BLASCHKE PRODUCTS WITH PRESCRIBED RADIAL LIMITS

ARTUR NICOLAU

1. Introduction

The purpose of this paper is to give a result on the existence of Blaschke products with prescribed radial limits at certain subsets of the unit circle in the complex plane.

Let E be a finite subset of the unit circle T and let ϕ be a function defined on E with $\sup \left\{\left|\phi\left(e^{i t}\right)\right|: e^{i t} \in E\right\} \leqslant 1$. G. Cargo [4] proved that there exists a Blaschke product I such that

$$
\lim _{r \rightarrow 1} I\left(r e^{i t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E .
$$

If f is an arbitrary function defined in the open unit disc $D, e^{i t}$ is a point of the unit circle and γ is the radius from 0 to $e^{i t}$, the radial cluster set of f at $e^{i t}$ is the set of points $\alpha \in \mathbb{C}$ such that there exists a sequence $\left\{z_{n}\right\}$ in γ with $\lim _{n \rightarrow \infty} z_{n}=e^{i t}$, such that $\lim _{n \rightarrow \infty} f\left(z_{n}\right)=\alpha$. C. Belna, P. Colwell and G. Piranian [1] have proved the following more general result. Let $E=\left\{e^{i t}{ }_{m}\right\}$ be a countable subset of the unit circle and let $\left\{K_{m}\right\}$ be a sequence of nonempty, closed and connected subsets of the closed unit disc. Then, there exists a Blaschke product such that its radial cluster set at $e^{i t_{m}}$ is $K_{m}, m=1,2, \ldots$.

Our aim is to extend these results to more general sets E, in the case of dealing with radial limits.

By the F. and M. Riesz theorem, a bounded analytic function in the unit disc is determined by its radial limits at a set of positive measure of the circle. So, if we try to interpolate general functions by radial limits of Blaschke products, it is natural to restrict ourselves to subsets E of the unit circle of zero Lebesgue measure.

A set is called of type F_{σ} if it is a countable union of closed sets, and it is called of type G_{δ} if it is a countable intersection of open sets. Observe that a closed subset of the unit circle is of type F_{σ} and G_{δ}. The closure of a set E will be denoted by \bar{E}.

Our result is the following.

Theorem. Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ}. Let ϕ be a function defined on E with $\sup \left\{\left|\phi\left(e^{i t}\right)\right|: e^{i t} \in E\right\} \leqslant 1$ and such that for each open set \mathscr{U} of the complex plane, $\phi^{-1}(\mathscr{U})$ is of type F_{σ} and G_{δ}. Then there exists a Blaschke product I extending analytically to $T \backslash \bar{E}$ such that

$$
\lim _{r \rightarrow 1} I\left(r e^{t t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E \text {. }
$$

Received 29 January 1990; revised 28 September 1990.
1980 Mathematics Subject Classification 30D40, 30D50.
Supported in part by the grant PB85-0374 of the CYCIT, Ministerio de Educación y Ciencia, Spain.

We consider sets E of type F_{σ} and G_{δ} because in this situation the cases $\phi \equiv 0$ and $\phi \equiv 1$ of the theorem have been considered by R. Berman (see Theorems 4.4 and 4.9 of [2]).

Theorem (R. Berman). Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ}. Then there exist Blaschke products B_{0} and B_{1} such that:
(i) B_{0} extends analytically to $T \backslash \bar{E}$ and $\lim _{r \rightarrow 1} B_{0}\left(r e^{i t}\right)=0$ if and only if $e^{i t} \in E$;
(ii) $\lim _{r \rightarrow 1} B_{1}\left(r e^{i t}\right)=1$ if and only if $e^{i t} \in E$.

A posteriori, in our result, ϕ has to be a pointwise limit of continuous functions. This turns to be equivalent [7, p. 141] to $\phi^{-1}(\mathscr{U})$ being of type F_{σ} for all open sets \mathscr{U} of the complex plane. Then, for $|\alpha|<1$, the set $E_{\alpha}=\left\{e^{i t}: \phi\left(e^{i t}\right)=\alpha\right\}$ has to be of type G_{δ}. Nevertheless, in [3] it is proved that E_{α} is meagre, that is, a countable union of sets such that its closure has no interior. So, in the general case, the hypothesis $\phi^{-1}(\mathscr{U})$ is of type F_{σ} for \mathscr{U} open, cannot be sufficient.

Our theorem does not cover the result of C. Belna, P. Colwell and G. Piranian, even when the compact sets are points, because a countable set has not to be of type G_{δ}. For example, by Baire's Category theorem, the set $\left\{e^{i t}: t \in \mathbb{Q}\right\}$ is not of type G_{δ}. Nevertheless, one can show that the proof of the theorem can be adapted to recover their result.

Let H^{∞} be the Banach space of all bounded analytic functions in the open unit disc D with the norm

$$
\|f\|_{\infty}=\sup \{|f(z)|: z \in D\}
$$

The main idea of our proof is to use a result of A. Stray [10] on the Pick-Nevanlinna interpolation problem in order to show that from the existence of functions in the unit ball of H^{∞} with some radial limits at points of E, one can obtain Blaschke products with the same radial limits at E. This is done in Section 2. Section 3 is devoted to the proof of the theorem.

This paper is a part of my thesis. I am grateful to Julià Cufí, my advisor, for his valuable help and encouragement.

2. The Pick-Nevanlinna interpolation problem

Given two sequences of numbers $\left\{z_{n}\right\},\left\{w_{n}\right\}$ in D, the classical Pick-Nevanlinna interpolation problem consists in finding all analytic functions $f \in H^{\infty}$ satisfying $\|f\|_{\infty} \leqslant 1$ and $f\left(z_{n}\right)=w_{n}, n=1,2, \ldots$. We shall denote it by
(*) Find $f \in H^{\infty},\|f\|_{\infty} \leqslant 1, f\left(z_{n}\right)=w_{n}, n=1,2, \ldots$.
Pick and Nevanlinna found necessary and sufficient conditions in order that the problem (*) has a solution. Let \mathscr{G} be the set of all solutions of the problem (*). Nevanlinna showed that if \mathscr{G} consists of more than one element, there is a parametrization of the form

$$
\mathscr{G}=\left\{f \in H^{\infty}: f=\frac{p \phi+q}{r \phi+s}: \phi \in H^{\infty},\|\phi\|_{\infty} \leqslant 1\right\},
$$

where p, q, r, s are certain analytic functions in D, depending on $\left\{z_{n}\right\},\left\{w_{n}\right\}$ and satisfying $p s-q r=B$, the Blaschke product with zeros $\left\{z_{n}\right\}$.

Later, Nevanlinna showed that for all $e^{i \theta} \in T$, the function

$$
I_{\theta}=\frac{p e^{i \theta}+q}{r e^{i \theta}+s}
$$

is inner. Therefore, if the problem (*) has more than one solution, there are inner functions solving it. See [5, pp. 6, 165] for the proofs of these results.

Recently, A. Stray [10] has proved that, in fact, for all $e^{i \theta} \in T$ except possibly a set of zero logarithmic capacity, the function I_{θ} is a Blaschke product. So, if the problem (*) has more than one solution, there are Blaschke products solving it. Also [9], denoting by $\left\{z_{n}\right\}^{\prime}$ the set of accumulation points of the sequence $\left\{z_{n}\right\}$, the functions I_{θ} extend analytically to $T \backslash\left\{z_{n}\right\}^{\prime}$.

The connection of these results with our theorem is given in the following proposition.

Proposition. Let E be a subset of the unit circle. Assume that there exist a Blaschke product B_{0} that extends analytically to $T \backslash \bar{E}$ with $\lim _{r \rightarrow 1} B_{0}\left(r e^{i t}\right)=0$ for $e^{i t} \in E$, and an analytic function f_{1} in the unit ball of $H^{\infty}, f_{1} \not \equiv 1$, such that $\lim _{r \rightarrow 1} f_{1}\left(r e^{i t}\right)=1$ for $e^{t t} \in E$. Then for each analytic function g in the unit ball of H^{∞}, there exists a Blaschke product I that extends analytically to $T \backslash \bar{E}$, such that

$$
\lim _{r \rightarrow 1}\left(I\left(r e^{i t}\right)-g\left(r e^{i t}\right)\right)=0 \quad \text { for } e^{i t} \in E
$$

Because of the result of R. Berman cited in the introduction, the hypotheses of the Proposition are satisfied if E is a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ}.

Proof of the Proposition. Let $\left\{z_{n}\right\}$ be the zeros of B_{0} and $w_{n}=2^{-1} g\left(z_{n}\right)\left(1+f_{1}\left(z_{n}\right)\right)$ for $n=1,2, \ldots$ Consider the Pick-Nevanlinna interpolation problem,
(*) Find $f \in H^{\infty},\|f\|_{\infty} \leqslant 1, f\left(z_{n}\right)=w_{n}, n=1,2, \ldots$
Since $2^{-1} g\left(1+f_{1}\right)$ is a solution of $(*)$ and it is a nonextremal point of the unit ball of H^{∞}, the problem (*) has more than one solution. Actually, if $f_{0}=2^{-1} g\left(1+f_{1}\right)$, since

$$
\int_{0}^{2 \pi} \log \left(1-\left|f_{0}\left(e^{i \theta}\right)\right|\right) d \theta>-\infty
$$

one can consider the function

$$
E(z)=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} \log \left(1-\left|f_{0}\left(e^{i t}\right)\right|\right) d t\right), \quad z \in D
$$

Now $f_{0}+B_{0} E$ is a solution of (*) different from f_{0}.
Now, by the theorem of A. Stray, there exists a Blaschke product I extending analytically to $T \backslash \bar{E}$, solving (*). Therefore,

$$
I=g \frac{1+f_{1}}{2}+B_{0} h
$$

for some $h \in H^{\infty}$. Then, since $\lim _{r \rightarrow 1} f_{1}\left(r e^{i t}\right)=1$ and $\lim _{r \rightarrow 1} B_{0}\left(r e^{i t}\right)=0$ for $e^{i t} \in E$, one has

$$
\lim _{r \rightarrow 1}\left(I\left(r e^{i t}\right)-g\left(r e^{i t}\right)\right)=0 \quad \text { for } e^{i t} \in E
$$

and this proves the Proposition.

3. Proof of the Theorem

First, let us assume that ϕ is a simple function. Because of the topological hypothesis on ϕ, one has

$$
\phi=\sum_{k=1}^{n} \alpha_{k} \chi_{E_{k}},
$$

where $\chi_{E_{i}}$ is the characteristic function of the set $E_{i},\left\{E_{k}\right\}$ are subsets pairwise disjoint of the unit circle of type F_{σ} and G_{δ}, and $\sup \left\{\left|\alpha_{k}\right|: k=1, \ldots, n\right\} \leqslant 1$.

According to the Proposition of Section 2 and the theorem of R. Berman cited in the introduction, in order to prove the theorem when ϕ is simple, it is sufficient to show the following result.

Lemma. Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ}. Assume $E=\bigcup_{k=1}^{n} E_{k}$, where $\left\{E_{k}\right\}$ are sets of type F_{σ} and G_{δ} pairwise disjoint. Let $\phi=\sum_{k-1}^{n} \alpha_{k} \chi_{E_{k}}$, where $\sup \left\{\left|\alpha_{k}\right|: k=1, \ldots, n\right\} \leqslant 1$. Then there exists an analytic function f of the unit ball of H^{∞} such that

$$
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E .
$$

Proof of the Lemma. Considering a conformal mapping from the unit disc to the right half plane $\Pi=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$, one can assume $\alpha_{k} \in \bar{\Pi}, k=1, \ldots, n$, and the problem is to find an analytic function f on D such that

$$
\begin{equation*}
\operatorname{Re} f(z) \geqslant 0 \text { for } z \in D \quad \text { and } \quad \lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\alpha_{k} \text { for } e^{i t} \in E_{k}, \quad k=1, \ldots, n . \tag{1}
\end{equation*}
$$

(1) has the advantage that the sum of functions taking values in Π also takes values in Π. Therefore, for $1 \leqslant k \leqslant n$, one has to construct an analytic function f_{k} in D such that

$$
\begin{gather*}
\operatorname{Re} f_{k}(z) \geqslant 0 \quad \text { for } z \in D \\
\lim _{r \rightarrow 1} f_{k}\left(r e^{i t}\right)=\alpha_{k} \quad \text { for } e^{i t} \in E_{k}, \tag{2}\\
\lim _{r \rightarrow 1} f_{k}\left(r e^{i t}\right)=0 \quad \text { for } e^{i t} \in E \backslash E_{k},
\end{gather*}
$$

because then $f=f_{1}+\ldots+f_{n}$ will satisfy (1).
Fix $1 \leqslant k \leqslant n$. One can assume $\alpha_{k} \neq 0$. Since k is fixed, in the following construction the subindex k will be omitted.

Since E_{k} and $E \backslash E_{k}$ are sets of zero Lebesgue measure and of type F_{σ} and G_{δ}, there exist (see the proof of Theorem 3 of [6]) two positive measures μ and μ^{*} on T such that

$$
\begin{gather*}
\lim _{h \rightarrow 0} \frac{\mu\left\{e^{i s}: t-h<s<t+h\right\}}{h}=+\infty \quad \text { if } e^{i t} \in E_{k} \tag{3}\\
\text { and } \mu^{\prime}\left(e^{i t}\right)=0 \quad \text { if } e^{i t} \in T \backslash E_{k}, \\
\lim _{h \rightarrow 0} \frac{\mu^{*}\left\{e^{i s}: t-h<s<t+h\right\}}{h}=+\infty \quad \text { if } e^{i t} \in E \backslash E_{k} \tag{4}\\
\text { and } \mu^{*^{\prime}}\left(e^{i t}\right)=0 \quad \text { if } e^{i t} \in T \backslash\left(E \backslash E_{k}\right) .
\end{gather*}
$$

In the same proof, the authors consider u, u^{*}, the Poisson integrals of the measures μ, μ^{*}, and v, v^{*}, the harmonic conjugates of u, u^{*}. Taking $g=u+i v$ and $g^{*}=u^{*}+i v^{*}$ and using (3) and (4), they prove

$$
\begin{gather*}
\lim _{r \rightarrow 1} g\left(r e^{i t}\right) \quad \text { exists and is finite for } e^{i t} \in T \backslash E_{k}, \\
\lim _{r \rightarrow 1} \operatorname{Re} g\left(r e^{i t}\right)=+\infty \text { for } e^{i t} \in E_{k}, \tag{5}\\
\lim _{r \rightarrow 1} g^{*}\left(r e^{i t}\right) \text { exists and is finite for } e^{i t} \in T \backslash\left(E \backslash E_{k}\right), \\
\lim _{r \rightarrow 1} \operatorname{Re} g^{*}\left(r e^{i t}\right)=+\infty \quad \text { for } e^{i t} \in E \backslash E_{k} .
\end{gather*}
$$

We use now an idea of W. Rudin [8]. Since $\operatorname{Re} g(z) \geqslant 0$ and $\operatorname{Re} g^{*}(z) \geqslant 0$ for $z \in D$, the function

$$
q(z)=\frac{g(z)^{\frac{1}{2}}}{g(z)^{\frac{1}{2}}+g^{*}(z)^{\frac{1}{2}}}
$$

is analytic in D. Furthermore, from (5) one obtains

$$
\begin{array}{ll}
\lim _{r \rightarrow 1} q\left(r e^{i t}\right)=1 & \text { if } e^{i t} \in E_{k}, \\
\lim _{r \rightarrow 1} q\left(r e^{i t}\right)=0 & \text { if } e^{i t} \in E \backslash E_{k} . \tag{6}
\end{array}
$$

One has

$$
\begin{equation*}
\operatorname{Re} q(z)=\frac{|g(z)|+\operatorname{Re}\left(g(z)^{\frac{1}{2}} \frac{\left.\overline{g^{*}}(z)^{\frac{1}{2}}\right)}{|g(z)|+\left|g^{*}(z)\right|+2 \operatorname{Re}\left(g(z)^{\frac{1}{2}} \overline{g^{*}(z)^{\frac{1}{2}}}\right.} \frac{1}{} .\right.}{} \tag{7}
\end{equation*}
$$

Since $\left|\operatorname{Arg}\left(g(z)^{\frac{1}{2}}\right)\right| \leqslant \pi / 4$ and $\left|\operatorname{Arg}\left(g^{*}(z)^{\frac{1}{2}}\right)\right| \leqslant \pi / 4$ for $z \in D$, one obtains

$$
\operatorname{Re}\left(g(z)^{\frac{1}{2}} \overline{g^{*}(z)^{\frac{1}{2}}}\right) \geqslant 0
$$

and from (7) one can deduce

$$
\begin{equation*}
0 \leqslant \operatorname{Re} q(z) \leqslant 1 \quad \text { for } z \in D \tag{8}
\end{equation*}
$$

Now, take M to be a rectangle contained in the right half plane such that $0, \alpha_{k} \in \partial M$. Let Φ be the conformal mapping from the strip $\{z \in \mathbb{C}: 0<\operatorname{Re}(z)<1\}$ into M such that $\Phi(0)=0$ and $\Phi(1)=\alpha_{k}$, and consider the function $f=\Phi \circ q$. Since M is contained in the right half plane, $\operatorname{Re} f(z) \geqslant 0$ for $z \in D$. Moreover, from (6) one obtains

$$
\begin{array}{ll}
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\Phi(1)=\alpha_{k} & \text { for } e^{i t} \in E_{k}, \\
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\Phi(0)=0 & \text { for } e^{i t} \in E \backslash E_{k} .
\end{array}
$$

This gives (2), and the Lemma is proved.
Let us consider now the general case. Applying the Proposition of Section 2 and the result of R. Berman cited in the introduction, in order to prove the theorem one has only to construct an analytic function f of the unit ball of H^{∞} such that

$$
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E
$$

Consider a conformal mapping S from the unit disc into the square $Q=(-1,1) \times$ $(-1,1)$. Since ∂Q is a Jordan curve, S extends homeomorphically to \bar{D}. Considering $S \circ \phi$, one can assume that the function ϕ takes values in \bar{Q}, and the problem is to find an analytic function f in D, taking its values in Q, such that

$$
\begin{equation*}
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E \tag{9}
\end{equation*}
$$

Consider the squares $Q_{1}=[0,1) \times[0,1), Q_{2}=(-1,0) \times[0,1), Q_{3}=(-1,0] \times(-1,0)$, $Q_{4}=(0,1) \times(-1,0)$, and let α_{i} be the centre of Q_{i}. The squares Q_{i} are pairwise disjoint, and

$$
Q=\bigcup_{i=1}^{4} Q_{i}
$$

By hypothesis, the sets $E_{i}=\left\{e^{i t} \in E: \phi\left(e^{i t}\right) \in Q_{i}\right\}$ are of type F_{σ} and G_{δ}. Take

$$
\phi_{1}=\sum_{i=1}^{n} \alpha_{i} \chi_{E_{i}},
$$

where $\chi_{E_{t}}$ is the characteristic function of the set E_{i}. Since ϕ takes its values in the square Q, the choice of $\left\{\alpha_{i}\right\}$ and $\left\{E_{i}\right\}$ gives

$$
\begin{equation*}
\sup _{e^{u} \in E} \max \left\{\left\{\operatorname{Re}\left(\phi\left(e^{i t}\right)-\phi_{1}\left(e^{i t}\right)\right)\left|,\left|\operatorname{Im}\left(\phi\left(e^{i t}\right)-\phi_{1}\left(e^{i}\right)\right)\right|\right\} \leqslant \frac{1}{2}\right.\right. \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{e^{i t} \in E} \max \left\{\left|\operatorname{Re} \phi_{1}\left(e^{i t}\right)\right|,\left|\operatorname{Im} \phi_{1}\left(e^{i t}\right)\right|\right\} \leqslant \frac{1}{2} . \tag{11}
\end{equation*}
$$

Applying the Lemma and a conformal mapping, one obtains an analytic function f_{1} on D, taking its values in the square $Q / 2=\left(-\frac{1}{2}, \frac{1}{2}\right) \times\left(-\frac{1}{2}, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
\lim _{r \rightarrow 1} f_{1}\left(r e^{i t}\right)=\phi_{1}\left(e^{i t}\right) \text { for } e^{i t} \in E \tag{12}
\end{equation*}
$$

Furthermore, using the fact that finite unions and intersections of sets of type F_{σ} and G_{δ} are also of type F_{σ} and G_{δ}, one can check that if $\mathscr{U} \subset \mathbb{C}$ is open, the set

$$
\begin{equation*}
\left\{e^{i t} \in E: \phi\left(e^{i t}\right)-f_{1}\left(e^{i t}\right) \in \mathscr{U}\right\} \quad \text { is of type } F_{\sigma} \text { and } G_{\delta} \tag{13}
\end{equation*}
$$

Now, using (10), (12) and (13), one can repeat these arguments, changing ϕ to $\left(\phi-f_{1}\right) / \frac{1}{2}$. Then one obtains an analytic function f_{2} in the unit disc taking its values in $Q / 2$, such that

$$
\sup _{e^{i t} \in E} \max \left\{\left|\operatorname{Re}\left(\frac{\phi-f_{1}}{\frac{1}{2}}-f_{2}\right)\left(e^{i t}\right)\right|,\left|\operatorname{Im}\left(\frac{\phi-f_{1}}{\frac{1}{2}}-f_{2}\right)\left(e^{i t}\right)\right|\right\} \leqslant \frac{1}{2}
$$

Therefore

$$
\sup _{e^{i t} \in E} \max \left\{\left|\operatorname{Re}\left(\phi-f_{1}-\frac{f_{2}}{2}\right)\left(e^{i t}\right)\right|,\left|\operatorname{Im}\left(\phi-f_{1}-\frac{f_{2}}{2}\right)\left(e^{i t}\right)\right|\right\} \leqslant \frac{1}{2^{2}} .
$$

Also, if \mathscr{U} is an open set of the complex plane,

$$
\left\{e^{i t} \in E:\left(\frac{\phi-f_{1}}{\frac{1}{2}}-f_{2}\right)\left(e^{i t}\right) \in \mathscr{U}\right\} \quad \text { is of type } F_{\sigma} \text { and } G_{\delta} .
$$

Repeating this process, one obtains analytic functions f_{j} on the unit disc, taking values in the square $Q / 2$, such that

$$
\begin{equation*}
\sup _{e^{u t} \in E} \max \left\{\left|\operatorname{Re}\left(\phi-\sum_{j=0}^{n} \frac{1}{2^{j}} f_{j+1}\right)\left(e^{i t}\right)\right|,\left|\operatorname{Im}\left(\phi-\sum_{j=0}^{n} \frac{1}{2^{j}} f_{j+1}\right)\left(e^{i t}\right)\right|\right\} \leqslant \frac{1}{2^{n}} . \tag{14}
\end{equation*}
$$

Now, for $z \in D$, let us consider

$$
f(z)=\sum_{j=0}^{\infty} \frac{1}{2^{j}} f_{j+1}(z) .
$$

Since f_{j} takes its values in the square $Q / 2$, one has

$$
\max \{|\operatorname{Re} f(z)|,|\operatorname{Im} f(z)|\} \leqslant \sum_{j=0}^{\infty} \frac{1}{2} \frac{1}{2^{j}}=1 .
$$

So f takes its values in the square Q.
Now let us check that $\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\phi\left(e^{i t}\right)$ for $e^{i t} \in E$.
Fix $\varepsilon>0$ and take a natural number n such that $32^{-n} \leqslant \varepsilon$. Applying (14) and using the fact that the functions f_{j} take values in the square $Q / 2$, one has, for $1-r$ small enough,

$$
\begin{gathered}
\left|\phi\left(e^{i t}\right)-\sum_{j=0}^{\infty} \frac{1}{2^{j}} f_{j+1}\left(r e^{i t}\right)\right| \leqslant\left|\phi\left(e^{i t}\right)-\sum_{j=0}^{n} \frac{1}{2^{j}} f_{j+1}\left(r e^{i t}\right)\right|+\sum_{j=n+1}^{\infty} \frac{1}{2^{j}} \frac{1}{\sqrt{2}} \\
\leqslant \frac{2}{2^{n}}+\frac{1 / \sqrt{2}}{2^{n}} \leqslant 32^{-n} \leqslant \varepsilon .
\end{gathered}
$$

Therefore

$$
\lim _{r \rightarrow 1} f\left(r e^{i t}\right)=\phi\left(e^{i t}\right) \quad \text { for } e^{i t} \in E \text {, }
$$

and this gives the proof of the theorem.

References

1. C. L. Belna, P. Colwell and G. Piranian, 'The radial behaviour of Blaschke products', Proc. Amer. Math. Soc. (2) 93 (1985) 267-271.
2. R. D. Berman, 'The sets of fixed radial limit value for inner functions', Illinois J. Math. (2) 29 (1985) 191-219.
3. G. T. Cargo, 'Some topological analogues of the F. and M. Riesz uniqueness theorem', J. London Math. Soc. (2) 12 (1975) 64-74.
4. G. T. Cargo, 'Blaschke products and singular functions with prescribed boundary values', J. Math. Anal. Appl. 71 (1979) 287-296.
5. J. B. Garnett, Bounded analytic functions (Academic Press, New York, 1981).
6. A. J. Lohwater and G. Piranian, 'The boundary behaviour of functions analytic in a disk', Ann. Acad. Sci. Fenn. Ser. AI 239 (1957) 1-17.
7. P. I. Natanson, Theory of functions of a real variable, Vol. II (Frederick Ungar, New York, 1961).
8. W. Rudin, 'Boundary values of continuous analytic functions', Proc. Amer. Math. Soc. 7 (1956) 808-811.
9. A. Stray, 'Two applications of the Schur-Nevanlinna algorithm', Pacific J. Math. (1) 91 (1980) 223-232.
10. A. Stray, 'Minimal interpolation by Blaschke products, II', Bull. London Math. Soc. 20 (1988) 329-333.

Departament de Matemàtiques
Universitat Autònoma de Barcelona
08193 Bellaterra
Barcelona
Spain

