BLASCHKE PRODUCTS WITH PRESCRIBED RADIAL LIMITS

ARTUR NICOLAU

1. Introduction

The purpose of this paper is to give a result on the existence of Blaschke products with prescribed radial limits at certain subsets of the unit circle in the complex plane.

Let E be a finite subset of the unit circle T and let ϕ be a function defined on E with $\sup\{|\phi(e^u)|: e^u \in E\} \leq 1$. G. Cargo [4] proved that there exists a Blaschke product I such that

$$\lim_{r\to 1} I(re^{it}) = \phi(e^{it}) \quad \text{for } e^{it} \in E.$$

If f is an arbitrary function defined in the open unit disc D, e^{u} is a point of the unit circle and γ is the radius from 0 to e^{u} , the radial cluster set of f at e^{u} is the set of points $\alpha \in \mathbb{C}$ such that there exists a sequence $\{z_n\}$ in γ with $\lim_{n\to\infty} z_n = e^{u}$, such that $\lim_{n\to\infty} f(z_n) = \alpha$. C. Belna, P. Colwell and G. Piranian [1] have proved the following more general result. Let $E = \{e^{u_m}\}$ be a countable subset of the unit circle and let $\{K_m\}$ be a sequence of nonempty, closed and connected subsets of the closed unit disc. Then, there exists a Blaschke product such that its radial cluster set at e^{u_m} is K_m , m = 1, 2, ...

Our aim is to extend these results to more general sets E, in the case of dealing with radial limits.

By the F. and M. Riesz theorem, a bounded analytic function in the unit disc is determined by its radial limits at a set of positive measure of the circle. So, if we try to interpolate *general* functions by radial limits of Blaschke products, it is natural to restrict ourselves to subsets E of the unit circle of zero Lebesgue measure.

A set is called of type F_{σ} if it is a countable union of closed sets, and it is called of type G_{δ} if it is a countable intersection of open sets. Observe that a closed subset of the unit circle is of type F_{σ} and G_{δ} . The closure of a set *E* will be denoted by \overline{E} .

Our result is the following.

THEOREM. Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ} . Let ϕ be a function defined on E with $\sup\{|\phi(e^u)|: e^u \in E\} \leq 1$ and such that for each open set \mathcal{U} of the complex plane, $\phi^{-1}(\mathcal{U})$ is of type F_{σ} and G_{δ} . Then there exists a Blaschke product I extending analytically to $T \setminus \overline{E}$ such that

$$\lim_{r\to 1} I(re^{it}) = \phi(e^{it}) \quad for \ e^{it} \in E.$$

Received 29 January 1990; revised 28 September 1990.

1980 Mathematics Subject Classification 30D40, 30D50.

Supported in part by the grant PB85-0374 of the CYCIT, Ministerio de Educación y Ciencia, Spain. Bull. London Math. Soc. 23 (1991) 249-255 We consider sets E of type F_{σ} and G_{δ} because in this situation the cases $\phi \equiv 0$ and $\phi \equiv 1$ of the theorem have been considered by R. Berman (see Theorems 4.4 and 4.9 of [2]).

THEOREM (R. Berman). Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ} . Then there exist Blaschke products B_0 and B_1 such that:

- (i) B_0 extends analytically to $T \setminus \overline{E}$ and $\lim_{r \to 1} B_0(re^{it}) = 0$ if and only if $e^{it} \in E$;
- (ii) $\lim_{r\to 1} B_1(re^{it}) = 1$ if and only if $e^{it} \in E$.

A posteriori, in our result, ϕ has to be a pointwise limit of continuous functions. This turns to be equivalent [7, p. 141] to $\phi^{-1}(\mathcal{U})$ being of type F_{σ} for all open sets \mathcal{U} of the complex plane. Then, for $|\alpha| < 1$, the set $E_{\alpha} = \{e^{u}: \phi(e^{u}) = \alpha\}$ has to be of type G_{δ} . Nevertheless, in [3] it is proved that E_{α} is meagre, that is, a countable union of sets such that its closure has no interior. So, in the general case, the hypothesis $\phi^{-1}(\mathcal{U})$ is of type F_{σ} for \mathcal{U} open, cannot be sufficient.

Our theorem does not cover the result of C. Belna, P. Colwell and G. Piranian, even when the compact sets are points, because a countable set has not to be of type G_{δ} . For example, by Baire's Category theorem, the set $\{e^{u}: t \in \mathbb{Q}\}$ is not of type G_{δ} . Nevertheless, one can show that the proof of the theorem can be adapted to recover their result.

Let H^{∞} be the Banach space of all bounded analytic functions in the open unit disc D with the norm

$$||f||_{\infty} = \sup\{|f(z)|: z \in D\}.$$

The main idea of our proof is to use a result of A. Stray [10] on the Pick-Nevanlinna interpolation problem in order to show that from the existence of functions in the unit ball of H^{∞} with some radial limits at points of E, one can obtain Blaschke products with the same radial limits at E. This is done in Section 2. Section 3 is devoted to the proof of the theorem.

This paper is a part of my thesis. I am grateful to Julià Cufí, my advisor, for his valuable help and encouragement.

2. The Pick-Nevanlinna interpolation problem

Given two sequences of numbers $\{z_n\}, \{w_n\}$ in *D*, the classical Pick-Nevanlinna interpolation problem consists in finding all analytic functions $f \in H^{\infty}$ satisfying $\|f\|_{\infty} \leq 1$ and $f(z_n) = w_n, n = 1, 2, \dots$ We shall denote it by

(*) Find $f \in H^{\infty}$, $||f||_{\infty} \leq 1$, $f(z_n) = w_n$, n = 1, 2, ...

Pick and Nevanlinna found necessary and sufficient conditions in order that the problem (*) has a solution. Let \mathscr{G} be the set of all solutions of the problem (*). Nevanlinna showed that if \mathscr{G} consists of more than one element, there is a parametrization of the form

$$\mathscr{G} = \left\{ f \in H^{\infty} : f = \frac{p\phi + q}{r\phi + s} : \phi \in H^{\infty}, \|\phi\|_{\infty} \leq 1 \right\},$$

where p, q, r, s are certain analytic functions in D, depending on $\{z_n\}, \{w_n\}$ and satisfying ps - qr = B, the Blaschke product with zeros $\{z_n\}$.

Later, Nevanlinna showed that for all $e^{i\theta} \in T$, the function

$$I_{\theta} = \frac{pe^{i\theta} + q}{re^{i\theta} + s}$$

is inner. Therefore, if the problem (*) has more than one solution, there are inner functions solving it. See [5, pp. 6, 165] for the proofs of these results.

Recently, A. Stray [10] has proved that, in fact, for all $e^{i\theta} \in T$ except possibly a set of zero logarithmic capacity, the function I_{θ} is a Blaschke product. So, if the problem (*) has more than one solution, there are Blaschke products solving it. Also [9], denoting by $\{z_n\}'$ the set of accumulation points of the sequence $\{z_n\}$, the functions I_{θ} extend analytically to $T \setminus \{z_n\}'$.

The connection of these results with our theorem is given in the following proposition.

PROPOSITION. Let E be a subset of the unit circle. Assume that there exist a Blaschke product B_0 that extends analytically to $T \setminus \overline{E}$ with $\lim_{r \to 1} B_0(re^u) = 0$ for $e^u \in E$, and an analytic function f_1 in the unit ball of H^{∞} , $f_1 \neq 1$, such that $\lim_{r \to 1} f_1(re^u) = 1$ for $e^u \in E$. Then for each analytic function g in the unit ball of H^{∞} , there exists a Blaschke product I that extends analytically to $T \setminus \overline{E}$, such that

$$\lim_{r\to 1} \left(I(re^{it}) - g(re^{it}) \right) = 0 \quad for \ e^{it} \in E.$$

Because of the result of R. Berman cited in the introduction, the hypotheses of the Proposition are satisfied if E is a subset of the unit circle of zero Lebesgue measure and of type F_{α} and G_{δ} .

Proof of the Proposition. Let $\{z_n\}$ be the zeros of B_0 and $w_n = 2^{-1}g(z_n)(1+f_1(z_n))$ for $n = 1, 2, \dots$ Consider the Pick-Nevanlinna interpolation problem,

(*) Find $f \in H^{\infty}$, $||f||_{\infty} \leq 1$, $f(z_n) = w_n$, n = 1, 2, ...

Since $2^{-1}g(1+f_1)$ is a solution of (*) and it is a nonextremal point of the unit ball of H^{∞} , the problem (*) has more than one solution. Actually, if $f_0 = 2^{-1}g(1+f_1)$, since

$$\int_0^{2\pi} \log\left(1-|f_0(e^{i\theta})|\right) d\theta > -\infty,$$

one can consider the function

$$E(z) = \exp\left(\frac{1}{2\pi} \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} \log\left(1 - |f_0(e^{it})|\right) dt\right), \quad z \in D.$$

Now $f_0 + B_0 E$ is a solution of (*) different from f_0 .

Now, by the theorem of A. Stray, there exists a Blaschke product I extending analytically to $T \setminus \overline{E}$, solving (*). Therefore,

$$I = g \frac{1+f_1}{2} + B_0 h$$

for some $h \in H^{\infty}$. Then, since $\lim_{r \to 1} f_1(re^{it}) = 1$ and $\lim_{r \to 1} B_0(re^{it}) = 0$ for $e^{it} \in E$, one has

$$\lim_{r\to 1} \left(I(re^u) - g(re^u) \right) = 0 \quad \text{for } e^u \in E,$$

and this proves the Proposition.

ARTUR NICOLAU

3. Proof of the Theorem

First, let us assume that ϕ is a simple function. Because of the topological hypothesis on ϕ , one has

$$\phi = \sum_{k=1}^n \alpha_k \chi_{E_k},$$

where χ_{E_i} is the characteristic function of the set $E_i, \{E_k\}$ are subsets pairwise disjoint of the unit circle of type F_{σ} and G_{δ} , and sup $\{|\alpha_k|: k = 1, ..., n\} \leq 1$.

According to the Proposition of Section 2 and the theorem of R. Berman cited in the introduction, in order to prove the theorem when ϕ is simple, it is sufficient to show the following result.

LEMMA. Let E be a subset of the unit circle of zero Lebesgue measure and of type F_{σ} and G_{δ} . Assume $E = \bigcup_{k=1}^{n} E_k$, where $\{E_k\}$ are sets of type F_{σ} and G_{δ} pairwise disjoint. Let $\phi = \sum_{k=1}^{n} \alpha_k \chi_{E_k}$, where $\sup\{|\alpha_k|: k = 1, ..., n\} \leq 1$. Then there exists an analytic function f of the unit ball of H^{∞} such that

$$\lim_{r\to 1} f(re^{it}) = \phi(e^{it}) \quad for \ e^{it} \in E.$$

Proof of the Lemma. Considering a conformal mapping from the unit disc to the right half plane $\Pi = \{z \in \mathbb{C} : \operatorname{Re}(z) > 0\}$, one can assume $\alpha_k \in \overline{\Pi}, k = 1, ..., n$, and the problem is to find an analytic function f on D such that

$$\operatorname{Re} f(z) \ge 0$$
 for $z \in D$ and $\lim_{r \to 1} f(re^{it}) = \alpha_k$ for $e^{it} \in E_k$, $k = 1, \dots, n$. (1)

(1) has the advantage that the sum of functions taking values in Π also takes values in Π . Therefore, for $1 \le k \le n$, one has to construct an analytic function f_k in D such that

$$\operatorname{Re} f_{k}(z) \geq 0 \quad \text{for } z \in D,$$

$$\lim_{r \to 1} f_{k}(re^{it}) = \alpha_{k} \quad \text{for } e^{it} \in E_{k},$$

$$\lim_{r \to 1} f_{k}(re^{it}) = 0 \quad \text{for } e^{it} \in E \setminus E_{k},$$
(2)

because then $f = f_1 + \ldots + f_n$ will satisfy (1).

Fix $1 \le k \le n$. One can assume $\alpha_k \ne 0$. Since k is fixed, in the following construction the subindex k will be omitted.

Since E_k and $E \setminus E_k$ are sets of zero Lebesgue measure and of type F_{σ} and G_{δ} , there exist (see the proof of Theorem 3 of [6]) two positive measures μ and μ^* on T such that

$$\lim_{h \to 0} \frac{\mu\{e^{is} : t - h < s < t + h\}}{h} = +\infty \quad \text{if } e^{it} \in E_k \tag{3}$$

and $\mu'(e^{it}) = 0 \quad \text{if } e^{it} \in T \setminus E_k,$

$$\lim_{h \to 0} \frac{\mu^* \{e^{is} : t - h < s < t + h\}}{h} = +\infty \quad \text{if } e^{it} \in E \setminus E_k$$
and $\mu^{*'}(e^{it}) = 0 \quad \text{if } e^{it} \in T \setminus (E \setminus E_k).$
(4)

In the same proof, the authors consider u, u^* , the Poisson integrals of the measures μ, μ^* , and v, v^* , the harmonic conjugates of u, u^* . Taking g = u + iv and $g^* = u^* + iv^*$ and using (3) and (4), they prove

$$\lim_{\substack{r \to 1 \\ r \to 1}} g(re^{it}) \quad \text{exists and is finite for } e^{it} \in T \setminus E_k,$$

$$\lim_{\substack{r \to 1 \\ r \to 1}} \operatorname{Re} g(re^{it}) = +\infty \quad \text{for } e^{it} \in E_k,$$

$$\lim_{\substack{r \to 1 \\ r \to 1}} \operatorname{Re} g^*(re^{it}) = +\infty \quad \text{for } e^{it} \in E \setminus E_k.$$
(5)

We use now an idea of W. Rudin [8]. Since $\operatorname{Re} g(z) \ge 0$ and $\operatorname{Re} g^*(z) \ge 0$ for $z \in D$, the function

$$q(z) = \frac{g(z)^{\frac{1}{2}}}{g(z)^{\frac{1}{2}} + g^{*}(z)^{\frac{1}{2}}}$$

is analytic in D. Furthermore, from (5) one obtains

$$\lim_{\substack{r \to 1 \\ r \to 1}} q(re^{it}) = 1 \quad \text{if } e^{it} \in E_k,$$

$$\lim_{\substack{r \to 1 \\ r \to 1}} q(re^{it}) = 0 \quad \text{if } e^{it} \in E \setminus E_k.$$
(6)

One has

$$\operatorname{Re} q(z) = \frac{|g(z)| + \operatorname{Re} (g(z)^{\frac{1}{2}} \overline{g^*(z)^{\frac{1}{2}}})}{|g(z)| + |g^*(z)| + 2 \operatorname{Re} (g(z)^{\frac{1}{2}} \overline{g^*(z)^{\frac{1}{2}}})}.$$
(7)

Since $|\operatorname{Arg}(g(z)^{\frac{1}{2}})| \leq \pi/4$ and $|\operatorname{Arg}(g^{*}(z)^{\frac{1}{2}})| \leq \pi/4$ for $z \in D$, one obtains

 $\operatorname{Re}\left(g(z)^{\frac{1}{2}}\,\overline{g^{*}(z)^{\frac{1}{2}}}\right) \geq 0,$

and from (7) one can deduce

$$0 \leq \operatorname{Re} q(z) \leq 1 \quad \text{for } z \in D.$$
(8)

Now, take M to be a rectangle contained in the right half plane such that $0, \alpha_k \in \partial M$. Let Φ be the conformal mapping from the strip $\{z \in \mathbb{C} : 0 < \operatorname{Re}(z) < 1\}$ into M such that $\Phi(0) = 0$ and $\Phi(1) = \alpha_k$, and consider the function $f = \Phi \circ q$. Since M is contained in the right half plane, $\operatorname{Re} f(z) \ge 0$ for $z \in D$. Moreover, from (6) one obtains

$$\lim_{\substack{r \to 1 \\ r \to 1}} f(re^{it}) = \Phi(1) = \alpha_k \quad \text{for } e^{it} \in E_k,$$
$$\lim_{\substack{r \to 1 \\ r \to 1}} f(re^{it}) = \Phi(0) = 0 \quad \text{for } e^{it} \in E \setminus E_k.$$

This gives (2), and the Lemma is proved.

Let us consider now the general case. Applying the Proposition of Section 2 and the result of R. Berman cited in the introduction, in order to prove the theorem one has only to construct an analytic function f of the unit ball of H^{∞} such that

$$\lim_{r\to 1} f(re^{it}) = \phi(e^{it}) \quad \text{for } e^{it} \in E.$$

ARTUR NICOLAU

Consider a conformal mapping S from the unit disc into the square $Q = (-1, 1) \times (-1, 1)$. Since ∂Q is a Jordan curve, S extends homeomorphically to \overline{D} . Considering $S \circ \phi$, one can assume that the function ϕ takes values in \overline{Q} , and the problem is to find an analytic function f in D, taking its values in Q, such that

$$\lim_{r \to 1} f(re^{it}) = \phi(e^{it}) \quad \text{for } e^{it} \in E.$$
(9)

Consider the squares $Q_1 = [0, 1) \times [0, 1)$, $Q_2 = (-1, 0) \times [0, 1)$, $Q_3 = (-1, 0] \times (-1, 0)$, $Q_4 = (0, 1) \times (-1, 0)$, and let α_i be the centre of Q_i . The squares Q_i are pairwise disjoint, and

$$Q = \bigcup_{i=1}^{4} Q_i$$

By hypothesis, the sets $E_i = \{e^{it} \in E : \phi(e^{it}) \in Q_i\}$ are of type F_{σ} and G_{δ} . Take

$$\phi_1 = \sum_{i=1}^n \alpha_i \chi_{E_i},$$

where χ_{E_i} is the characteristic function of the set E_i . Since ϕ takes its values in the square Q, the choice of $\{\alpha_i\}$ and $\{E_i\}$ gives

$$\sup_{e^{tt} \in E} \max \{ |\operatorname{Re}(\phi(e^{tt}) - \phi_1(e^{tt}))|, |\operatorname{Im}(\phi(e^{tt}) - \phi_1(e^{tt}))| \} \leq \frac{1}{2}$$
(10)

and

$$\sup_{e^{it} \in E} \max\{|\operatorname{Re} \phi_1(e^{it})|, |\operatorname{Im} \phi_1(e^{it})|\} \leq \frac{1}{2}.$$
(11)

Applying the Lemma and a conformal mapping, one obtains an analytic function f_1 on D, taking its values in the square $Q/2 = (-\frac{1}{2}, \frac{1}{2}) \times (-\frac{1}{2}, \frac{1}{2})$ such that

$$\lim_{r \to 1} f_1(re^{it}) = \phi_1(e^{it}) \text{ for } e^{it} \in E.$$
(12)

Furthermore, using the fact that finite unions and intersections of sets of type F_{σ} and G_{δ} are also of type F_{σ} and G_{δ} , one can check that if $\mathcal{U} \subset \mathbb{C}$ is open, the set

$$\{e^{it} \in E: \phi(e^{it}) - f_1(e^{it}) \in \mathcal{U}\} \text{ is of type } F_{\sigma} \text{ and } G_{\delta}.$$
 (13)

Now, using (10), (12) and (13), one can repeat these arguments, changing ϕ to $(\phi - f_1)/\frac{1}{2}$. Then one obtains an analytic function f_2 in the unit disc taking its values in Q/2, such that

$$\sup_{e^{t^{\iota}}\in E} \max\left\{ \left| \operatorname{Re}\left(\frac{\phi - f_1}{\frac{1}{2}} - f_2\right)(e^{it}) \right|, \left| \operatorname{Im}\left(\frac{\phi - f_1}{\frac{1}{2}} - f_2\right)(e^{it}) \right| \right\} \leq \frac{1}{2}$$

Therefore

$$\sup_{e^{t}\in E} \max\left\{ \left| \operatorname{Re}\left(\phi - f_1 - \frac{f_2}{2}\right)(e^{it}) \right|, \left| \operatorname{Im}\left(\phi - f_1 - \frac{f_2}{2}\right)(e^{it}) \right| \right\} \leq \frac{1}{2^2}.$$

Also, if \mathcal{U} is an open set of the complex plane,

$$\left\{e^{it} \in E: \left(\frac{\phi - f_1}{\frac{1}{2}} - f_2\right)(e^{it}) \in \mathscr{U}\right\} \text{ is of type } F_{\sigma} \text{ and } G_{\delta}.$$

Repeating this process, one obtains analytic functions f_i on the unit disc, taking values in the square Q/2, such that

$$\sup_{e^{tt} \in E} \max\left\{ \left| \operatorname{Re}\left(\phi - \sum_{j=0}^{n} \frac{1}{2^{j}} f_{j+1}\right)(e^{tt}) \right|, \left| \operatorname{Im}\left(\phi - \sum_{j=0}^{n} \frac{1}{2^{j}} f_{j+1}\right)(e^{tt}) \right| \right\} \leq \frac{1}{2^{n}}.$$
(14)

Now, for $z \in D$, let us consider

$$f(z) = \sum_{j=0}^{\infty} \frac{1}{2^j} f_{j+1}(z).$$

Since f_i takes its values in the square Q/2, one has

$$\max\{|\operatorname{Re} f(z)|, |\operatorname{Im} f(z)|\} \leq \sum_{j=0}^{\infty} \frac{1}{2} \frac{1}{2^{j}} = 1.$$

So f takes its values in the square Q.

Now let us check that $\lim_{r\to 1} f(re^{it}) = \phi(e^{it})$ for $e^{it} \in E$.

Fix $\varepsilon > 0$ and take a natural number *n* such that $32^{-n} \le \varepsilon$. Applying (14) and using the fact that the functions f_j take values in the square Q/2, one has, for 1-r small enough,

$$\left| \phi(e^{it}) - \sum_{j=0}^{\infty} \frac{1}{2^j} f_{j+1}(re^{it}) \right| \leq \left| \phi(e^{it}) - \sum_{j=0}^n \frac{1}{2^j} f_{j+1}(re^{it}) \right| + \sum_{j=n+1}^{\infty} \frac{1}{2^j} \frac{1}{\sqrt{2}}$$
$$\leq \frac{2}{2^n} + \frac{1/\sqrt{2}}{2^n} \leq 32^{-n} \leq \varepsilon.$$

Therefore

$$\lim_{t \to 0} f(re^{it}) = \phi(e^{it}) \quad \text{for } e^{it} \in E,$$

and this gives the proof of the theorem.

References

- C. L. BELNA, P. COLWELL and G. PIRANIAN, 'The radial behaviour of Blaschke products', Proc. Amer. Math. Soc. (2) 93 (1985) 267-271.
- 2. R. D. BERMAN, 'The sets of fixed radial limit value for inner functions', Illinois J. Math. (2) 29 (1985) 191-219.
- G. T. CARGO, 'Some topological analogues of the F. and M. Riesz uniqueness theorem', J. London Math. Soc. (2) 12 (1975) 64-74.
- G. T. CARGO, 'Blaschke products and singular functions with prescribed boundary values', J. Math. Anal. Appl. 71 (1979) 287-296.
- 5. J. B. GARNETT, Bounded analytic functions (Academic Press, New York, 1981).
- A. J. LOHWATER and G. PIRANIAN, 'The boundary behaviour of functions analytic in a disk', Ann. Acad. Sci. Fenn. Ser. AI 239 (1957) 1-17.
- 7. P. I. NATANSON, Theory of functions of a real variable, Vol. II (Frederick Ungar, New York, 1961).
- 8. W. RUDIN, 'Boundary values of continuous analytic functions', Proc. Amer. Math. Soc. 7 (1956) 808-811.
- 9. A. STRAY, 'Two applications of the Schur-Nevanlinna algorithm', Pacific J. Math. (1) 91 (1980) 223-232.
- A. STRAY, 'Minimal interpolation by Blaschke products, II', Bull. London Math. Soc. 20 (1988) 329-333.

Departament de Matemàtiques Universitat Autònoma de Barcelona 08193 Bellaterra Barcelona Spain