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ABSTRACT. In this paper we investigate finitely generated ideals in the Nevanlinna class. We
prove analogues to some known results for the the algebra of bounded analytic functions H∞. We
also show that, in contrast with the H∞ case, the stable rank of the Nevanlinna class is strictly
bigger than 1.

1. INTRODUCTION

The aim of this paper is to investigate analogues for the Nevanlinna class of some known
results on finitely generated ideals of the algebra H∞ of bounded analytic functions in the unit
disk D, equipped with the supremum norm ‖f‖∞ = sup

z∈D
|f(z)|.

Let us begin by recalling these results. The first one concerns interpolating sequences. A
sequence of points Λ = {λn}n∈N in D is called interpolating for H∞ if for every bounded
sequence {wn}n∈N of complex numbers, there exists a function f ∈ H∞ such that f(λn) =
wn, n ∈ N. By a famous result by Carleson [2] a sequence {λn}n is interpolating for H∞ if and
only if

inf
n∈N

∏
k 6=n

∣∣∣∣ λk − λn1− λnλk

∣∣∣∣ > 0.

A Blaschke product with simple zeros is called an interpolating Blaschke product if its zeros are
an interpolating sequence.

The next important result in the context of this paper is Carleson’s corona theorem: every
family {f1, . . . , fm} of functions in H∞ satisfying

inf
z∈D

m∑
i=1

|fi(z)| > 0

generates the whole algebra. See [5] or [21]. More generally, we denote by IH∞(f1, . . . , fm) the
ideal generated by the functions f1, . . . , fm in H∞. The general structure of these ideals is not
well understood (see the references [1], [4], [7]-[11], [18], [19], [24], [25] for more information).
As it turns out, in certain situations the ideals can be characterized by growth conditions. More
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precisely, the following ideals have been studied:

JH∞(f1, . . . , fm) =
{
f ∈ H∞ : ∃c = c(f) > 0 , |f(z)| ≤ c

m∑
i=1

|fi(z)| , z ∈ D
}
.

It is obvious that IH∞(f1, . . . , fm) ⊂ JH∞(f1, . . . , fm). This leads us to the third circle of results
we are interested in here. Tolokonnikov [24] proved that the following conditions are equivalent:

(a) JH∞(f1, . . . , fm) contains an interpolating Blaschke product,
(b) IH∞(f1, . . . , fm) contains an interpolating Blaschke product,
(c) inf

z∈D

∑m
i=1(|fi(z)|+ (1− |z|2)|f ′i(z)|) > 0.

As it turns out, in the special situation of two generators with no common zeros these condi-
tions are equivalent to IH∞(f1, f2) = JH∞(f1, f2). In the case of two generators f1 and f2 with
common zeros, we have I(f1, f2) = J(f1, f2) if and only if I(f1, f2) contains a function of the
form BC where B is an interpolating Blaschke product and C is the Blaschke product formed
with the common zeros of f1 and f2 (see [11]).

Let us now turn to the framework we want to discuss in this paper. We are interested in ana-
logues of the above results for the Nevanlinna class N , consisting of the holomorphic functions
f on D such that log+ |f | has a positive harmonic majorant on D. Equivalently, f ∈ N if and
only if f is holomorphic on D and

lim
r→1−

∫
∂D

log+ |f(rζ)|dσ(ζ) <∞ .

Here dσ denotes the normalized Lebesgue measure on the unit circle.

As a general rule we shall see that the results for H∞ translate to the Nevanlinna setting
provided that the boundedness of the elements described above is replaced by a control given
by a positive harmonic majorant (or minorant). Let Har+(D) be the cone of positive harmonic
functions in the unit disk D. Recall that any H ∈ Har+(D) is the Poisson integral of a positive
measure µ on the unit circle, that is

H(z) = P [µ](z) =

∫
∂D
P (z, ζ)dµ(ζ),

where

P (z, ζ) = Re

(
ζ + z

ζ − z

)
=

1− |z|2

|ζ − z|2
is the Poisson kernel in D.

It is a standard fact that functions f in the Nevanlinna class admit non-tangential limits f ∗

at almost every point of the circle. It is also well-known that any f ∈ N can be factored as
f = BSE, where B is a Blaschke product containing the zeros of f , S is a singular inner
function and E is the outer function:

E(z) = C exp

{∫
∂D

ζ + z

ζ − z
log |f ∗(ζ)|dσ(ζ)

}
,

where |C| = 1. In particular

log |E(z)| = P [log |f ∗|](z), z ∈ D .
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A function S is singular inner if there exists a positive measure µ on ∂D singular with respect to
the Lebesgue measure such that

S(z) = exp

{
−
∫
∂D

ζ + z

ζ − z
dµ(ζ)

}
, z ∈ D .

For the Nevanlinna class R. Mortini observed that a well known result of T. Wolff implies the
following corona theorem (see [17] or [16]).

Corona Theorem for N (R. Mortini). Let I(f1, . . . , fm) denote the ideal generated in N by a
given family of functions f1, . . . , fm ∈ N . Then I(f1, . . . , fm) = N if and only if there exists
H ∈ Har+(D) such that

m∑
i=1

|fi(z)| ≥ e−H(z), z ∈ D.

We need to define the ideal corresponding to JH∞ in N . This will be done in the following
way:

J(f1, . . . , fm) =
{
f ∈ N : ∃H = H(f) ∈ Har+(D) , |f(z)| ≤ eH(z)

m∑
i=1

|fi(z)| , z ∈ D
}
.

It is clear that I(f1, . . . , fm) ⊂ J(f1, . . . , fm). Let us also mention that, by the previous corona
theorem, in the case when J(f1, . . . , fm) = N , then I(f1, . . . , fm) = N .

Recall that a sequence space is called ideal if it is stable with respect to pointwise multiplica-
tion by bounded sequences. For the following definition see also [13].

Definition. A sequence of points Λ = {λn}n in D is called interpolating for N (denoted Λ ∈
IntN ) if the trace space N |Λ is ideal.

Equivalently, Λ ∈ IntN if for every bounded sequence {vn}n of complex numbers there exists
f ∈ N such that

f(λn) = vn, n ∈ N.

Interpolating sequences for the Nevanlinna class were first investigated by Naftalevitch [20] start-
ing from an a priori fixed target space which forces interpolating sequences to be confined in a
finite union of Stolz angles.

A rather complete study, based on the above definition, was carried out much later in [13]. In
particular, it was proved that a sequence {λn}n is interpolating for N if and only if there exists a
positive harmonic function H ∈ Har+(D) such that∏

k:k 6=n

∣∣∣∣ λk − λn1− λnλk

∣∣∣∣ ≥ e−H(λn) , n ∈ N.(1.1)

Moreover, it was also shown that if Λ ∈ IntN , then the trace space is given by

N |Λ =
{
{wn}n : ∃H ∈ Har+(D) , log+ |wn| ≤ H(λn)

}
.(1.2)
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It was also noticed that in the previous condition only the factors corresponding to λk close to λn
are relevant. More precisely, fixed any c ∈ (0, 1), the condition

(1.3)
∏
k:k 6=n

ρ(λk,λn)≤c

∣∣∣∣ λk − λn1− λnλk

∣∣∣∣ ≥ e−H(λn), n ∈ N

is sufficient for Λ to be interpolating (see [13, Proposition 4.1]).

A Blaschke product the zeros of which forms an interpolating sequence for the Nevanlinna
class is called a Nevanlinna interpolating Blaschke product.

The analogues of the results mentioned above in the context of H∞ read as follows.

Theorem 1.1. Let f1, . . . , fm be functions in N . Then the following conditions are equivalent:

(a) I(f1, . . . , fm) contains a Nevanlinna interpolating Blaschke product,
(b) J(f1, . . . , fm) contains a Nevanlinna interpolating Blaschke product,
(c) There exists a function H ∈ Har+(D) such that

m∑
i=1

(|fi(z)|+ (1− |z|2)|f ′i(z)|) ≥ e−H(z) , z ∈ D.

In case m = 2, if f1 and f2 have no common zeros, the above conditions are equivalent to

(d) I(f1, f2) = J(f1, f2).

As in H∞ each of the conditions (a)-(c) implies I(f1, . . . , fm) = J(f1, . . . , fm). However,
when m ≥ 3, the converse fails, as will be explained after the proof of the result. Also, like in
the H∞-situation, if the two generators f1 and f2 have common zeros, then I(f1, f2) = J(f1, f2)
if and only if I(f1, f2) contains a function of the form BC where B is a Nevanlinna interpolating
Blaschke product and C is the Blaschke product formed with the common zeros of f1 and f2.

Our proof of Theorem 1.1 uses some of the ideas from both [24] and [11], but also some
specific properties of the Nevanlinna class. In particular we will make use of a new description
of Nevanlinna interpolating sequences in terms of harmonic measure, which we discuss now.

Denote by

ρ(z, w) =

∣∣∣∣ z − w1− z̄w

∣∣∣∣
the pseudohyperbolic distance in D, and by D(z, r) = {w ∈ D : ρ(z, w) < r} the corresponding
disk of center z and radius r ∈ (0, 1). Let B denote the Blaschke product with zeros Λ = {λn}n
and let

bλn(z) =
λn
|λn|

λn − z
1− λ̄nz

, Bn(z) =
B(z)

bλn(z)
.

In these terms B(z) =
∏

n bλn(z) and |bλn(z)| = ρ(z, λn). Given H ∈ Har+(D), consider the
disks DHn = D(λn, e

−H(λn)) and the domain

ΩH
n = D \

⋃
k:k 6=n

ρ(λk,λn)≤1/2

DHk .
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It will be clear from the proof of Theorem 1.2 below that the choice of the constant 1/2 in the
definition of ΩH

n is of no relevance; it can be replaced by any c ∈ (0, 1). Let ω(z, E,Ω) denote
the harmonic measure at z ∈ Ω of the set E ⊂ ∂Ω in the domain Ω. The following result collects
several new descriptions of Nevanlinna interpolating sequences which will be used in the proof
of Theorem 1.1.

Theorem 1.2. Let Λ = {λn}n be a Blaschke sequence of distinct points in D and let B be the
Blaschke product with zero set Λ. The following statements are equivalent:

(a) Λ is an interpolating sequence for N , that is, there exists H ∈ Har+(D) such that

(1− |λn|2)|B′(λn)| = |Bn(λn)| ≥ e−H(λn), n ∈ N.
(b) There exists H ∈ Har+(D) such that |B(z)| ≥ e−H(z)ρ(z,Λ), z ∈ D,
(c) There exists H ∈ Har+(D) such that |B(z)|+ (1− |z|2)|B′(z)| ≥ e−H(z), z ∈ D,
(d) There exists H ∈ Har+(D) such that the disks DHk are pairwise disjoint, and

inf
n∈N

ω(λn, ∂D,ΩH
n ) > 0.

Statement (d) and its proof are modelled after the corresponding version forH∞, proved in [6].
Descriptions of interpolating and sampling sequences in Bergman spaces in terms of harmonic
measure can be found in [22]. It will be clear from the proof that (d) can be replaced by a
seemingly stronger statement: for every ε ∈ (0, 1) there exists H ∈ Har+(D) such that the disks
DHk are pairwise disjoint, and

inf
n∈N

ω(λn, ∂D,ΩH
n ) ≥ 1− ε.

The paper is organized as follows. In the next section we shall prove Theorem 1.2 and some
Corollaries which will be used later. Section 3 is devoted to the the equivalence of the statements
(a), (b) and (c) of Theorem 1.1 and Section 4 to condition (d) in the case m = 2. At the end
of Section 4 it is also explained that when m > 2 then condition (d) does not imply any of the
previous ones. The last Section is devoted to present two related open problems. The first one
concerns the stable rank of N and the second is a version of the well known f 2 problem of T.
Wolff (see [5, p. 319]), solved by S. Treil in the context of H∞ [27].

A final word about notation. Throughout the paper A . B will mean that there is an absolute
constant C such that A ≤ CB, and we write A � B if both A . B and B . A.

It is a pleasure to thank Raymond Mortini for drawing our attention to the Corona Theorem in
the Nevanlinna class and to his paper [17].

2. INTERPOLATING SEQUENCES IN THE NEVANLINNA CLASS

We start with an elementary lemma.

Lemma 2.1. Let f ∈ H∞ with ‖f‖∞ = sup
z∈D
|f(z)| ≤ 1.

(a) For all z, λ ∈ D,
|f(w)− f(λ)| ≤ 2ρ(w, λ) .

(b) Fix 0 < δ < 1/5. If |f(z)| ≤ δ4 and (1 − |z|2)|f ′(z)| ≥ δ for a fixed z ∈ D, then
|f(w)| ≥ δ4 if ρ(z, w) = δ2.
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(c) If ρ(z, w) ≤ 1/2, then∣∣(1− |z|2)f ′(z)− (1− |w|2)f ′(w)
∣∣ ≤ 6 ρ(z, w).

Proof of the Lemma 2.1. (a) This is a direct consequence of Schwarz’ Lemma:

ρ(f(w), f(λ)) ≤ ρ(w, λ) z, λ ∈ D.

(b) Assume first that z = 0 and write f(w) = f(0) + f ′(0)w + w2g(w). Since ‖f‖∞ ≤ 1 and
|f ′(0)| ≤ 1, we have |g(w)| ≤ 3 for every w ∈ D, and hence,

|f(w)| ≥ |f ′(0)||w| − |f(0)| − 3|w|2 , w ∈ D.

Since δ ≤ 1/5, then for |w| = δ2 we have |f(w)| ≥ δ3 − δ4 − 3δ4 ≥ δ4, as desired.

For arbitrary z ∈ D we apply the previous argument to the function f ◦ φz, where

φz(w) =
z − w
1− z̄w

is the holomorphic automorphism of D exchanging 0 and z. Since |(f ◦ φz)′(0)| = (1 −
|z|2)|f ′(z)| ≥ δ and |(f ◦ φz)(0)| = |f(z)| ≤ δ4, taking ζ ∈ D such that w = φz(ζ), we
get |f(w)| = |(f ◦ φz)(ζ)| ≥ δ4 if ρ(z, w) = |ζ| = δ2.

(c) Again, assume first that z = 0. If |ζ| ≤ 1/2 then∣∣f ′(0)− (1− |ζ|2)f ′(ζ)
∣∣ ≤ |f ′(0)− f ′(ζ)|+ |ζ|2|f ′(ζ)| ≤ |f ′(0)− f ′(ζ)|+ |ζ|2

1− |ζ|2
.

Let g(ζ) = f ′(ζ)− f ′(0). For |ζ| ≤ 1/2 we have

|g(ζ)| = |f ′(ζ)− f ′(0)| ≤ 1

1− |ζ|2
+ 1 ≤ 7

3
.

Applying (a) to h(z) := 3/7 g(z/2) we deduce that

|g(ζ)| ≤ 14

3
|ζ|, |ζ| ≤ 1/2 .

Finally, if |ζ| ≤ 1/2, from the above estimate we deduce that∣∣f ′(0)− (1− |ζ|2)f ′(ζ)
∣∣ ≤ 14

3
|ζ|+ |ζ|2

1− |ζ|2
≤ 16

3
|ζ| ≤ 6|ζ|,

as desired.

For general z ∈ D we use the case z = 0 and the invariance by automorphisms of ∇̃f(z) =
(1− |z|2)f ′(z) , that is, ∇̃(f ◦ φz)(ζ) = (∇̃f)(φz(ζ)) for any ζ, z ∈ D. Then, for |ζ| ≤ 1/2,∣∣(1− |z|2)f ′(z)− (1− |ζ|2)(f ◦ φz)′(ζ)

∣∣ =
∣∣(f ◦ φz)′(0)− (1− |ζ|2)(f ◦ φz)′(ζ)

∣∣ ≤ 6|ζ| .

Letting ζ = φz(w) and using the invariance we see that (1− |ζ|2)(f ◦ φz)′(ζ) = (1− |w|2)f ′(w)
and the result follows. �
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In the proofs we will repeatedly use the well-known Harnack inequalities: for H ∈ Har+(D)
and z, w ∈ D,

1− ρ(z, w)

1 + ρ(z, w)
≤ H(z)

H(w)
≤ 1 + ρ(z, w)

1− ρ(z, w)
.(2.1)

In certain parts of this paper, we will need to suppose that z, w are pseudohyperbolically close:
ρ(z, w) < x for some 0 < x < 1, so that (x − 1)/(x + 1) ≤ H(z)/H(w) ≤ (x + 1)/(x − 1).
The constant (x+ 1)/(x− 1) will occasionally be called the Harnack constant.

In this section we shall always assume, without loss of generality, that positive harmonic
functions H ∈ Har+(D) defining pseudohyperbolic neighborhoods D(λ, e−H(λ)) are big enough
so that the corresponding Harnack constant is at most 2. More specifically, let H ∈ Har+(D) be
such that H(z) ≥ ln 3 for any z ∈ D; then

H(w)

2
≤ H(z) ≤ 2H(w) if ρ(z, w) ≤ e−H(z).(2.2)

Here is another easy and useful fact.

Lemma 2.2. There exists a universal constant C > 0 such that for any f ∈ N with |f(z)| ≤
eH(z), z ∈ D, for some H ∈ Har+(D), one has

(a) For every z ∈ D, (1− |z|)|f ′(z)| ≤ eCH(z), (1− |z|)2|f ′′(z)| ≤ eCH(z).
(b) For every z, w ∈ D with ρ(z, w) ≤ 1/3, |f(z)− f(w)| ≤ ρ(z, w)eCH(z).

Proof. The estimates in (a) are an easy consequence of Cauchy’s formula and Harnack’s inequal-
ity. The estimate in (b) follows immediately from (a) integrating f ′ from z to w and using again
Harnack’s inequality. �

Proof of Theorem 1.2. (a)=⇒ (b). By hypothesis there exists H0 ∈ Har+(D) satisfying Theo-
rem 1.2(a), and therefore the disks DH0

n = D(λn, e
−H0(λn)) are pairwise disjoint. We will show

that condition (b) holds with H = CH0, where C is an absolute constant. Consider the disks
D2H0
n = D(λn, e

−2H0(λn)).

i) Pick z ∈ D2H0
n . By construction, λn is the closest point of Λ to z and

|B(z)| = |Bn(z)||bλn(z)| = |Bn(z)|ρ(z,Λ)

Since Bn does not vanish in D2H0
n , by Harnack’s inequalities (2.1) and (2.2), there exists an

absolute constant C > 0 such that

|Bn(z)| ≥ |Bn(λn)|C ≥ e−CH0(λn) ≥ e−2CH0(z) .

ii) Let Ω := D \ ∪nD2H0
n . The function B is holomorphic and non-vanishing in Ω. Let F be

the holomorphic function with ReF = 4CH0 on D. Then G = BeF is also holomorphic and
non-vanishing on Ω. For z ∈ ∂D2H0

n , from the preceding case we know that

|G(z)| = |B(z)|e4CH0(z) = |Bn(z)|ρ(z,Λn)e4CH0(z) ≥ e−2CH0(z)−H0(λn)+4CH0(z) ≥ 1 .

For z ∈ ∂D we have |G(z)| = e4CH0(z) ≥ 1. Hence throughout Ω we have |G| ≥ 1, that is,
|B(z)| ≥ |e−F (z)| = e−4CH0(z) for z ∈ Ω.
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(b)=⇒(c). We can assume that the function H in (b) satisfies inf{H(z) : z ∈ D} ≥ ln 3.
Separate into two cases.

i) If ρ(z,Λ) ≥ e−10H(z) then, by hypothesis, |B(z)|+ (1− |z|2)|B′(z)| ≥ |B(z)| ≥ e−11H(z).

ii) If ρ(z,Λ) ≤ e−10H(z) there exists a unique λn such that such that ρ(z,Λ) = ρ(z, λn). Then
by hypothesis ∣∣∣∣(1− λ̄nz)

B(z)

z − λn

∣∣∣∣ ≥ e−H(z), z 6= λn,

and taking the limit as z → λn, we deduce that (1 − |λn|2)|B′(λn)| ≥ e−H(λn) . Finally, by
Lemma 2.1(c) and by Harnack’s inequality (2.2)

(1− |z|2)|B′(z)| ≥ e−H(λn) − 6ρ(z, λn) ≥ e−2H(z) − e−8H(z) ≥ 1

2
e−2H(z) ≥ e−3H(z),

and therefore
|B(z)|+ (1− |z|2)|B′(z)| ≥ e−11H(z), z ∈ D.

(c)=⇒(a). This implication is immediate taking z = λn.

(a)=⇒(d). Let H ∈ Har+(D) such that |Bn(λn)| ≥ e−H(λn), n ∈ N, that is,∑
k:k 6=n

log
1

ρ(λn, λk)
≤ H(λn), n ∈ N .(2.3)

Again the disks DHn are disjoint, and so will be the smaller disks D4H
n . By definition

ω(λn, ∂D,ΩH
n ) = 1−

∑
k:k 6=n

ρ(λn,λk)≤1/2

ω(λn, ∂DHk ,ΩH
n ) .

Since

ω(z, ∂D4H
k ,D \ D4H

k ) =
log(1/ρ(z, λk))

4H(λk)
,

estimate (2.3) is equivalent to

(2.4) sup
n∈N

∑
k:k 6=n

ω(λn, ∂D4H
k ,D \ D4H

k )
4H(λk)

H(λn)
≤ 1 .

If ρ(λn, λk) ≤ 1/2 Harnack’s inequalities (2.1) imply that 1/3 ≤ H(λn)/H(λk) ≤ 3. Thus, by
(2.4), ∑

k:k 6=n
ρ(λn,λk)≤1/2

ω(λn, ∂D4H
k ,Ω4H

n ) ≤
∑
k:k 6=n

ρ(λn,λk)≤1/2

ω(λn, ∂D4H
k ,D \ D4H

k )

≤ 3
∑
k:k 6=n

ρ(λn,λk)≤1/2

ω(λn, ∂D4H
k ,D \ D4H

k )
H(λk)

H(λn)
≤ 3

4
,

and therefore
ω(λn, ∂D,Ω4H

n ) ≥ 1

4
.

Observe that by replacing 4H byNH in the above reasoning it is possible to get ω(λn, ∂D,ΩNH
n ) ≥

1− 3/N .
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(d)=⇒ (a). For simplicity we drop the superscript H in the notations DHn and ΩH
n , and let

δn = e−H(λn). Let ε = inf
n∈N

ω(λn, ∂D,Ωn) > 0 and consider the bigger domains

Ω̃n = D \
⋃
k:k 6=n

ρ(λn,λk)≤1/4

Dk .

Notice that then ω(λn, ∂D, Ω̃n) ≥ ω(λn, ∂D,Ωn) ≥ ε . Given N ≥ 1, to be determined later on,
let ∆n = D(λn, δ

N
n ) ⊂ D(λn, δn) and

Vn = D \
⋃
k:k 6=n

ρ(λn,λk)≤1/4

∆k .

Notice that Ωn ⊂ Ω̃n ⊂ Vn. Define the harmonic functions

Un(z) = ω(z, ∂D,Ωn) and un(z) = ω(z, ∂D,Vn) .

Then un(z) ≥ Un(z) for ∈ Ωn. In particular un(λn) ≥ ε > 0, n ∈ N. We apply Green’s formula
to the functions Φ(z) = log(1/ρ(z, λn)) and un on the domain Vn:

un(λn) = − 1

2π

∫
Vn
un∆Φdm

=
1

2π

∫ 2π

0

P (λn, e
iθ)dθ −

∑
k:k 6=n

ρ(λn,λk)≤1/4

1

2π

∫
∂∆k

log
( 1

ρ(λn, ζ)

)∂un
∂n

(ζ) dσ(ζ),

where ∂/∂n indicates the outer normal derivative. Using the hypothesis and the fact that for
ζ ∈ ∂∆k one has

log
( 1

ρ(λn, ζ)

)
� log

( 1

ρ(λn, λk)

)
,

we deduce that ∑
k:k 6=n

ρ(λn,λk)≤1/4

log
( 1

ρ(λn, λk)

) 1

2π

∫
∂∆k

∂un
∂n

(ζ) dσ(ζ)

.
∑
k:k 6=n

ρ(λn,λk)≤1/4

1

2π

∫
∂∆k

log
( 1

ρ(λn, ζ)

)∂un
∂n

(ζ) dσ(ζ) ≤ 1− ε .

Taking into account (1.3) we will be done as soon as we prove that ∂un
∂n

(ζ) ≥ 0, ζ ∈ ∂∆k and

(2.5)
∫
∂∆k

∂un
∂n

(ζ) dσ(ζ) &
1

H(λn)
, k 6= n .

Define for k 6= n,

un,k(z) = ω(z, ∂D,Vn ∪∆k),

vk(z) = ω(z, ∂∆k,D \∆k) =
log(1/ρ(z, λk))

log(1/δNn )

and notice that, again by the maximum principle,

(2.6) un ≥ un,k − vk on Vn .
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For λk, λj such that ρ(λn, λk), ρ(λk, λj) ≤ 1/4 we have ρ(λn, λj) ≤ 1/2 and therefore

un,k(λk) ≥ ω
(
λk, ∂D,D \

⋃
j 6=k,n

ρ(λj ,λk)≤1/2

∆j

)
≥ ω(λk, ∂D,Ωk) ≥ ε > 0 .

By Harnack’s inequalities there exists ε′ = ε′(ε) > 0 such that un,k(z) ≥ ε′ > 0 for z ∈ ∂Dk.
Also, for z ∈ ∂Dk,

vk(z) =
log(1/δk)

log(1/δNk )
=

1

N

and inequality (2.6) yields

un(z) ≥ un,k(z)− vk(z) ≥ ε′ − 1

N
, z ∈ ∂Dk.

Choose N so that 1/N < ε′/2. Then un(z) ≥ ε′/2 for z ∈ ∂Dk, k 6= n, and by the maximum
principle

un(z) ≥ ε′

2
ωk(z), z ∈ Dk \∆k ,

where

ωk(z) = ω(z, ∂Dk,Dk \∆k) =
log(ρ(z, λk)/δ

N
k )

log(1/δN−1
k )

.

Since log(1/δk) = H(λk), this inequality implies that for ζ ∈ ∂∆k

∂un
∂n

(ζ) ≥ ε′

2

∂ωk
∂n

(ζ) &
1

H(λk)

∂

∂n
log ρ(ζ, λk)

and therefore ∫
∂∆k

∂un
∂n

(ζ) dσ(ζ) &
1

H(λk)

∫
∂∆k

∂

∂n
log ρ(z, λk) dσ(ζ) .

Finally, we use Green’s formula with u ≡ 1, v(ζ) = log ρ(ζ, λk) and the domain D \∆k:∫
∂∆k

∂

∂n
log ρ(ζ, λk) dσ(ζ) =

∫
∂D

∂

∂n
log ρ(ζ, λk) dσ(ζ) =

∫
∂D
P (λk, ζ) dσ(ζ) = 1 .

�

We end this section with two easy consequences which will be used later. The first one says
that Nevanlinna interpolating sequences are stable under convenient pseudohyperbolic perturba-
tions, and will be deduced from Theorem 1.2(d).

Corollary 2.3. Let Λ = {λn} be a Nevanlinna interpolating sequence and let H ∈ Har+(D),
satisfying Theorem 1.2(a). If Λ′ = {λ′n}n ⊂ D satisfies

ρ(λn, λ
′
n) ≤ 1

4
e−H(λn) , n ∈ N,

then Λ′ is also a Nevanlinna interpolating sequence.



FINITELY GENERATED IDEALS IN THE NEVANLINNA CLASS 11

Proof. We shall use the characterization of Nevanlinna interpolating sequences given in Theo-
rem 1.2(d). Consider the domains

Ωn = D \
⋃
k:k 6=n

ρ(λk,λn)≤1/2

D(λk, e
−H(λk)) , Ω′n = D \

⋃
k:k 6=n

ρ(λ′k,λ
′
n)≤1/4

D(λ′k, e
−2H(λ′k))

Then Ωn ⊂ Ω′n, and by Harnack’s inequality there exists c > 0 such that

ω(λ′n, ∂D,Ω′n) ≥ c ω(λn, ∂D,Ω′n) ≥ c ω(λn, ∂D,Ωn).

The result follows then from the hypothesis. �

Corollary 2.4. Let Λ be a Nevanlinna interpolating sequence and letH ∈ Har+(D) be such that
inf{H(z) : z ∈ D} ≥ ln 3 and |B(z)| ≥ e−H(z)ρ(z,Λ), z ∈ D. Then for every H1 ∈ Har+(D)
with inf{H1(z) : z ∈ D} ≥ ln 3, we have

|B(z)| ≥ e−(2H(z)+2H1(z)) whenever z /∈ ∪nDH1
n .

Proof of Corollary 2.4. Suppose first z /∈ ∪nD(λn, 1/2). Then ρ(z,Λ) ≥ 1/2 and

|B(z)| ≥ e−H(z)ρ(z,Λ) ≥ 1

2
e−H(z) ≥ e−2H(z).

Next, if z ∈ ∪nD(λn, 1/2) picking the closest point λ0 ∈ Λ with ρ(z,Λ) = ρ(z, λ0) ≥ e−H1(λ0),
Harnack’s inequality (2.2) gives

|B(z)| ≥ e−H(z)ρ(z,Λ) = e−H(z)ρ(z, λ0) ≥ e−H(z)−H1(λ0) ≥ e−H(z)−2H1(z).

�

3. PROOF OF THEOREM 1.1

Notice first that we can assume throughout the proof that the functions fi are Blaschke prod-
ucts. For conditions (a), (b) and (d) this is easily seen by considering the Nevanlinna factor-
ization fi = Bie

gi , where Bi is the Blaschke product with the zeros of fi and gi is such that
Re(gi) = H+

i −H−i , for some H+
i , H

−
i ∈ Har+(D). Then, since egi , i = 1, . . . ,m, are invertible

functions in N , we have I(f1, . . . , fm) = I(B1, . . . , Bm) and J(f1, . . . , fm) = J(B1, . . . , Bm).
As for condition (c), let us now see that there exists H ∈ Har+(D) such that

m∑
i=1

(|Bi(z)|+ (1− |z|2)|B′i(z)|) ≥ e−H(z) , z ∈ D(3.1)

if and only if (c) holds with a suitable, possibly different, H ∈ Har+(D).

Let us first suppose that (3.1) holds. Let Ei = egi , i = 1, . . . ,m, and take H1 ∈ Har+(D) such
that ∣∣log |Ei(z)|

∣∣ = |Re(gi(z))| ≤ H1(z), z ∈ D, i = 1, . . . ,m .

Recall from Lemma 2.2 that

(3.2) (1− |z|2)|E ′i(z)| ≤ eCH1(z) , z ∈ D,

where C > 0 is an absolute constant. Fix z ∈ D. We shall distinguish two cases.
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(i) Assume first that z ∈ D is such that
m∑
i=1

|Bi(z)| ≥ 1

4
e−H(z)−(1+C)H1(z) .

Then
m∑
i=1

|fi(z)| =
m∑
i=1

|Bi(z)||Ei(z)| ≥ 1

4
e−H(z)−(2+C)H1(z)

and (c) holds.

(ii) Assume now that
m∑
i=1

|Bi(z)| ≤ 1

4
e−H(z)−(1+C)H1(z) ,

which is in particular bounded by 1
4
e−H(z). Then by (3.1) we have

m∑
i=1

(1− |z|2)|B′i(z)| ≥ 3

4
e−H(z) .

Therefore
m∑
i=1

(1− |z|2)|B′i(z)||Ei(z)| ≥ e−H1(z) 3

4
e−H(z) ,

and by (3.2)
m∑
i=1

(1− |z|2)|Bi(z)||E ′i(z)| ≤ 1

4
e−H(z)−H1(z)

Thus
m∑
i=1

(1− |z|2)|f ′i(z)| ≥
m∑
i=1

(1− |z|2)|B′i(z)||Ei(z)| −
m∑
i=1

(1− |z|2)|Bi(z)||E ′i(z)|

≥ 3

4
e−H(z)−H1(z) − 1

4
e−H(z)−H1(z) =

1

2
e−(H(z)+H1(z))

and so (c) holds.

The converse is based on exactly the same argument. Observe that we can writeBi = fi/Ei =
fiEi where Ei is an invertible function in N for which we get similar estimates as for Ei. Now,
replacing in the arguments above Bi by fi and Ei by Ei, we will reach (3.1) when starting from
(c).

Before giving the proof of Theorem 1.1 we shall see that (a) implies

I(f1, . . . , fm) = J(f1, . . . , Jm).

We only have to show the reverse inclusion. For this, let g ∈ J(f1, . . . , fm) and letH ∈ Har+(D)
be such that

|g(z)| ≤ eH(z)

m∑
i=1

|fi(z)|, z ∈ D.
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LetB be a Nevanlinna interpolating Blaschke product in I(f1, . . . , fm) and denote by Λ = {λn}n
its zero set. Since for any i = 1, . . . ,m, we have

|g(λn)fi(λn)|∑m
i=1 |fi(λn)|2

≤ eH(λn)(
∑m

i=1 |fi(λn)|)2∑m
i=1 |fi(λn)|2

≤ meH(λn), n ∈ N,

using the description of the trace space N |Λ in (1.2) we see that there exist hi ∈ N such that

hi(λn) =
g(λn)fi(λn)∑m
i=1 |fi(λn)|2

, n ∈ N.

Consequently, the function
∑m

i=1 fihi − g vanishes on Λ, and therefore there exists G ∈ N such
that

m∑
i=1

fihi − g = BG .

Since BG ∈ I(f1, . . . , fm), this shows that g ∈ I(f1, . . . , fm) as well.

Let us now move to the proof of Theorem 1.1.

(a) =⇒ (b) is obvious because I(f1, . . . , fm) ⊂ J(f1, . . . , fm).

(b) =⇒ (c). Assume that B ∈ J(f1, . . . , fm) is a Nevanlinna interpolating Blaschke product
and let Λ = {λn}n denote its zero set. By definition and by Theorem 1.2(b) there exist H,H1 ∈
Har+(D) such that

ρ(z,Λ)e−H1(z) ≤ |B(z)| ≤ eH(z)

m∑
i=1

|fi(z)|, z ∈ D.(3.3)

Recall from Lemma 2.2 that there exists H2 ∈ Har+(D) such that

|fi(z)|+ (1− |z|)|f ′i(z)|+ (1− |z|)2|f ′′i (z)| ≤ eH2(z), z ∈ D, i = 1, . . . ,m.

Now let H3 ∈ Har+(D), H3 ≥ H + H1 + H2 + ln 3 to be chosen later. Observe that the disks
Dn = DH3

n = D(λn, e
−H3(λn)) are disjoint. Observe also that (2.2) holds. By (3.3) and Corollary

2.4, we have
m∑
i=1

|fi(z)| ≥ e−2(H(z)+H1(z)+H3(z)) , z /∈
⋃
n≥1

Dn.

So, it only remains to discuss the estimate on Dn. We will prove that
m∑
i=1

|fi(z)|+ (1− |z|)|f ′i(z)| ≥ e−6H3(z), z ∈ Dn.(3.4)

We argue by contradiction. Suppose there is a z ∈ Dn where this estimate does not hold. Let u
be the closest point of ∂Dn = ∂DH3

n to z, that is, u ∈ ∂Dn and ρ(z, u) = ρ(z, ∂Dn). Then using
a Taylor expansion at z, as Tolokonnikov did in the H∞-case, for every i = 1, . . . ,m, one has

|fi(u)| =
∣∣fi(z) + f ′i(z)(u− z) +

∫ u

z

(u− t)f ′′i (t)dt
∣∣

. |fi(z)|+ (1− |z|)|f ′i(z)|ρ(z, u) + (1− |z|)2 sup
v∈[z,u]

|f ′′i (v)|ρ(z, u)2

. e−6H3(z) + e−6H3(z)−H3(λn) + eH2(v)−2H3(λn),
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where v is a suitable point in Dn. Since ρ(u,Λ) = e−H3(λn), using (3.3) we deduce

e−(H(u)+H1(u))e−H3(λn) ≤
m∑
i=1

|fi(u)| . m
(
2e−6H3(z) + eH2(v)−2H3(λn)

)
.

Harnack’s inequality (2.2) gives H3(z) ≥ H3(λn)/2 and we deduce

e−(H(u)+H1(u))e−H3(λn) ≤
m∑
i=1

|fi(u)| . m
(
2e−3H3(λn) + eH2(v)−2H3(λn)

)
.

Since the functions H , H1 and H2 are fixed and H3 can be taken arbitrarily large, we obtain a
contradiction. Hence (3.4) holds and the statement (c) follows.

(c) =⇒ (a). First of all recall that in condition (c) we can assume that the functions fi are
Blaschke products. We can also assume that the positive harmonic function H appearing in
condition (c) satisfies inf{H(z) : z ∈ D} > ln(3m). Then Harnack’s inequality (2.1) gives that
for any h ∈ Har+(D) one has

4

5
≤ h(z)

h(w)
≤ 5

4
if ρ(w, z) < e−2H(z).(3.5)

Now take C > 1 big enough to be determined later on, and let

E =
{
z ∈ D :

m∑
i=1

|fi(z)| ≤ e−CH(z)
}

= ∪nEn,

where En are the connected components of E. For every n ∈ N choose λn ∈ En, if any, such
that

m∑
i=1

|fi(λn)| ≤ e−2CH(λn),

and let Λ = {λn}n (we discard those En for which such a λn does not exist and keep the
indexation with N). Observe that the sum above is trivially bounded by e−2H(λn).

Claim 1. Assume C ≥ 24. Then for every λn ∈ Λ, one has

D(λn, e
−2CH(λn)) ⊂ En ⊂ D(λn, e

−6H(λn)) .

The first inclusion is an immediate consequence of Lemma 2.1(a) and Harnack’s inequality
(3.5),

|fi(z)| ≤ |fi(λn)|+ 2ρ(z, λn) ≤ e−2CH(λn) + 2e−2CH(λn) = 3e−2CH(λn)

≤ 3e−(8/5)CH(z) ≤ e−CH(z).

In order to see the second inclusion notice that, by hypothesis, on the set E, and so on En, the
following estimate holds

(1− |z|2)
m∑
i=1

|f ′i(z)| ≥ e−2H(z),

and in particular there exists i such that (1−|λn|2)|f ′i(λn)| ≥ e−2H(λn)/m ≥ e−3H(λn) = δ. Thus
by Lemma 2.1(b), for every z with ρ(z, λn) = e−6H(λn) = δ2 we have |fi(z)| ≥ e−12H(λn). By
Harnack’s inequality (2.2) we get

|fi(z)| ≥ e−24H(z) if ρ(z, λn) = e−6H(λn).(3.6)
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Thus, taking C ≥ 24, we get the desired inclusion.

Observe also that ∂D(λn, e
−6H(λn)) ∩ E = ∅ and in particular

ρ(λn, λk) ≥ max(e−6H(λn), e−6H(λk)), k 6= n.

Lemma 3.1. The sequence Λ constructed above is interpolating for N .

Proof. We shall use the characterization given in Theorem 1.2(d). Consider the disks DCn =
D(λn, e

−2CH(λn)) and the domains

ΩC
n = D \

⋃
k:k 6=n

ρ(λn,λk)≤1/2

DCk .

Since DCn ⊂ En, Harnack’s inequality (3.5) and the fact that ‖fi‖∞ ≤ 1 give that, for every
i = 1, . . . ,m we have

log |fi(ζ)| ≤ −CH(ζ) ≤ −C
2
H(λk) if ζ ∈ ∂DCk ,

log |fi(ζ)| ≤ 0 if ζ ∈ ∂D.
Hence, by the maximum principle

log |fi(z)| ≤ −C
2

∑
k:k 6=n

ρ(λk,λn)≤1/2

H(λk)ω(z, ∂DCk ,ΩC
n ) , z ∈ ΩC

n .

Notice that, by the separation above, the disk D(λn, e
−6H(λn)) is contained in ΩC

n . Then, as
established in (3.6) there is i such that

|fi(ζ)| ≥ e−24H(ζ) if ζ ∈ ∂D(λn, e
−6H(λn)) ⊂ ΩC

n ,

whence
C

2

∑
k:k 6=n

ρ(λk,λn)≤1/2

H(λk)ω(ζ, ∂DHk ,ΩH
n ) ≤ 24H(ζ), ζ ∈ ∂D(λn, e

−CH(λn))

By Harnack’s inequality applied to both H and ω(·, ∂DCk ,ΩC
n ), we deduce that∑

k 6=n
ρ(λk,λn)≤1/2

ω(λn, ∂DHk ,ΩH
n ) ≤ 192

C
.

Choosing C big enough we finally have

ω(λn, ∂D,ΩH
n ) = 1−

∑
k:k 6=n

ρ(λn,λk)≤1/2

ω(λn, ∂DHk ,ΩH
n ) ≥ 1

2
.

�

Notice that, by Theorem 1.2(a) and the proof above, there exists C0 > 0 such that∏
k:k 6=n

ρ(λn, λk) ≥ e−C0H(λn), n ∈ N .
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Although our choice of {λn}n depends on C, the constant C0 is uniform. We indicate to the
reader that the Nevanlinna interpolating Blaschke product we are heading for is not constructed
with the zero-set Λ but with a sequence close to Λ. This, in view of Lemma 2.3, will guarantee
that the new sequence is still interpolating. In the sequel we will need to introduce a new constant
D � C � C0, where C ≥ 24 is the constant fixed in the preceding discussions. Given a
harmonic function G, we denote by G̃ its harmonic conjugate.

Claim 2. For every n ∈ N there exists i ∈ {1, . . . ,m} such that gi := fi − e−12D(H+iH̃) has a
unique zero a(i)

n in D6H
n .

By condition (c) we can assume that for some i ∈ {1, . . . ,m} (not necessarily unique) we
have (1 − |λn|2)|f ′i(λn)| ≥ e−3H(λn). Since |fi(λn)| ≤ e−2CH(λn) and C ≥ 6, applying again
Lemma 2.1(b) we obtain

|fi(z)| ≥ e−12H(z) for z ∈ ∂D6H
n .(3.7)

We use this and Rouché’s theorem to compare the number of zeros of gi and the function hi =
fi − fi(λn) in D6H

n . Observe that hi vanishes at λn and (1 − |λn|)|h′i(λn)| ≥ e−3H(λn), so that
with Lemma 2.1(b), applied to any δ < e−6H(λn), it can be shown that hi does not vanish at any
other point of D6H

n . Now, for z ∈ ∂D6H
n , Harnack’s inequality (3.5), D ≥ C ≥ 24 and (3.7) give

|gi(z)− (fi(z)− fi(λn)) | = |fi(λn)− e−12D (H+iH̃)(z)| ≤ e−2CH(λn) + e−12DH(z)

≤ e−CH(z) < |fi(z)− fi(λn)| ,
as desired. This proves the Claim. �

The argument works for every i with (1 − |λn|2)|f ′i(λn)| ≥ e−3H(λn), but we will pick ain for
only one i. We will denote by i(n) the index in {1, . . . ,m} satisfying Claim 2. The previous
argument with Rouché’s theorem also allows to show that ρ(a

(i)
n , λn) ≤ e−CH(λn). Since C �

C0, we deduce from Lemma 2.3 that the sequence Ai := {a(i)
n }n is also interpolating for N . Let

Ii denote the Nevanlinna interpolating Blaschke product with zero set Ai.

Claim 3. Assume C ≥ 24. Then
∑m

j=1 |gj(z)|/|Ij(z)| ≥ e−4CH(z) for any z ∈ D.

To see this consider first z /∈ ∪nD6H
n , so that

∑m
i=1 |fi(z)| > e−CH(z). Hence, there exists fi

such that |fi(z)| ≥ e−2CH(z), and therefore
m∑
j=1

∣∣∣∣gj(z)

Ij(z)

∣∣∣∣ ≥ |gi(z)| ≥ |fi(z)| − e−12DH(z) ≥ e−2CH(z) − e−12DH(z) ≥ e−3CH(z).(3.8)

Consider now z ∈ D6H
n . Notice first that for ζ ∈ ∂D6H

n and for i = i(n) by (3.7), we have
|gi(ζ)| ≥ e−3CH(ζ). Applying the minimum modulus principle to gi/Ii we deduce that∣∣∣∣gi(z)

Ii(z)

∣∣∣∣ ≥ inf
ζ∈∂D6H

n

|gi(ζ)| ≥ inf
ζ∈∂D6H

n

e−3CH(ζ) ≥ e−4CH(z).

This finishes the proof of the Claim. �

Since (g1/I1, . . . , gm/Im) is unimodular, by the Corona Theorem for N (see Introduction),
there exist hi ∈ N such that

m∑
i=1

gi
Ii
hi ≡ 1
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and
m∑
i=1

|hi(z)| ≤ eM0H(z), z ∈ D .

Here M0 = M0(C) > 0 is a constant which may depend on C but not D, since the estimate in
Claim 3 only depends on C. Since gi = fi − e−12D(H+iH̃), we have

(3.9) F :=
m∑
i=1

fi(hi

∏m
k=1 Ik
Ii

) =
m∏
k=1

Ik + e−12D (H+iH̃)

m∑
i=1

hi

∏m
k=1 Ik
Ii

.

Since the function F is obviously in I(f1, . . . , fm), we will be done as soon as we show that the
zero set of this function is an interpolating sequence for N . In order to consider the zeros of F
we will again distinguish two cases.

Observe first that since ρ(a
(i)
n , λn) ≤ e−CH(λn), choosing C � C0, and observing that Ai are

Nevanlinna interpolating sequences, we will have

|
m∏
k=1

Ik(z)| ≥ e−2C0H(z) for z ∈ D \ ∪nD6H
n .(3.10)

Since

|e−12D (H+iH̃)

m∑
i=1

hi

∏m
k=1 Ik
Ii

| ≤ e(−12D+M0)H ,

which, choosing D large enough, can be assumed neglectible with respect to e−C0H , we see that
F cannot vanish outside the disks D6H

n .

To consider the disks D6H
n , we again use Rouché’s theorem to see that F has exactly one

zero in such a disk. Since Ai is Nevanlinna interpolating we can then conclude by applying the
stability result Lemma 2.3. To apply Rouché’s theorem we shall compare the function (3.9) with∏m

k=1 Ik. In view of (3.10), for every n ∈ N and z ∈ ∂D6H
n∣∣∣ m∏

k=1

Ik(z) + e−12D (H+iH̃)(z)

m∑
i=1

hi(z)

∏m
k=1 Ik(z)

Ii(z)
−

m∏
k=1

Ik(z)
∣∣∣

≤ e−12DH(z)

m∑
i=1

|hi(z)| ≤ e−(12D−M0)H(z) ≤ e−2C0H(z) <

∣∣∣∣∣
m∏
k=1

Ik(z)

∣∣∣∣∣ ,
as desired. �

4. THE CASE OF TWO GENERATORS

In this section we shall assume m = 2 and prove the equivalence between condition (d)
and (a),(b), (c) in Theorem 1.1. We have already proved that (a) implies that I(f1, . . . , fm) =
J(f1, . . . , fm) for anym ≥ 2. Hence we only need to prove the sufficiency of condition (d) when
m = 2. We start with an auxiliary result which allows to reduce the situation to the case where
B1 and B2 have no common zeros.

Lemma 4.1. Let B̂ be the Blaschke product formed with the common zeros of f1 and f2. Then
I(f1, f2) = J(f1, f2) if and only if I(f1/B̂, f2/B̂) = J(f1/B̂, f2/B̂).
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Proof. If f ∈ J(f1/B̂, f2/B̂), then |f | ≤ eH(|f1/B̂| + |f2/B̂|) for some H ∈ Har+(D), and
so fB̂ ∈ J(f1, f2) = I(f1, f2) giving f ∈ I(f1/B̂, f2/B̂). Conversely, if f ∈ J(f1, f2), then
|f | ≤ eH(|f1| + |f2|), for some H ∈ Har+(D). In particular B̂ divides f . Hence f/B̂ ∈
J(f1/B̂, f2B̂) = I(f1/B̂, f2/B̂) giving f ∈ I(f1, f2). �

In order to prove the sufficiency of condition (d) when m = 2 we need some more auxiliary
results.

Lemma 4.2. Let 0 < m1 ≤ m2 ≤ · · · ≤ mN ≤ 1, with N ≥ 2. Assume
∏N

j=1 mj ≤ η < 1 and∏N
j=2mj ≤ η1/2. Then there exists an integer k with 1 ≤ k < N such that

∏k
j=1 mj ≤ η1/4 and∏N

j=k+1mj ≤ η1/2 (≤ η1/4).

Proof. Let k be the smallest positive integer such that
∏k

j=1mj ≤ η1/4. Observe that k < N ,
because otherwise

∏N−1
j=1 mj > η1/4 and it would follow that mN < η3/4, and then

N−1∏
j=1

mj < m1 ≤ mN < η3/4 < η1/4,

which is a contradiction. Hence k < N . If k = 1, the conclusion follows immediately from the
assumption

∏N
j=2 mj ≤ η1/2. Next, if k > 1, we have

∏k−1
j=1 mj > η1/4 and

∏k
j=1 mj ≤ η1/4.

The first estimate gives m1 > η1/4 and hence mj > η1/4 for any j = 1, . . . , N . Then

N∏
j=k+1

mj =

∏N
j=1 mj

mk

∏k−1
j=1 mj

≤ η

η1/4η1/4
= η1/2.

�

Lemma 4.3. Let fi, gi ∈ N , i = 1, 2, such that f1g1 and f2g2 have no common zeros. If
I(f1g1, f2g2) = J(f1g1, f2g2), then I(f1, f2) = J(f1, f2).

Proof. We need to show that J(f1, f2) ⊂ I(f1, f2). Let f ∈ J(f1, f2), that is |f | ≤ eH(|f1| +
|f2|), for some H ∈ Har+(D). Then there exists another H1 ∈ Har+(D) such that |fg1g2| ≤
eH1(|f1g1|+ |f2g2|). By assumption, there exist h1, h2 ∈ N , such that fg1g2 = f1g1h1 + f2g2h2.
Thus f1g1h1 vanishes at the zeros of g2, and since f1g1 and f2g2 have no common zeros, so that
f1g1 and g2 have no common zeros, it is h1 vanishing at the zeros of g2. We thus may write
h1 = g2h

∗
1 for a suitable h∗1 ∈ N . A similar argument leads to h2 = g1h

∗
2 for some h∗2 ∈ N . Thus

f = f1h
∗
1 + f2h

∗
2. �

Lemma 4.4. Let B be a Blaschke product with zero sequence Λ. Let z ∈ D be such that
Λ ∩D(z, δ) = ∅ and let ρ∆ denote the pseudohyperbolic distance in ∆ = D(z, δ). Then

(a) |B(z)|
1+ρ∆(z,w)

1−ρ∆(z,w) ≤ |B(w)| ≤ |B(z)|
1−ρ∆(z,w)

1+ρ∆(z,w) , w ∈ ∆,

(b) (1− |z|2)|B′(z)| ≤ |B(z)|
δ

log
1

|B(z)|2
.
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Proof. The estimates in (a) are just Harnack’s inequalities rescaled to ∆ and applied to the posi-
tive harmonic function u = − log |B|. To prove (b) let Λ = {λn}n. A direct computation shows
that

B′(z) =
∞∑
n=1

B(z)

bλn(z)

−λn
|λn|

1− |λn|2

(1− λ̄nz)2
.

Hence

(1− |z|2)|B′(z)| ≤
∞∑
n=1

|B(z)|
δ

(1− |z|2)(1− |λn|2)

|1− λ̄nz|2

and we finish by using the estimate log(1/x) ≥ 1− x, x > 0, since then
∞∑
n=1

(1− |z|2)(1− |λn|2)

|1− λ̄nz|2
=
∞∑
n=1

(1− ρ2(λn, z)) ≤ 2
∞∑
n=1

log
1

ρ(λn, z)
= log

1

|B(z)|2
.

�

Lemma 4.5. Let Λ = {λn}n be a sequence of distinct points in D which is the union of two
Nevanlinna interpolating sequences. Then the trace of N on Λ is

N |Λ =

{
{wn}n : ∃H ∈ Har+(D) : sup

k:k 6=n

|wk − wn|
ρ(λk, λn)

e−H(λn)−H(λk) <∞
}
.

It is also true in general that when Λ is the union of n Nevanlinna interpolating sequences then
the trace coincides with the set of sequences such that the pseudohyperbolic divided differences
of order n− 1 have a positive harmonic majorant (see [12]).

Proof. ⊆ Let {wn}n ∈ N |Λ and let f ∈ N with f(λn) = wn, n ∈ N. Let H be a positive
harmonic majorant of log |f |. Given λn, λk ∈ Λ, k 6= n. Define

∆f(λn, λk) =
f(λk)− f(λn)

bλn(λk)
.

If ρ(λn, λk) ≥ 1/2 we get

|∆f(λn, λk)| =
∣∣∣∣f(λk)− f(λn)

bλn(λk)

∣∣∣∣ ≤ 1

ρ(λn, λk)

(
eH(λk) + eH(λn)

)
≤ 2eH(λk)+H(λn) .

If ρ(λn, λk) < 1/2 apply the maximum principle to the holomorphic function z 7−→ ∆f(λn, z)
and use Harnack’s inequalities (2.2) to get

|∆f(λn, λk)| ≤ sup
ζ:ρ(λk,ζ)=1/2

|∆f(λn, ζ)| ≤ sup
ζ:ρ(λk,ζ)=1/2

2eH(λn)+H(ζ) ≤ e3H(λn)+3H(λk) .

⊇ Let Λ = Λ1 ∪ Λ2, where Λi = {λ(i)
n }n are Nevanlinna interpolating sequences, i = 1, 2,

and denote by Bi the corresponding Blaschke products. We will also denote wik = wn when
λ

(i)
k = λn. A usual technique to interpolate on finite unions of interpolating sequences is to

look for an interpolating function of the form h0 + B1h1, where h0 interpolates on Λ1 and h1

interpolates suitable values controlled by the divided differences on Λ2. Since by assumption
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{w(1)
k }k has a majorant eH(λ

(1)
k ), there exists h0 ∈ N with h0(λ

(1)
k ) = w

(1)
k , k ∈ N. If we want an

interpolating function of the form h = h0 +B1h1, with h1 ∈ N , then, h(λ
(2)
k ) = w

(2)
k reduces to

h1(λ
(2)
k ) =

w
(2)
k − h0(λ

(2)
k )

B1(λ
(2)
k )

, k ∈ N.(4.1)

Since Λ2 ∈ IntN we only need to see that the values on the right hand side have a suitable
majorant. Given λ(2)

k take λ(1)
k such that ρ(λ

(2)
k ,Λ1) = ρ(λ

(2)
k , λ

(1)
k ). There is no restriction in

assuming that ρ(λ
(2)
k , λ

(1)
k ) ≤ 1/2, since otherwise the estimate below is immediate. Since Λ2 is

a Nevanlinna interpolating sequence, by Theorem 1.2(b), there exists H1 ∈ Har+(D) such that

|B1(λ
(2)
k )| ≥ e−H1(λ

(2)
k )ρ(λ

(1)
k , λ

(2)
k ), k ∈ N,

and therefore∣∣∣∣∣w(2)
k − h0(λ

(2)
k )

B1(λ
(2)
k )

∣∣∣∣∣ ≤
∣∣∣∣∣w(2)

k − w
(1)
k

B1(λ
(2)
k )

∣∣∣∣∣+

∣∣∣∣∣h0(λ
(1)
k )− h0(λ

(2)
k )

B1(λ
(2)
k )

∣∣∣∣∣
≤

(
|w(2)

k − w
(1)
k |

ρ(λ
(1)
k , λ

(2)
k )

+
|h0(λ

(1)
k )− h0(λ

(2)
k )|

ρ(λ
(1)
k , λ

(2)
k )

)
eH1(λ

(2)
k ) .

By hypothesis the first term between parentheses has a majorant of the form eH(λ
(1)
k )+H(λ

(2)
k ). The

second term can be assumed to satisfy the same estimate because of the first inclusion and the
fact that h0 ∈ N . Thus, there exists H2 ∈ Har+(D) such that∣∣∣∣∣w(2)

k − h0(λ
(2)
k )

B1(λ
(2)
k )

∣∣∣∣∣ ≤ 2eH2(λ
(1)
k )+H2(λ

(2)
k )eH1(λ

(2)
k ) .

By Harnack’s inequality this is bounded by 2e2H2(λ
(2)
k )eH1(λ

(2)
k ). Then (1.2) yields the existence

of h1 such that (4.1) holds. �

Lemma 4.6. Let Λ = {λn}n be a separated Blaschke sequence and let δ := infk 6=n ρ(λk, λn) >
0. Given 0 < εn < δ/2 consider the disksDn = D(λn, εn). LetB1 andB2 be two Blaschke prod-
ucts without common zeros, having each exactly two zeros in each diskDn. Assume I(B1, B2) =
J(B1, B2). Then there exists H ∈ Har+(D) such that

εn > e−H(λn), n ∈ N.

Proof. The assumptions a priori allow B1 and B2 to have zeros outside ∪nDn. In order to get
rid of these, let hi be the Blaschke product vanishing on the zeros of Bi which are not in ∪nDn.
Setting B0

i = Bi/hi, Lemma 4.3 shows that I(B0
1 , B

0
2) = J(B0

1 , B
0
2) (note that B1 and B2

are assumed to have no common zeros). Thus we can henceforth assume that the zeros of Bi,
i = 1, 2, are contained in ∪nDn.

Let cin, d
i
n denote the zeros of Bi in Dn, n ∈ N, i = 1, 2. Pick the largest of the mutual

distances ρ(c1
n, c

2
n), ρ(c1

n, d
2
n), ρ(d1

n, c
2
n), ρ(d1

n, d
2
n), say ρ(d1

n, d
2
n). Then we have

2εn ≥ ρ(d1
n, d

2
n) ≥ max{ρ(c1

n, c
2
n), ρ(c1

n, d
2
n), ρ(d1

n, c
2
n)}.(4.2)

For i = 1, 2 let Di be the Blaschke product with zeros {din}n and let Ci = Bi/Di =
∏
bcin .

Since Λ is separated and Bi has exactly two zeros on each Dn we deduce from [13, Corollary
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1.9] that Ci and Di are Nevanlinna interpolating Blaschke products. Hence, taking into account
(4.2) there exists H ∈ Har+(D) such that the values∣∣∣∣C1(d2

n)

D1(d2
n)

∣∣∣∣ =
ρ(c1

n, d
2
n)

ρ(d1
n, d

2
n)

∣∣∣∣ (C1/bc1n)(d2
n)

(D1/bd1
n
)(d2

n)

∣∣∣∣ , C2(d1
n)

D2(d1
n)

=
ρ(c2

n, d
1
n)

ρ(d2
n, d

1
n)

∣∣∣∣ (C2/bc2n)(d1
n)

(D2/bd2
n
)(d1

n)

∣∣∣∣
are bounded by eH(d2

n) and eH(d1
n), respectively. Consequently, there exist h1, h2 ∈ N such that

h1(d2
n) =

C1(d2
n)

D1(d2
n)
, h2(d1

n) =
C2(d1

n)

D2(d1
n)
.

Hence, there are g1, g2 ∈ N with C1 = D1h1 +D2g1 and C2 = D2h2 +D1g2. Next we show that
C1C2 ∈ J(B1, B2). Indeed, assume (without loss of generality) that |C2(z)| ≤ |C1(z)|. Then

|C1(z)C2(z)| ≤ |(D1h1)(z) + (D2g1)(z)||C2(z)| ≤ |h1(z)||B1(z)|+ |g1(z)||B2(z)| .

Hence C1C2 ∈ J(B1, B2) = I(B1, B2) so that there exist f1, f2 ∈ N with

C1C2 = B1f1 +B2f2 = C1D1f1 + C2D2f2 .

Therefore, f1 vanishes at the zeros of C2 and f2 vanishes at the zeros of C1, and there exist
f ∗1 , f

∗
2 ∈ N with f2 = C1f

∗
2 and f1 = C2f

∗
1 . Hence

C1C2 = C1D1C2f
∗
1 + C2D2C1f

∗
2

and we deduce that 1 = D1f
∗
1 +D2f

∗
2 . Then there existsH1 ∈ Har+(D) such that |D1|+ |D2| ≥

e−H1 . Consequently, and since ρ(d1
n, d

2
n) ≤ ε we can use Harnack’s inequalities to deduce that

εn ≥ ρ(d1
n, d

2
n) ≥ |D1(d2

n)| ≥ e−H(d2
n) ≥ e−2H(λn) .

�

Let us now move to the proof of (d)=⇒(c) in Theorem 1.1 in the case m = 2. Recall that we
can assume that fi = Bi are Blaschke products. Let Λi be the zero set of Bi and denote

k(z) =
2∑
i=1

(|Bi(z)|+ (1− |z|2)|B′i(z)|) , z ∈ D.

In view of [13, Proposition 4.1], for any δ > 0 there exists Hδ ∈ Har+(D) such that

|Bi(z)| ≥ e−Hδ(z) for z with ρ(z,Λi) ≥ δ, i = 1, 2 .

Hence, to prove estimate (c) we can assume that z belongs to a Whitney box T (I) = {z = reiθ ∈
D : eiθ ∈ I, |I|/2 ≤ 1 − r ≤ |I|} such that ρ(T (I),Λi) ≤ 1/2, i = 1, 2. Here I indicates an
arc in ∂D. Let {T (Ij)}j be the collection of Whitney boxes satisfying this condition and pick
αj ∈ T (Ij) such that

k(αj) = min
z∈T (Ij)

k(z) .

To prove (c) we need to construct H ∈ Har+(D) such that

(4.3) k(αj) ≥ e−H(αj), j ∈ N ,

since then, by Harnack’s inequalities, the inequality propagates to the whole T (Ij), that is, if
z ∈ T (Ij), we have k(z) ≥ k(αj) ≥ e−H(αj) ≥ e−CH(z).
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Splitting {αj}j into finitely many subsequences if necessary, one can assume that the pseudo-
hyperbolic disks Dj = D(αj, 1/2) are pairwise disjoint.

For i = 1, 2 and j ∈ N let Bi(j) be the subproduct of Bi formed with the zeros of Bi placed
outside Dj . Then (again using [13, Proposition 4.1], see also (1.3)) there exists H0 ∈ Har+(D)
independent of i and j such that

(4.4) |Bi(j)(αj)| ≥ e−H0(αj) , j ∈ N.
We can also assume that each Dj contains at least two zeros of B1 and two zeros of B2. In-
deed, suppose λ is the only zero of B1 in Dj (if there is none, then B1(j) = B1 and k(αj) ≥
|B1(αj)| ≥ e−H(αj) so that there is nothing to do). If ρ(αj, λ) ≥ e−H1(αj) for a suitable fixed
H1, then since |B1| = |B1(j)||bλ| we get (4.3). If ρ(αj, λ) ≤ e−H1(αj), first observe that
(1 − |λ|2)|B′1(λ)| = |B1(j)(λ)| ≥ e−2H0(λ). Then, by Lemma 2.2(b) we deduce that, for a
sufficiently big H1 (depending on H0 only), (1− |αj|)|B′1(αj)|| ≥ e−3H0(αj), which again yields
(4.3).

We can also assume that

k(αj) ≤ e−100H0(αj),(4.5)

since otherwise (4.3) holds.

For i = 1, 2 and j ∈ N let λ(i)
j be a zero of Bi such that ρ(αj, λ

(i)
j ) = ρ(αj,Λi). Denote

Bi,j = Bi/bλ(i)
j

. We claim that there exists a universal constant C > 0 such that

(4.6) |Bi,j(αj)| ≤ Ck(αj)
1/2, j ∈ N, i = 1, 2 .

To see this notice first that we have |Bi(αj)| ≤ k(αj). If ρ(αj, λ
(i)
j ) ≥ k(αj)

1/2 we obtain (4.6)
from

|Bi,j(αj)| =
|Bi(αj)|
ρ(αj, λ

(i)
j )
≤ k(αj)

1/2 .

If ρ(αj, λ
(i)
j ) ≤ k(αj)

1/2 we use Lemma 2.1(c) to see that∣∣∣(1− |αj|)|B′i(αj)| − (1− |λ(i)
j |)|B′i(λ

(i)
j )|
∣∣∣ ≤ 6ρ(αj, λ

(i)
j ) .

Since (1 − |αj|)|B′i(αj)| ≤ k(αj) we deduce that (1 − |λ(i)
j |)|B′i(λ

(i)
j )| ≤ 7k(αj)

1/2, that is,
|Bi,j(λ

(i)
j )| ≤ 7k(αj)

1/2 . Since ρ(αj, λ
(i)
j ) ≤ k(αj)

1/2, by Schwarz’s lemma we deduce that
|Bi,j(αj)| ≤ C1k(αj)

1/2 for some C1 > 0 and (4.6) holds also in this case.

For i = 1, 2 and j ∈ N let

Ei,j = {z ∈ D : Bi(z) = 0 and ρ(z, αj) < 1/2} ,
and let bi,j be the Blaschke product with zeros in Ei,j so that Bi = bi,jBi(j). Since |Bi(αj)| ≤
k(αj), estimates (4.4), (4.5) and (4.6) give

|bi,j(αj)| ≤ k(αj)e
H0(αj) ≤ k(αj)

99/100 ,(4.7) ∏
z∈Ei,j

z 6=λ(i)
j

ρ(z, αj) =
|Bi,j(αj)|
|Bi(j)(αj)|

≤ Ck(αj)
1/2eH0(αj) ≤ Ck(αj)

1/2−1/100 .(4.8)
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In order to prove (4.3) we will now split {αj}j into different pieces and consider different
cases according to the number of zeros of B1 and B2 in the following neighborhoods of αj:
Uj = D(αj, k(αj)

1/10) and Ũj = D(αj, k(αj)
1/100) ⊃ Uj . Here are the cases we are going to

discuss now:

(i) At least one Blaschke product has at least two zeros in Uj . The set of these αj will be
denoted by A1. Splitting possibly A1 into two subsequences we can assume that B1 has
at least two zeros in Uj (in caseB2 has at least two zeros in Uj whileB1 has not, inversing
the rôles of B1 and B2 yields the exact same estimate). In this case we will distinguish
three subcases.

(i)-a. B2 has at least two zeros in Ũj . The set of these αj will be denoted by A11.
(i)-b. B2 has no zero in Ũj . The set of these αj will be denoted by A12.
(i)-c. B2 has exactly one zero in Ũj . The set of these αj will be denoted by A13.

(ii) Both Blaschke products have at most one zero in Uj . The set of these αj will be denoted
by A2.

We will establish (4.3) in each of these cases.

Case (i)-a. We will start with αj ∈ A11. For i = 1, 2 pick two zeros of bi,j in Ũj and let b̃i,j
be the corresponding Blaschke product of degree 2. Consider B̃i =

∏
j b̃i,j where the product

is taken over all j such that αj ∈ A11. Since B̃i is a subproduct of Bi, the assumption (d) and
Lemma 4.3 give I(B̃1, B̃2) = J(B̃1, B̃2). Applying Lemma 4.6 with εj = k(αj)

1/100 we obtain
H ∈ Har+(D) such that

k(αj)
1/100 ≥ e−H(αj), αj ∈ A11 .

This gives the required estimate (4.3) for the points in A11.

Case (i)-b. The idea in this case is to replace B2 by an appropriate perturbation B2 − GB̃1,
where B̃1 is a sub-product of B1 vanishing exactly twice in each Ũj , in order to generate two
zeros (controlled by Rouché’e theorem) and then conclude as in Case (ii)-a.

For αj ∈ A12 the function b2,j has no zero in Ũj . For each αj ∈ A12 pick two zeros of B1 in Uj
and let B̃1 be the Blaschke product formed with these zeros as in case (i)-a. Since Uj ⊂ Dj and
the disks Dj are disjoint, B̃1 is a Blaschke product whose zeros form a union of two Nevanlinna
interpolating sequences [13, Corollary 1.9]. Hence there existsH ∈ Har+(D) such that for every
zero λ ∈ Uj of B̃1, and z with ρ(z, αj) = k(αj)

1/30,

|B̃1(z)| ≥ e−H(z)ρ(z, λ) ≥ e−H(z) dist(z, ∂Uj) ≥ k(αj)
1/15e−H(z) .(4.9)

Let G = eH+iH̃ , where H̃ is the harmonic conjugate of H . By Lemma 4.3, I(B̃1, B2) =
J(B̃1, B2). Then, observing that G is invertible in N , one has

I(B̃1, B2) = I(B̃1, GB̃1 −B2) ⊂ J(B̃1, GB̃1 −B2) ⊂ J(B̃1, B2) = I(B̃1, B2) ,

hence
I(B̃1, GB̃1 −B2) = J(B̃1, GB̃1 −B2) .

Now, for points z ∈ D such that ρ(z, αj) = k(αj)
1/30 we have, by Lemma 4.4 and the assump-

tion: ∣∣∣B̃1(z)G(z)− (B̃1(z)G(z)−B2(z))
∣∣∣ = |B2(z)| ≤ |B2(αj)|

1−ρj
1+ρj ≤ k(αj)

1−ρj
1+ρj ,(4.10)
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where ρj = ρŨj(z, αj) and ρŨj indicates the pseudohyperbolic distance in Ũj . Since ρ(z, αj) =

k(αj)
1/30 and Ũj = D(αj, k(αj)

1/100) ⊃ Uj , we have

ρŨj(z, αj) ≤ k(αj)
1/30−1/100 .

Indeed we can assume αj = 0 and let φ : D −→ Ũj be given by φ(w) = k(αj)
1/100w; then

ρŨj(z, αj) = ρ(
z

k(αj)1/100
, 0) =

|z|
k(αj)1/100

≤ k(αj)
1/30−1/100 .

Since we can assume that k(αj) is small, say k(αj)
1/30−1/100 < ε, we deduce from (4.10) and

(4.9) that∣∣∣B̃1(z)G(z)− (B̃1(z)G(z)−B2(z))
∣∣∣ ≤ k(αj)

1−ε
1+ε < k(αj)

1/15 < |B̃1(z)G(z)| .

Then, by Rouché’s theorem B̃1G − B2 has two zeros in D(αj, k(αj)
1/30). Observe that we

can replace B̃1G − B2 by the Blaschke product vanishing on the zeros of B̃1G − B2, and we
can thus argue as we have done for A11 (note that k(αj) now only gives the size of Dj , Uj and
Ũj , and it only depends on the fact that the Blaschke products under consideration have zeros in
these neighborhoods, but not on the explicit form of these products).

Case (i)-c. Recall that A13 is the set of αj ∈ A1 such that b2,j has one zero in Ũj . If αj ∈ A13,
the zero set of b2,j in Ũj must be λ(2)

j . Recall from (4.6) that

|B2,j(αj)| ≤ Ck(αj)
1/2

and B2,j has no zeros in Ũj . Hence by (4.4) and (4.5), we deduce that∣∣∣ B2(αj)∏
αk∈A13

b
λ

(2)
k

(αj)

∣∣∣ =
∣∣∣ B2,j(αj)∏

k 6=j
αk∈A13

b
λ

(2)
k

(αj)

∣∣∣ ≤ Ck(αj)
1/2eH0(αj) ≤ Ck(αj)

0.49.

Thus, replacing B2 by B2/
∏

αk∈A13

b
λ

(2)
j

we can assume that B2 has no zeros in Ũj and we can

argue as in the previous case.

Case (ii). For αj ∈ A2 and i = 1, 2 the function bi,j has at most one zero in Uj . If it has one
zero, this must actually be λ(i)

j . In this case, from (4.4) and (4.6),∣∣∣∣∣ bi,j(αj)b
λ

(i)
j

(αj)

∣∣∣∣∣ =

∣∣∣∣ Bi,j(αj)

Bi(j)(αj)

∣∣∣∣ ≤ Ck(αj)
1/2eH0(αj) ≤ Ck(αj)

0.49.(4.11)

Hence, replacing bi,j by bi,j/bλ(i)
j

we can assume that bi,j has no zeros in Uj and satisfies the
above estimate (4.11). Observe from this estimate that the initial zero-set Ei,j cannot be reduced
to the sole point λ(i)

j . We will henceforth assume that Ei,j does not contain any point in Uj . In
order to apply Lemma 4.2 write Ei,j = {ak(i, j) : k = 1, . . . , N}, where the points ak(i, j) are
taken so that the corresponding distances mk = mk(i, j) = ρ(ak(i, j), αj) satisfy m1 ≤ m2 ≤
· · · ≤ mN . In particular a1(i, j) is the closest point of Ei,j to αj , and it is outside Uj , that is,
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ρ(a1(i, j), αj) ≥ k(αj)
1/10. According to (4.11), and setting η = Ck(αj)

0.49, we have
N∏
k=1

mk = |bi,j(αj)| ≤ Ck(αj)
0.49 = η.

Moreover
N∏
k=2

mk =
|bi,j(αj)|

ρ(a1(i, j), αj)
≤ Ck(αj)

0.39 ≤ η1/2 ,

when k(αj) is sufficiently small (which we can assume). We are thus in the conditions of
Lemma 4.2, which allows to split the product bi,j into two sub-products, denoted by b∗i,j , b

∗∗
i,j

each of which is controlled by η1/4 = C1/4k(αj)
0.49/4. More concretely

bi,j = b∗i,jb
∗∗
i,j, j ∈ N , i = 1, 2 ,

and

|b∗i,j(αj)| ≤ |b∗∗i,j(αj)| ≤ C1k(αj)
0.1225(4.12)

(if the first inequality does not hold interchange the roles of b∗i,j and b∗∗i,j). Let

B∗i =
∞∏
j=1

b∗i,j, B∗∗i =
∞∏
j=1

b∗∗i,j ,

where the product is taken over the indices j such that αj ∈ A2. For j ∈ N and i = 1, 2 we have

(4.13) |B∗i (αj)|+ |B∗∗i (αj)| ≤ 2C1k(αj)
0.1225 .

Moreover, taking into account (4.4), there exists H0 ∈ Har+(D) such that

(4.14) |B∗i (αj)| ≤ eH0(αj)|B∗∗i (αj)| .
Split A2 into two sequences A2 = A21 ∪ A22, where

A21 = {αj : |B∗∗1 (αj)| ≤ |B∗∗2 (αj)|} , A22 = {αj : |B∗∗2 (αj)| < |B∗∗1 (αj)|} .

For i = 1, 2 we will construct H2i ∈ Har+(D) such that k(αj) ≥ e−H2i(αj) for any αj ∈ A2i.
This will give (4.3) also in this case and finish the proof. Let us explain how to construct H21.
The same argument applies to H22. For αj ∈ A21 pick α∗j ∈ D with ρ(α∗j , αj) = |B∗∗1 (αj)|/4.
Observe that (4.14) yields

|B1(αj)|
|B∗∗2 (αj)|

≤ |B∗1(αj)|
|B∗∗1 (αj)|
|B∗∗2 (αj)|

≤ |B∗1(αj)| ≤ eH0(αj)4ρ(α∗j , αj) .(4.15)

Since |B∗∗1 (αj)| ≤ |B∗∗2 (αj)| and ρ(α∗j , αj) = |B∗∗1 (αj)|/4, Schwarz’ Lemma (see Lemma
2.1(a)) gives |B∗∗2 (α∗j )| ≥ |B∗∗2 (αj)|/2 and |B∗∗1 (α∗j )| ≤ 3|B∗∗1 (αj)|/2. Hence, using again
Lemma 2.1(a) and (4.14),

|B1(α∗j )|
|B∗∗2 (α∗j )|

≤ |B∗1(α∗j )|
|B∗∗1 (α∗j )|
|B∗∗2 (α∗j )|

≤ 3|B∗1(α∗j )| ≤ 3
(
|B∗1(αj)|+ |B∗1(α∗j )−B∗1(αj)|)

≤ 3
(
|B∗1(αj)|+ 2ρ(α∗j , αj)|) = 3

(
|B∗1(αj)|+

|B∗∗1 (αj)|
2

)
≤ C2e

H0(αj)|B∗∗1 (αj)| = 4C2e
H0(αj)ρ(α∗j , αj) ,(4.16)
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where C2 > 0 is an absolute constant. From (4.15) and (4.16) we get∣∣∣∣ B1(α∗j )

B∗∗2 (α∗j )
− B1(αj)

B∗∗2 (αj)

∣∣∣∣ ≤ |B1(α∗j )|
|B∗∗2 (α∗j )|

+
|B1(αj)|
|B∗∗2 (αj)|

≤ 4(C2 + 1)eH0(αj)ρ(α∗j , αj)

Hence the sequence defined by w(αj) = B1(αj)/B
∗∗
2 (αj) and w(α∗j ) = B1(α∗j )/B

∗∗
2 (α∗j ) is in

the trace space defined on the sequence {αj, α∗j}αj∈A21 , and according to Lemma 4.5 we find
h ∈ N such that

h(αj) =
B1(αj)

B∗∗2 (αj)
, h(α∗j ) =

B1(α∗j )

B∗∗2 (α∗j )
, αj ∈ A21 .

Setting b the Blaschke product with zeros αj ∈ A21 and b∗ the Blaschke product with zeros α∗j ,
we thus get g ∈ N such that

(4.17) B1 = B∗∗2 h+ bb∗g .

Since I(B1, B2) = J(B1, B2), Lemma 4.3 yields I(B1, B
∗∗
2 ) = J(B1, B

∗∗
2 ). Now (4.17) gives

also I(B1, B
∗∗
2 ) = I(bb∗g,B∗∗2 ) and J(B1, B

∗∗
2 ) = J(bb∗g,B∗∗2 ). Hence, I(bb∗g,B∗∗2 ) = J(bb∗g,B∗∗2 ),

and again by Lemma 4.3, I(bb∗, B∗∗2 ) = J(bb∗, B∗∗2 ) (observe that bb∗g and B∗∗2 — which is a
subproduct of B2 — have no common zeros, since by (4.17) those common zeros would be in
common with B1, which we excluded).

Now notice that bb∗ has two zeros in D(αj, |B∗∗2 (α∗j )|/2). Also, from (4.12) we can deduce
that D(αj, |B∗∗2 (α∗j )|/2) ⊂ D(αj, C1k(αj)

0.1). Hence we are in the same situation as we were
discussing for A1, now applied to (B∗∗2 , bb

∗), and therefore there exists H21 ∈ Har+(D) such that

|B∗∗2 (αj)|+ (1− |αj|)
[
|(B∗∗2 )′(αj)|+ |(bb∗)′(αj)|

]
≥ e−H21(αk) , αj ∈ A21 .(4.18)

Now, by (4.12), |B∗∗2 (αj)| ≤ 2C1k(αj)
0.1225. Also B∗∗2 has no zeros in Uj , and so Lemma 4.4(b)

gives that

(1− |αj|)|(B∗∗2 )′(αj)| ≤
|B∗∗2 (αj)|
k(αj)1/10

log |B∗∗2 (αj)|−2 . k(αj)
0.02, αj ∈ A21

Moreover, since (bb∗)′(αj) = b′(αj)b
∗(αj) and (1− |αj|)|b′(αj)| ≤ 2, we get

(1− |αj|)|(bb∗)′(αj)| ≤ 2ρ(αj, α
∗
j ) ≤ |B∗∗1 (αj)|/2

and, again by (4.12), this expression is controlled by C1k(αj)
0.1225. As a result, there exists an

absolute constant C3 > 0 such that the left hand side of (4.18) is upper bounded by C3k(αj)
0.02,

and we deduce that
C3k(αj)

0.02 ≥ e−H(αj) , αj ∈ A21 ,

as desired. �

Finally let us show that when m ≥ 3, condition (d) does not imply the equivalent conditions
(a), (b) or (c) in Theorem 1.1. The example is analogous to the one given in the context of H∞

in [11]. Let B1, B2 be Nevanlinna interpolating Blaschke products with zero sets Λ1 and Λ2. We
first claim that

I(B2
1 , B

2
2 , B1B2) = J(B2

1 , B
2
2 , B1B2) .(4.19)
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To prove this we can assume that B1 and B2 have no common zeros. Let f ∈ J(B2
1 , B

2
2 , B1B2).

Then there exists H ∈ Har+(D) such that

|f(z)| ≤ eH(z)(|B1(z)|2 + |B2(z)|2 + |B1(z)B2(z)|), z ∈ D.(4.20)

Then |f(λ)| ≤ eH(λ)|B1(λ)|2 for λ ∈ Λ2 so that there exists g1 ∈ N with g1(λ) = f(λ)/B2
1(λ),

λ ∈ Λ2. This implies that there is g2 ∈ N such that f = g1B
2
1 + B2g2. Observe that for

every λ ∈ Λ1 we have |g2(λ)|/|B2(λ)| = |f(λ)|/|B2(λ)|2 which by (4.20) is bounded by eH(λ).
Hence there exists g3 ∈ N with g3(λ) = g2(λ)/B2(λ), λ ∈ Λ1. Hence, there exists g4 ∈ N
with g2 = B2g3 + B1g4. Finally, f = B2

1g1 + B2
2g3 + B1B2g4 and f ∈ I(B2

1 , B
2
2 , B1B2).

Hence (4.19) holds. However, if the sequences Λ1 and Λ2 are too close, then using condition
(c) of Theorem 1.1 it can be seen that the ideal I(B2

1 , B
2
2 , B1B2) cannot contain a Nevanlinna

interpolating Blaschke product.

5. TWO OPEN PROBLEMS

5.1. The stable rank of the Nevanlinna class. The first open problem we discuss concerns
the stable rank of the Nevanlinna algebra. Recall that an m-tuple (a1, . . . , am) of elements of a
commutative unital algebra A is called unimodular if the ideal it generates is the whole algebra,
that is, there exists an m-tuple (b1, . . . , bm) in Am such that

∑m
i=1 aibi = 1. The m-tuple

(a1, . . . , am) is called reducible if there exists an (m − 1)-tuple (x1, . . . , xm−1) in Am−1 such
that (a1 + x1am, . . . , am−1 + xm−1am) is unimodular (so, the ideal generated by (a1, . . . , am)
contains a specific (m− 1)-tuple that already generates A). The stable rank of the algebra is the
least m for which every unimodular m+ 1-tuple is reducible.

It is known that the stable rank of the disk algebra and of H∞ is equal to one (see [3] or [14]
for the disk algebra and [26] for H∞). The stable rank for the Nevanlinna class is unknown, but
the following result shows that it is at least two.

Proposition 5.1. The stable rank of the Nevanlinna class is at least 2.

It is worth mentioning that any triple (f1, f2, f3) ∈ N3 such that for some i the zeros of fi
form a Nevanlinna interpolating sequence, can be reduced. The argument uses Theorem 1.2, but
it is lenghty and we do not include the details here.

Open problem: Is the stable rank of N equal to 2?

Proof of Proposition 5.1. Suppose to the contrary that the stable rank ofN is one and let us reach
a contradiction. For any unimodular pair of Blaschke products, there will then exist Φ1 ∈ N such
that B1 + Φ1B2 is invertible in N , i.e.

B1 + Φ1B2 = ef ,(5.1)

where Re(f) = H+ −H−, for some H+, H+ ∈ Har+(D). We will show that this is not possible
in general. To this end, let Λ1 = {λn}n := {1− 2−n}n and B1 the associated Blaschke product.
The sequence Λ1 is H∞-interpolating. Take now {µn}n ⊂ (0, 1) with ρ(λn, µn) small enough so
that

|B1(µn)| =

{
e−

1
1−|λn| if n even

e−
2

1−|λn| if n odd.
(5.2)
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Set Λ2 = {µn}n and B2 its Blaschke product.

We shall see first that (B1, B2) is unimodular, i.e, that there exists H ∈ Har+(D) such that
|B1| + |B2| ≥ e−H . Fix a δ > 0 such that the regions Ωn = D(λn, δ) ∪D(µn, δ) are mutually
disjoint. Since Λ1 and Λ2 are H∞-interpolating sequences, there exists η > 0 such that

|Bi(z)| ≥ η , z ∈ D \ ∪nΩn, i = 1, 2.

Thus we only need to care about the estimate on D(λ, δ), for λ ∈ Λ1∪Λ2. So suppose λ = λn or
λ = µn. Since |B1/bλn| and |B2/bµn| are bounded below on D(λ, δ) (by Carleson’s condition),
we only need to take care of |bλn(z)|+ |bµn(z)|. By (5.2)

ρ(λn, µn) = |bλn(µn)| ≥ e−
2

1−|λn| .

By the triangular inequality |ρ(λn, z)− ρ(z, µn)| ≤ ρ(λn, µn) , thus either ρ(λn, z) or ρ(µn, z)

are greater than (1/2)e−
2

1−|λn| . Take now c (independent of n) such that for z ∈ D(λ, δ),

(1/2)e−
2

1−|λn| ≥ e−
c

1−|z| .

With this
|B1(z)|+ |B2(z)| ≥ e−

c
1−|z| , z ∈ D(λ, δ) .

Since

H0(z) = Re(
1 + z

1− z
) =

1− |z|2

|1− z|2
∈ Har+(D)

and
H0(z) � 1

1− |z|
, z ∈ D(λ, δ)

this finally implies that (B1, B2) is unimodular.

Let us now show that the pair (B1, B2) cannot be reduced. Equation (5.1) on µn yields

log |B1(µn)| = H+(µn)−H−(µn) = P [ν](µn) , n ∈ N,
where ν is a finite measure on ∂D such that Re(f) = P [ν]. Then, since {µn}n tends radially
towards 1,

lim
n→∞

(1− |µn|2)P [ν](µn) = ν({1}) .

But from (5.2) we see that {(1 − |µn|2) log |B1(µn)|}n has no limit, so we have reached a con-
tradiction. �

5.2. The f 2 problem. In the late seventies T. Wolff presented a problem on ideals of H∞,
known now as the f 2 problem, which was finally solved by S. Treil in [27]. We now discuss an
analogous problem in the Nevanlinna class. Let f1, . . . , fn be functions in the Nevanlinna class,
and let f ∈ N be such that there exists H ∈ Har+(D) with

|f(z)| ≤ eH(z)(|f1(z)|+ · · · |fn(z)|)p, z ∈ D,(5.3)

for some p ≥ 1. Does it follow that f ∈ I(f1, . . . , fn) ?

As in theH∞ case, when p > 2, the ∂ estimates by T. Wolff show that the answer is affirmative.
When p < 2 the answer is in general negative, as the following example shows. Let N be an
integer such that N + 1 > 2Np, f = BN

1 B
N
2 , f1 = BN+1

1 and f2 = BN+1
2 . Then (5.3) holds but

f /∈ I(f1, f2) if (B1, B2) is not unimodular in N .
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Open problem: What happens in the case p = 2?
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