕ : H →
H defined by Mϕ(f) = ϕf . Then, the adjoint operator M∗ϕ satisfies M∗ϕ(kz) = ϕ(z)kz because <

f,M∗ϕ(kz) > = < Mϕ(f), kz > = < ϕf, kz > = ϕ(z) < f, kz > = < f,ϕ(z)kz > for any f ∈ H. Hence,
if ||ϕ||MH

≤ 1, then ||M∗ϕ(
∑
λikzi)||H ≤ ||

∑
λikzi ||H , that is,∑

i,j

λiλjϕ(zi)ϕ(zj)kzi(zj) = ||
∑

λiϕ(zi)kzi ||2H ≤ ||
∑

λikzi ||2H =

= <
∑

λikzi ,
∑

λjkzj > =
∑
i,j

λiλjkzi(zj).

In the case H = H2, MH = H∞ and kzi(z) = 1
1−ziz , if ϕ is a solution to the Nevanlinna-Pick problem

(∗), then ∑
λiλjwiwj

1

1− zizj
≤
∑

λiλj
1

1− zizj
,

that is, the matrix (
1− wiwj
1− zizj

)
i,j=1,...,N

,

is positive semidefinite. This proves the necessity in Pick’s result.

A Hilbert space H of analytic functions in the disc with reproducing kernel kz has the Pick property
if for any sequence {wj} ⊂ D such that the matrices ((1−wiwj)kzi(zj))i,j=1,...,N are positive semidefinite
for any N , there exists ϕ ∈ MH , ||ϕ||MH

≤ 1 such that ϕ(zi) = wi, i = 1, 2, . . .. Pick’s theorem tells us
that H = H2 has the Pick’s property. Agler proved that the Dirichlet space has the Pick property. The
Bergman space does not have Pick’s property. Pick’s property is closely related to many other important
notions as interpolating sequences and Carleson Measures. See the books by Seip [44] and by Agler and
McCarthy, [2].
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3 Extremal Solutions

Given a Nevanlinna-Pick problem with more than one solution, Theorem 1 provides a parametrization
of the set of all solutions. If one chooses ϕ to be a unimodular constant λ ∈ ∂ D, the corresponding
solution Pλ+Q

Rλ+S is called an extremal solution. This section is devoted to present Nevanlinna’s classical
result and its refinement due to Stray.

3.1 Extremal Solutions for Finite Problems

In this section we will show the following elementary fact. If we have a Nevanlinna-Pick problem with N
points and with more than one solution, then, for any λ ∈ ∂ D, PNλ+QN

RNλ+SN
is a Blaschke product of degree

less or equal to N . This is clear because PNλ+QN
RNλ+SN

= U1 · · ·UN (λ) and Ui(f) is a Blaschke product with
i zeros whenever f is a Blaschke product with i− 1 zeros.
An inner function is a bounded analytic function in D whose radial limits are of modulus one at almost
every point of the unit circle. If I is an inner function, then PNI+QN

RNI+SN
is also inner because on ∂ D we

have PN = BNSN , QN = BNRN , and hence

PNI +QN
RNI + SN

= BN
SNI +RN
RNI + SN

,

which is unimodular at each point where |I| = 1.

3.2 Extremal Solutions for Infinite Problems

We now state the second main result by Nevanlinna:

Theorem 3. (Nevanlinna, 1929) Given a Nevanlinna-Pick problem with more than one solution, consider
its Nevanlinna’s coefficients P,Q,R, S. Then for any λ ∈ ∂ D, the function Iλ = Pλ+Q

Rλ+S is inner.

Proof. Fix λ ∈ ∂ D and I = Pλ+Q
Rλ+S . Since I solves the problem with finitely many points, for any

N = 1, 2, . . ., we have

I =
PNϕN +QN
RNϕN + SN

for some ϕN ∈ H∞, ||ϕN ||∞ ≤ 1. Taking convenient subsequences, we may assure that PNj , QNj , RNj , SNj −→
P,Q,R, S and ϕNj −→ ϕ uniformly on compacts of D. Hence,

I =
PNjϕNj +QNj
RNjϕNj + SNj

−→ Pϕ+Q

Rϕ+ S
.

Thus, ϕ ≡ λ, that is, ϕNj −→ λ uniformly on compacts of D. Assume I is not inner, that is, there exists
K ⊂ ∂ D with |K| > 0 and |I| ≤ m < 1 on K, where |K| denotes the Lebesgue measure of K. Recall
that if |z| = 1, the mapping TN,z is onto from D to D, hence it preserves the pseudohyperbolic distances,

that is, ρ(a, b) = ρ(TN,z(a), TN,z(b)). Here, ρ(z, w) =
∣∣∣ z−w1−wz

∣∣∣ for z, w ∈ D. Using that TN,z(ϕN ) = I,

TN,z(0) = QN/SN , at almost every point of K, one has that

|ϕNj | = ρ(ϕNj , 0) = ρ

(
I,
QNj
SNj

)
≤
|I|+

∣∣∣QNjSNj

∣∣∣
1 +

∣∣∣QNjSNj

∣∣∣ |I| ≤
m+

∣∣∣QNjSNj

∣∣∣
1 +

∣∣∣QNjSNj

∣∣∣m.

Since

C0 ≥ log |SNj (0)| = 1

2π

∫ 2π

0

log
∣∣SNj (eiθ)∣∣ dθ ≥ 1

2π

∫
K

log
∣∣SNj (eiθ)∣∣ dθ,

there exists K1 ⊂ K with |K1| ≥ |K|/2 such that |SNj | ≤ C1 = C1(K) on K1. Hence,

|QNj |2

|SNj |2
= 1− 1

|SNj |2
≤ 1− 1

C2
1

= C2
2 on K1,
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and we deduce

|ϕNj | ≤
m+ C2

1 + C2m
= m1 < 1 on K1.

Then,

|ϕNj (0)| ≤ 1

2π

∫ 2π

0

∣∣ϕNj (eiθ)∣∣ dθ ≤ m1|K1|+ (1− |K1|) < 1,

which leads to contradiction.

Corollary 1. If a Nevanlinna-Pick problem has more than one solution, then it has an inner solution.

We can now deduce the identities stated in property 4 of Theorem 2. See [48].

Corollary 2. At almost every point on ∂ D we have |S|2 − |R|2 = 1, P = BS, Q = BR and PR = QS.
Moreover, ρ

(
reiθ

)
→ 1 as r → 1 at almost every point eiθ ∈ ∂ D.

Proof. Fix eiθ ∈ ∂ D such that
∣∣Iλ (eiθ)∣∣ = 1 for three different values of λ ∈ ∂ D. Assume also

P
(
eiθ
)
, Q
(
eiθ
)
, R
(
eiθ
)
, S
(
eiθ
)

exist and are finite. We have that

T
(
eiθ
)

: D→ D

w 7→
P
(
eiθ
)
w +Q

(
eiθ
)

R (eiθ)w + S (eiθ)

maps D onto D. Since the center of T (D) is the origin and the radius is 1, we have P
(
eiθ
)
R (eiθ) −

Q
(
eiθ
)
S (eiθ) = 0 and

∣∣S (eiθ)∣∣2 − ∣∣R (eiθ)∣∣2 = 1. Hence, ρ
(
reiθ

)
→ 1 as r → 1. Since PS −QR = B,

we deduce PRS −Q|R|2 = BR. Thus, Q|S|2 −Q|R|2 = BR and we deduce Q = BR on ∂ D. A similar
argument shows that P = BS.

Arguing as in the finite case one can also deduce the following corollary:

Corollary 3. Let I be an inner function. Then PI+Q
RI+S is also inner.

3.3 Blaschke Products Among Extremal Solutions

Let us first recall the following classical description of Blaschke products among the set of inner functions:

Lemma 1. (Frostman) Let I be an inner function. Then I is a Blaschke product if and only if

lim
r→1

∫ 2π

0

log
∣∣I (reiθ)∣∣−1

dθ = 0 .

Proof. Assume I = BS, where S is a non trivial singular inner function. Then, |I| ≤ |S| and∫ 2π

0

log
∣∣I (reiθ)∣∣−1

dθ ≥
∫ 2π

0

log
∣∣S (reiθ)∣∣−1

dθ = 2π log |S(0)|−1.

Conversely, assume I is a Blaschke product with zeros {zn}. Then,∫ 2π

0

log
∣∣I (reiθ)∣∣−1

dθ =
∑
n

∫ 2π

0

log

∣∣∣∣1− znreiθreiθ − zn

∣∣∣∣ dθ =

= −
∑
n

∫ 2π

0

log
∣∣reiθ − zn∣∣ dθ.

Now,
∫ 2π

0
log
∣∣reiθ − zn∣∣ dθ = 2π log |zn| if |zn| ≥ r and

∫ 2π

0
log
∣∣reiθ − zn∣∣ dθ = 2π log r if |zn| < r. Hence,∫ 2π

0

log
∣∣I (reiθ)∣∣−1

dθ =
∑
|zn|<r

log(r) +
∑
|zn|≥r

log |zn|,

which tends to 0 by the Blaschke condition,
∑

(1− |zn|) <∞.
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A compact set K ⊂ C has positive logarithmic capacity if there exists a probability measure µ
supported on K such that the logarithmic potential

u(z) =

∫
K

log
1

|z − w|
dµ(w)

is uniformly bounded. A countable set has logarithmic capacity zero while a rectifiable curve has positive
logarithmic capacity. Sets of logarithmic capacity zero are small in terms of size; for instance, they have
Hausdorff dimension zero. Let I be an inner function. A classical result by Frostman says that for all
α ∈ D, except possibly for a set of logarithmic capacity zero, the function I−α

1−αI is a Blaschke product.
See [18] or [19, p.75]. We now state the main result of this section:

Theorem 4. (A. Stray, 1988, [49]) Assume the Nevanlinna-Pick problem (∗) has more than one solution.
Then, for all λ ∈ ∂ D, except possibly for a set of logarithmic capacity zero, the function Iλ = Pλ+Q

Rλ+S is
a Blaschke product.

Proof. Let E = {λ ∈ ∂ D : Iλ = Pλ+Q
Rλ+S is not a Blaschke product}. We want to show that the logarithmic

capacity of E is 0. Let µ be a probability measure supported in E with

sup
z∈C

∣∣∣∣∣∣
∫
E

log |z − w|−1 dµ(w)

∣∣∣∣∣∣ = M <∞.

We want to show that µ(E) = 0. By Lemma 1, it is enough to show that∫
E

lim
r→1

∫ 2π

0

log
∣∣Iλ (reiθ)∣∣−1

dθ dµ(λ) = 0.

We know that ρ
(
reiθ

)
→ 1 at almost every eiθ, hence, given ε > 0 and η > 0 there exists K ⊂ ∂ D,

|K| ≥ 2π − ε with ρ(reiθ) ≥ 1− η for eiθ ∈ K if 1− r is sufficiently small. Since Iλ
(
reiθ

)
is a boundary

point of ∆
(
reiθ

)
, we deduce that

∣∣Iλ (reiθ)∣∣ ≥ 1 − 2η for eiθ ∈ K and
∫
K

log
∣∣Iλ (reiθ)∣∣−1

dθ ≤ Cη for

any λ ∈ ∂ D if 1− r is sufficiently small. So, it is enough to show∫
E

lim
r→1

∫
∂ D\K

log
∣∣Iλ (reiθ)∣∣−1

dθ dµ(λ) = 0.

Using that S is outer, one can show that∫
∂ D\K

log
∣∣S (reiθ)∣∣ dθ −−−→

r→1

∫
∂ D\K

log
∣∣S (eiθ)∣∣ dθ.

Now, by Fatou’s lemma and Fubini, one has∫
E

lim
r→1

∫
∂ D\K

log
∣∣Iλ (reiθ)∣∣−1

dθ dµ(λ) ≤

≤ lim
r→1

inf

∫
∂ D\K

∫
E

log

∣∣∣∣∣ PS
(
reiθ

)
λ+ Q

S

(
reiθ

)
R
S (reiθ)λ+ 1

∣∣∣∣∣
−1

dµ(λ)dθ.

Since

sup
z∈C

∣∣∣∣∫
∂ D

log |z − λ|−1 dµ(λ)

∣∣∣∣ = M <∞,

we have ∫
E

log

∣∣∣∣RS (reiθ)λ+ 1

∣∣∣∣ dµ(λ) ≤M
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and ∫
E

log

∣∣∣∣PS (reiθ)λ+
Q

S

(
reiθ

)∣∣∣∣−1

dµ(λ) ≤ − log

(
max

(∣∣∣∣PS (reiθ)
∣∣∣∣ , ∣∣∣∣QS (reiθ)

∣∣∣∣))+M.

Since P
S −

Q
S
R
S = B

S2 , we deduce that

max

(∣∣∣∣PS (reiθ)
∣∣∣∣ , ∣∣∣∣QS (reiθ)

∣∣∣∣) ≥ 1

2

∣∣B (reiθ)∣∣
|S (reiθ)|2

.

Hence, ∫
E

lim
r→1

∫
∂ D\K

log
∣∣Iλ (reiθ)∣∣−1

dθ dµ(λ) ≤

≤ CM |∂ D\K|+ C lim
r→1

inf

 ∫
∂ D\K

log
∣∣B (reiθ)∣∣−1

dθ +

∫
∂ D\K

log
∣∣S (reiθ)∣∣2 dθ

 .

The first integral tends to zero as r → 1 because of Lemma 1 and the second tends to
∫

∂ D\K
log
∣∣S (eiθ)∣∣2 dθ,

which is arbitrarily small if |∂ D\K| is small.

We now mention an application of last theorem. Let K ⊂ ∂ D be a compact set of zero length and
let ϕ : K → D be a continuous function. In [34] it is proved that there exists a Blaschke product I such
that for any eiθ ∈ K, one has limr→1 I(reiθ) = ϕ(eiθ). The proof proceeds as follows. One first finds a
non extremal function f0 of the unit ball of H∞ whose radial limit at each point of eiθ ∈ K is ϕ(eiθ).
R. Berman constructed a Blaschke product B with zeros {zn} such that the radial limit of B vanishes
at each point of K. One considers the Nevanlinna-Pick problem with points {zn} and values {f0(zn)}.
Then applying Theorem 4, one can choose I to be a convenient extremal solution.

4 Scaled Nevanlinna-Pick problems

A. Stray has found relations between the classical Nevanlinna-Pick problem and more modern topics in
function theory, see [46], [47] and [48]. We will show that a certain refinement of the Corona Theorem
provides convenient estimates of the radius of ∆(z).

4.1 The Corona Theorem

The Corona Theorem appeared as part of an effort to understand the Banach algebra properties of H∞.
It is actually equivalent to the non existence of a corona in the maximal ideal space M , that is, that D is
dense in M . The techniques introduced by Carleson in his solution had a huge impact in both Complex
and Harmonic Analysis.

Theorem 5. (Carleson, 1962, [10] or [19, Chapter VIII]). Let f1, . . . , fn ∈ H∞ such that

inf
z∈D

n∑
j=1

|fj(z)| ≥ δ > 0.

Then there exist g1, . . . , gn ∈ H∞ with
∑n
j=1 fjgj ≡ 1.

This famous result has been extremely influential. For instance, in his proof, Carleson invented
a geometric construction known as the Corona construction that has led to many deep results in the
theory of H∞ as well as in harmonic analysis and many other areas. Another simpler proof based
on Littlewood-Paley integrals was obtained by T. Wolff in the eighties, see [19, p.315]. Among other
important concepts, Carleson introduced the notion of what we know today as Carleson measure (for
the Hardy space). It is not known if the Corona Theorem holds for any domain in the complex plane. It
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is also open in the unit ball of CN , N > 1 or in the polydisc. On the negative direction, it is known that
the Corona Theorem fails in Riemann surfaces. The proof by Carleson is quite technical but contains
also the notion of Carleson contour which will appear later, so let us describe it. In general, the level set
of a bounded analytic function may be unrectifiable. Actually, P. Jones constructed f ∈ H∞, ||f ||∞ ≤ 1
such that for any ε ∈ (0, 1) the level set {z ∈ D : |f(z)| = ε} has infinite lenght; see [24]. Carleson
constructed a variant of a level set which is rectifiable.

Lemma 2. (Carleson, [10],[19, p.333]). Let f ∈ H∞, ||f ||∞ = 1 and 0 < ε < 1. Then, there exists

δ = δ(ε) > 0 and Γ = Γ(ε) = ∪jΓj, where Γj = Γj(ε) are piecewise C1 closed curves with interior
◦
Γj

such that

(a) |f(z)| ≥ ε if z ∈ D\ ∪
◦
Γj.

(b) |f(z)| ≤ δ if z ∈ ∪
◦
Γj.

(c) Lenght on Γ is a Carleson measure, that is, there exists C = C(ε) > 0 such that
lenght(D ∩ Γ) ≤ Cr for any disc D of radius r.

We will use the following refinement of the Corona Theorem:

Theorem 6. (P. Jones, [25]) Let f1, f2 ∈ H∞, ||fi||∞ ≤ 1, i = 1, 2. Assume 1/2 > η > 0 satisfies

inf
z∈D
|f1(z)|+ |f2(z)| ≥ 1− η.

Then there exist g1, g2 ∈ H∞ with f1g1 + f2g2 ≡ 1 and

sup
z∈D
|f1(z)g1(z)|+ |f2(z)g2(z)| ≤ 1 +

A

log
(

1
η

) ,
where A is an absolute constant.

4.2 The Radius of a Scaled Problem

A Nevanlinna-Pick problem is called scaled if it has a solution f0 such that ||f0||∞ < 1. The crucial idea
in this section is due to A. Stray, see [50], who, using the result of P. Jones stated above, observed that
one can estimate the radius of ∆(z) of an scaled problem.

Lemma 3. ([50]) Assume (∗) is an scaled Nevanlinna-Pick problem . Then, ρ(z)→ 1 as |B(z)| → 1.

Proof. Take ε > 0 small, to be fixed later. Fix z ∈ D with |B(z)| ≥ 1− ε. Consider the functions B(w)
and τz(w) = w−z

1−zw . Then, since by Schwarz’s lemma∣∣∣∣∣ B(w)−B(z)

1−B(z)B(w)

∣∣∣∣∣ ≤
∣∣∣∣ w − z1− zw

∣∣∣∣ = |τz(w)|,

we deduce that |B(w)|+ |τz(w)| ≥ 1−C(ε), where C(ε)→ 0 as ε→ 0. Then, by Theorem 6, there exist
g1, g2 ∈ H∞ such that Bg1 + τzg2 ≡ 1 and |B(w)g1(w)|+ |τz(w)g2(w)| ≤ 1 +A(ε) for any w ∈ D. Here,
A(ε) → 0 as ε → 0. Let f0 be a solution of (∗) with ||f0||∞ < 1. Then, for any s ∈ D, the function
fs = f0τzg2 + sBg1

1+A(ε) is a solution of (∗) if ε > 0 is chosen small enough so that ||f0||∞ ≤ 1
1+A(ε) . Now,

fs(z) =
s

1 +A(ε)
B(z)g1(z) =

s

1 +A(ε)
.

Hence, ∆(z) contains the disc {w ∈ C : |w| ≤ 1
1+A(ε)}. Since ε > 0 can be taken arbitrarily small, this

finishes the proof of the lemma.

Lemma 3 was used in [36] to study the Nevanlinna coefficients of a scaled problem.
In the last lecture we will discuss the following question: If we know an additional information of

the sequence of points {zn}, what can be deduced about the behaviour of the extremal solutions of the
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Nevanlinna-Pick problem (∗)? Let us first consider several classes of inner functions. For 0 < α < 1, the
class Bα consists of the Blaschke products B for which its zero sequence satisfies∑

z:B(z)=0

(1− |z|)1−α <∞.

The following result can be found in the dissertation of L. Carleson, [9]. Let B be a Blaschke product.
Then, B ∈ Bα if and only if ∫

D

log |B(z)|−1

(1− |z|2)1+α
dA(z) <∞. (2)

This fact follows easily applying second Green’s formula to the functions log |B(z)|−1 and (1− |z|2)1−α.
Our second class is defined as follows. An inner function I is in (the Hardy-Sobolev space) H1,α if I ′ is
in the Hardy space Hα, that is,

sup
r<1

∫ 2π

0

|I ′
(
reiθ

)
|α dθ <∞. (3)

Let dA(z) be the two dimensional Lebesgue measure. For 1
2 < α < 1 and 1 ≤ p ≤ 2, it is well known

that I ∈ H1,α if and only if ∫
D

|I ′(z)|p(1− |z|)p−α−1 dA(z) <∞ (4)

See Theorem 13 of [14]. So, in this sense, inner functions do not distinguish between these Hardy-Sobolev
and Besov spaces. The class of inner functions in H1,α have been extensively studied by many authors
but there is still no description of the inner functions I in H1,α in terms of the geometry of its zero set and
the behaviour of its associated singular measure. In 1973, Protas proved that for 1

2 < α < 1, Bα ⊂ H1,α,
see [39]. The converse is not true, but Ahern proved that if an inner function I ∈ H1,α then there exists
w ∈ D such that I−w

1−wI ∈ Bα (see [3]). The paper [3] contains also many interesting related results. There

is also a beautiful description of inner functions I in H1,α, 1
2 < α < 1, in terms of Carleson contours

given by Cohn, see [12], which reads as follows: Fix 1
2 < α < 1. An inner function I is in H1,α if and

only if ∫
Γ

|dz|
(1− |z|)α

<∞,

where Γ is a Carleson contour of I.
Smoothness properties of inner functions have attracted the attention of many researchers. See [4],

[5], [6], [7], [51], [13], [15], [16], [21], [20], [23], [37], [38], [40], [41], [8], and the monography [28]. Observe
that in the case α = 1, either condition (3) or (4) implies that I is a finite Blaschke product. For instance,
if (3) holds, then I extends continuously to the closed unit disc and hence it is a finite Blaschke product.
If (4) holds and p = 2, condition (4) tells that the area of the image I(D), counting multiplicities, must
be finite. Then, I is a finite Blaschke product. The general case 1 < p < ∞, p 6= 2 was considered in
[26]. So, in the case α = 1, it is natural to consider weak spaces. An inner function I is in the class H1,1

∞
if there exists a constant C > 0 such that for any 0 < r < 1 and any λ > 0 one has∣∣{eiθ :

∣∣I ′ (reiθ)∣∣ > λ}
∣∣ ≤ C

λ
.

Here, |E| denotes the length of the measurable set E ⊂ ∂ D. It is well known that this last condition
holds if and only if the non-tangential maximal function M(I ′) of I ′ satisfies the weak estimate∣∣{eiθ : M (I ′)

(
eiθ
)
> λ}

∣∣ ≤ C1

λ

for any λ > 0. For 1 < p < ∞ consider the measure dµp(z) = (1 − |z|)p−2dA(z). The weak analogue
of condition (4) would read as follows: An inner function I is in the weak Besov space Bp∞ if there
exists a constant C > 0 such that for any λ > 0 one has µp{z ∈ D : |I ′(z)| > λ} ≤ Cλ−p. In the
papers [11] and [22], written in collaboration with J. Cima and J. Grohn, it was proved that for any
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1 < p < ∞, I ∈ H1,1
∞ if and only if I ∈ Bp∞, and this holds if and only if I is a Blaschke product for

which there exists a constant C = C(I) > 0 such that for any n = 1, 2, . . . one has

#{z : I(z) = 0, 2−n−1 < 1− |z| ≤ 2−n} ≤ C. (5)

It is easy to show that the sequence of zeros of I satisfies condition (5) if and only if it is the union of
finitely many sequences which approach the unit circle exponentially fast. Let us denote B1 the class of
Blaschke products satisfying (5). It is obvious that B1 ⊂ Bα for any 0 < α < 1. We can now state the
result on the Nevanlinna-Pick problem .

Theorem 7. [31] Let (∗) be a scaled Nevanlinna-Pick problem and let B be the Blaschke product with
zeros {zn}. Let Iλ, λ ∈ ∂ D, be the extremal solutions of (∗).

(a) Fix 0 < α < 1 and assume B ∈ H1,α. Then, Iλ ∈ H1,α for any λ ∈ ∂ D.

(b) Assume B ∈ B1. Then, Iλ ∈ B1 for any λ ∈ ∂ D.

(c) Fix 0 < α < 1. Assume ∑
n

(1− |zn|)1−α log

(
1

1− |zn|

)
<∞.

Then, for all λ ∈ ∂ D, except possibly for a set of logarithmic capacity zero, Iλ ∈ Bα.

We shall not prove this result but we will make a few comments about it. We do not know if the
assumption that (∗) be scaled is essential. The main obstacle is that there is no analogue to Lemma 3 for
non-scaled problems, see [35]. We do not know wether condition (c) holds under the weaker assumption
that B ∈ Bα. The essential tool in the proof of (a) and (b) is Lemma 3, where the assumption (∗) scaled
is used. The proof of (c) uses the description (2) and arguments similar to the proof of Stray’s theorem.
We state an easy consequence Theorem 7.

Corollary 4. Let {zn} be a Blaschke sequence and let B be the corresponding Blaschke product. Let
{wn} be a bounded sequence of complex numbers such that

M = sup{||f ||∞ : f ∈ H∞, f(zn) = wn, n = 1, 2, . . .} <∞.

Fix ε > 0.

(a) There exists a Blaschke product I with (M + ε)I(zn) = wn, n = 1, 2, . . ..

(b) Fix 0 < α < 1. Assume B ∈ H1,α. Then, there exists a Blaschke product I ∈ H1,α with (M +
ε)I(zn) = wn, n = 1, 2, . . ..

(c) Assume B ∈ B1. Then, there exists a Blaschke product I ∈ B1 with (M+ε)I(zn) = wn, n = 1, 2, . . ..

(d) Fix 0 < α < 1. Assume
∑

(1 − |zn|)1−α| log(1 − |zn|)| < ∞, then there exists I ∈ Bα with
(M + ε)I(zn) = wn, n = 1, 2, . . ..

This result follows from Theorems 4 and 7 because for ε > 0 the Nevanlinna-Pick problem

(∗) Find f ∈ H∞, ||f ||∞ ≤ 1, f(zn) = wn
M+ε , n = 1, 2, . . .

is scaled. It is worth mentioning that the result does not hold when ε = 0, see [45].

We finally state an open question which could have applications: Let δz be the Dirac mass at the point
z ∈ D. Assume

∑
(1 − |zn|)δzn is a Carleson measure (for the Hardy space H2). Is it then true that

there exists λ ∈ ∂ D such that ∑
z : Iλ(z)=0

(1− |z|)δz

is a Carleson measure?
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