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1. Introduction

Let H 1 denote the algebra of bounded analytic functions in the unit disc D of the
complex plane C. The well-known Schwarz±Pick theorem asserts that if f 2 H 1 with

k f k1 � supfj f �z�j: z 2Dg< 1

then f decreases hyperbolic distances; that is,

f �z� ÿ f �a�
1ÿ f �a� f �z�

�����
�����<

zÿ a

1ÿ az

���� ����
for all z; a 2D, or, in®nitesimally,

�1ÿ jz j2�j f 0�z�j< 1ÿ j f �z�j2 for z 2D:

A function I 2 H 1 is called inner if it has radial limits of modulus 1 at almost
every point of the unit circle T. If E Ì T then jE j denotes its normalized
Lebesgue measure. We introduce several measures on T, but the expression
`almost every' always refers to Lebesgue measure. We assume a knowledge of
inner functions, such as is to be found in [9]. In particular, we may write I as
I � BS where

B�z� �
Y1
n�1

zn

jzn j
zn ÿ z

1ÿ zn z

� �
is the Blaschke product associated with the zero set fzng of I, and

S � S�m��z� � exp ÿ
Z
T

y� z

yÿ z
dm�y�

� �
is the singular inner factor associated with the positive singular measure m.

The ®rst result of this paper is the construction of an inner function I which, in
some sense, decreases hyperbolic distances as much as desired as jz j ! 1.

Theorem 1. Let f: �0; 1� ! �0;1� be a continuous function with

lim
t! 0

f�t � � 0:
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Then there exists an inner function I such that

lim
j z j! 1ÿ

�1ÿ jz j2�jI 0�z�j
f�1ÿ jI�z�j2� � 0:

We apply this theorem to prove some results on composition operators,
Zygmund functions and the existence of certain singular measures.

Recall that a function f , analytic in D, is called a Bloch function if the quantity

k f kB � supf�1ÿ jz j2�j f 0�z�j: z 2Dg
is ®nite. The Banach space of all such functions is the Bloch space, denoted by B
with j f �0�j � k f kB as norm. The little Bloch space B0 is the subspace of B
consisting of those f 2B for which

lim
j z j! 1ÿ

�1ÿ jz j2�j f 0�z�j � 0:

The Zygmund class L� � L��T� is the space of continuous functions F on T
for which

supfjF�ei �v�h�� � F�ei �vÿh�� ÿ 2F�ei v�j: ei v 2 Tg< K jh j
for some constant K. When the quantity above is o�jh j� as h! 0 we say that F is
in the small Zygmund class l��T�. Roughly speaking, Zygmund functions are the
primitives of functions in the Bloch space, namely an analytic function f is in B
if and only if

F�z� �
Z z

0
f �t � dt

belongs to L��T� for jz j � 1. Analogous relations hold between B0 and l� (see
[18] for details).

Some consequences of Theorem 1 are as follows. Given a positive continuous
function w: �0; 1� ! �0;�1� with

lim
t! 1ÿ

w�t � � �1;

let H�w� denote the Banach space of functions f , analytic in D such that

k f kw � supfj f �z�jw�jz j�ÿ1: z 2Dg < 1:

Corollary 1. Let w be as above and « > 0 be given. Then there exists a
non-constant inner function I such that the composition operator C�I �, de®ned as

C�I �� f � � f ± I

maps H�w� into B0. Moreover C�I � is compact with kC�I �k < «.

The argument leading from Theorem 1 to this corollary is very ¯exible and may be
applied to obtain other results of a similar type. One such result is the following.

Corollary 2. Given any sequence f fng of analytic functions in D, there
exists an inner function I such that fn ± I 2B0 for n � 1; 2; 3; . . . :

Another application of Theorem 1 is as follows.
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Corollary 3. Let I be a non-constant inner function satisfying

lim
j z j! 1ÿ

�1ÿ jz j2�jI 0�z�j
�1ÿ jI�z�j2�2 � 0

(that is, as in Theorem 1 with f�t� � t 2). Let J be a measurable subset of T
and set

E � Iÿ1�J �:
Then the function

F�x� �
Z x

0
xE�ei t� dt

belongs to l��R�.
LoÈwner's lemma asserts, with the above notation, that jE j � jJ j whenever I�0� � 0

and so, for any inner function I, 0 < jE j < 1 if 0 < jJ j < 1. The conclusion of
Corollary 3 was considered in [12] where it was shown that if F 2 l��R� then
jE j � 0 or jE j � 1 or dim�¶E� � 1. Thus, if I is as in Corollary 3, the boundary
of the pre-image by I of any Borel set of positive measure has Hausdorff
dimension 1. In this sense, the inner function I has very wild behaviour.

The proof of Theorem 1 follows from the following two theorems.

Theorem 2. Let f: �0; 1� ! �0;1� be a continuous function, f�0�� � 0. Then
there exists an interpolating Blaschke product B such that

�1ÿ jz j2�jB 0�z�j< f�1ÿ jB�z�j2�
for all z 2D.

Recall that a Blaschke product is called interpolating if

inf
n
�1ÿ jznj2�jB 0�zn�j > 0;

where fzng is the zero sequence of B. Such a function cannot belong to B0 except
when it has a ®nite number of zeros.

The function B in Theorem 2 will in fact be a covering map. Theorem 2 permits us
to establish Corollaries 1 and 2 with B0 replaced by B, but with the extra conclusion
that the corresponding inner function is an interpolating Blaschke product.

Functions in B0 map hyperbolic discs of a ®xed diameter into euclidean discs
of diameter tending to 0 as one approaches T � ¶D. The second step of our
construction concerns inner functions which map hyperbolic discs of a ®xed
diameter into hyperbolic discs of diameter tending to 0 as one approaches T.

Theorem 3. There exists a non-constant inner function I for which

lim
j z j! 1ÿ

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 � 0:�1:1�

Such an inner function I cannot extend analytically to any point of T. Indeed, if
I has an angular derivative at the point y 2 T, that is, if the quotient

I�z� ÿ I�y�
zÿ y
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has a limit when z approaches y non-tangentially, then the Julia±CaratheÂodory
lemma asserts that

lim
z! y

inf
�1ÿ jz j2�jI 0�z�j

1ÿ jI�z�j2 > 0:

Moreover, although the inner functions of Theorem 3 are in B0, they form a strict
subclass of B0, because there exist inner functions in B0 which can be extended
analytically to almost every point of T (see for example, [9]). Inner functions in
B0 have been considered by Bishop in [3] and we use some of his ideas.

It is worth mentioning also that the condition (1.1) in Theorem 3 has appeared
in [14] in connection with composition operators from B0 into itself. Indeed,
Theorem 3 answers a question in [14, p. 2686] as to whether there is a function f
in B0 with C�f� compact as an operator from B0 to B0 such that f�D�Ç T is
in®nite. We may take f�z� to be the inner function I�z� of Theorem 3 for which
f�D� � D. Also, the completely opposite situation has been considered in [10].

Now suppose that f 2 H 1, with k f k1 < 1. For a 2 T the functions

Ha�z� �
a� f �z�
aÿ f �z��1:2�

have positive real part. Hence there exist positive measures ja on T such that the
Herglotz representation

Re Ha�z� �
Z
T

P�z; y� dja�y�
holds for all z 2D. Here,

P�z; y� � �1ÿ jz j2�j1ÿ yz jÿ2

denotes the Poisson kernel. It is well known (and easy to prove) that the measure
ja is singular for some a 2 T if and only if f is inner. Moreover if f and Ha are
related by (1.2) then

lim
j z j! 1ÿ

�1ÿ jz j2�j f 0�z�j
1ÿ j f �z�j2 � 0

if and only if

lim
j z j! 1

�1ÿ jz j2�jH 0a�z�j
Re Ha�z�

� 0:�1:3�

So to prove Theorem 3 it is suf®cient to construct a singular measure j such that
its Herglotz transform H satis®es (1.3).

To avoid endless repetition, J and J 0 will henceforth, and throughout the paper,
denote adjacent arcs of T with jJ j � jJ 0j.

With this notation we have the following.

Theorem 4. Let H be analytic in D with Re H�z� > 0 for z 2D. Let j be the
corresponding measure on T for which

Re H�z� �
Z
T

P�z; y� dj�y�:
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The following statements are equivalent:

lim
j z j! 1ÿ

�1ÿ jz j2�jH 0�z�j
Re H�z� � 0;�a�

lim
jJ j! 0

j�J �
j�J 0� � 1:�b�

Positive measures satisfying (b) are called symmetric (see [8]). Thus, to prove
Theorem 3 it is suf®cient to exhibit a positive singular symmetric measure. In
fact, such measures were constructed by L. Carleson in [5] in connection with
quasiconformal mappings. It is also possible to prove Theorem 3 using a
construction of C. Bishop and the following result.

Theorem 5. Given an inner function I, consider the positive measure in D È T,

m �
X

z : I�z��0

�1ÿ jz j2�dz � 2j;

where dz denotes the Dirac mass at z, the sum takes into account the multiplicity
of the zeros of I, and j is the measure associated with the singular part of I. The
following assertions are equivalent:

lim
j z j! 1ÿ

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 � 0;�a�

(b) for any « > 0 the following two conditions hold:

lim
d! 0

sup
jQ j < d

m�Q�
m�Q 0� ÿ 1

���� ����: m�Q�
jQ j <

1

«

� �
� 0;�1:b�

lim
N!1 sup

Q

X1
k�N

m�2kQn2 kÿ1Q�
22 km�Q� :

m�Q�
jQ j <

1

«

( )
� 0:�2:b�

Here Q denotes the Carleson square

Q � fz: z � rei v; v 2 J; 1ÿ jJ j< jz j < 1g
corresponding to an interval J Ì T, jQ j � jJ j and Q 0 is the corresponding
Carleson square for J 0 .

As mentioned above, L. Carleson constructed singular symmetric measures.
Indeed, let w�t� be a continuous increasing function on �0; 1�, with w�0� � 0, such
that tÿ1= 2w�t� is decreasing. Let j be a positive measure on T such that

jj�J � ÿ j�J 0�j< w�jJ j�j�J �;
for any arc J of the unit circle. L. Carleson showed that the conditionZ

0

w2�t �
t

dt < 1
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implies that j is absolutely continuous and in fact, its derivative is in L2.
Conversely, if Z

0

w2�t�
t

dt � 1;

there exists a positive singular measure on T such that

jj�J � ÿ j�J 0�j< w�jJ j�j�J �;
for any arc J of the unit circle.

A similar situation occurs when looking for the best decay one can have in
Schwarz's Lemma. Given a positive increasing function w on �0; 1�, consider

ew�t � � t

Z 1

t

w�s�
s2

ds� tw�1� for t 2 �0; 1�:�1:4�
Observe that ew�t�> w�t � for 0 < t < 1, and ew�t �< c�«�w�t� if w�t�= t 1ÿ« is
decreasing for some « > 0.

Theorem 6. Let w be a positive continuous function on �0; 1�.
(a) Assume that Z

0

w2�t�
t

dt < 1:

Then there is no non-constant inner function I such that

�1ÿ jz j2� jI 0�z�j
1ÿ jI�z�j2 < w�1ÿ jz j�;

for all z 2D.

(b) Let w be increasing. Assume that there exist constants k and d such thatew�t�< kw�t� if 0 < t < d;

and Z
0

w2�t�
t

dt � 1:

Then, there exists a non-constant inner function such that

�1ÿ jz j2� jI 0�z�j
1ÿ jI�z�j2 < Cw�1ÿ jz j� for z 2D;

where C is an absolute constant.

For instance, the function w�t� � j log t jÿa satis®es (a) when a > 1
2

and (b)
when a < 1

2
. The construction of the inner function in part (b) of Theorem 6 uses

symmetric singular measures. Actually, we need a re®nement of the Carleson
result, where we assume the integral condition and that w�t�= t decreases. This is
done in § 6 by means of Riesz products.

Using Theorem 6, one can prove versions of Corollaries 1 and 2 with B0

replaced by the space B0�w� of holomorphic functions f in the unit disc such that

lim
j z j! 1ÿ

�1ÿ jz j2�j f 0�z�j
w�1ÿ jz j� � 0;

where w ful®lls the conditions in part (b) of Theorem 6.
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Corresponding to the Zygmund class and the Bloch space, there are the
Zygmund measures, that is, positive measures m in T for which

jm�J � ÿ m�J 0�j � O�jJ j� as jJ j ! 0:

This condition is equivalent to the fact that the primitive of m is in the
Zygmund class. Piranian [17] and Kahane [13] constructed ®nite positive singular
measures satisfying

jm�J � ÿ m�J 0�j � o�jJ j� as jJ j ! 0:

We call such measures Kahane measures. Using Theorem 1 or Theorem 6 we will
construct measures which are simultaneously symmetric and Kahane. In fact, as is
to be expected from [5] and [13], one is able to replace the o�1� condition by a
condition of the form O�w�jJ j��, where w ful®lls the conditions in part (b) of
Theorem 6. The point is that we do this in a new and uniform way. In private
communications, A. Canton [4] and F. Nazarov showed us other ways of
producing Kahane symmetric measures.

Also, one can establish the following sharp version of Corollary 3.

Corollary 4. Let a be a positive increasing function on �0; 1�, with
a�0�� � 0. Assume that a�t�= t 1ÿ« is decreasing for some « > 0. Then, the
following assertions are equivalent:

(a) there exists a measurable set E Ì T, with 0 < jE j < 1, such that the
measure xEjdy j is a-symmetric, that is,

j jE Ç J j ÿ jE Ç J 0j j< a�jJ j�jE Ç J j;
for any arc J Ì T;

(b) there exists a measurable set E Ì T, with 0 < jE j < 1, such that the measure
xEjdyj is a-Zygmund, that is,

j jE Ç J j ÿ jE Ç J 0j j< a�jJ j�jJ j;
for any arc J Ì T; Z

0

a2�t �
t

dt � 1:�c�

The hyperbolic metric in D is the Riemannian metric lD�z� jdz j, where
lD�z� � �1ÿ jz j2�ÿ1. Let Q be a hyperbolic domain, that is, a domain in the
complex plane whose complement has at least two points. Let p: D! Q be a
universal covering map. Then lD projects to the PoincareÂ metric lQ�z� jdz j of
Q, where

lQ�p�z�� ´ jp 0�z�j � lD�z�:
Schwarz's lemma asserts that holomorphic mappings f from D into Q decrease
hyperbolic distances, or in®nitesimally,

�1ÿ jz j2�j f 0�z�jlQ� f �z��< 1;

for all z 2D.
A holomorphic function f from the unit disc into Q is called inner (into Q) if��fei v: lim

r! 1
f �rei v� exists and belongs to Qg�� � 0:
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If p is a holomorphic covering map from D into Q, then p is inner; and as a
matter of fact, if f is any holomorphic function from D into Q which factorizes
f � p ± b, where b: D! D, then f is inner (into Q) if and only if b is inner into
D (see [7]).

The theorems stated in this introduction have counterparts in this more general
setting. For instance, Theorem 6 shows that if Q is a hyperbolic domain and a
positive weight satis®es Z

0

w2�t �
t

dt < 1;

then there is no non-constant inner function I into Q such that

�1ÿ jz j2�jI 0�z�jlQ�I�z��< w�1ÿ jz j�;
for all z 2D. On the other hand, if w ful®lls the conditions in part (b) of Theorem
6, there exists a non-constant inner function I into Q such that

�1ÿ jz j2�jI 0�z�jlQ �I�z��< w�1ÿ jz j� for z 2D:

The paper is organized as follows. In § 2 we prove Theorem 2 and apply it to
establish some results on composition operators. Section 3 contains two proofs of
Theorem 3, using Theorems 4 and 5 respectively. Then we use Theorem 3 to
establish Theorem 1 and the corollaries mentioned in this introduction, together
with other related results. The proof of Theorem 4 is in § 4 and consists of a
discretization procedure, which can be adapted to prove Theorem 5. As
mentioned, this uses some of the ideas of [3]. In § 5 we prove Theorem 6. This
uses the existence of singular symmetric measures proved by L. Carleson and a
re®nement of Theorem 4, whose proof is different from the one in § 4. Also,
several ways of constructing singular measures which are both symmetric and
Kahane are mentioned. Finally in § 6, we construct singular symmetric measures
using Riesz products.

After this paper was completed, we learned that Wayne Smith had previously
obtained Theorem 6, and hence Theorem 3, by different methods [19].

2. Interpolating Blaschke products and composition operators

The proof of Theorem 2 is based on an estimate of the density of the
hyperbolic metric on plane domains, due to Beardon and Pommerenke [2]. We
require only a crude estimate of this type, for which we present a proof.

Lemma 2.1. Let Q be a domain in D and let f be an analytic function in D
with f �D� Ì Q. Then, for all z 2D,

�1ÿ jz j2�j f 0�z�j< 6 dist� f �z�; ¶Q� log
e

dist� f �z�; ¶Q� :

Proof. Let a 2 ¶Q be such that dist� f �z�; ¶Q� � j f �z� ÿ a j, and assume ®rst that

j f �z� ÿ a j> 1
4
�1ÿ j f �z�j2�:

Then

�1ÿ jz j2�j f 0�z�j< 1ÿ j f �z�j2 < 4 j f �z� ÿ a j< 6 j f �z� ÿ a j log
e

j f �z� ÿ a j :
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If, on the other hand,

j f �z� ÿ a j < 1
4
�1ÿ j f �z�j2��2:1�

then a 2D, that is, a 62 T. Since

S�z� � exp ÿ 1� z

1ÿ z

� �
is a universal covering map of the punctured unit disc Dnf0g, there exists a
holomorphic mapping f from D into D satisfying

f ÿ a

1ÿ af
� S ± f:

A simple calculation shows that

�1ÿ jw j2�jS 0�w�j � 2 jS�w�j log jS�w�jÿ1

for w 2D and hence

�1ÿ jz j2��1ÿ ja j2�
j1ÿ af �z�j2 j f 0�z�j< �1ÿ jf�z�j2�jS 0�f�z��j

� 2
f �z� ÿ a

1ÿ af �z�
���� ���� log

f �z� ÿ a

1ÿ af �z�
���� ����ÿ1

:

Thus

�1ÿ jz j2�j f 0�z�j< 2
j1ÿ af �z�j

1ÿ ja j2 j f �z� ÿ a j log
e

j f �z� ÿ a j
and the result follows from (2.1).

We also use the following elementary result, whose proof is omitted.

Lemma 2.2. Let h: �0; 1� ! �0; 1� be a continuous function. Then there exists
a countable set L Ì Dnf0g whose cluster set is contained in T such that, for
all z 2D,

dist�z; L È T�< h�1ÿ jz j�:

Proof of Theorem 2. Given f�t�, consider a continuous function h: �0; 1� ! �0; 1�
satisfying

6h�t � log
e

h�t�< f�t�

for all t 2 �0; 1�. For the set L of Lemma 2.2, let B be a holomorphic universal
covering of D onto Q � DnL. Then Lemmas 2.1 and 2.2 show that

�1ÿ jz j2�jB 0�z�j< f�1ÿ jB�z�j2�;
as required and it remains to show that B is an interpolating Blaschke product.
Since B 2 H 1, its radial limit B�y� exists for almost every y 2 T. Moreover, since
B is a covering, B�y� 2 L È T and hence in fact B�y� 2 T for almost every y 2 T
since L is countable. Thus B is inner.

If B had a singular inner factor then there would be at least one value of y 2 T,
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y0 say, with

lim
r! 1ÿ

B�ry0� � 0:

We have arranged that 0 62 L and so this cannot happen. Thus B is a Blaschke
product. To prove that it is interpolating it is suf®cient to observe that the quantity
�1ÿ jz j2�jB 0�z�j depends only on B�z�. Indeed, if B�a� � B�b�, then there exists
an automorphism f of D such that f�a� � b and B ± f� B. Hence

�1ÿ jb j2�jB 0�b�j � �1ÿ ja j2�jf0�a�j jB 0�b�j � �1ÿ ja j2�jB 0�a�j:
Thus

inf
n
f�1ÿ jznj2�jB 0�zn�j: B�zn� � 0g> d > 0

for some suitable d as required.

Remarks. 1. There exists also a singular inner function satisfying Theorem 2.
In fact we may take a universal covering map of Q È f0g. Such a function will
again not belong to B0.

2. By taking the set L as close to the unit circle as we please, we can have

inff�1ÿ jz j2�jB 0�z�j: B�z� � 0g> 1ÿ d

for any preassigned d > 0, even though Schwarz's Lemma tells us that

�1ÿ jz j2�jB 0�z�j< 1

for all z 2D. Actually, if the covering map B satis®es B�D� É rD, with 0 < r < 1,
one has �1ÿ jz j2�jB 0�z�j> r, provided B�z� � 0.

Now suppose that B 2 H 1 with kBk1 < 1. It was shown in [14] that the
composition operator C�B� is compact in B if and only if

�1ÿ jz j2�jB 0�z�j � o�1��1ÿ jB�z�j2� as jB�z�j ! 1:

Thus Theorem 2 has the following corollary.

Corollary 2.3. There exists an interpolating Blaschke product B such that
the composition operator

C�B�: B! B; C �B�� f � � f ± B

is compact.

Next we consider the space H�w� of analytic functions in the unit disc such that
the norm

k f kw � sup
j f �z�j
w�jz j� : z 2D

� �
< 1:

Here w denotes a positive continuous function on �0; 1� with lim t! 1ÿ w�t� � 1.

Corollary 2.4. For any function w as above and « > 0, there exists an
interpolating Blaschke product B such that the composition operator C�B� maps
H�w� into the Bloch space B and

kC�B�� f �kB < «k f kw

for any f 2 H�w�.
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Proof. Replacing w by «ÿ1w, one can assume that « � 1. If f 2 Hw and
k f kw � 1 then, from Cauchy's inequality,

�1ÿ jz j2�j f 0�z�j< 4w�jz j � 1
2
�1ÿ jz j��:

If we choose f�t� so that

w�t � 1
2
�1ÿ t��f�1ÿ t 2�< 1

for 0 < t < 1 then f�t� ! 0 as t! 0. By Theorem 2, there exists an interpolating
Blaschke product B such that

�1ÿ jz j2�jB 0�z�j< f�1ÿ jB�z�j2�
for z 2D. Hence for all z 2D,

�1ÿ jz j2�j� f ± B�0�z�j< 1:

Remarks. 1. The point about the last result is that one inner function suf®ces
for all the functions in H�w�. It is easy to see that for any given analytic function
f there is an inner function I � I � f � so that f ± I 2B. Actually one may take I to
be the universal covering map of Dnf f ÿ1�m� ni�: m; n 2 Zg.

2. Elementary considerations enable us to replace the space H�w� by similar
spaces de®ned in terms of the growth of derivatives.

3. In the proof of Corollary 2.4 we may choose a function f�t� such that

w�t � 1
2
�1ÿ t��f�1ÿ t 2� ! 0 as t! 1ÿ:

Applying [14, Theorem 2] or Corollary 2.3, one can arrange that the
composition operator

C�B�: H�w� ! B

is compact.

Corollary 2.5. Given a sequence f fng of functions analytic in D, there exists
an interpolating Blaschke product B such that fn ± B 2B for n � 1; 2; 3; . . . :

Proof. It suf®ces to observe that there is a function w�r� such that fn 2 H�w�
for n � 1; 2; 3; . . . : For instance, we may take

w�r� �
X

n< �1ÿ r�ÿ1

supfj fn�z�j: jz j � rg:

Remark. In a way similar to the above, we may replace the sequence f fng by
a sequence fAng of Banach spaces of holomorphic functions in D and get the
corresponding result that fn ± B 2B for any fn 2 An. Derivatives may be treated
similarly, but we omit the details.

Finally in this section, we consider the case f�t� � ct 2, for c > 0, in Theorem
2; that is, let I be an inner function satisfying

�1ÿ jz j2�jI 0�z�j< c�1ÿ jI�z�j2�2:�2:2�
For any a 2 T consider the holomorphic function

Fa � �a� I �=�aÿ I �:
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Since Re Fa > 0 for z 2D, there exists a positive measure ja in T such that

Re Fa�z� �
Z
T

P�z; y� dja�y�

for all z 2D. Since I is inner, the measures ja are singular and a simple
calculation shows that for all a 2 T,

kFakB < 8c:

Thus the measures ja satisfy the Zygmund condition uniformly in a. In other
words, there is a constant C1 such that

jja�J � ÿ ja�J 0�j< C1jJ j
for all a 2 T and all J, J 0.

Denote by A�I � the j-algebra generated by the preimages under I of the
Lebesgue measurable sets in T and the sets of measure 0.

Theorem 2.6. Let I be an inner function satisfying (2.2), and let h 2 L1�T� be
measurable with respect to the j-algebra A�I �. Then the Cauchy transform of h,
that is,

F�z� �
Z
T

h�y� dy

1ÿ yz
for z 2D;

is in the Bloch space B.

Proof. We claim that for any g 2 L1�T� and any I inner we have

1

2p

Z 2p

0

g�I�ei v��
1ÿ eÿi vz

dv �
X

n <ÿ1

bg�n��I�0��ÿn � 1

2p

Z 2p

0

g�ei v� dv

1ÿ eÿi v I�z� :

One proves this for g�y� � yn with n 2 Z, applying Cauchy's formula when n > 0
or the mean value theorem when n < 0.

Now there exists g 2 L1�T� such that h � g ± I and it suf®ces to show thatZ 2p

0

g�ei v�
1ÿ eÿi v I�z� dv 2B:

We observe that the function

f �z� �
Z 2p

0

g�ei v�
1ÿ eÿi v z

dv

belongs to H�w� where w�t� � �1ÿ t�ÿ1. If I is an inner function satisfying (2.2)
then the proof of Corollary 2.4 shows that f ± I 2B as required.

The following corollary is now immediate.

Corollary 2.7. Under the assumptions of Theorem 2.6, the function

F�x� �
Z x

0
h�ei t� dt; with h 2 L1;

belongs to the Zygmund class L��R�.
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3. Inner functions in the small hyperbolic Lipschitz space

As before we consider the equation

Re Ha�z� � Re
a� f �z�
aÿ f �z� �

Z
T

P�z; y� dja�y�;�3:1�

where a 2 T, f 2 H 1 with k f k1 < 1 and ja�y� is the associated positive
probability measure on T. The function f is inner if and only if the measure ja

is singular for some a 2 T. In particular, if ja is singular for some a 2 T then ja

is singular for all a 2 T. Also, the support of ja is a ®nite set if and only if f is a
®nite Blaschke product. So this condition is also independent of a 2 T. However,
the fact that ja satis®es some property usually does not imply that jb satis®es the
same property if b 6� a. See [1], where some examples are considered.

Nevertheless, the fact that f satis®es the conclusion of Theorem 3 can be
rephrased in terms of ja, with a 2 T.

Proposition 3.1. Suppose that f 2 H 1 with k f k1 < 1. The following
assertions are equivalent:

lim
j z j! 1

�1ÿ jz j2�j f 0�z�j
1ÿ j f �z�j2 � 0;�a�

Z
T

y dja�y�
�1ÿ yz�2

���� ���� � o�1�
Z
T

dja�y�
j1ÿ yz j2 as jz j ! 1ÿ;�b�

lim
j z j! 1ÿ

�1ÿ jz j2�jH 0a�z�j
Re Ha�z�

� 0;�c�

where f , Ha and ja are related by (3.1).

Proof. Fix a 2 T. If Ha � �a� f ��aÿ f �ÿ1, then f � a�Ha ÿ 1��Ha � 1�ÿ1 and

1ÿ j f j2 � 4 Re Ha

j1� Haj2
; f 0 � 2aH 0a

�Ha � 1�2 :
Thus,

jH 0aj
Re Ha

� 2j f 0j
1ÿ j f j2 :

Thus condition (a) may be written as

lim
j z j! 1

�1ÿ jz j2�jH 0a�z�j
Re Ha�z�

� 0

and since

H 0a�z� � 2

Z
T

y dja�y�
�1ÿ yz�2 ;

and

Re Ha�z� �
Z
T

�1ÿ jz j2� dja�y�
j1ÿ yz j2 ;

the result follows.
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The proof of Theorem 3 now follows from Proposition 3.1, Theorem 4 and the
existence of singular symmetric measures. We may also prove Theorem 3 from
the following proposition.

Proposition 3.2. Let j be a positive measure on T and set

S�j��z� � exp ÿ
Z
T

y� z

yÿ z
dj�y�

� �
:

Then j is symmetric if and only if

lim
j z j! 1ÿ

�1ÿ jz j2�jS�j�0�z�j
jS�j��z�j log�jS�j��z�jÿ1� � 0:

Proof. If

H�z� �
Z
T

y� z

yÿ z
dj�y� for z 2D;

then

�1ÿ jz j2�jS�j�0�z�j
jS�j��z�j log�jS�j��z�jÿ1� �

�1ÿ jz j2�jH 0�z�j
Re H�z� ;

and the result follows from Theorem 4.

Note that whenever j is a singular symmetric measure, then Theorem 3 holds
for I � S�j�.

There is yet another way of proving Theorem 3. In [3], Bishop has constructed
a Blaschke product in B0. In fact, if

m �
X

z ;B�z��0

�1ÿ jz j2�dz;

then his construction satis®es

lim
jQ j! 0

m�Q�
m�Q 0� � 1;�3:2�

where, as before, Q and Q 0 are contiguous Carleson squares of the same size.
Applying Theorem 5 one can easily show that (3.2) implies that

lim
j z j! 1

�1ÿ jz j2�jB 0�z�j
1ÿ jB�z�j2 � 0:

Observe also that, by Proposition 3.1 and Theorem 4, the corresponding singular
measures ja, with a 2 T, will be symmetric.

The next corollary follows from Theorem 3 and Theorem 1 in [14].

Corollary 3.3. There exists an inner function I such that the composition
operator C�I � maps B into B0 compactly.

Proof of Theorem 1 and Corollaries 1 and 2. We set

I�z� � B�I0�z��
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where B satis®es the hypotheses of Theorem 2 and I0 the hypotheses of Theorem
3. Then

�1ÿ jz j2�jI 0�z�j
f�1ÿ jI�z�j2� �

�1ÿ jz j2�jB 0�I0�z��j jI 00�z�j
f�1ÿ jB�I0�z��j2�

<
�1ÿ jz j2�jI 00�z�j

1ÿ jI0�z�j2
! 0 as jz j ! 1ÿ:

Corollaries 1 and 2 then follow also from Corollaries 2.4 and 2.5 by composing
with the same inner function I0. Observe that in any of these results the inner
function whose existence is asserted can be chosen to be singular or a Blaschke
product. Moreover Remarks 2 and 3 after Corollary 2.4 and the Remark after
Corollary 2.5 apply with B replaced by B0.

Ideals in the space of inner functions
Let D be the set of inner functions I for which

lim
j z j! 1ÿ

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 � 0:

We note that D is an ideal in the space of inner functions with respect to
composition from the left. In fact, if I 2D and f 2 H 1 with kfk1 < 1 then it
follows from Schwarz's lemma that

�1ÿ jz j2�jf0�I�z��j jI 0�z�j
1ÿ jf�I�z��j2 <

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 :

This shows again that the inner function in Theorem 3 can be taken to be a
singular inner function as well as a Blaschke product.

The next result asserts that the only primary ideals (with respect to left
composition) of inner functions contained in B0 are the ones given by functions in D.

Proposition 3.4. Let I be an inner function such that f ± I 2B0 for any
inner function f. Then I 2D.

Proof. It is obvious that I 2B0. If I 62D then there exists fzng Ì D such that

lim
n!1 jI�zn�j � 1

and

�1ÿ jznj2�jI 0�zn�j
1ÿ jI�zn�j2

> d > 0

for n � 1; 2; 3; . . . : Passing to a subsequence, if necessary, we may assume that
fI�zn�g forms an interpolating sequence for H 1 . If f is the corresponding
interpolating Blaschke product, then for n � 1; 2; 3; . . . one has

�1ÿ jI�zn�j2�jf0�I�zn��j> C;

and

�1ÿ jznj2�jI 0�zn�j jf0�I�zn��j> C
�1ÿ jznj2�jI 0�zn�j

1ÿ jI�zn�j2
> Cd;

contradicting the fact that f ± I 2B0.
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It is worth mentioning that there are no ideals with respect to composition from
the right contained in B0. Indeed if one considers the singular inner function

f�z� � exp ÿ 1� z

1ÿ z

� �� �
;

then I ± f does not belong to B0 for any non-constant analytic function I. In fact,
if z! 1 along a suitable horocycle then the quantity

�1ÿ jz j2�jI 0�f�z��j jf0�z�j
cannot tend to zero, no matter what I is.

However, there do exist non-trivial right ideals. For instance, if a > 0 then
the set

Da �
�

f : f inner,
�1ÿ jz j2�j f 0�z�j
�1ÿ j f �z�j2�a�1

� O�1� as jz j ! 1

�
is a bilateral ideal. It is interesting to observe that if f 2Da and g 2Db then
f ± g 2Da�b.

Let us next consider f�t� � t 2 in Theorem 1 so that I is an inner function satisfying

lim
j z j! 1

�1ÿ jz j2�jI 0�z�j
�1ÿ jI�z�j2�2 � 0:�3:3�

Theorem 3.5. Let I be an inner function satisfying (3.3) and let ja, for
a 2 T, be the corresponding singular measures de®ned by (3.1). Then ja are
(uniformly in a 2 T) Kahane measures, that is,

lim
j J j! 0

1

jJ j �ja�J � ÿ ja�J 0�� � 0

uniformly for a 2 T.

Proof. It is well known that the Herglotz integral of a positive measure is in
B if and only if the measure is Zygmund, and it is in B0 if and only if the
measure is in the small Zygmund class (see [18, p. 156]). So it is suf®cient to
observe that the functions �a� I ��aÿ I �ÿ1 are in B0 and

sup
a

sup
1> j z j> 1ÿ r

�1ÿ jz j2� a� I

aÿ I

� �0
�z�

���� ����! 0 as r ! 1:

Observe that Proposition 3.1 and Theorem 4 also show that ja are (uniformly
in a 2 T) symmetric measures.

The following theorem, whose proof is omitted, is established in a similar
manner to Theorem 2.6 and Corollary 2.7. Recall that given an inner function I,
A�I � denotes the j-algebra generated by the preimages under I of the Lebesgue
measurable sets in T and the sets of measure 0.

Theorem 3.6. Let I be an inner function satisfying (3.3) and let f 2 L1�T� be
measurable with respect to the j-algebra A�I �. Then

(a) the function

G�z� �
Z
T

f �y� dy

1ÿ yz
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belongs to B0, and

(b) the function

F�x� �
Z x

0
f �ei t� dt

belongs to l��R�.

If one chooses f as the characteristic function of Iÿ1�J �, one obtains Corollary
3 of § 1.

4. Proofs of Theorems 4 and 5

To prove Theorem 4 we restate condition (a) asZ
T

P�z; y� dj�y�
t�z; y�

���� ���� � o�1�
Z
T

P�z; y� dj�y� as jz j ! 1ÿ�4:1�

where

t�z; y� � yÿ z

1ÿ zy
�y 2 T�:

It is readily shown that this is equivalent to (a).
Given a point z � rei v 2D, denote by J�z� the arc of T with centre ei v and

(normalized) length 1ÿ r. Also, given an arc J Ì T and M > 0 let MJ be the arc
of the same centre and with jMJ j � M jJ j.

Part I: (b) ) (a). Assume that (b) holds. We ®rst prove the following.

Lemma 4.1. Given « > 0 there exist N > 0 and d > 0 such that if
1ÿ d < jz j < 1, then Z

TnNJ�z�
P�z; y� dj�y� < «

Z
T

P�z; y� dj�y�:

The lemma states, roughly speaking, that contributions to the Poisson integral
from far away do not matter.

Proof. Given « > 0, choose d so that if J is an arc of T with jJ j < d then

jj�J� ÿ j�J 0�j < «j�J�
and hence

jj�J È J 0� ÿ 2j�J �j < «j�J �:
Hence, if 2kjJ j < d, we have

j�2kJ� < �2� «�kj�J �:
We break the integral on the left into dyadic pieces. Let M denote the integer part

of log2�d=�1ÿ jz j��, so that 2M�1ÿ jz j�, d. Then, using crude estimates we obtainZ
TnNJ�z�

P�z; y� dj�y�< C
XM

k� log2 N

j�2kJ�z��
22k�1ÿ jz j� �

X
k >M

j�2kJ�z��
22k�1ÿ jz j�

 !
;

where C is an absolute constant.
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The ®rst sum is bounded by

j�J�z��
jJ�z�j

X1
k� log2 N

2� «

4

� �k

< «

Z
T

P�z; y� dj�y�;

if N is suf®ciently large.
Observe now that, for any « > 0,

j�J�
jJ j2 >

4

2� «

� �
m�2J�
j2J j2

if jJ j is suf®ciently small. Iterating this inequality, we obtain

j�J�
jJ j2 > C

4

2� «

� �n

! 1 as n! 1:

Thus

lim
j J j! 0

j�J �
jJ j2 � 1:�4:2�

The second sum above can be estimated by

2j�T�
22M4�1ÿ jz j�,

j�T�
d2
�1ÿ jz j�

and from (4.2) if 1ÿ jz j is suf®ciently small, this does not exceed

«
j�J�z��
1ÿ jz j < «

Z
T

P�z; y� dj�y�;
as required.

Now let l > 0 be a small number to be ®xed later and divide NJ�z� into N = l
arcs each of length l�1ÿ jz j�. Call these arcs Jk and let the centre of each arc be
yk � ei vk . ThenZ

Jk

P�z; y� dj�y�
t�z; y� ÿ P�z; yk�

j�Jk�
t�z; yk�

���� ����< �1ÿ jz j2�
Z

Jk

y

�yÿ z�2 ÿ
yk

�yk ÿ z�2
���� ���� dj�y�

< �1ÿ jz j2�
Z

Jk

jyÿ ykj jyyk ÿ z2j
jyÿ z j2 jyk ÿ z j2 dj�y�

< 4l

Z
Jk

P�z; y� dj�y�;

since jyÿ ykj < l�1ÿ jz j� and jyyk ÿ z2j, jyk ÿ z j. Now sum over k to obtain���� Z
NJ�z�

P�z; y� dj�y�
t�z; y� ÿ

XN = l

k�1

P�z; yk�
j�Jk�

t�z; yk�
���� < 4l

Z
T

P�z; y� dj�y�:

The estimate (4.1) follows on taking l such that 4l < « provided that we can
show that ����XN = l

k�1

P�z; yk�
j�Jk�

t�z; yk�
����<

1

N

Z
T

P�z; y� dj�y��4:3�

for any z 2D such that jz j is close enough to 1.
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The number of arcs Jk is large but independent of z. Hence if jz j is close
enough to 1, we have

jj�Jk� ÿ j�Ji�j <
«

2p
j�Jk�; for 1 < k; j < N = l:

We write

XN = l

k�1

P�z; yk�
j�Jk�

t�z; yk�
�
XN = l

k�1

P�z; yk�
j�Jk� ÿ j�J1�

t�z; yk�
� j�J1�

XN = l

k�1

P�z; yk�
t�z; yk�

� T1 � T2;

say.
Now

jT1j < «
j�J1�
jJ1j

< C«

Z
T

P�z; y� dj�y�;

where C is an absolute constant, while

T2 �
j�J1�
jJ1j

XN = l

k�1

1ÿ jz j2
�yk ÿ z�2 ykjJk j

since jJkj � jJ1j for 1 < k < N = l. The sum above is a Riemann sum of the integralZ
NJ�z�

1ÿ jz j2
�yÿ z�2 dy;

which an easy calculation shows to be bounded by 1=N. The estimate (4.3)
follows on taking N large enough since

j�J1�
jJ1j

< 2
j�J�z��
jJ�z�j < C

Z
T

P�z; y� dj�y�;

where C is an absolute constant.

Part II: (a) ) (b). The proof follows closely the arguments of [3]. Consider
the pseudohyperbolic disc centred at z of radius c < 1, that is,

fw: r�w; z� < c < 1g where r�w; z� � wÿ z

1ÿ zw

���� ����:
Integrate (a) from z to w to obtain, for all c < 1,

sup
r�w; z�< c

jRe H�w� ÿ Re H�z�j
Re H�z� ! 0 as jz j ! 1:

Thus there exists a function a�r� such that

�a� a�r� ! 1 as r ! 1;

�b� sup
jRe H�w� ÿ Re H�z�j

Re H�z� : r�w; z� < a�jz j�
� �

! 0 as jz j ! 1:
�4:4�
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Lemma 4.2. Suppose that (a) holds. Then, given N > 1 there exists
d � d�N � 2 �0; 1� such that if 1ÿ d < jz j < 1, thenZ

TnNJ�z�
P�z; y� dj�y� < C

N

Z
T

P�z; y� dj�y�;

where C is an absolute constant.

Proof. Let d � d�N � be a small number, to be ®xed later, with d < 1=N.
Given z 2D, with 1ÿ jz j < d, consider the point

zN � �1ÿ N�1ÿ jz j���z= jz j�:
So, J�zN� � NJ�z� and for y 62 NJ�z� we have

jyÿ zN j < C0jyÿ z j;
where C0 is an absolute constant. Hence

P�zN ; y� > Cÿ2
0 NP�z; y�

for y 62 NJ�z�.
Now, if d > 0 is suf®ciently small and 1ÿ d < jz j < 1, we have

Re H�z�> 1
2

Re H�zN�
and henceZ

T
P�z; y� dj�y� � Re H�z�> 1

2
Re H�zN�> 1

2
Cÿ2

0 N

Z
TnNJ�z�

P�z; y� dj�y�:

Lemma 4.3. With the above notation,

j�J�z��
jJ�z�j ÿ Re H�z�
���� ���� � o�1�Re H�z� as jz j ! 1ÿ:

Proof. For a given z 2D, consider the arc

L � freiv: jvÿ arg z j < p�1ÿ d��1ÿ jz j�g
where r � r�z�, d � d�z� will be chosen later to satisfy

r ! 1; d! 0;
1ÿ r

�1ÿ jz j�d! 0; as jz j ! 1ÿ:

Given « > 0, Lemma 4.2 shows that, for any w 2 L,

Re H�w� ÿ
Z

J�z�
P�w; y� dj�y�

���� ���� < « Re H�z�

provided that �1ÿ r�=d�1ÿ jz j� is suf®ciently small. Thus

sup
w2L

1

Re H�z� Re H�z� ÿ
Z

J�z�
P�w; y� dj�y�

���� ����! 0 as jz j ! 1ÿ:

Integrating along the arc L we obtain

jL jRe H�z� ÿ 1

2p

Z
J�z�

Z
L

P�w; y� dj�y� jdw j
���� ���� � o�1�jL jRe H�z� as jz j ! 1ÿ:
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Now jJ�z�j ÿ jL j � d�1ÿ jz j� ! 0 and

1

2p

Z
L

P�w; y� jdwj ! 1 as jz j ! 1ÿ

if jvÿ arg z j < p�1ÿ c��1ÿ jz j�. This shows that for any small number c > 0, we have

lim inf
j z j! 1

j�J�z��
jJ�z�jRe H�z�> 1ÿ c

and

lim sup
j z j! 1

j��1ÿ c�J�z��
jJ�z�jRe H�z� < 1ÿ c:

Consider the point w such that J�w� � �1ÿ c�J�z�, that is,

w � �1ÿ �1ÿ c��1ÿ jz j���z= jz j�:
The second inequality gives

lim sup
jw j! 1

j�J�w��
�1ÿ c�ÿ1jJ�w�jRe H�w�< 1ÿ c:

Thus,

1ÿ c < lim inf
j z j! 1

j�J�z��
jJ�z�jRe H�z�< lim sup

j z j! 1

j�J�z��
jJ�z�jRe H�z�< 1;

for any small number c > 0. This proves the lemma.

The proof that (a) ) (b) now follows immediately. For contiguous arcs J, J 0

with centres z and z 0 (and, as always, the same length),

j�J �
jJ j ÿ

j�J 0�
jJ 0j

���� ����<
j�J�
jJ j ÿ Re H�z�
���� ����� j�J 0�

jJ 0j ÿ Re H�z 0�
���� ����

� jRe H�z� ÿ Re H�z 0�j:
Lemma 4.3 shows that the ®rst two terms are bounded by «�Re H�z� � Re H�z 0��.

Also z and z 0 are within a bounded hyperbolic distance of each other and hence
by (4.4) the last term is also less than «�Re H�z��. Summing up, we have

j�J�
jJ j ÿ

j�J 0�
jJ 0j

���� ���� < 4« Re H�z� < 5«
j�J �
jJ j ;

as required.
A little consideration shows that the proof of Theorem 4 may be applied to

prove the following more general result.

Theorem 4.4. Let f fz: z 2Dg be a family of positive continuous functions on
T. Assume that there exist constants C;M > 0 such that for all z 2D and all
y1; y2 2 T we have

Mÿ1 < fz�y1�< M;

j fz�y1� ÿ fz�y2�j<
C

1ÿ jz j jy1 ÿ y2j:
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Assume, further, that j is a symmetric measure on T. Then

(4.5)

lim
j z j! 1

1

j�J�z��
Z
T

fz�y�P�z; y� dj�y�
� ��

1

jJ�z�j
Z
T

fz�y�P�z; y�
jdyj
2p

� �� �
� 1:

Proof. (This is merely sketched.) As in Lemma 4.1 one may replace the
integrals in (4.5) by integrals on NJ�z� for large N. The Riemann sum argument
used to prove that (b) ) (a) can now be applied.

Corollary 4.5. Let j be a symmetric measure on T and suppose that f is a
continuous function on T. Then

lim
j z j! 1ÿ

1ÿ jz j
j�J�z��

Z
T
� f ± tz��y�P�z; y� dj�y� �

Z
T

f �y� jdyj
2p

where, as before,

tz�y� �
yÿ z

1ÿ zy
:

Proof. Theorem 4.4 can be applied directly if the continuous function satis®es
a Lipschitz condition,

j f �y1� ÿ f �y2�j< C jy1 ÿ y2 j
on T. Moreover for f � 1 one obtains

lim
j z j! 1

1ÿ jz j
j�J�z��

Z
T

P�z; y� dj�y� � 1:�4:6�

Consequently,

sup
z2D

1ÿ jz j
j�J�z��

Z
T

P�z; y� dj�y� < 1:

Applying the Banach±Steinhaus theorem, we obtain the desired equality for any
continuous function f .

Corollary 4.6. Let j be a symmetric measure on T and f be a continuous
function on T. Then

lim
j z j! 1

R
T� f ± tz��y�P�z; y� dj�y�R

T P�z; y� dj�y� �
Z
T

f �y� jdyj
2p

:

Proof. It suf®ces to apply (4.6) and Corollary 4.5.

Observe that by taking f �z� � z, this corollary proves (b) ) (a) in Theorem 4.

Proof of Theorem 5. This is similar to that of Theorem 4 and so is only sketched.

Part I: (b) ) (a). Using the characterization of the inner functions in B0 given
by Bishop in [3] one can easily see that I 2B0. Hence in proving (a) one may
assume that jI�z�j> 1

2
. A computation with logarithmic derivatives shows that

�1ÿ jz j2�jI 0�z�j � jI�z�j
Z
D

P�z; y� dm�y�
t�z; y�

���� ����;�4:7�
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while

1ÿ jI�z�j2 , log jI�z�jÿ2 ,
Z
D

P�z; y� dm�y�

and it is these last two integrals which one has to compare.
For ®xed h > 0, condition (2.b) of Theorem 5 yields an N > 0 such thatZ

DnNQ�z�
P�z; y� dm�y� < h

Z
D

P�z; y� dm�y�;

if jz j is suf®ciently close to 1. For such a z consider the �N =h� disjoint Carleson
squares, Qk say, with k � 1; 2; . . . ; �N =h�, of size h�1ÿ jz j� contained in NQ�z�.
Since I 2B0 and jI�z�j> 1

2
, the zeros of I are (hyperbolically) distant from z and

we can assume that the zeros of I in NQ�z� are contained in
S

k Qk. Thus

m�NQ�z�� � m

�[
k

Qk

�
:

As in the previous proof, the principal idea is to discretize the integral in (4.7)
and compare it with an integral with respect to Lebesgue measure. If we write
A , B to mean

jAÿ B j< h

Z
D

P�z; y� dm�y�;

then given points yk 2 Qk Ç T, one can show, as before, thatX
k

Z
Qk

P�z; y� dm�y�
t�z; y�,

X
k

P�z; yk�
m�Qk�
t�z; yk�

,
m�Q�z��
jQ�z�j

X
k

1ÿ jz j2
�yk ÿ z��1ÿ zyk�

jQkj

using (1.b) of Theorem 5 in the second estimate. Finally, one only has to observe
that the last sum is a Riemann sum for the integralZ

NQ�z�ÇT

1ÿ jz j2
�yÿ z�2 dy

and that this is bounded by 1=N.

Part II: (a) ) (b). As in the proof of Theorem 4, one can show that, given
h > 0, there exist N > 0 and d > 0 such thatZ

DnNQ�z�
P�z; y� dm�y� < h

Z
D

P�z; y� dm�y��4:8�

if 0 < 1ÿ jz j < d. To prove (1.b) of Theorem 5, it is suf®cient to show that, for
any « > 0,

sup
z: j I�z�j> «

j�m�Q�z��= jQ�z�j� ÿ log jI�z�jÿ1j
log jI�z�jÿ1

! 0 as jz j ! 1ÿ:�4:9�

The estimate (4.9) can be proved with the same integration technique used in
the corresponding implication in Theorem 4. Finally, to prove (2.b) of Theorem 5
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we use (4.8) and (4.9) to show thatZ
D n NQ�z�

P�z; y� dm�y� < 2h
m�Q�z��
jQ�z�j

if m�Q�z�� > « jQ�z�j. One now estimates the left-hand side dyadically to obtain
(2.b). The details are omitted.

5. The decay in Schwarz's lemma and symmetric and Kahane measures

The existence of the function H�z� of Theorem 4 as well as the existence of the
inner function of Theorem 3 both depend ultimately on the existence of singular
symmetric measures. In connection with the Beurling±Ahlfors extension theorem
for quasi-conformal mappings, L. Carleson has shown [5] that such measures do
exist. Indeed if w�t� is a continuous increasing function on �0; 1� with w�0� � 0,
such that tÿ1=2w�t� is decreasing and such thatZ

0

w2�t�
t

dt � 1;�5:1�

then there exists a singular measure j on R such that

sup
x2R

j�x; x� h�
j�xÿ h; x� ÿ 1

���� ����< w�h� for h > 0:�5:2�

Thus choosing, for instance, w�t� � �log�1= t ��ÿa, with a < 1
2
, one obtains a

singular symmetric measure. The integral condition (5.1) is also necessary for the
existence of a singular measure satisfying (5.2), as was also established in [5].
Actually, if j is a measure satisfying (5.2) andZ

0

w2�t �
t

dt < 1;

then j is absolutely continuous and its derivative is in L2
loc.

A similar situation occurs for inner functions.

Theorem 5.1. Let w be a positive continuous function on �0; 1�. Assume thatZ
0

w2�t �
t

dt < 1:

Then, there is no non-constant inner function I such that

�1ÿ jz j2� jI 0�z�j
1ÿ jI�z�j2 < w�1ÿ jz j�;

for all z 2D.

Proof. Assume that such an inner function I exists. Consider a positive
singular measure j such that

H�z� � 1� I�z�
1ÿ I�z� �

Z 2p

0

ei v � z

ei v ÿ z
dj�v� for z 2D:
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Then, for all z 2D we have

H 0�z�
H�z� �

2I 0�z�
1ÿ I�z�2 :

So,

�1ÿ jz j2� jH
0�z�j2

jH�z�j2 <
w2�1ÿ jz j�

1ÿ jz j2 for z 2D:

Therefore log H is an analytic function whose boundary values are of vanishing
mean oscillation (see [9, Chapter VI]). In particular, H belongs to the Hardy

space H p, for any p < 1. Since j is a singular measure, Re H�ei v� � 0 for almost
every ei v 2 T, and this is a contradiction (see [9, p. 95]).

Observe that the previous argument also shows, assuming the integral condition
on w, that the only inner functions I satisfying

�1ÿ jz j2�jI 0�z�j< w�1ÿ jz j2� for z 2D;

are the ®nite Blaschke products.
The converse of Theorem 5.1 is the following.

Theorem 5.2. Let w be a positive increasing function on �0; 1�, with
w�0�� � 0. Assume that there exist constants k and d such thatew�t �< kw�t� if j t j < d;

where ew�t� is given by (1.4), and thatZ
0

w2�t � dt

t
� 1:

Then, there exists an inner function I such that

�1ÿ jz j2� jI 0�z�j
1ÿ jI�z�j2 < w�1ÿ jz j� for z 2D:

We can then use the composition process. Let f be a positive continuous
function with f�0�� � 0 as in Theorem 2, and let B0 be the interpolating
Blaschke product of Theorem 2.

Theorem 5.3. With w, B0, f and I as above, set B � B0 ± I. Then

�1ÿ jz j2�jB 0�z�j
f�1ÿ jB�z�j2� � o�w�1ÿ jz j2�� as jz j ! 1ÿ:

This permits us to establish the analogues of Corollaries 1 and 2 with B0

replaced by

B0�w� � f : f analytic in D; lim
j z j! 1

�1ÿ jz j2�j f 0�z�j
w�1ÿ jz j2� � 0

� �
;

assuming always that w satis®es the conditions in Theorem 5.2.
As before, the case f�t� � t 2 in Theorem 5.3 is of special interest. If the inner

function B is such that

lim
j z j! 1ÿ

�1ÿ jz j2�jB 0�z�j
�1ÿ jB�z�j2�2w�1ÿ jz j2� � 0;
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then the corresponding family of positive singular measures ja, with a 2 T,
satisfy, uniformly in a, the following two conditions simultaneously:

jja�J � ÿ ja�J 0�j< w�jJ j�ja�J �;
jja�J � ÿ ja�J 0�j< w�jJ j�jJ j:

�5:3�

The point is, however, that starting from a given symmetric measure j, a whole
family fja: a 2 Tg of singular Kahane symmetric measures, with the additional
property that ja and jb are mutually singular if a 6� b, can be obtained.

The condition (5.3) follows from the following re®ned version of (a) ) (b) of
Theorem 4.

Theorem 5.4. Let H be analytic in D with Re H�z� > 0 for z 2D. Let j be
the corresponding measure on T for which

Re H�z� �
Z
T

P�z; y� dj�y�:
Assume that

�1ÿ jz j2�jH 0�z�j
Re H�z� < a�1ÿ jz j�

for all z 2D, where a is a positive increasing function on �0;p�, with
a�0�� � 0. Then

jj�J � ÿ j�J 0�j < Ca�pjJ j�j�J �;
for any suf®ciently small arc J of the unit circle.

Proof. We will use the following result due to N. G. Makarov. Given an arc J
of the unit circle, denote by zJ the point t�0�, equidistant from the ends of J,
where t is the automorphism of the unit disc mapping the arc T Ç fRe z > 0g onto
J. Also, denote the domain t�fz 2D: Re z > 0g� by D�J �.

Lemma [15, p. 6]. Let b be an analytic function in D, and J an arc of T, and
assume that

�1ÿ jz j2�jb 0�z�j< a for z 2 D�J �;
for some a < 2. Then

1

jJ j
Z

J
�exp�b�y� ÿ b�zJ�� ÿ 1� jdyj

2p

���� ����< C�a�:

Considering Hr�z� � H�rz�, with r < 1, we may assume that H is analytic in a
neighbourhood of the unit disc. Given an arc J of the unit circle, replacing H by
H ÿ i Im H�zJ�, we also may assume that H�zJ� > 0. Observe that the function
b � log H satis®es

�1ÿ jz j2�jb 0�z�j< a�1ÿ jz j�:
Since 1ÿ jzJ j< pjJ j, we obtain

1

jJ j
Z

J
Re H�y� jdyj

2p
ÿ Re H�zJ�

���� ����< Ca�p jJ j�Re H�zJ�:
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Hence,

j�J �
jJ j ÿ Re H�zJ�

���� ����< Ca�p jJ j�Re H�zJ�:
Since

jRe H�zJ� ÿ Re H�z 0J�j< C2 a�p jJ j�Re H�zJ�;
we deduce that

jj�J � ÿ j�J 0�j< C3a�p jJ j�j�J �:

Theorem 5.2 follows from the following re®ned version of (b) ) (a) of
Theorem 4.

Theorem 5.5. Let j be a positive measure of the unit circle. Assume that

jj�J � ÿ j�J 0�j< a�jJ j�j�J �;
for any arc J of the unit circle, where a is a positive increasing function on �0; 1�,
a�0�� � 0. Then, the function

H�z� �
Z
T

y� z

yÿ z
dj�y�

satis®es

�1ÿ jz j2�jH 0�z�j
Re H�z� < Cea�1ÿ jz j�;

for all z 2D, where

ea�t � � t

Z 1

t

a�s�
s2

ds� ta�1�:

Remark. Observe that ea�t �> a�t�, for 0 < t < 1, and ea < Ca if a�t�= t 1ÿ« is
decreasing for some positive «.

Proof of Theorem 5.2. By the Carleson Theorem, when w�t�= t 1= 2 decreases,
or applying Theorem 6.3 observing that ew�t�= t decreases, we see that there exists
a positive singular measure j on T such that

jj�J � ÿ j�J 0�j< Cw�jJ j�j�J �;
for any arc J of the unit circle.

Thus, Theorem 5.5 gives

�1ÿ jz j2� jH
0�z�j

Re H�z�< C1ew�1ÿ jz j�< C2 w�1ÿ jz j�;

for all z 2D. So, one can choose I � �H ÿ 1��H � 1�ÿ1 or I � exp�ÿH �.
Proof of Theorem 5.5. Let J and D be arcs of the unit circle, with J Ì D.

L. Carleson observed in [5, Lemma 4] that if a�D� < 1
2

, one has

j�J �
j�D� ÿ

jJ j
jD j

���� ����< Ca� 1
2
jD j�;

where C is an absolute constant. Actually, if a increases, then the argument of
L. Carleson shows that C � 1. We need more information on the measure j.
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Lemma 5.6. Assume that the measure j and the function a satisfy the
conditions of Theorem 5.5. Let J and D be arcs of the unit circle, with J Ì D,
jD j> 2jJ j and a�D� < 1

8
. Then,

j�J �
jJ j exp ÿ

Z jD j
j J j

4a�t�
t

dt

� �
<

j�D�
jD j <

j�J �
jJ j exp

Z jD j
jJ j

4a�t�
t

dt

� �
:

Proof. Choose a natural number n such that 2njJ j < jDj< 2n�1jJ j, and arcs
J Ì K0 Ì K1 Ì . . . Ì Kn � D, with jKi�1j � 2jKij, for i � 0; . . . ; nÿ 1, and
jK0j< 2jJ j. Then for i � 0; . . . ; nÿ 1 we have

j�Ki�
jKi j

�1� 1
2
a�jKij��ÿ1 <

j�Ki�1�
jKi�1j

<
j�Ki�
jKij

�1� 1
2
a�jKij��

and

j�J�
jJ j �1� 2a�jJ j��ÿ1 <

j�K0�
jK0j

<
j�J �
jJ j �1�

17
8

a�jJ j��:

Since,

1� 1
2
a�jKij�< exp

Z 2 jKi j

jKi j
a�t�

t

dt

2 log 2

� �
and

1� 17
8

a�jJ j�< exp

Z 2 j J j

j J j
17a�t�

8�log 2�t dt

� �
;

the lemma follows.

The following result follows from Lemma 5.6.

Lemma 5.7. Under the assumptions of Lemma 5.6, one has

j�J �
jJ j ÿ

j�D�
jD j

���� ����< min
j�J �
jJ j ;

j�D�
jD j

� �
exp

Z jD j
j J j

4a�t �
t

dt

� �
ÿ 1

� �
:

As in Theorem 4, to prove Theorem 5.5 it is suf®cient to show the
following estimate: Z

T

y�1ÿ jz j2�
�1ÿ yz�2 dj�y�< Cea�jJ j� j�J �jJ j ;

where J � J�z�, for all z 2D. Consequently, it is suf®cient to prove thatZ
T

y dj�y�
�1ÿ yz�2 < Cea�jJ j� j�J �jJ j2 ;�5:4�

for all z 2D. Consider the (signed) measure m � j ÿ �2p�ÿ1jJ jÿ1j�J � jdyj. It is
clear that Z

T

y dj�y�
�1ÿ yz�2 �

Z
T

y dm�y�
�1ÿ yz�2 :
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An integration by parts shows that the last integral is bounded by a multiple of

jm j�T� � jJ jÿ2

Z 1= j J j

0
minf1; sÿ3g�jm��sJ ���j � jm��sJ �ÿ�j� ds:

Here if z � rei t, �sJ ��, �sJ �ÿ denote, respectively, the arcs,

�sJ �� � fei �t�J�: 0 < J < ps�1ÿ jz j�g; �sJ �ÿ � fei �tÿJ�: 0 < J < ps�1ÿ jz j�g:
Hence (5.4) will follow if we prove the following two estimates:

jm j�T�< Cea�jJ j� j�J �jJ j2 ;�5:5�

Z 1= j J j

0
minf1; sÿ3gjm��sJ ���j ds < Cea�jJ j�j�J �:�5:6�

Since jm j�T�< j�T� � j�J �= jJ j, (5.5) follows from the fact that

inf
J

a�jJ j�j�J �
jJ j2

� �
> 0:

Actually, by Lemma 5.6, one has

j�J �
jJ j > C1 exp ÿ

Z 1

j J j
4a�t �

t
dt

� �
> C2

jJ jea�jJ j�
because

lim inf
t! 0

R 1
t a�s� ds=s2

exp
ÿ R 1

t 4a�s� ds=s
� > 0;

as a simple calculation shows.
Now let us prove (5.6). One can assume that jJ j is small. Observe that

m��sJ ��� � j��sJ ��� ÿ 1
2

sj�J �. Thus, for 0 < s < 1, Lemma 5.7 gives

jm��sJ ���j< jj��sJ ��� ÿ sj�J��j � s jj�J�� ÿ 1
2
j�J �j

< Csj�J � exp

Z j J j
s j J j= 2

4a�u�
u

du

� �
ÿ 1

� �
< Csj�J ���2=s�4a�j J j� ÿ 1�:

Consequently, Z 1

0
jm��sJ ���j ds < 3Ca�jJ j�j�J �:

Also, using Lemma 5.7, for 1 < s < 2 one has

jm��sJ ���j< jj��sJ ��� ÿ sj�J��j � s jj�J�� ÿ 1
2
j�J �j

< 4Ca�jJ j�j�J �
and Z 2

1
jm��sJ ���j ds < 4Ca�jJ j�j�J �:
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Now, for s > 2, Lemma 5.7 gives

jm��sJ ���j< jj��sJ ��� ÿ sj�J��j � s jj�J�� ÿ 1
2
j�J �j

< sj�J�� exp

Z s jJ j=2

j J j= 2

4a�t�
t

dt

� �
ÿ 1

� �
� sa�jJ j�j�J �

< sj�J�� exp

Z s jJ j

j J j
4a�t�

t
dt

� �
ÿ 1

� �
� sa�jJ j�j�J �:

Set s0 � ea�jJ j�ÿ1. SinceZ s0 jJ j

j J j
a�t�

t
dt <

Z s0j J j

jJ j
ea�t�

t
dt < s0jJ j

ea�jJ j�
jJ j � 1;�5:7�

we deduce that for 2 < s < s0 ,

jm��sJ ���j< Csj�J �
Z s jJ j

jJ j
a�t �

t
dt:�5:8�

Consequently,Z s0

2
jm��sJ ���jsÿ3 ds < Cj�J �

Z 1

2
sÿ2

Z s jJ j

jJ j=2

a�t�
t

dt ds

< Cj�J �jJ j
Z 1

jJ j
a�t�
t 2

dt < Cea�jJ j�j�J �:
Observe that Lemma 5.6 and estimates (5.7) and (5.8) imply that
j��s0 J ���< Cs0 j�J �. Take d > 0 such that a�d�< 1

8
. For s0 < s < d= jJ j, Lemma

5.6 gives

j��sJ ���<
2s

s0

j��2s0 J ��� exp

Z s jJ j

s0 j J j
4a�t�

t
dt

� �
< Csj�J ��2s=s0�1=2:

Consequently, Z d= j J j

s0

jm��sJ ���jsÿ3 ds < C
j�J �

s0

� Cea�jJ j�j�J �:
Finally, applying (5.5), one hasZ 1= j J j

d= j J j
jm��sJ ���jsÿ3 ds <

1

d2
j�T� � j�J �

jJ j
� �

jJ j2 <
C

d2
ea�jJ j�j�J �:

To prove Corollary 4 stated in the introduction we will use the following
version of Theorem 2.6.

Theorem 5.8. Let I be an inner function satisfying

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 < a�1ÿ jz j�;

for all z 2D, where a is an increasing function on �0;p�, with a�0�� � 0, such
that ea < Ca, where ea is de®ned in Theorem 5.5. Let h 2 L1�T� be a non-negative
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function, measurable with respect to the j-algebra A�I �. ThenZ
J

h jdyj ÿ
Z

J 0
h jdyj

���� ����< Ca�p jJ j�
Z

J
h jdyj;

for any arc J of the unit circle.

Proof. Take g 2 L1�T� such that h � g ± I and consider

G�z� �
Z
T

y� z

yÿ z
g�y� jdyj for z 2D:

Observe that

Re G�I�z�� �
Z
T

P�z; y�h�y� jdyj:

Since �1ÿ jz j2�jG 0�z�j< 2 Re G�z�, for all z 2D, one deduces that

�1ÿ jz j2�j�G ± I �0�z�j
Re G�I�z�� < 2a�1ÿ jz j�;

for all z 2D. Now, one can apply Theorem 5.4.

Proof of Corollary 4. Assume (b) holds. Consider the function

H�z� �
Z

E

y� z

yÿ z
jdyj for z 2D:

Then �1ÿ jz j�jH 0�z�j< Ca�1ÿ jz j� for all z 2D and hence

�1ÿ jz j�jH 0�z�j2 < C
a2�1ÿ jz j�

1ÿ jz j for z 2D:

Now, if (c) does not hold, one would deduce that H has vanishing mean
oscillation, which is a contradiction.

Assume (c) holds. Apply Theorem 5.2 to get an inner function I such that

�1ÿ jz j2�jI 0�z�j
1ÿ jI�z�j2 < a�1ÿ jz j� for z 2D:

Then, for any measurable set J of the unit circle, with 0 < jJ j < 1, let E � Iÿ1�J �
be its preimage. Now (a) follows from Theorem 5.8.

Given f 2 H 1, with k f k1 < 1, consider the family of positive measures
fja: a 2 Tg given by

Re
a� f �z�
aÿ f �z�
� �

�
Z
T

P�z; y� dja�y�:

Let w be an increasing function on �0; 1�, with w�0�� � 0. Assume that for some
a0 2 T, the measure ja0

satis®es

jja0
�J � ÿ ja0

�J 0�j< w�jJ j�ja0
�J �

for any arc J. Then, there exists a constant C such that

jja�J � ÿ ja�J 0�j< C ew�jJ j�ja�J �;
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for any arc J and for any a 2 T. In particular, if ew < Cw, the above condition
does not depend on a 2 T.

6. Riesz products

Another way of constructing a singular symmetric measure is by means of
Riesz products. These are de®ned on T as the w�-limit of the measuresYN

j�1

�1� Re�aj y
nj�� jdyj

2p

as N ! 1. Here aj are complex numbers, jajj< 1 for j � 1; 2; . . . ; and the
integers nj satisfy nj�1 =nj > 3. It is well known that the corresponding measure is

singular if
P1

j�1 jajj2 � 1. We refer to [11] for information on Riesz products.

Theorem 6.1. With the above notation assume jajj < 1 for all j and
limj!1 aj � 0. Then the measure

j � lim
N!1

YN
j�1

�1� Re�aj y
nj�� jdyj

2p

is symmetric.

Proof. Set

Fk�y� �
Yk

j�1

�1� Re�aj y
nj��; F1 � 1

and

fk�y� � 1
2

ak ynk Fkÿ1�y�:
It is clear that fk is an analytic polynomial whose non-vanishing Fourier

coef®cients lie in the interval �2ÿ1nk; 2
ÿ13nk�. Also Fk ÿ Fkÿ1 � fk � f k.

If f is a continuous function in the unit circle, set

k f kl 1 �
X
n2Z
j bf �n�j;

where bf �n� � Z
T

f �y�yn jdyj
2p

are the Fourier coef®cients.
We have

k fkkl 1 < 1
2
jakj

Ykÿ1

j�1

�1� jajj�< 2kÿ2jakj:�6:1�

Lemma 6.2. Let J be a closed arc of the unit circle and k 2N. Then the
following estimates hold:

maxJ jFkj
minJ jFkj

< exp 2pjJ j
Xk

j�1

jajjnj

1ÿ jajj

 !
;

Z
J

Fÿ1
k dj ÿ jJ j

���� ����<
6

pnk�1

sup
j > k�1

jajj:
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Proof. Considering logarithmic derivatives one gets

d

dt
log Fk�ei t�

���� ����<
Xk

j�1

jajjnj

1ÿ jajj
:

Now, an integration proves the ®rst estimate.
Replacing j by the Riesz product Fÿ1

k j, one shows that it is suf®cient to prove
the second inequality when k � 0. Let xJ be the characteristic function of J.
Applying the inequality

jbxJ�k�j<
1

p jk j with k 6� 0;

and (6.1), one deduces that

jj�J � ÿ jJ j j<
X
k 6� 0

jbj�k�j jbxJ�k�j

<
4

p

X1
j�1

k fjkl 1

nj

<
1

p

X1
j�1

2 jjajj
nj

<
6

pn1

sup
j > 1

jajj:

A similar argument can be found in [16].
Now, let J be an arc of the unit circle and let y be the common end of J and

J 0. Take k such that nÿ1
k�1 < jJ j < nÿ1

k . Applying Lemma 6.2, one has

j�J �
jJ j �

1

jJ j
Z

J
Fk Fÿ1

k dj . Fk�y�:

Here Ak . Bk means that Ak =Bk ! 1 as k ! 1. Similarly,

j�J 0�= jJ 0j. Fk�y�:
Hence j is symmetric.

Assume that �aj� satisfy the hypothesis of Theorem 6.1 and
P jajj2 � 1. Let j

be the corresponding singular symmetric measure. Observe that the measures

jt �
Y1
j�1

�1� Re�ei taj y
nj�� jdyj

2p
; where t 2 �0; 2p�;

are also singular and symmetric. Actually the proof of Theorem 6.1 shows that

lim
jJ j! 0

jt�J �
jt�J 0�

� 1;

uniformly in t 2 �0; 2p�. Moreover, if t 6� s, the measures jt and js are
mutually singular.

Given a singular symmetric measure j, we can use our composition process to
obtain families of Kahane symmetric measures. If, on the other hand, one
attempts to construct a Kahane measure by means of a Riesz product with
nj�1 =nj > 3 for all j, then P. Duren showed that

P jajj2 < 1 so the measure is
absolutely continuous [6].

Minor modi®cations of the proof of Theorem 6.1, show that, essentially, the
measures constructed by L. Carleson can also be obtained as Riesz products.
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Theorem 6.3. Let w be a positive increasing function on �0; 1� such that
w�t �= t is decreasing and Z

0

w2�t�
t

dt � 1:

Then there exists a sequence of non-negative numbers frkg, with
P1

k�0 r 2
k � 1,

such that for any sequence ak of complex numbers, jakj< rk where k � 0; 1; 2; . . . ;
the measure j associated with the Riesz productY1

j�1

�1� Re�aj y
3 j�� jdyj

2p

satis®es

j�J 0�
j�J � ÿ 1

���� ����< w�jJ j�;

for any arc J of the unit circle. Moreover if jakj � rk for k � 0; 1; 2; . . . ; the
measure j is singular.

Proof. We may assume limt! 0 w�t� � 0. Consider «k � 20ÿ1w�3ÿ kÿ1� with
k > 0. The integral condition on w givesX1

k�0

«2
k � 1:

Choose rk � «k ÿ 3ÿ1«kÿ1 with k > 1. Observe that rk > 0 because w�t �= t
decreases. Also,

P1
k�1 r 2

k � 1. Let J be an arc of the unit circle,
3ÿ kÿ1 < jJ j < 3ÿk. We now use the notation of the proof of Theorem 6.1. There
exists a point yk 2 J such that

j�J �
jJ j �

1

jJ j
Z

J
Fk Fÿ1

k dj � Fk�yk�
1

jJ j
Z

J
Fÿ1

k dj:

Now, Lemma 6.2 gives

j�J �
jJ j ÿ Fk�yk�

���� ����< Fk�yj�
6

p
sup

j > k�1

jajj< 2«k�1 Fk�yk�:

Similarly, there exists y 0k 2 J 0 such that

j�J 0�
jJ 0j ÿ Fk�y 0k�

���� ����< 2«k�1 Fk�y 0k�:

Writing t � 4pjJ jPk
j�1 jajj3 j�1ÿ jajj�ÿ1, we ®nd that the ®rst estimate of

Lemma 6.2 gives

jFk�yk� ÿ Fk�y0k�j< Fk�yk��et ÿ 1�

< 15Fk�yk�
Xk

j�1

rj 3
jÿ k < 15«k Fk�yk�:

Thus, if k is suf®ciently large, one gets

jj�J � ÿ j�J 0�j< 19«k Fk�yk�jJ j< 20«k j�J �< w�jJ j�j�J �:
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Replacing rk by r 0k � rkÿN, for k > N , where N is suf®ciently large, and r 0k � 0 if
k < N, we see that the last inequality holds for any arc J of the unit circle.
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