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For p # (0, 1), let Qp(Qp, 0) be the space of analytic functions f on the unit disk
2 with supw # 2 & f b .w&Dp

<� (lim|w| � 1 & f b .w&Dp
=0), where & }&Dp

means the

weighted Dirichlet norm and .w is the Mo� bius map of 2 onto itself with .w(0)=w.
In this paper, we prove the Corona theorem for the algebra Qp & H� (Qp, 0 & H �);
then we provide a Fefferman�Stein type decomposition for Qp(Qp, 0), and finally we
describe the interpolating sequences for Qp & H�(Qp, 0 & H �). � 1997 Academic Press

1. INTRODUCTION

For p # (&1, �), let Dp be the space of analytic functions f on the unit
disk 2 with

& f &2
Dp

=|
2

| f $(z)| 2 (1&|z| 2) p dm(z)<�,

where dm(z) denotes the usual Lebesgue measure on 2. These are called
Dirichlet type spaces because for p=0 one gets the classical Dirichlet space
D of all analytic functions on 2 whose images have finite area, counting
multiplicities. Also, observe that for p=1, Dp is just the usual Hardy space
H2 and for p>1 is the Bergman space with weight (1&|z| 2) p&2.
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Here, we are mainly interested in the conformally invariant version of
these spaces. More precisely, for p # (&1, �), the space Qp consists of all
analytic functions f on 2 such that

& f &2
Qp

=sup
w # 2

& f b .w&2
Dp

<�,

where .w is the Mo� bius transformation of 2 onto itself, sending the origin
to w. An easy computation shows that a function f in Dp belongs to Qp if
and only if

sup
w # 2

|
2

| f $(z)| 2 _log
1

|.w(z)|&
p

dm(z)<�.

Moreover, if f # Qp and the above integrals tend to zero as |w| � 1 then we
say f # Qp, 0 .

If &1<p<0, the space Qp only contains constant functions, while Q0 is
the classical Dirichlet space.

If p # (0, 1), then Qp=Qp(�2) & H2 (Qp, 0=Qp, 0(�2) & H2), where �2 is
the boundary of 2 and Qp(�2) is defined as the space of all functions
f # L2(�2) with

& f &2
Qp (�2)= sup

I��2

1
|I | p |

I
|

I

| f (ei%)&f (ei.)| 2

|ei%&ei.| 2&p d% d.<�.

As usual, the supremum is taken over all subarcs I/�2 and |I | denotes
the normalized arc length of I, while Qp, 0(�2) is the set of functions
f # Qp(�2), for which the above integrals tend to zero when |I | � 0 [10].
In addition, if 0<p1<p2<1 then Qp1

/ Qp2
(Qp1, 0 / Qp2, 0) [3].

If p=1 then Q1=BMOA=BMO(�2) & H 2 (Q1, 0=VMOA=VMO(�2)
& H2), where BMO(�2) (VMO(�2)) is the usual space of functions in
L2(�2) with bounded (vanishing) mean oscillation on �2, (see [11, Chap-
ter VI]).

If p # (1, �), then Qp=B (Qp, 0=B0), where B (B0) is the classical Bloch
space (little Bloch space), [1, 23, 24].

In this paper, we study the Banach algebra Qp & H�(Qp, 0 & H�). To be
precise, we first discuss the Corona property for Qp & H�(Qp, 0 & H �);
secondly consider a Fefferman�Stein type decomposition of Qp(�2)
(Qp, 0(�2)) and finally investigate interpolating sequences for Qp & H�

(Qp, 0 & H �). Here H � stands for the space of all bounded analytic func-
tions on 2 and & f &�=sup[ | f (z)|: z # 2]. For convenience, we will now
state our main results.
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First of all, we will prove that the Corona theorem holds for the algebra
Qp & H� (Qp, 0 & H �), whenever p # (0, 1), that is to say, the unit disk 2
is dense in the maximal ideal space of H � & Qp (H � & Qp, 0), p # (0, 1).
This fact can be reformulated in the following way.

Theorem 1.1. Let p # (0, 1). If f1 , ..., fn # Qp & H� (Qp, 0 & H�) with

inf
z # 2

( | f1(z)|+ } } } +| fn(z)| )>0,

then there exist g1 , ..., gn # Qp & H�(Qp, 0 & H�) with

f1 g1+ } } } +fn gn#1.

It is certainly well known that Theorem 1.1 holds for p�1. If p�1, the
space Qp & H� is just H �, and the Corona Theorem holds by a celebrated
result of L. Carleson ([8], [11, Chapter VIII]). Also, Theorem 1.1 was
proved for the algebra Q1, 0 & H�=VMO & H � by C. Sundberg and
T. Wolff ([19]). If p�1, Qp, 0 & H�=B0 & H� and the result is also
known. However, since we have not found a reference in the literature, a
proof is presented. The proof of Theorem 1.1 follows the usual method of
solving some �� -equations with L� and Qp estimates simultaneously. For
this, we use an explicit solution due to P. Jones [12].

As is well known, there is a close relation between �� -equations and the
Fefferman�Stein decomposition asserting that any f # BMO(�2) (VMO(�2))
can be decomposed into f=u+v~ , where u, v # L�(�2) (C(�2)) and v~ means
the conjugate function of v. So, it is not surprising that solving �� -equations
with appropiate estimates leads to the following result.

Theorem 1.2. Let p # (0, 1) and f # L2(�2). Then f # Qp(�2) (Qp, 0(�2))
if and only if f=u+v~ , where u, v # Qp(�2) & L�(�2) (Qp, 0(�2) & C(�2)).
When f # Qp(�2) and ��2 f (ei%) d%=0, the functions can be chosen so that

&u&L �(�2)+&v&L �(�2)+&u&Qp(�2)+&v&Qp(�2)�C & f &Qp (�2) ,

where C>0 is an absolute constant.

Finally, we will discuss the free interpolation problem in the algebra
Qp & H� (Qp, 0 & H�), p # (0, 1). A sequence [zn]/2 is called an inter-
polating sequence for Qp & H� (Qp, 0 & H�) if for each bounded sequence
[wn] of complex numbers there exists f # Qp & H� (Qp, 0 & H �) such that
f (zn)=wn for all n. Let \ be the pseudohyperbolic distance on 2, that is,

\(z, w)=|.w(z)|= } w&z
1&w� z } , z, w # 2.
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Theorem 1.3. Let p # (0, 1). A sequence [zn] of points in the unit disk is
an interpolating sequence for Qp & H� if and only if the following conditions
hold :

(a) infm{n \(zm , zn)>0

(b) supw # 2 �n (1&|.w(zn)| 2) p<�.

Theorem 1.4. Let p # (0, 1). A sequence [zn] of points in the unit disk is
an interpolating sequence for Qp, 0 & H� if and only if the following
conditions hold :

(a) limn � � infm{n \(zm , zn)=1

(b) limr � 1 supw # 2 �n: |.w (zn)|�r (1&|.w(zn)| 2) p=0.

It is worth remarking that Theorems 1.3 and 1.4 still hold true for p=1.
Since Qp & H�=H �, p�1, this is again a result of L. Carleson [7], while
interpolating sequences for the algebra H� & Q1, 0=H � & VMOA were
described in [19], as the ones satisfying (a), (b) in Theorem 1.4 with p=1.
As in [19], a sequence [zn] of points in the unit disc is called p-uniformly
separated ( p-thin) if (a) and (b) in Theorem 1.3 ((a) and (b) in Theorem
1.4) hold. We will also show that the interpolating sequences for H� & B0

are the 1-thin sequences.
The necessity in both results follows from an argument which combines

the Khinchin's inequality and a reproducing formula due to R. Rochberg
and Z. Wu [16]. The sufficiency for Qp & H � is easy and it can be derived
in different ways. However the sufficiency for Qp, 0 & H � is more difficult as
one can already see in the case of VMOA & H� [19]. There are two main
reasons. First, there are no inner functions in Qp, 0 except for Blaschke
products with a finite number of zeros and, second, it is not simple to con-
struct non-analytic functions solving the required interpolation problems.
Our proof will take some ideas from [19] but our construction of such
functions is quite different from theirs and, we believe, is more elementary.

The paper is organized as follows. In Section 2 we collect some basic
facts about Qp-spaces, including their analytic and non-analytic forms.
Theorems 1.1 and 1.2 will be proved in Section 3, and Section 4 is devoted
to the discussion of interpolating sequences.

Throught this paper some notations will be used repeatedly. The letters,
C, C$, C1 etc will denote absolute constants, not necessarily the same
at each occurrence. The notation a&b means that there are absolute
constants c1 , c2>0 satisfying c1b�a�c2 b. Similarly, a�b means that the
second inequality holds. Also given an arc I of the unit circle, let S(I ) be
the Carleson box based on I, i.e.,

S(I )=[rei% : 1&|I |�r<1, ei% # I] ;

386 NICOLAU AND XIAO



File: DISTIL 311405 . By:DS . Date:03:07:01 . Time:06:36 LOP8M. V8.0. Page 01:01
Codes: 2373 Signs: 1452 . Length: 45 pic 0 pts, 190 mm

and T(S(I )) denotes the ``top half'' of S(I ), i.e.,

T(S(I ))={rei% # S(I ): 1&|I |�r�1&
|I |
2 = .

For 0{z # 2 let Iz be the arc of the unit circle of length (1&|z| )�2?
centered at z�|z|, and further we denote by S(z) and T(z) respectively the
sets S(Iz) and T(S(Iz)). If I is an arc on �2 then zI means the point in 2
such that I=Iz , and for a positive integer n, nI means the arc with the
same center as I and length n |I |.

We thank Maria Julia� for her nice typing, and Violant Mart@� for the
pictures.

2. PRELIMINARY FACTS

In this section we will collect some known facts on Qp which will be used
in the following sections.

3.1. Two Characterizations of Qp(�2)

Let p # (0, �). A positive Borel measure + defined on 2 is called a
p-Carleson measure if

&+&p= sup
I/�2

+(S(I ))
|I | p <�,

where the supremum is taken over all subarcs I/�2. If the right hand frac-
tions tend to zero as |I | � 0 then + is said to be a p-vanishing Carleson
measure. As in the case p=1, p-Carleson measures can be characterized in
conformally invariant terms ([ASX]). Actually + is a p-Carleson measure
if and only if

sup
z # 2

|
2 \

1&|z| 2

|1&z� w| 2+
p

d+(w)<�.

Actually this supremum is comparable to &+&p . Similarly, + is a p-vanishing
Carleson measure if and only if the above integral tends to 0 when |z| � 1.

For p # (0, 1), this notion has been used to characterize Qp (Qp, 0)-func-
tions [2, 10]. Given f # L1(�2) let f� be its Poisson extension, that is

f� (z)=
1

2? |
2?

0
f (ei%)

1&|z| 2

|1&ze&i% | 2 d%.
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Then we will obtain the following theorem which may be viewed as an
extension of Theorem 1.1 in [2], and Theorem 2.1, 5.3 and Corollary 5.2
in [10].

Theorem 2.1. Let p # (0, 1) and f # L2(�2) with f (ei%)t��
&� ak eik%.

Then the following conditions are equivalent:

(i) f # Qp(�2)(Qp, 0(�2)).

(ii) |{f� (z)|2 (1&|z| 2) p dm(z) is a p-Carleson measure ( p-vanishing
Carleson measure).

(iii) &_n&Qp (�2)=O(1)(o(1)), where

_n(ei%)=
1

2?
:
n

&n \1&
|k|

n+1+ akeik%.

Proof. The equivalence between (i) and (ii) is derived easily from the
proof of Theorem 2.1 in [10]. Nevertheless, we provide a new proof.
Indeed, for f # L2(�2), p # (0, 1), one can check (see Lemma 2.6 of [17]),
that

|
2

|{( f� b .w)(z)| 2 (1&|z| 2) p dm(z)

&|
�2

|
�2

| f (.w(ei% ))&f (.w(ei.))| 2

|ei%&ei. | 2&p d% d.

=|
�2

|
�2

| f (ei%)&f (ei.)| 2

|ei%&ei. | 2&p _ 1&|w| 2

|1&w� ei%| |1&w� ei. |&
p

d% d..

The first estimate follows expressing the double integral in terms of the
Fourier coefficients of f and the area integral in terms of the power series
of the analytic and antianalytic parts of f� . See Lemma 2 in [20]. Let I/�2
be any arc on �2 and let w # 2 satisfy S(w)=S(I ). Then

1
|I |

�
1&|w| 2

|1&w� ei% | |1&w� ei. |
, ei%, ei. # I

and hence (i) follows whenever (ii) is true.
Conversely, let f # Qp(�2). For w # 2, let I/�2 be the arc such that

S(I )=S(w). Observe that if ei% # 2k+1I"2kI, ei. # 2 j+1I"2 j I, k, j=0, 1, ...
then we have

1&|w| 2

|1&w� ei% | |1&w� ei.|
�

1
2( j+k) |I |

.
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Thus

|
2

|{( f� b .w)(z)| 2 (1&|z| 2)p dm(z)

�:
j, k

1
2( j+k)p |I | p |

2 j I
|

2kI

| f (ei% )&f (ei.)|2

|ei%&ei. | 2&p d% d.

�:
j

1
(22 j |I | ) p |

2 jI
|

2 j I
+:

j

:
k>0

1
(2k+2 j |I | ) p |

2 j I
|

2k+j I"2 j I
.

The first term is already bounded by & f &2
Qp (�2) . For the second, noting that

|ei%&ei. |�2k+j&1 |I | and then using a fact in [17] we get the bound

:
j

:
k�0

1
(2(k+j ) |I | )2

1
2 pj |

2 j I
|

2k+j I
| f (ei%)&f (ei.)| 2 d% d.

�\:
j

1
2 pj+ } & f &2

BMO(�2) .

In the case that d+p is a p-vanishing Carleson measure or f # Qp, 0(�2), the
argument only requires minor modifications and the proof is omitted here.

Now, let's turn to (i) � (iii), which is equivalent to saying that a
complex sequence [ak] is the Fourier coefficients of a function in Qp(�2)
(Qp, 0(�2)) if and only if &_n&Qp(�2)=O(1) (o(1)) as n � �.

On the one hand, suppose that f # Qp(�2) with

ak=
1

2? |
2?

0
f (ei%) e&ik% d%, k=0, \1, \2, ... .

So

_n(ei%)=
1

2? |
2?

0
f (ei(%+.)) Kn(ei.) d.,

where

Kn(ei.)= :
n

&n \1&
|k|

n+1+ eik.�0

is the Fejer kernel. The Minkowski inequality applied to _n yields

&_n&Qp (�2)�& f &Qp (�2) .
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On the other hand, let &_n&Qp (�2)=O(1). Since Qp(�2)/BMO(�2),

sup
n

&_n&BMO(�2)<�

and hence for each n, _n determines a bounded linear functional on H 1
R ,

the real part of the Hardy space H1, and so [_n] can be regarded as a
sequence in a weakly compact subset of BMO(�2)$(H 1

R)*. Consequently,
there is a _ # BMO(�2) which is a weak cluster point of [_n] and thus, if
=>0 and g # H 1

R , then for infinitely many n, one has

} |
2?

0
_n(ei%) g(ei%) d%&|

2?

0
_(ei%) g(ei%) d% }<=.

In particular, from g(ei%)=cos k%, sin k% respectively, it follows that

}2? \1&
|k|

n+1+ ak&|
2?

0
_(ei%) e&ik% d% }<=

and then that [ak] are the Fourier coefficients of _ # BMO(�2). Next, we
will further prove that _ # Qp(�2).

Again, using the assumption: &_n&Qp(�2)=O(1) we find a subsequence [_nk
]

which converges to _* in L2(�2). Moreover, applying Fatou's Lemma to
&_nk

&Qp(�2)=O(1) we have _* # Qp(�2). Now for any g # L2(�2), one has

} |
2?

0
[_(ei%)&_*(ei%)] g(ei%) d% }� } |

2?

0
[_(ei%)&_nk

(ei%)] g(ei%) d% }
+} |

2?

0
[_nk

(ei%)&_*(ei%)] g(ei%) d% }� 0

as k � �,

and so _=_*=f almost everywhere and then f # Qp(�2). The argument in
the space Qp, 0(�2) is completely similar. K

Remark. Let 0<p<1. Let f be a C� function in a neighbourhood of
the closed unit disk. One has

& f &2
Qp(�2)�&|{ f (z)|2 (1&|z| ) p dm(z)& p .
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Following the proof of (ii) O (i) in Theorem 2.1, one can show that it is
sufficient to establish the following estimate

|
2

|{( f b .w)(z)| 2 (1&|z| 2) p dm(z)

�C |
�2

|
�2

| f b .w(ei%)&f b .w(ei.)| 2

|ei%&ei.| 2&p d% d., w # 2

(where C is an absolute constant).

Writting g=f b .w , it sufficies to verify

|
2

|{g(z)| 2 (1&|z| 2) p dm(z)�C |
1�2

o

1
h2&p |

2?

0
| g(ei(.+h))&g(ei.)| 2 d. dh.

Take r=1&h. We have

| g(ei(.+h))&g(ei.)|�| g(ei(.+h))&g(rei(.+h))|+| g(rei(.+h))&g(rei.)|

+| g(rei.)&g(ei.)|

�|
1

r
|{g(tei (.+h))| dt+|

h

0
|{g(rei (s+.))| ds

+|
1

r
|{g(tei.)| dt.

Apply Minkowski integral inequality [18, p. 271], to get

\|
2?

0
| g(ei(.+h))&g(ei.)| 2 d.+

1�2

�2 |
1

r \|
2?

0
|{g(tei.)| 2 d.+

1�2

dt+h \|
2?

0
|{g(rei.)| 2 d.+

1�2

=(I )+(II ).

Changing to planar coordinates one gets

|
1�2

0

1
h2&p (II )2 dh=|

1�2

0
hp |

2?

o
|{g(rei.)| 2 d. dh

�|
2

|{g(z)| 2 (1&|z| ) p dm(z).
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For the term (I), put x=1&t and apply Hardy's inequality ([18,
p. 272]) to obtain

|
1�2

0

1
h2&p (I )2 dh=4 |

1�2

0

1
h2&p _|

1

r \|
2?

o
|{g(tei.)| 2 d.+

1�2

dt&
2

dh

=4 |
1�2

0

1
h2&p _|

h

o \|
2?

0
|{g(1&x) ei.)| 2 d.+

1�2

dx&
2

dh

�|
1�2

o
h p |

2?

o
|{g((1&h) ei.)| 2 d. dh

�|
2

|{g(z)| 2 (1&|z| ) p dm(z).

This gives the Remark.

Also we remark that (i) � (iii) still holds for BMO(�2) (VMO(�2)).
Theorem 2.1 and the conformally invariant characterization of

p-Carleson measures give the following result.

Corollary 2.2. Let 0<p<1 and f # L2(�2). Then the quantities

& f &2
Qp (�2)= sup

I/�2

1
|I | p |

I
|

I

| f (ei%)&f (ei.)| 2

|ei%&ei. | 2&p d% d.

A= sup
I/�2

1
|I | p |

S(I )
|{f� (w)| 2 (1&|w| 2) p dm(w)

B=sup
z # 2

|
2 \

(1&|z| 2) (1&|w| 2)
|1&w� z| 2 +

p

|{f� (w)|2 dm(w)

are comparable, that is, there exist constants C1 , C2 , C3>0 independent of
f such that

& f &2
Qp(�2)�C1A�C2 B�C3 & f &2

Qp(�2) .

Recall that VMO(�2) is the closure of trigonometric polynomials in
BMO(�2). An analogous result holds for Qp, 0(�2).

Corollary 2.3. Let p # (0, 1) and f # Qp(�2). Then the following condi-
tions are equivalent:
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(i) f # Qp, 0(�2).

(ii) limt � 0 &Tt f&f &Qp (�2)=0, where Tt f (ei%)=f (ei(%&t)).

(iii) limr � 1 & fr&f &Qp (�2)=0, where fr(ei%)=f� (rei%).

Proof. (i) O (ii). If f # Qp, 0(�2) and Ft=Tt f&f then for any =>0
there is a $>0 so that for all subarcs I/�2 with |I |<$, one has

1
|I | p |

I
|

I

| f (ei%)&f (ei.)| 2

|ei%&ei. | 2&p d% d.<=,

and thus for any I/�2 with |I |<$, one has

1
|I | p |

I
|

I

|Ft(ei%)&Ft(ei.)| 2

|ei%&ei.| 2&p d% d.

�
1

|I | p |
I
|

I

| f (ei%)&f (ei.)| 2

|ei%&ei. | 2&p d% d.

+
1

|I | p |
I
|

I

| f (ei(%&t))&f (ei(.&t))| 2

|ei(%&t))&ei(.&t) | 2&p d% d.�=.

However, for any arc I/�2 with |I |�$, applying Theorem 2.1 one gets

1
|I | p |

I
|

I

|Ft(ei%)&Ft(ei.)|2

|ei%&ei.| 2&p d% d.

�
1
$ p |

2?

0
|

2?

0

|Ft(ei%)&Ft(ei.)| 2

|ei%&ei. | 2&p d% d.

�
1
$ p |

2
|{F� t(z)| 2 (1&|z| 2) p dm(z)

�
1
$ p |

2
|{( f� (zeit)&f� (z))| 2 (1&|z| 2) p dm(z) � 0 as t � 0.

In other words, (ii) follows.

(ii) O (iii). Assuming that f # Qp(�2) satisfies (ii), we use Minkowski
inequality in

f (ei%)&fr(ei%)=
1

2? |
2?

0
[ f (ei%)&f (ei(%&.))] Pr(.) d.
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to get that for any small =>0,

& f&fr&Qp(�2)�
1

2? |
2?

0
& f&T. f &Qp(�2) Pr(.) d.

�|
|.|<=

& f&T. f &Qp(�2) Pr(.) d.

+|
|.|�=

& f &Qp(�2) Pr(.) d.,

which gives (iii)

(iii) O (i). This implication is obvious since Qp, 0(�2) is closed in
Qp(�2). K

2.2. Inner Functions in Qp

This paragraph is designed to discuss inner functions in Qp(Qp, 0) for
p # (0, 1). An inner function is a bounded analytic function on 2 whose
radial limits have modulus 1 almost everywhere on �2. Inner functions in
Qp , p # (0, 1) are described in [10] as the Blaschke products whose zeros
[zn] have the property that

:
n

(1&|zn | 2) p $n

is a p-Carleson measure, where $n is the Dirac measure at zn . Moreover the
only inner functions in Qp, 0/VMOA, p # (0, 1) are the finite Blaschke
products. The later fact follows also from the equality

1
2? |

2?

0
|B(ei%)&B(zI )| 2 PzI

(%) d%=1&|B(zI )| 2,

which holds for any inner function B and any subarc I/�2. Besides, all
inner functions B have small mean variation on many arcs I, namely, those
such that |B(zI)| is close to 1. The next property presents an analogue of
this phenomenon for Qp , p # (0, 1).

Theorem 2.4. Let p # (0, 1) and B # Qp be the Blaschke product with
zeros [zn]. Then for any =>0 there exists $>0 such that whenever
r>1&$, one has

1
|I | p |

S(I )
|B$(z)| 2 (1&|z| 2) p /r(z) dm(z)<=,
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where S(I ) is the Carleson box based on the subarc I/�2 and /r is the
characteristic function of the set [z # 2 : infn \(z, zn)�r].

Proof. Let us first check the following fact.

Claim. Let B be a Blaschke product in Qp , p # (0, 1). If =>0, there
exists $>0 such that

log |B(z)|&2<= if inf
n

\(z, zn)>1&$.

An elementary estimate gives that if infn \(z, zn)�1�2 then there is a
constant C>0 such that

:
n

(1&|z| 2)(1&|zn |2)
|1&z� nz| 2 �log |B(z)|&2�C :

n

(1&|z| 2)(1&|zn | 2)
|1&z� nz| 2 . (2.1)

Then the claim follows as long as we prove that

:
n

(1&|z| 2)(1&|zn | 2)
|1&z� n z| 2 � 0 as r=inf

n
\(z, zn) � 1. (2.2)

For this, it suffices to show that for any =>0 there exists j (r) � � (when
r � 1) so that

1
|2 j Iz |

:
zn # S(2 j Iz)

(1&|zn | 2)<=, j=0, 1, ..., j(r). (2.3)

Actually, since

:
n

(1&|zn | ) $zn

is a 1-Carleson measure, (2.3) gives (2.2) after one breaks the sum into
dyadic blocks.

Observe that zn # S(2 j Iz) and \(z, zn)�r, give

1&|zn | 2

4 } 22 j (1&|z| 2)
�

(1&|z| 2)(1&|zn | 2)
|1&z� nz| 2 �1&r2,

that is,

1&|zn | 2�4 } 22 j (1&r2)(1&|z| 2).

Now fix j(r) so that =(r)=4 } 2 j (r)(1&r2) � 0 as r � 1. Since B # Qp ,

:
n

(1&|zn | 2) p $zn
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is a p-Carleson measure and consequently, for 0�j�j(r), we have

:
zn # S(2 j Iz)

(1&|zn | 2)�[|2 j Iz | =(r)]1&p :
zn # S(2 jIz)

(1&|zn | 2) p

�[=(r)]1&p |2 j Iz |

which gives (2.3) and proves the claim.
A calculation with logarithmic derivatives gives

B$(z)
B(z)

=:
n

1&|zn | 2

(z&zn)(1&z� nz)
.

Hence

|B$(z)|�:
n

1&|zn | 2

|1&z� nz| 2 . (2.4)

Using the claim we deduce that for any =>0, there is an r in (0, 1) such
that 1&|B(z)| 2�= if infn \(z, zn)�r. Hence, (2.4) gives

|
S(I )

|B$(z)| 2 (1&|z| 2) p /r(z) dm(z)

�|
S(I )

(1&|B(z)| 2) |B$(z)| (1&|z| 2) p&1 /r(z) dm(z)

�= :
n

(1&|zn | 2) |
S(I )

(1&|z| ) p&1

|1&z� nz| 2 dm(z)

�= _ :
zn # S(2I )

(1&|zn | 2) |
2

(1&|z| 2) p&1

|1&z� n z| 2 dm(z)

+\ :
zn # 2"S(2I )

(1&|zn | 2) |
S(I )

(1&|z| 2) p&1

|1&z� n z| 2 dm(z)+&
�= _ :

zn # S(2I )

(1&|zn | 2) p+|I | p :
n

(1&|zn | 2)(1&|zI | 2)
|1&z� nzI | 2 &�= |I | p.

In the last line one may use the following formula. Let

I(#)=|
2

(1&|z| 2)#

|1&w� z| 2 dm(z), #>&1. (2.5)

Then I(#)�1 if #>0, I(0)& log(1&|w| )&1, I(#)& (1&|w| )# if &1<#<0.
Since =>0 is arbitrary, this completes the proof. K
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The above Theorem 2.4 has an interesting consequence which is
analogous to Lemma 3.3 in [19] and will be used to solve the interpola-
tion problem in Qp, 0 & H �.

Corollary 2.5. Let p # (0, 1) and B # Qp be a Blaschke product with zeros
[zn]. If F # Qp, 0 & H � satisfies limn � � F(zn)=0 then BF # Qp, 0 & H �.

Proof. By the previous results, Theorems 2.1 and 2.4, we only have to
show that

1
|I | p |

S(I )
|F(z)| 2 |B$(z)|2 (1&|z| 2) p [1&/r(z)] dm(z) � 0 as |I | � 0,

where /r is still the function given in Theorem 2.4. Because B # Qp , the
above integral can be bounded by

C sup { |F(z)| 2 : z # S(I ), inf
n

\(z, zn)�r=
which tends to zero when |I | � 0, because limn � � F(zn)=0 and
F # Qp, 0�B0 . Actually the little Bloch space consists on those analytic
functions having vanishing oscillation on pseudohyperbolic disks with fixed
radius [6]. K

Remark. Corollary 2.5 still holds for p=1 if the sequence [zn] is 1-thin.
Actually, since

inf
z # 2 { |B(z)|: inf

n
\(z, zn)�r=� 1 as r � 1,

one has

sup
I/�2

1
|I | |S(I )

|B$(z)| 2 (1&|z| 2) /r(z) dm(z) � 0 as r � 1,

and one can mimic the last proof.

3. CORONA PROPERTY AND FEFFERMAN�STEIN
DECOMPOSITION

In this section we use p-Carleson measures to solve �� -problems in
Qp(�2) & L�(�2). This leads to the Corona theorem in Qp & H� and to
the Fefferman�Stein decomposition in Qp(�2).
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3.1. �� -Problem in Qp(�2) & L�(�2)(Qp, 0(�2) & L�(�2))

Given a Carleson measure + on the unit disk, it is well known (see
Chapter III of [11]) that the �� -problem,

�� F=+,

has a solution F, in the sense of distributions, satisfying

&F&L �(�2)�C &+&1 .

P. Jones further found in [12] that such a solution F can be given by an
extremely simple and flexible formula,

F(z)=|
2

K \ +
&+&1

, z, !+ d+(!), (3.1)

where

K \ +
&+&1

, z, !+=
2i
?

}
1&|!| 2

(1&!� z)(z&!)
exp _||w|�|!| \

1+w� !
1&w� !

&
1+w� z
1&w� z+

d+(w)
&+&1 & .

The estimate

|
2 }K \ +

&+&1

, ei%, !+} d+(!)�C1 &+&1.

shows that F # L�(�2). As a consequence, if | g(z)| dm(z) is a 1-Carleson
measure then �� F=g, has a solution F # L�(�2). We want to find an
analogous result for Qp(�2) & L�(�2) (Qp, 0(�2) & L�(�2)); that is to say,
under which conditions on g does the equation �� F=g have a solution
F # Qp(�2) & L�(�2) (Qp, 0(�2) & L�(�2))? It is surely reasonable to
observe in advance that L�(�2)/3 Qp(�2) (C(�2)/3 Qp, 0(�2)) for
p # (0, 1), in fact, for example,

f (ei%)= :
�

n=0

2n( p&1)�2 ei2n %

is in C(�2)"Qp(�2). See [3] where the power series with Hadamard gaps
which are in Qp(�2) are characterized.

Our answer to the above question is:
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Theorem 3.1. Let p # (0, 1). If d*(z)=| g(z)| 2 (1&|z| 2) p dm(z) is a
p-Carleson measure ( p-vanishing Carleson measure) then �� F=g has a solu-
tion F # Qp(�2) & L�(�2) (Qp, 0(�2) & L�(�2)). Actually,

&F&Qp(�2)+&F&L � (�2)�C &*&1�2
p ,

where C is an absolute constant.

Proof. We only give a proof for Qp(�2) & L�(�2), because the proof
for Qp, 0(�2) & L�(�2) is similar. Let d+(z)=| g(z)| dm(z); then + is a
1-Carleson measure. Actually,

+(S(I ))=|
S(I )

d+(z)

�_|S(I )
d*(z)&

1�2

_|S(I)
(1&|z| 2)&p dm(z)&

1�2

�&*&1�2
p |I |.

Thus the function F given by (3.1) is in L�(�2) and �� F=g. Next, our hope
is to show that F # Qp(�2). For this purpose, consider a new function G on
2 which has the same boundary values on �2 as zF,

G(z)=
2i
? |

2

1&|!| 2

|1&!� z| 2 exp _| |w|� |!| \
1+w� !
1&w� !

&
1+w� z
1&w� z+

_
| g(w)|
&+&1

dm(w)& g(!) dm(!). (3.2)

By the Remark after Theorem 2.1, one only has to show that G satisfies

sup
I/�2

1
|I | p |

S(I )
|{G(z)| 2 (1&|z| 2) p dm(z)<�. (3.3)

Without loss of generality, let g(z)�0 and &+&1=1. Then,

Re \||w|�|!|

1+w� !
1&w� !

g(w) dm(w)+�2 |
2

1&|!| 2

|1&w� !| 2 g(w) dm(w)�C2 , (3.4)

where C2>0 is a constant independent of ! # 2. Moreover,

|
2

1&|!z| 2

|1&!� z| 2 exp _&|
|w|�|!|

1&|wz| 2

|1&w� z| 2 g(w) dm(w)& g(!) dm(!)�1 (3.5)
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(see the proof of Lemma 2.1 in [12]). Using (3.4) and (3.5) one can show
that

|{G(z)|�|
2

g(w)
|1&w� z| 2 dm(w)

and hence that

|
S(I)

|{G(z)| 2 (1&|z| 2) p dm(z)

�|
S(I )

(1&|z| 2) p _\|S(2I )
+|

2"S(2I )+
g(w)

|1&w� z| 2 dm(w)&
2

dm(z)

�|
S(I )

(1&|z| 2) p _|S(2I )

g(w)
|1&w� z| 2 dm(w)&

2

dm(z)

+|
S(I )

(1&|z| 2) p _|2"S(2I )

g(w)
|1&w� z| 2 dm(w)&

2

dm(z)=(A)+(B).

For (A), we use Schur Lemma [25, p. 42]. Indeed, consider

k(z, w)=
(1&|z| 2) p�2 (1&|w| 2)&p�2

|1&w� z| 2

and the integral operator T induced by the kernel k(z, w),

(Tf )(z)=|
2

f (w) k(z, w) dm(w).

Taking : # (&1, &p�2) and applying the formula (2.5), one gets

|
2

k(z, w)(1&|w| 2): dm(w)�(1&|z| 2):

and

|
2

k(z, w)(1&|z|2): dm(z)�(1&|w| 2):.

Therefore the operator T is bounded from L2(2) to L2(2). Once letting

f (w)=(1&|w| 2) p�2 g(w) /S(2I )(w),

400 NICOLAU AND XIAO



File: DISTIL 311419 . By:DS . Date:03:07:01 . Time:06:36 LOP8M. V8.0. Page 01:01
Codes: 2305 Signs: 966 . Length: 45 pic 0 pts, 190 mm

where /S(2I ) denotes the characteristic function of S(2I ), we have

(A)=|
2 _|2

f (w) k(z, w) dm(w)&
2

dm(z)�|
2

| f (z)| 2 dm(z)

=|
S(2I )

| g(z)| 2 (1&|z| 2) p dm(z)� |I | p.

We estimate (B) using dyadic blocks,

(B)�|
S(I )

(1&|z| 2) p _ :
�

n=1
|

S(2n+1I )"S(2nI )

g(w)
|1&w� z| 2 dm(w)&

2

dm(z)

�|
S(I )

(1&|z| 2) p _ :
�

n=1

+(S(2n+1I ))
(2n |I | )2 &

2

dm(z)� |I | p.

These estimates on (A) and (B) imply (3.3). K

3.2. Corona Theorem for Qp & H �(Qp, 0 & H�)

The first application of Theorem 3.1 is the Corona theorem for Qp & H�

(Qp, 0 & H �).

Proof of Theorem 1.1. From a normal family argument, we can assume
that the given functions f1 } } } fn are analytic on a neighbourhood of the
closed unit disk and we are forced to find functions g1 , ..., gn # Qp &
H�(Qp, 0 & H �) satisfying

:
n

k=1

fk gk#1.

It is clear that

hj (z)=fj (z)< :
n

k=1

| fk(z)| 2

are nonanalytic functions making

:
n

k=1

fkhk#1.

As in the case of H� (see Chapter VIII of [11]), to replace hk by
functions in Qp & H� one needs to solve the equations below,

�� bj, k=hj�� hk , 1�j, k�n
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in Qp(�2) & L�(�2) (Qp, 0(�2) & L�(�2)). It is sufficient to deal with an
equation �� b=h where h=hj�� hk . An easy calculation shows

|h(z)|� :
n

j=1

| f $j (z)|.

So by Theorem 2.1, |h(z)|2 (1&|z| 2) p dm(z) is a p-Carleson measure
( p-vanishing Carleson measure). Using Theorem 3.1 there is a solution
b # Qp(�2) & L�(�2) (Qp, 0(�2) & L�(�2)), �� b=h such that

&b&Qp (�2)+&b&L � (�2)�C :
n

j=1

& fj&Qp
. K

Remark. As mentioned in the introduction, the Corona Theorem for
Q1, 0 & H�=VMO & H� was proved in [19]. It also holds for Qp, 0 & H�,
p>1, that is, for the algebra of bounded analytic functions in the little
Bloch space. Actually, given f1 , ..., fn # B0 & H � satisfying

inf
z # 2

( | f1(z)|+ } } } +| fn(z)| )=$>0,

one can find ===($)>0 and 9j # C�(2), j=1, ..., n such that

9j (z)=1 if | fj (z)|>$�n,

9j (z)=0 if | fj (z)|<=,

and |{9j (z)| dm(z) is a Carleson measure (see [11, p. 342]). Moreover
since fj # B0 , one can also assume

(1&|z| ) |{9j (z)| � 0 as |z| � 1.

Set

.j=
9j

fj � 9k

and one has

f1 .1+ } } } +fn.n#1.

Observe that .j are bounded, |{.j (z)| dm(z) is a Carleson measure and

(1&|z| ) |{.j (z)| � 0 as |z| � 1.
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To replace .j by functions in H� & B0 one has to solve the equations

�bj, k

�z�
=.j

�.k

�z
, 1� j �n

&bj, k &L� (�2)<+�

sup
|z|�r

[ |bj, k(z)&bj, k(w)| : \(z, w)�1�2] � 0 as r � 1.

For this one can consider the P. Jones solution (3.1) and observe

|
[!: \(!, z)�1�2]

1&|!| 2

|!&z| |1&!� z|
K (!, z) }.j (!)

�.k

�z�
(!) } dm(!) � 0 as |z| � 1

|
2

(1&|z| 2)(1&|!| 2)

|1&!� z|3 }.j (!)
�.k

�z�
(!) } dm(!) � 0 as |z| � 1.

3.3. Fefferman�Stein Decomposition for Qp(�2)(Qp, 0(�2))

The second application of Theorem 3.1 is a decomposition of Qp(�2)
(Qp, 0(�2)) similar to the Fefferman�Stein decomposition of BMO(�2)
(VMO(�2)).

Proof of Theorem 1.2. Denoting by X� the conjugate space of a given
space X, we will show that

(a) Qp(�2)=Qp(�2) & L�(�2)+[Qp(�2) & L�(�2)] t

(b) Qp, 0(�2)=Qp, 0(�2) & C(�2)+[Qp, 0(�2) & C(�2)] t

First of all, we show (a). On the one hand, if f=u+v~ , u, v # Qp(�2) &
L�(�2), then from Corollary 3.2 in [10] it follows that v~ # Qp(�2) and
hence f # Qp(�2).

On the other hand, suppose that f # Qp(�2), is real-valued and f� (0)=0.
We find immediately that F=f+if� # Qp(�2) and its Poisson extension
F� # Qp . From Theorem 2.1, one has that |{F� (z)| 2 (1&|z| 2) p dm(z), and then
|�� f (z)|2 (1&|z| 2) p dm(z) are p-Carleson measures. Let d+(z)=�� f (z) dm(z)
and let f+(z) be the function given by Theorem 3.1; then �� f+=+ and
f+ # Qp(�2) & L�(�2). Hence g=f&f+ is analytic and g # Qp . Put u=Re f+ ,

then f&u=& Im g
t

. So f=u+v~ , where u=Re f+ and v=&Im g belong
to Qp(�2) & L�(�2). The estimates on u, v in Theorem 1.2 follow from the
bound on f+ in Theorem 3.1.

Next we show (b). This part may be seen as a by-product of (a) and
Corollary 2.3. It suffices to check that Qp, 0(�2) is a subset of the righthand
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set in (b). To this end, let f # Qp, 0(�2) with f� (0)=0. From (a) it follows
that there are g1 , g2 # Qp(�2) & L�(�2) satisfying f=g1+g~ 2 with

&gj&=&gj &L� (�2)+&gj &Qp (�2)�C3 & f &Qp (�2) , j=1, 2,

where C3>0 is a constant independent of f and gj . Since f # Qp, 0(�2), by
Corollary 2.3 it follows that there is an r # (0, 1) satisfying

& f&fr&Qp (�2)�
& f &Qp (�2)

2
.

Also, let f (1)
j =(gj )r , ( j=1, 2), which obviously are in Qp, 0(�2) & C(�2),

and then let fr=f (1)
1 + f2

(1)
t

. So

& f&( f (1)
1 + f2

(1)
t

)&Qp(�2)�
& f &Qp(�2)

2
;

consequently, f1=f&( f (1)
1 + f 2

(1)
t

)=g1&f (1)
1 + g2&f2

(1)
t

# Qp, 0(�2) with

& f1&Qp(�2)�
& f &Qp(�2)

2
and &gj&f (1)

j &�C3 & f &Qp(�2) .

Repeating the above argument with f1 and iterating, we have f=u+v~
where

u= :
�

k=1

f (k)
1 and v= :

�

k=1

f (k)
2

belong to Qp, 0(�2) & C(�2). Hence (b) is proved. K

Remarks. (i) In the above proof, we use Theorem 3.1 to deduce
Theorem 1.2. Conversely, Theorem 1.2 can be used to deduce Theorem 3.1
as well. For instance, assume that

Qp, 0(�2)=Qp, 0(�2) & L�(�2)+[Qp, 0(�2) & L�(�2)]t.

If d*(z)=| g(z)| 2(1&|z| 2)p dm(z) is a p-vanishing Carleson measure then
we wish to show that �F=g has a solution F in Qp, 0(�2) & L�(�2). For
this, let

F1(z)=
1
? |

2

g(w)
z&w

dm(w).

Then �� F1=g and �F1=B(g) is the Beurling transform of g. We now argue
as in [14]. Since |(1&|z| 2) p| is an A2-weight for p # (0, 1), B( f ) is a
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bounded linear operator from L2(2, (1&|z| 2) p dm(z)) to itself, [11,
Chapter VI], and consequently,

|
S(I )

|�F1(z)|2 (1&|z| 2) p dm(z)

�|
S(I )

|B( g/S(2I )(z)| 2 (1&|z| 2) p dm(z)

+|
2

|B( g } (1&/S(2I ))(z)| 2 (1&|z| 2) p dm(z)

�|
S(I )

| g(z) /S(2I )(z)| 2 (1&|z| 2) p dm(z)

+|
S(I ) _|2"S(2I )

| g(w)|
|w&z| 2 dm(w)&

2

(1&|z| 2) p dm(z)

�|
S(2I )

| g(z)| 2 (1&|z| 2) p dm(z)

+|
S(I ) _\ :

N

k=1

+ :
�

k=N+1+
+(S(2k+1I ))

(2k |I | )2 &
2

(1&|z| 2) p dm(z)

=o( |I | p) as |I | � 0,

where /S(2I ) is the characteristic function on S(2I ), and d+(z)=
| g(z)| dm(z). Together with �� F=g, the estimate of �F1 gives that
F1 # Qp, 0(�2) and also by Theorem 1.2 it yields u, v # Qp, 0(�2) & L�(�2)
such that F1=u+v~ . Setting F=F1+i (v+iv~ )=u+iv, we obtain �� F=f
with F # Qp, 0(�2) & L�(�2).

(ii) Let P be the Riesz projection from L2(�2) onto H 2. Then
Theorem 1.2 is equivalent to P(Qp(�2) & L�(�2))#Qp , P(Qp, 0(�2) &
C(�2))=Qp, 0 . The corresponding fact for BMO(�2) (VMO(�2)) can be
found in [25, p. 79�186].

(iii) It follows easily that an analytic function f in the unit disk
belongs to Qp(Qp, 0) if and only if f=f1+if2 , where fj are analytic func-
tions such that Refj # Qp(�2) & L�(�2) (Qp, 0(�2) & C(�2)) j=1, 2.

4. INTERPOLATING SEQUENCES

In this section, which will occupy the rest part of this paper, we will
prove Theorems 1.3 and 1.4.
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4.1. Necessary Conditions

The necessity parts in both cases will follow from the same argument,
which combines Khinchin's inequality and a reproducing formula for Dp ,
p>0. To be precise, given finitely many complex numbers w1 , ..., wn ,
consider the 2n possible sums

:
n

j=1

\wj

obtained as the plus-minus signs vary in the 2n possible ways. For q>0 we
use

E \} :
n

j=1

\wj }
q

+
to denote the average value of

} :
n

j=1

\wj }
q

over the 2n choices of sign. Khinchin's inequality states an estimate on the
expectation below,

E \} :
n

j=1

\wj }
q

+�C(q) \ :
n

j=1

|wj |
2+

q�2

(4.1)

(see [11, p. 302]). Actually Cq=1 if q�2. This inequality will be used in
the reproducing formula for Dp . The reproducing formula in [16] asserts
that for f # Dp , one has

f (z)=f (0)+|
2

f $(w) K(z, w)(1&|w| 2) p dm(w), z # 2, (4.2)

where

K(z, w)=
(1&zw� )1+p&1
w� (1&zw� )1+p .

Proof of the Necessity in Theorems 1.3 and 1.4. Let 0<p�1 and
assume that [zn] is an interpolating sequence for Qp & H �. Then for
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=( j )
k =\1, j=1, ..., 2n, k=1, ..., n, there are fj # Qp & H� such that fj (zk)=

=( j )
k , k=1, ..., n and

& fj&H �+& fj&Qp
�C4 ,

where C4>0 is an absolute constant. Applying (4.2) to fj b .w at .w(zk) we
get

fj (zk)=fj (w)+|
2

( fj b .w)$ (!) K(.w(zk), !)(1&|!| 2) p dm(!).

We have

:
n

k=1

(1&|.w(zk)| 2) p

= :
n

k=1

= ( j )
k fj (zk)(1&|.w(zk)|2) p

=fj (w) :
n

k=1

= ( j )
k (1&|.w(zk)| 2) p

+|
2

( fj b .w)$ (!) _ :
n

k=1

= ( j )
k K(.w(zk), !)(1&|.w(zk)|2) p& (1&|!|2) p dm(!)

=(A)+(B).

We will compute the expectation of both sides of this equality. Observe
that by (4.1) with q=1 we find

E(A)�C4 _ :
n

k=1

(1&|.w(zk)|2)2p&
1�2

�C4 _ :
n

k=1

(1&|.w(zk)| 2) p&
1�2

. (4.4)

Also, applying Ho� lder's inequality and (4.1) with q=2, we get

E(B)�sup
j

& f b .w&Dp

} _|2
:
n

k=1

|K(.w(zk), !)| 2 (1&|.w(zk)| 2)2p (1&|!| 2) p dm(!)&
1�2

�C5 \ :
n

k=1

[1&|.w(zk)| 2]2p |
2

(1&|!| 2) p

| |1&.w(zk)!| 2+2p
dm(!)+

1�2

�C5 \ :
n

k=1

(1&|.w(zk)| 2) p+
1�p

. (4.5)
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So, putting (4.4) and (4.5) in (4.3) we see that (b) of Theorem 1.3 holds.
Since [zn] is an interpolating sequence for [H �], (a) also holds.

If [zn] is an interpolating sequence for Qp, 0 & H�/VMO & H�, it is
easy to show (a) in Theorem 1.4 holds (see [19] or the Remark below).
For (b), we may suppose that lim|w| � 1 sup j & fj b .w&Dp

=0; then (4.3)�(4.5)
yield

:
k: |.w(zk)|�r

(1&|.w(zk)| 2) p�C6[(1&r2) p+sup
j

& fj b .w&Dp
]1�2 (4.6)

which implies (b).

Remark. For Qp, 0 & H �, p # (1, �), we can obtain a better necessary
condition, that is, [zn] is 1-thin. Here, we only have to check that [zn] is
1-thin when [zn] is an interpolating sequence for B0 & H�. Using Bloch's
theorem we can easily show that f # B0 iff it has vanishing variation in
pseudohyperbolic disks of fixed radius, that is, for fixed r # (0, 1),

sup[ | f (z)&f (w)| : \(z, w)�r, |z|>s] � 0 as s � 1

(see [6]). So if f # Qp, 0=B0 and r # (0, 1) is fixed we have

| f (zn)&f (zm)|�=(n, m), \(zn , zm)<r,

where =(n, m) � 0 as n, m � �. Hence, if one wants to interpolate any
bounded sequence at the points [zn], it follows that

inf
m{n

\(zm , zn) � 1 as n � �.

It remains to check (b). It is not difficult to show (see [19]) that [zn]
is 1-thin if and only if given any integer N>0, one has

1
(1&|zn | )

:
zm # S(NIzn

); m{n

(1&|zm | ) � 0 as n � �. (4.7)

Let f=fn # Qp, 0 & H � with f (zn)=1, f (zm)=0, m{n. Given k>0,
consider the arcs

Lk=[rei% : r=|zk |, |%&arg zk |�1&|zk |].

Since f # B0 , given =>0 there exists n0>0 such that

!k=!k(n)= sup
z # Lk

| f (z)|
& f &H�

<= if k{n, k>n0 .
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From harmonic majorization [22, p. 302] it follows that

log \ | f (zn)|
& f &H �+� :

k{n

|(zn , Lk , 2"Lk) log !k , (4.8)

where |(z, L, 2"L) means the harmonic measure at z of L in the domain
2"L. If (4.7) is not satisfied then there would exist '>0 such that

| \zn , .
k{n

Lk , 2" .
k{n

Lk+�'

for infinitely many n. So (4.8) would imply

| f (zn)|
& f &H �

<=',

which is a contradiction.

Although we have handled the necessity for Qp & H � and Qp, 0 & H�

with the same idea, we are forced to prove the sufficiency individually.

4.2. Sufficient Condition for Interpolation in Qp & H�

Proof of sufficiency in Theorem 1.3. Assume that [zn] is p-uniformly
separated and let

0<$= inf
m{n

\(zm , zn).

Given a bounded sequence [wn] of complex numbers, take a function
. # C�(2) with the following properties:

(i) .(z)#wn if \(z, zn)�$�4;

(ii) .(z)#0 if infn \(z, zn)�$�2.

(iii) supz # 2 (1&|z| 2) |{.(z)|<�.

Let B be the Blaschke product with zeros [zn]. So,

B # Qp and [|{.(z)�|B(z)|]2 (1&|z| 2) p dm(z)

must be a p-Carleson measure. Hence from Theorem 3.1 it follows that
there exists b # Qp(�2) & L�(�2) solving the equation: �� b=�� .�B. So,
f=.&Bb # Qp & H � and f (zn)=wn for n=1, 2, ... . K

Remarks. Here we would like to point out that J. Earl's [9] and
P. Jones' [12] constructive proofs for H�-interpolation are suitable for
our situation, that is to say, their solutions are in Qp & H� if [zn] is
p-uniformly separated.
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In a similar way one can prove that [zn] is an interpolating sequence for
Dp & H� if and only if [zn] is uniformly separated and � (1&|zn | ) p<�.

In order to give an argument for sufficiency in the case of Qp, 0 & H�, we
require some further information on p-thin sequences and non-analytic
interpolation solutions.

4.3. p-Vanishing Carleson Measured and p-Thin Sequences

The following three auxiliary lemmas are similar to results given in [19]
but they are proved by different methods.

Lemma 4.1. Let d+ be a p-vanishing Carleson measure, p # (0, 1]. Then
there exists a positive function f on 2 so that lim|z| � 1 f (z)=� and
f (z) d+(z) is a p-vanishing Carleson measure.

Proof. For z, w # 2, define

F(z, w)=_||!|�|z| \
1&|w| 2

|1&w� !| 2+
p

d+(!)&
&1�2

and

f (z)= inf
w # 2

F(z, w).

Since

lim
|w| � 1 |2 \

1&|w| 2

|1&wz| 2+
p

d+(z)=0,

one has f (z) � � as |z| � 1. Using the identity

|
1

0
g(x) _|

1

x
g(t) dt&

&1�2

dx=2 _|
1

0
g(t) dt&

1�2

, 0�g # L1(0, 1),

one deduces

|
2 \

1&|w| 2

|1&w� z|2+
p

f (z) d+(z)�2 _|2 \
1&|w| 2

|1&z� w| 2+
p

d+(z)&
1�2

� 0 as |w| � 1.

Hence, Lemma 4.1 is proved. K

The next result provides a characterization of p-thin sequences in terms
of p-Carleson measures.

Lemma 4.2. Let p # (0, 1] and [zn] be a sequence of points in the unit
disc. Then the following conditions are equivalent:
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(i) [zn] is p-thin;

(ii) limn � � infm{n \(zn , zn)=1 and

lim
r � 1

sup
I/�2

1
|I | p :

zn # S(I ), \(zn , zI )�r

(1&|zn | 2) p=0.

Proof. (i) O (ii). Let I be an arc of the unit circle and w=zI . Given
=>0, if 0<1&r is sufficiently small, one has

=> :
n: \(zn , w)�r

(1&|.w(zn)| 2) p

� :

\(zn , w)�r
zn # S(I )

\(1&|w| 2)(1&|zn | 2

|1&w� zn | 2 +
p

�C |I |&p :

\(zn , w)�r
zn # S(I )

(1&|zn | 2) p.

(ii) O (i). Given w # 2 let I/�2 be the arc such that w=zI and *k be
the point associated to the arc 2kI. Observe that \(zn , w)�r implies that
there exists j=j (r) � � (as r � 1) such that

inf
k�j

\(zn , *k)=\(r) � 1 as r � 1.

Since � (1&|zn | 2) p $zn
is a p-Carleson measure, we get

:
n: \(w, zn)�r

(1&|.w(zn)| 2) p�2 |I | &p :

\(w, zn)�r
zn # S(I ),

(1&|zn | 2) p

+2 :
j

k=1

(22k |I | )&p :

\(zn , *k)�\(r)
zn # S(2k I ),

(1&|zn | 2) p

+2 :
�

k=j+1

(22k |I | )&p :
zn # S(2 k I )

(1&|zn | 2) p � 0

as r � 1.

So, (i) holds. K

Remarks. (i) In the case p=1, the conditions of Lemma 4.2 are
equivalent to

:
m{n

(1&|zm | 2)(1&|zn | 2)
|1&z� mzn | 2 � 0 as n � � (4.9)
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(see [19]). However the corresponding condition, in the case p # (0, 1),

:
m{n _

(1&|zm | 2)(1&|zn | 2)
|1&z� mzn | 2 &

p

� 0 as n � �, (4.10)

is necessary but not sufficient for [zn] to be p-thin. The necessity is easily
seen taking w=zn in the definition of p-thin sequence. To check that it is
not sufficient we construct counterexamples.

Case 1. p # (0, 1�2). Choose integers kn � � such that 2&npkn � � and
2&2npkn � 0. Let zj=(1&2&n) exp(i%j ), %j=jk&1

n , j=1, ..., kn . Then

:
kn

j=1

(1&|zj | )
p=2&npkn � �

while

:
j{m _

(1&|zj |
2)(1&|zm | 2)

|1&z� mzj |
2 &

p

�2&2np :
kn

j=1

1
( jk&1

n )2p�2&2npkn � 0.

Case 2. p=1�2. Choose integers kn � � such that 2&n�2kn � � and
2&nkn log kn � 0, and let zj be as above.

Case 3. p # (1�2, 1). Likewise, choose integers kn such that 2&nkn � 0
and 2&npkn � �, also take zj as in case 1, then we still find that [zj]
satisfies (4.10) but [zj] is not p-thin.

The next result allows us to make big hyperbolic perturbations of p-thin
sequences.

Lemma 4.3. Let p # (0, 1]. If a sequence [zn]/2 is p-thin, then there
exists a sequence [\n] of positive numbers, with limn � � \n=1, such that
whenever [!n]/2 satisfies \(zn , !n)�\n , n=1, 2, ..., [!n] is also p-thin.

Proof. Since [zn]/2 is p-thin, for any sequence rn tending to 1 one
has

sup
|w|�r

:
n: \(w, zn)�rn

(1&|.w(zn)| 2) p � 0 as r � 1.

Arguing as in Lemma 4.1, one can find a sequence of positive numbers an

tending to infinity such that

sup
|w|�r

:
n: \(w, zn)�rn

an(1&|.w(zn)| 2) p � 0 as r � 1.
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Here, we may, for example, take

an= inf
w # 2 _ :

\(zm , w)�rm

|zm |�|zn |

(1&|.w(zm)| 2) p&
&1�2

.

Now, fix numbers rn tending to 1 satisfying

1&infm{n \(zm , zn)
1&rn

� 0 as n � �. (4.11)

Then, consider the corresponding sequence [an] and pick numbers \n

tending to 1 satisfying

1&rn

1&\n
� 0 as n � �. (4.12)

Also, by taking \n � 1 sufficiently slow one can assume that \(zn , !n)�\n

implies (1&|!n | 2) p�an(1&|zn | 2) p and that !n # S(I ), \(!n , zI)�(rn+\n)�
(1+rn\n) implies that zn # S(2I ).

Let !n be a sequence of points in the unit disk, \(!n , zn)�\n , n=1, 2, ... .
We are going to show that [!n] is p-thin using (ii) of Lemma 4.2. Given
an arc I of the unit circle let *=zI and set

0={!n # S(I ) : \(!n , *)�
rn+\n

1+\n rn= .

Given =>0, if |I | is small enough we have

1
|I | p :

!n # 0

(1&|!n | 2) p�
1

|I | p :

\(zn , *)�rn

zn # S(2I ),

an(1&|zn | 2) p

� :
n: \(zn , *)�rn

an(1&|.*(zn)|2) p<=.

On the other hand, if !n # S(I ) but !n � 0, that is,

\(!n , *)�(rn+\n)�(1+\n rn),

then we deduce that

1&\(zn , *)�Cn .
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From (4.11) it follows that there is at most one !m # S(I )"0 and hence

1
|I | p :

\(!n , *)�r
!n # S(I )

(1&|!n | 2) p�
1

|I | p :
!n # 0

(1&|!n | 2) p+(1&r2) p.

An easy calculation using the triangle inequality for the pseudohyperbolic
distance [11, p. 2�6] and (4.11), (4.12) shows that

inf
m{n

\(!m , !n) � 1 as n � �. K

4.4. Interpolation by Non-analytic Functions

As in [19], to interpolate by Qp, 0 & H� functions we first construct
non-analytic interpolating functions.

It is clear that a Blaschke sequence [zn], that is, a sequence satisfying

:
n

(1&|zn | 2)<�,

can at most accumulate non-tangentially in a set of points (on �2) of
length zero. We will refine this fact.

Lemma 4.4. Let [zn]/2 be a Blaschke sequence. Then there exists an
increasing function h(t) on [0, �) depending on [zn] and satisfying h(0)=0,
limt � 0 t&1h(t)=� and |[ei% # �2 : Card(1h(ei% ) & [zn])=�]|=0, where
Card(E ) means the cardinal number of the set E, and

1h(ei%)=[z # 2 : |z&ei% |<h(1&|z| )].

Proof. Assume that |zn |�|zn+1 | for all n. Let hn be an increasing
sequence, hn � � as n � � so that

:
n

(1&|zn | ) hn<�.

Define h(1&|zn | )=(1&|zn | ) hn and extend linearly between 1&|zn+1 |
and 1&|zn |. It is clear that h(0)=0 and

lim
t � 0

h(t)�t=�.

In addition, the set E=[ei% # �2 : Card(1h(ei%) & [zn])=�] can be
covered by

.
n�n0

[h(1&|zn | )�(1&|zn | )] Izn
,
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where n0>0 is any given integer. So |E | can be bounded by

:
n�n0

h(1&|zn | )= :
n�n0

(1&|zn | ) hn � 0 as n0 � �

and hence |E |=0. K

In order to construct a non-analytic interpolating function, we use the
idea of Generations in [11, p. 299�300] to split p-thin sequences. Let [!n]
be a p-thin sequence of points of the unit disk, p # (0, 1). Given an arc
I/�2, consider the dyadic subarcs of I, that is, for n=1, 2, ...

I= .
2n

k=1

I (n)
k ,

where I (n)
k are 2n disjoint subarcs of I with length 2&n |I |. Now, we will

divide [!n] into generations. For I=�2, consider the maximal dyadic
subarcs J of �2 such that T(S(J )) contains some points in [!n] and then
the first generation G1 of [!n] consists of these points in [!n]. Since [!n]
satisfies

inf
m{n

\(!m , !n) � 1 as n � �,

T(S(J)) can contain at most one point of [!n] whenever |J | is sufficiently
small. Next, for each !n # G1 one repeats the above selection replacing �2
by the dyadic subarc J / �2 such that !n # T(S(J )). In this way one obtains
a new subcollection of the sequence which will be denoted by G1(!n)-the
first generation corresponding to !n . The second generation of [!n] is
defined as

G2= .
!n # G1

G1(!n).

The later generations, G3 , G4 , ... are defined recursively. See Figure 1.
For n large enough, if !n # Gj for some j, then there exists a unique

!m # Gj&1 such that S(!n)/S(!m). Moreover,

:
!n # Gj , !n # S(I )

(1&|!n | 2) p�C |I | p (4.13)

holds for any arc I/�2, where C>0 is a constant independent of j and I.
We can now state a non-analytic interpolation theorem which is the

main difference between our proof and the one for VMOA & H� due to
C. Sundberg and T. Wolff [19].
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Fig. 1. The points marked with dots are in the first generation and those with crosses are
in the second.

Theorem 4.5. Let p # (0, 1). Let [zn]/2 be a p-thin sequence with
|zn |�|zn+1 | for all n. Then there exists an increasing sequence [Kn] of
positive numbers, Kn � � as n � �, and c>0, such that whenever [wn] is
a sequence of complex numbers satisfying

sup
m, n>k

|wn&wm | 2

max[Kn , Km]
� 0 as k � �, (4.14)

there exists . # C�(2) with .(z)#wn in [z: \(z, zn)�c] satisfying

(i) {.(z)#0 in 2"�n Rn , where [Rn] are some pairwise disjoint
regions on 2 and zn # Rn ;

(ii) |{.(z)|2 (1&|z| 2) \ dm(z) is a p-vanishing Carleson measure;

(ii) |2.(z)| (1&|z| )� |{.(z)| and (1&|z| 2) |{.(z)|�1, where 2.
means the Laplacian of .;

(iv) supz # 2 |.(z)|�2 supn |wn |, if supn |wn |<�;

(v) If wn>0 increases when (1&|zn | ) decrease, one has 0�.(z)�
2wn for z # Rn .

Proof. Observe that one only has to do the construction when n is
large. Hence one may assume that [zn] are very close to �2.

Let In=Izn
(i.e., S(zn)=S(In)) and !n be the point associated to the arc

2KnIn . By Lemma 4.3, Kn can be chosen tending to � sufficiently slowly so
that [!n] is also p-thin.
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Fig. 2. The shadowed region is the tower over zn when Kn=2.

For n=1, 2, ..., we consider a region T(zn) which will be called the tower
over zn ,

T(zn)=T(S(In)) _ T(S(2In)) _ } } } _ T(S(2KnIn)).

See Figure 2. Since S(2knIn)=S(!n), the decomposition of [!n] into genera-
tions gives a corresponding decomposition for the towers, that is,

[T(zn)]=.
j

[T(zn): !n # Gj ].

If Kn � � sufficiently slowly, then the following properties hold:

(1) inf[\(T(zn), T(zm)): n{m and !n , !m # Gj ] � 1 as n � �, where
\(E, F )=inf[\(z, w): z # E, w # F] stands for the pseudohyperbolic dis-
tance between E/2 and F/2.

(2) For any arc I/�2 one has

:
T(zn)/S(I )

(1&|!n | 2) p� |I | p.

Moreover, using a slightly bigger Carleson box as a substitute for S(zn)
one can also assume
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(3) Given a tower T(zn) of the j-generation, that is !n # Gj , there is
a unique zm in the ( j&1) generation, that is !m # Gj&1 , such that
T(zn)/S(zm).

Next, we will determine a neighborhood R(zn), the so-called extended
tower over zn , of T(zn). For j=1, ..., Kn consider the brothers of T(S(2 j In)) as

S ( j )
&(Kn&j ) , ...S ( j )

0 , ...S ( j )
Kn&j ,

which are the 2(Kn&j )+1 adjacent (from both sides) truncated Carleson
boxes to T(S(2 j In)) of the same size. So, S ( j )

0 =T(S(2 j In)). Also, for j=0,
consider

S (0)
&Kn

, ..., S (0)
0 , ..., S (0)

Kn

the 2Kn+1 adjacent (from both sides) Carleson boxes to S(In)=S (0)
0 .

Then consider

R(zn)=\ .
Kn

j=0

.
Kn&j

l=&(Kn&j )

S ( j )
l + .

See Figure 3. If Kn � � sufficiently slowly, and again replacing S(zn) by a
slightly bigger Carleson box if necessary, one can assume that properties
(2) and (3) hold for R(zn) instead of T(zn).

Finally, for l=&Kn , ..., Kn , consider a point !=!(l ) in the radial projec-
tion of S (0)

l onto �2 so that S (0)
l & 1h(!) do not intersect any extended

tower R(zm), m{n, where h is the function given by Lemma 4.4. One may
also assume that the usual truncated Stolz angles

1(!(l ))=[z # S (0)
l : |z&!(l )|<2(1&|z| )], l=&Kn , ..., Kn

are pairwise disjoint. Now, define

Rn=_R(zn)> .
Kn

&Kn

S (0)
l &_ _ .

Kn

&Kn

(1h(`(l )) & S (0)
l )& .

It follows from properties (1) and (3) that [Rn] are pairwise disjoint.
We will define the function . as the limit of some .j # C�(2) which will

be constructed using generations. The function .j will be constant outside
the sets Rn corresponding to points zn in generations Gk , k� j. The key
estimate will be

(1&|z| ) |{.j (z)|�
maxk<n [ |wn&wk |: zk # S(zm), R(zn)/S(zm)]

Kn
,

z # R(zn).
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Fig. 3. The shadowed region is the extended tower over zn when Kn=3.

It will be clear from the construction below how to define .1 . Assume
we have defined .j&1 with the following properties.

(a) .j&1#wn in [z: \(z, zn)�c] if zn # � j&1
k=1 Gk .

(b) supp({.j&1)/� j&1
k=1 �zn # Gk

Rn .

(c) (1&|z| ) |{.j&1(z)|�(maxm�n |wn&wm | )�Kn , z # R(zn) if R(zn)
/S(zm).

After that, let us construct .j . Given a point zm # Gj&1 let R=R(zn) be
the largest extended tower of Gj contained in S(zm), namely,

1&|!n |=sup [1&|!k |: `k # Gj , R(zk)/S(zm)].

We want to find a function �=�R in S(zm), which satisfies the analogues
of (a)�(c). Let wn be the value that one wants to interpolate at zn .

Take w(0)=wn , w(1), ..., w(Kn)=wm with

|w(k)&w(k+1)|=K &1
n |wn&wm |
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and define

�#�R=w( j+l ) in S ( j )
l , l=&(Kn&j ), ..., Kn&j,

j=0, ..., Kn

and �=.j&1 in 2"R(zn). So, after a regularization we can assume that
� # C�(2) with �#wn in [z: \(z, zn)�c], satisfies

(1&|z| ) |2�(z)|� |{�(z)|, z # 2, (4.15)

(1&|z| ) |{�(z)|�1, z # 2, (4.16)

and

(1&|z| ) |{�(z)|�
|wn&wm |

Kn
, z # R(zn). (4.17)

Furthermore, we can do the regularization in such a way that

{�(z)#0, z # S(zm)"Rn . (4.18)

This is just the place where the cones 1h(!(l )) are used. Actually, we can
do the regularization in such a way that

{�(z)#0, z # .
l

(S (0)
l "1(!(l ))), 1&|z|>h&1( |In | ),

where 1(!(l ))=[z # 2 : |z&!(l )|<2(1&|z| )] are the usual Sto� lz angles
and

h(1&|z| ) |{�(z)|�
|wn&wm |

Kn
, z # Sl

(0) & 1h(!(l )),

1&|z|<
1
2

h&1( |In | ). (4.19)

In the sequel, we shall take care of the remaining extended towers in
S(zm) and select the maximal one, say, R*=R(zk) for some k. If R* does
not intersect the preceding one R=R(zn), then repeat the same construc-
tion. Otherwise, just repeat the construction with .j&1 replaced by �#�R

and S(zm) by the Carleson box S (0)
l /R which contains zk . In this way we

get a function �*#�R* satisfying (4.15) and (4.16). Note that even if .j&1

has been substituted by �R , the estimates (4.17) and (4.19) still hold if we
replace the right-hand term by

max
m�n

|wn&wm |�Kn .
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Continue this process. If it ends after finitely many steps, that is, if there is
a finite number of points of the sequence [zn] in S(zm), then we take .j to
be the last �R . If there are infinitely many points of [zn] in S(zm), then the
corresponding �R converges pointwise to a function which will be our .j .
It is clear from (4.15)�(4.19) that .j satisfies (a)�(c). Finally, we define .
as the pointwise limit of .j and it is clear from the construction that .
satisfies (i) (iii) (iv) and (v) in Theorem 4.5. To show (ii) we will use the
estimates

{.(z)=0, z # . (S (0)
l "1(!(l ))), 1&|z|>h&1( |In | ),

(1&|z| ) |{.(z)|�
maxm�n |wn&wm |

Kn
, z # R(zn), (4.20)

h(1&|z| ) |{.(z)|�
maxm�n |wn&wm |

Kn
,

z # S (0)
l & 1h(!(l )), 1&|z|<

1
2

h&1( |In | ),

(4.21)

which follow from the similar inequalities (4.17) and (4.19) for .j .
Put 1n=�l S (0)

l & 1h(!(l )) & [z: 1&|z|< 1
2 h&1( |In | )], where S (0)

l are the
Carleson sectors in R(zn). Estimates (4.20) and (4.21) give respectively

|
R(zn)"1n

|{.(z)| 2 (1&|z| 2) p dm(z)

�_maxm�n |wn&wm |
Kn &

2

:
Kn

j=0

:
Kn&j

&(Kn&j )

(2 j (1&|zn | 2) p

�
maxm�n |wn&wm | 2

Kn
[2Kn (1&|zn | 2)] p (4.22)

and

|
1n & S l

(0)
|{.(z)| 2 (1&|z| 2) p dm(z)

�_ max
t�1&|zn |

t
h(t)&

2

_maxm�n |wn&wm |
Kn &

2

|S (0)
l | p. (4.23)

421MO� BIUS INVARIANT DIRICHLET SPACES



File: DISTIL 311440 . By:DS . Date:03:07:01 . Time:06:36 LOP8M. V8.0. Page 01:01
Codes: 2073 Signs: 657 . Length: 45 pic 0 pts, 190 mm

Now, let S(I ) be a Carleson box and let n be such that Rn & S(I ){<.
Then

|
Rn & S(I )

|{.(z)| 2 (1&|z| 2) p dm(z)

=\|R(zn)"1n & S(I )
+|

1n & S(I )+ |{.(z)| 2 (1&|z| 2) p dm(z)

=(A)+(B).

If 2Kn |In |�|I |, then as in (4.22) we have

(A)�
maxm�n |wn&wm | 2

Kn
[2Kn(1&|zn | 2 )] p.

Otherwise, that is, if 2Kn |In |>|I |, we get

(A)�
maxm�n |wn&wm | 2

Kn
|I & (2KnIn)| p.

On the other hand, if |I |�|In |, then using (4.23) we obtain

(B)�_ max
t�1&|zn |

t
h(t)&

2

_maxm�n |wn&wm |
Kn &

2

min { |I |
|In |

, Kn= } |In | p

and if |I |<|In |,

(B)�_max
t�|I |

t
h(t)&

2

_maxm�n |wn&wm | 2

Kn &
2

|I | p.

So,

|
Rn & S(I )

|{.(z)| 2 (1&|z| 2) p dm(z)

�
maxm�n |wn&wm | 2

Kn
|(2Kn In) & (2I )| p

+_ max
t�max[ |I |, |In |]

t
h(t)&_

maxm�n |wn&wm | 2

Kn &
_1+min { |I |

|In |
, Kn=& [min[ |I |, |In |]] p.
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Applying the assumption (4.14) and the fact that

:
n

(1&|!n | ) p $!n
=:

n

(2Kn |In | ) p $!n

is a p-Carleson measure we arrive at (ii). Hence, the proof is completed. K

Remarks. (i) In the case p=1, Theorem 4.5 still holds with property
(ii) in place of the weaker condition that |{.(z)| dm(z) is a 1-vanishing
Carleson measure. This fact can be shown in a similar way.

(ii) Any bounded sequence [wn] satisfies (4.14), but one can also
take unbounded sequences [wn] tending to infinity sufficiently slowly.

(iii) If . satisfies (ii) and (iii) of Theorem 4.5, there exists
b # Qp, 0(�2) & L�(2) such that �� b=�� .. This follows from the fact that
when |�� .(z)| dm(z) and |2.(z)|(1&|z| ) dm(z) are 1-Carleson measures
and supz # 2 |2� .(z)| (1&|z| )<�, any smooth solution b of �� b=�� . which
is bounded on the unit circle is already bounded on the unit disk [21]
[5, p. 53].

4.5. Sufficient Condition for Interpolation in Qp, 0 & H�

After this long preparation, we can give a proof for the sufficient
condition for Qp, 0 & H �-interpolation.

Proof of sufficiency in Theorem 1.4. Without loss of generality, let [zn]
be a p-thin sequence of points in the unit disk, |zn |�|zn+1 | for all n, and
let [wn]/C be a bounded sequence of complex numbers. Choose Kn � �
verifying Theorem 4.5. Also let . be the function given by Theorem 4.5.

Since |{.(z)| 2 (1&|z| 2) p dm(z) is a p-vanishing Carleson measure,
Lemma 4.1 provides a function k(z)�0 increasing to infinity (as |z| � 1)
such that [k(z) |{.(z)|]2 (1&|z| 2) p dm(z) is still a p-vanishing Carleson
measure. Setting

kn= inf
z # Rn

k(z)1�2,

where Rn are given by Theorem 4.5, and replacing kn by smaller numbers,
increasing to infinity as well, one can assume that

sup
n, m�k

|log kn&log km | 2

max[Kn , Km]
� 0 as k � �.
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Another application of Theorem 4.5 with the values [log kn] gives a
function � satisfying (i)�(v) in Theorem 4.5. So, �(zn) � � as n � � and
0��(z)�2 log kn for z # Rn . Using the third remark after Theorem 4.5, we
can find a function a # L�(2) & Qp, 0(�2)) so that �� a=�� �. Hence
F=exp(a&�) # Qp, 0 & H �, F(zn) � 0 as n � � and |F(z)|&1�k(z) for
z # �n Rn .

Let B be the Blaschke product with zeros [zn]. Then the measure

} {.(z)
B(z) F(z) }

2

(1&|z| 2) p dm(z)

is a p-vanishing Carleson measure. Now, from Theorem 3.1 it follows
that there is a function b # Qp, 0(�2) & L�(�2) with �� b=�� .�BF, and then
that f=.&BFb # Qp, 0 & H � because here Corollary 2.5 is applied to
F # Qp, 0 & H� with F(zn) � 0 and so FB # Qp, 0 & H�. It is obvious that
this function f interpolates wn at zn for n=1, 2, ... . K

Remark. If [zn]/2 is 1-thin, using Remark (i) after Theorem 4.5, one
can assume |{.(z)| dm(z) is a 1-vanishing Carleson measure. Repeating the
same argument we also get that

} {.(z)
B(z) F(z) } dm(z)

is a 1-vanishing Carleson measure. So, it remains to check that the
equation

�� b=
�� .
BF

=g

can be solved by b # VMO(�2) & L�(�2). This is well-known and follows,
for instance, from the Fefferman-Stein decomposition. Actually the function

b0(z)=
1
? |

2

g(!)
z&!

dm(!)

is in VMO(�2) and �� b0=g. Hence b0=u+v~ , where u, v # C(�2) and one
can take b=b0+i(v+iv~ ) # VMO(�2) & L�(�2). Finally, the interpolating
function .&bBF is in VMOA & H�/B0 & H�.
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