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Abstract

We study the distance in the Zygmund class Λ∗ to the subspace

I(BMO) of functions with distributional derivative with bounded mean

oscillation. In particular, we describe the closure of I(BMO) in the Zyg-

mund seminorm. We also generalise this result to Zygmund measures

on Rd. Finally, we apply the techniques developed in the article to

characterise the closure of the subspace of functions in Λ∗ that are also

in the classical Sobolev space W 1,p, for 1 < p < ∞.

1 Introduction

A continuous real valued function f on the real line belongs to the Zygmund
class Λ∗ if

‖f‖∗ = sup
x,h∈R
h>0

|∆2f(x, h)| < ∞,

where

∆2f(x, h) =
f(x+ h)− 2f(x) + f(x− h)

h

denotes the second divided difference centred at x with step h, or in other
words, the second divided difference on the interval I = (x−h, x+h) and de-
noted ∆2f(I) = ∆2f(x, h). For a function f ∈ Λ∗, the quantity ‖f‖∗ is called
the Zygmund seminorm of f. The Zygmund class is the natural substitute
of the space of Lipschitz functions in many different contexts as polynomial
approximation, Bessel potentials, Calderón-Zygmund theory, and has been
extensively studied (see for instance [Zyg45], Chapter V of [Ste70], [Mak89],
[DLN14]).

For a measurable set A ⊂ R, we denote by |A| its Lebesgue measure, and
we will denote by χA its indicator function. We use the standard notation
a . b (respectively a & b) if there exists an absolute constant C > 0 such
that a ≤ Cb (resp. a ≥ Cb). We will also denote a ≃ b if a . b and a & b.

∗Both authors supported by the Generalitat de Catalunya (grant 2017 SGR 395)
and the Spanish Ministerio de Ciencia e Innovación (projects MTM2014-51824-P and
MTM2017-85666-P).
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A locally integrable function f on the real line is said to have bounded
mean oscillation, f ∈ BMO, if

‖f‖BMO = sup
I

(

1

|I|

∫

I
|f(x)− fI |

2 dx

)1/2

< ∞, (1)

where I ranges over all finite intervals in R and where

fI =
1

|I|

∫

I
f(x) dx,

is the average of f on I. The space of continuous functions such that their
derivatives, in the sense of distributions, are BMO functions is

I(BMO) = {f ∈ C(R) : f ′ ∈ BMO}.

It is easy to check that I(BMO) ( Λ∗. In [Str80], R. Strichartz found a
characterisation for functions in I(BMO) in terms of their second divided
differences. We state it below for compactly supported functions.

Theorem A (R. Strichartz). A compactly supported function f is in I(BMO)
if and only if

sup
I

1

|I|

∫

I

∫ |I|

0
|∆2f(x, h)|

2 dh dx

|h|
< ∞, (2)

where I ranges over all finite intervals on R.

One of the main goals of this article is to give an analog of Theorem
A for functions in the closure I(BMO) in the Zygmund seminorm ‖·‖∗ , for
which we will consider the pseudometric dist(f, g) = ‖f − g‖∗ for any pair
of functions f, g ∈ Λ∗. To this end, from now on for a given function f ∈ Λ∗

and ε > 0, consider the set

A(f, ε) = {(x, h) ∈ R2
+ : |∆2f(x, h)| > ε},

where we use R2
+ to denote the upper halfplane R2

+ = {(x, h) : x ∈ R, h > 0}.

Theorem 1. Let f be a compactly supported function in Λ∗. For each ε > 0,
consider

C(f, ε) = sup
I

1

|I|

∫

I

∫ |I|

0
χA(f,ε)(x, h)

dh dx

h
,

where I ranges over all finite intervals. Then,

dist(f, I(BMO)) ≃ inf{ε > 0: C(f, ε) < ∞}. (3)

We deduce the following description of I(BMO).
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Corollary 1. Let f be a compactly supported function in Λ∗. Then f ∈
I(BMO) if and only if for every ε > 0 there exists a constant C(ε) > 0 such
that

1

|I|

∫

I

∫ |I|

0
χA(f,ε)(x, h)

dh dx

h
≤ C(ε),

for every finite interval I.

Observe that Theorem 1 is actually a local result, and in this sense it can
still be applied to functions that are not compactly supported by restricting
to a finite interval. Hence, these results also hold for functions defined on
the unit circle. It is worth mentioning that, for functions defined on the
unit circle, the closure of the trigonometric polynomials in the Zygmund
seminorm is the small Zygmund class (see [Zyg45]). Observe as well that
Theorem 1 also implies uniform approximation locally in the following sense.
It is a well known fact (see for instance [JW84]) that for any function f ∈ Λ∗,
and for any finite interval I ⊆ R, there exists a polynomial pI of degree 1
such that

|f(x)− pI(x)| . |I| ‖f‖∗ , x ∈ I.

Thus, if f ∈ Λ∗ is compactly supported on an interval I0, there is g ∈ I(BMO)
such that for any interval I ⊆ I0 there exists a linear polynomial pI with

|f(x)− (g + pI)(x)| . |I| dist(f, I(BMO)), x ∈ I.

The lower bound in (3) is easy, and the main part of the paper is de-
voted to prove the upper bound. We will first introduce a dyadic version
of the Zygmund class, BMO and I(BMO), and the corresponding notion for
dyadic martingales. Then we state and prove a discrete version of (3). Af-
terwards, an averaging argument of J. Garnett and P. Jones (see [GJ82]) is
used to prove the continuous result from the dyadic one. To this end, certain
technical estimates are needed, which we have collected in Section 2.

For n ≥ 0, let Dn = {[k2−n, (k + 1)2−n) : k ∈ Z} be the collection of
dyadic intervals of length 2−n. For n < 0, consider m such that n = −2m+1
or n = −2m, and let tn = (4m − 1)/3. In this case, define Dn = {[k2−n −
tn, (k + 1)2−n − tn) : k ∈ Z}. Denote by D =

⋃

n∈ZDn. We will call the
intervals in D dyadic intervals. This definition might look unnecessarily
complicated for the dyadic intervals with n < 0, where we add a translation
by tn units with respect to the previous ones, but it will turn out to be
convenient later on. The reason is that with this choice any finite interval
I ⊂ R is contained in some interval of D, which is not true if we do not
include any such translations.

A locally integrable function f has dyadic bounded mean oscillation, f ∈
BMOd, if condition (1) is required only for dyadic intervals, that is, if

‖f‖BMO d = sup
I∈D

(

1

|I|

∫

I
|f(x)− fI |

2 dx

)1/2

< ∞.
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Note that BMO ⊂ BMOd . The space BMOd has been studied as a natural
discrete substitute of BMO (see, for instance, [GJ82], [Mei03] and [Con13]).
The following result is stated in [GJ82] and summarises the averaging tech-
nique previously mentioned.

Theorem B (J. Garnett, P. Jones). Suppose that α 7→ b(α) is a measurable
mapping from R to BMOd such that all b(α) are supported on a fixed dyadic
interval I0, and such that for every α,

∥

∥b(α)
∥

∥

BMOd
≤ 1 and

∫

R

b(α)(x) dx = 0.

Then

bR(x) =
1

2R

∫ R

−R
b(α)(x+ α) dα

is in BMO and there is a constant C > 0 such that ‖bR‖BMO ≤ C for any
R ≥ 1.

We shall need an analogous result for the Zygmund class. We say that a
continuous function f belongs to the dyadic Zygmund class, f ∈ Λ∗d, if

‖f‖∗d = sup
I∈D

|∆2f(I)| < +∞.

Observe as well that Λ∗ ( Λ∗d.

Theorem 2. Suppose that α 7→ t(α) is a measurable mapping from R to Λ∗d

such that all t(α) are supported on a fixed dyadic interval I0, and such that
for every α,

∥

∥t(α)
∥

∥

∗d
≤ 1. Then, the function

tR(x) =
1

2R

∫ R

−R
t(α)(x+ α) dα, x ∈ R

is in Λ∗ and there is a constant C > 0 such that ‖tR‖∗ ≤ C for any R ≥ 1.

As an application of the techniques exposed in the article, we also show
a result similar to Theorem 1 for Sobolev spaces. For 1 < p < ∞, we
consider the Sobolev space W 1,p of functions f ∈ Lp whose derivative f ′ in
the distributional sense is also in Lp. Take then the subspace of the Zygmund
class Λp

∗ = W 1,p ∩Λ∗. The next theorem gives estimates for distances to this
subspace. Here, for x ∈ R, Γ(x) denotes the truncated cone defined as
Γ(x) = {(t, h) ∈ R2

+ : |x− t| < h, 0 < h < 1}.

Theorem 3. Let f be a compactly supported function in Λ∗. For each ε > 0,
define the function

C(f, ε)(x) =

(

∫

Γ(x)
χA(f,ε)(s, t)

ds dt

t2

)1/2

, x ∈ R.

Then,
dist(f,Λp

∗) ≃ inf{ε > 0: C(f, ε) ∈ Lp}. (4)
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Finally, we find a higher dimensional analog of Theorem 1 for Zygmund
measures in Rd. Recall that a signed Borel measure µ on Rd is called a
Zygmund measure if

‖µ‖∗ = sup
Q

∣

∣

∣

∣

µ(Q)

|Q|
−

µ(Q∗)

|Q∗|

∣

∣

∣

∣

< ∞,

where Q ranges over all finite cubes in Rd with edges parallel to the axis,
and where Q∗ denotes the cube with the same centre as Q but double side
length. In the case d = 1 it is obvious that µ is a Zygmund measure if
and only if its primitive f(x) = µ([0, x]) is in the Zygmund class. Note that
there exist Zygmund measures that are singular with respect to the Lebesgue
measure, as J. P. Kahane showed [Kah69]. More information on Zygmund
measures can be found in [Mak89], [AP89] and [AAN99]. We consider the
space of absolutely continuous measures ν such that dν(x) = f(x) dx for
some f ∈ BMO(Rd). We call this the space of I(BMO) measures. It is clear
that a measure in I(BMO) is a Zygmund measure as well. As before, given
a Zygmund measure µ on Rd, we want to describe the distance

dist(µ, I(BMO)) = inf{‖µ− σ‖∗ : σ ∈ I(BMO)}.

For x ∈ Rd and h > 0, let Q(x, h) be the cube centred at x of sidelength h.
For a given Zygmund measure µ and for ε > 0, consider the set

A(µ, ε) =

{

(x, h) ∈ Rd+1
+ :

∣

∣

∣

∣

µ(Q(x, h))

|Q(x, h)|
−

µ(Q(x, 2h))

|Q(x, 2h)|

∣

∣

∣

∣

> ε

}

,

where we use Rd+1
+ to denote the upper halfspace Rd+1

+ = {(x, h) : x ∈
Rd, h > 0}.

Theorem 4. Let µ be a compactly supported Zygmund measure on Rd. For
each ε > 0, consider

C(µ, ε) = sup
Q

1

|Q|

∫

Q

∫ l(Q)

0
χA(µ,ε)(x, h)

dh dx

h
,

where Q ranges over all finite cubes and l(Q) denotes the side length of Q.
Then,

dist(µ, I(BMO)) ≃ inf{ε > 0: C(µ, ε) < ∞}.

This paper is organised in the following manner. In Section 2, we expose
the technical estimates that we need in order to apply the averaging argument
previously mentioned. We then state and prove the dyadic analog of Theorem
1 in Section 3. In Section 4, we explain the averaging argument that yields
Theorem 2 and then we use it to prove Theorem 1. Next, we explain in
Section 5 the variations in the previous construction that allow us to prove
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Theorem 4. We devote Section 6 to the application of our methods, showing
Theorem 3. Finally, in Section 7 we state three open problems closely related
to our results.

It is a pleasure to thank Petros Galanopoulos, Oleg Ivrii and Martí Prats
for several helpful conversations and interesting comments.

2 Preliminaries

We need an auxiliary result that estimates the oscillation of the second di-
vided differences when changing their centre and step size. For a continuous
function f we define its first divided difference at x ∈ R with step size h > 0
as

∆1f(x, h) =
f(x+ h)− f(x)

h
.

For convenience, we may also denote ∆1f(x, h) = ∆1f(I), where I = (x, x+
h).

Lemma 1. Let f ∈ Λ∗ and assume that h′ > h > 0 and |x− t| < h′/2. Then

|∆2f(x, h)−∆2f(t, h
′)| .

‖f‖∗

(

h′ − h

h′

(

1 + log
h′

h′ − h

)

+
|x− t|

h′
log

(

h′

|x− t|
+ 1

))

. (5)

Proof. We split the proof in two steps. First, we find an estimate for the case
h′ = h and then another one for x = t. We start showing that, for h > 0,
when |x− t| < h/2, then

|∆2f(x, h)−∆2f(t, h)| . ‖f‖∗
|x− t|

h
log

(

h

|x− t|
+ 1

)

. (6)

We claim that, if |x− t| > h/2, then

|∆1f(x, h)−∆1f(t, h)| . ‖f‖∗ log

(

|x− t|

h
+ 1

)

. (7)

Indeed, let u be the harmonic extension of f on the upper halfplane R2
+. It

is a well known fact (see Chapter V of [Ste70] or [Llo02]) that
∣

∣

∣

∣

f(x+ h)− f(x)

h
− ux(x, h)

∣

∣

∣

∣

. ‖f‖∗ ,

and that
sup

(x,h)∈R2
+

h|∇ux(x, h)| . ‖f‖∗ .

Thus, if we denote by ρ(a, b) the hyperbolic distance between two points
a, b ∈ R2

+, we get

|ux(x, h)− ux(t, h)| . ‖f‖∗ ρ((x, h), (t, h)).
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Using the estimate

ρ((x, h), (t, h)) . log

(

|x− t|

h
+ 1

)

,

we get (7).
Now, assume x > t without loss of generality, and x− t < h/2. Write

h(∆2f(x, h)−∆2f(t, h)) = (f(x+ h)− f(t+ h))− (f(x)− f(t))

+ (f(x− h)− f(t− h))− (f(x)− f(t))

and apply (7) to the first two terms taking x′ = t+ h, t′ = t and h′ = x− t,
and to the last two taking x′ = t− h, t′ = t and h′ = x− t. This shows (6).

Assume now that h′ > h > 0. We want to see that

|∆2f(x, h
′)−∆2f(x, h)| . ‖f‖∗

h′ − h

h′

(

1 + log
h′

h′ − h

)

. (8)

First note the following identity

∆2f(x, h)−∆2f(x, h
′) =

h′ − h

h′
[∆2f(x, h)− (∆1f(x+ h, h′ − h)−∆1f(x− h′, h′ − h))].

Using (7) on the last two terms, we get (8). Finally, (5) is a direct conse-
quence of (6) and (8).

3 The Dyadic Results

A dyadic rational is a number of the form k2−n with k, n ∈ Z. For n ≥ 0,
let Dn = {[k2−n, (k + 1)2−n) : k ∈ Z}. For n < 0, consider m such that
n = −2m + 1 or n = −2m, and let tn = (4m − 1)/3. In this case, define
Dn = {[k2−n− tn, (k+1)2−n− tn) : k ∈ Z}. A dyadic interval I is an interval
such that I ∈ Dn for some n ∈ Z, and in this case we say that I is a dyadic
interval of generation n. Denote by D =

⋃

n∈ZDn the set of all dyadic
intervals. Note that, given I ∈ Dn for n ∈ Z, there is a unique interval I∗ in
Dn−1 that contains I, which we call the predecessor of I. If I0 is an arbitrary
interval, we will use the notation D(I0) = {I ∈ D : I ⊆ I0}. As explained
in the introduction, a continuous real valued function f on R belongs to the
dyadic Zygmund class, denoted f ∈ Λ∗d, if

‖f‖∗d = sup
I∈D

|∆2f(I)| < ∞.

In a similar fashion, we say that a locally integrable function f has bounded
dyadic mean oscillation, f ∈ BMOd, if

‖f‖BMO d = sup
I∈D

(

1

|I|

∫

I
|f(x)− fI |

2 dx

)1/2

< ∞,
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and we consider the dyadic I(BMO) space to be the space of continuous real
valued functions on R whose distributional derivatives belong to BMOd, that
is

I(BMO)d = {f ∈ C(R) : f ′ ∈ BMOd}.

It is easy to see that each dyadic space contains its corresponding homoge-
neous space, that is BMO ⊆ BMOd and Λ∗ ⊆ Λ∗d. It is important to remark,
as well, that none of these pairs are equal. More information on the relation
between BMO and BMOd can be found in [GJ82], [Mei03] and [Con13].

The spaces Λ∗d and I(BMO)d can be regarded as well as spaces of dyadic
martingales. We say that a sequence of functions S = {Sn} is a dyadic
martingale if for all n ≥ 0 the following conditions are satisfied:

(i) Sn is constant on any I ∈ Dn,

(ii) Sn|I = 1
2

(

Sn+1|I
(1) + Sn+1|I

(2)
)

for all I ∈ Dn, where I(1), I(2) are the
intervals in Dn+1 contained in I.

We will denote the value of Sn at I ∈ Dm, m ≥ n, by Sn(I), and, if there is
no ambiguity, when I ∈ Dn we will just write S(I). For x ∈ R and n ≥ 0,
let I ∈ Dn be such that x ∈ I. Then, we have that Sn(x) = S(I), and we
will denote S(x) = limn→∞ Sn(x) when this limit exists. For n ≥ 1, we call
jump of S at generation n the function ∆Sn(x) = Sn(x) − Sn−1(x), and if
I ∈ Dn, we use the notation ∆Sn(I) = Sn(I) − Sn−1(I

∗), where I∗ is the
predecessor of I. One can easily check that for a dyadic martingale S the
jumps ∆Sj and ∆Sk are orthogonal in L2(I) for any I ∈ D0 when j 6= k.

With these concepts at hand, we can associate to each function f ∈ Λ∗d

a dyadic martingale S, which we shall call the average growth martingale of
f, as follows. For a dyadic interval I = [a, b) ∈ Dn, set

Sn(I) =
f(b)− f(a)

b− a
= 2n(f(b)− f(a)). (9)

Now, observe that the second divided difference of f can be expressed in
terms of the jumps of S; that is, for I ∈ Dn, we have the relation

|∆2f(I
∗)| = 2|∆S(I)|.

Now it is obvious that any dyadic martingale S is related to a function
f ∈ Λ∗d (up to a linear term) through the relation (9) if and only if

‖S‖∗ = sup
I∈D

|∆S(I)| < ∞.

To get the corresponding description of martingales associated with I(BMO)d
functions, we will discretise (1). Note that for f ∈ I(BMO)d, with average
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growth martingale S, and I ∈ DN , using that the jumps {∆Sn}n≥N restricted
to I of the martingale S are orthogonal in L2, one can express

∫

I
|f ′(x)− f ′

I |
2 dx =

∫

I

∑

n>N

|∆Sn(x)|
2 dx.

Thus, a martingale S is related to a function f ∈ I(BMO)d through the
relation (9) if and only if

‖S‖BMO = sup
I∈D





1

|I|

∑

J∈D(I)

|∆S(J)|2|J |





1/2

< ∞. (10)

The analog of Theorem 1 for this setting is the following

Theorem 5. Let f be a compactly supported function in Λ∗d. For a fixed
ε > 0, define D(f, ε) by

D(f, ε) = sup
I∈D

1

|I|

∑

J∈D(I)
|∆2f(J)|>ε

|J |. (11)

Then,
dist(f, I(BMO)d) = inf{ε > 0: D(f, ε) < ∞}. (12)

Note that we can rewrite this result in terms of martingales. Let f ∈ Λ∗d

be compactly supported on a dyadic interval I0, and consider its average
growth martingale S defined by (9). In this way, D(f, ε) in (11) can be
expressed as

D(f, ε) = sup
I∈D(I0)

1

|I|

∑

J∈D(I)
|∆S(J)|>ε/2

|J |. (13)

Proof of Theorem 5. Without loss of generality, let us assume that f is sup-
ported on the dyadic interval I0 = [0, 1]. We need to prove that, for a given
ε > 0, there exists a function b ∈ I(BMO)d satisfying ‖f − b‖∗d ≤ ε if and
only if D(f, ε) < ∞. Denote by ε0 the infimum in the left-hand side of (12).

Given ε > ε0, we will construct a function b ∈ I(BMO)d such that
‖f − b‖∗d ≤ ε. Consider the average growth martingale S for function f,
defined by (9). First, we approximate the martingale S by a martingale B
related to an I(BMO)d function, that is satisfying (10). Take B(I0) = S(I0)
and construct B by setting ∆B(J) = ∆S(J) whenever |∆S(J)| > ε/2 and
∆B(J) = 0 otherwise, for J ∈ D(I0).

By construction, it is clear that ‖S −B‖∗ ≤ ε/2. Moreover, for any
I ∈ D, we have

∑

J∈D(I)

|∆B(J)|2|J | ≤ ‖S‖2∗
∑

J∈D(I)
|∆S(J)|>ε/2

|J | ≤ |I| ‖S‖2∗D(f, ε),
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showing that B satisfies (10).
Now, using that the jumps ∆Bj and ∆Bk are orthogonal in L2, we have

∫

I0

(

∞
∑

n=1

∆Bn(x)

)2

dx =

∫

I0

∞
∑

n=1

|∆Bn(x)|
2 dx =

∑

J∈D(I0)

|∆B(J)|2|J | < ∞.

This gives that limn→∞Bn(x) exists at almost every point x ∈ I0 and it
is actually a square integrable function, so that we can integrate it to get
b(x) =

∫ x
0 limnBn(s) ds ∈ I(BMO)d such that ‖f − b‖∗d ≤ ε.

Finally, if ε < ε0, we show that no function b ∈ I(BMO)d satisfies
‖f − b‖∗d ≤ ε. Take ε0 > ε1 > ε, assume that there is b ∈ I(BMO)d sat-
isfying ‖f − b‖∗d ≤ ε, and let S and B be the respective average growth
martingales for f and b. For any I ∈ D such that |∆S(I)| > ε1, we have that
|∆B(I)| > ε1 − ε = δ > 0. Thus

1

|I|

∑

J∈D(I)

|∆B(J)|2|J | >
δ2

|I|

∑

J∈D(I)
|∆S(J)|>ε1

|J |.

The supremum of this quantity when I ranges over all dyadic intervals is
δ2D(f, ε1) = +∞. This contradicts condition (10) for martingale B and,
hence, that b is an I(BMO)d function, concluding the proof of the theorem.

4 From the Dyadic to the Continuous Setting

Before proving Theorem 2, let us make some observations. Consider the
measurable mapping α 7→ t(α) from R to Λ∗d such that all t(α) are supported
on I0 = [0, 1] and such that

∥

∥t(α)
∥

∥

∗d
≤ 1, and let R ≥ 1. We will denote by

D0 = D the standard dyadic filtration and by Dβ the translated filtration by
−β units. We also extend this notation to denote by D0

n the set of intervals
of size 2−n in D0 and by Dβ

n the set of intervals of the same size in Dβ .
Similarly, we denote by Λ0

∗ the dyadic Zygmund class with respect to the
filtration D0 and Λβ

∗ the Zygmund dyadic class with respect to Dβ . With
this notation, if f(x) ∈ Λ0

∗, then f(x+ β) ∈ Λβ
∗ .

Now consider an arbitrary interval I and the adjacent interval Ĩ = I−|I|
of the same size. Fix R ≥ 1 and α ∈ [−R,R] and let n be the minimum
integer such that I contains an interval of Dα

n , and let Fn(I) be the set of
all such intervals. For each m > n, let Fm(I) be the set of intervals J ∈ Dα

m

such that J ⊂ I \ ∪m−1
j=n Fj(I). Then, F(I) = ∪j≥nFj(I) is a covering of I

by intervals of Dα. The covering F(Ĩ) of Ĩ is constructed in the exact same
way.

Let us say that F(I) = {Ij}
∞
j=1. We may assume that the intervals Ij

are ordered in the following way. Whenever j > k, |Ij | ≤ |Ik|, and we may
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take Ik to be to the left of Ij if |Ij | = |Ik|. That is, we order the intervals
decreasing in size and left to right for those that have the same length. We
consider the covering F(Ĩ) = {Ĩj}

∞
j=1 to be ordered in the same way.

Lemma 2. Let I ⊆ R be a finite interval and F(I) its covering by intervals
of Dα constructed and ordered as previously explained. Then, the intervals of
F(I) have disjoint interiors and, for j ≥ 1, they satisfy that |Ij+2| ≤ |Ij |/2.

Proof. The intervals in F(I) have disjoint interiors by construction. More-
over, these intervals are maximal in the sense that if J ∈ F(I) and J ( J ′ ∈
Dα, then J ′ 6⊂ I. Thus, it is clear that for each n ≥ 1 there are at most two
intervals in F(I) of size 2−n|I|. This yields that, for j ≥ 1, the intervals in
F(I) satisfy |Ij+2| ≤ |Ij |/2.

When |I| = 2−n for some n ∈ Z, the covering F(Ĩ) = {Ĩj}
∞
j=1 is a

translation of F(I) = {Ij}
∞
j=1. More precisely, if we order both {Ĩj} and

{Ij} as previously explained, then for each j ≥ 1 we have that Ĩj = Ij − |I|
and, trivially, for every j ≥ 1, |Ĩj | = |Ij |. However, for an arbitrary interval
I, the sizes of the intervals in F(I) and F(Ĩ) may be completely different.
For instance, it could happen that for a given j ∈ Z, F(I) had two intervals
of size 2−j while F(Ĩ) had only one.

Lemma 3. Let I and Ĩ be two adjacent intervals of the same length. Fix
α ∈ R. Then there are coverings G(I) = {Jj} and G(Ĩ) = {J̃j}, of I and
Ĩ respectively, both consisting of intervals of Dα, with |Jj | = |J̃j | for any j,
and with |Jj+2| ≤ |Jj |/2.

Proof. Consider the previous coverings F(I) = {Ij} and F(Ĩ) = {Ĩj}. If
|I1| = |Ĩ1|, then take J1 = I1 and J̃1 = Ĩ1. If these sizes are different, assume
|I1| > |Ĩ1| (otherwise the procedure is the same), there exists an integer
k ≥ 2 such that

∑k
j=1 |Ĩj | = |I1|. Note that k exists because all |Ij | (and

also |Ĩj |) are dyadic rationals that add up to |I| = |Ĩ|. Then take J̃j = Ĩj
for 1 ≤ j ≤ k, and choose pairwise disjoint intervals J1, . . . , Jk ∈ D(I1)
such that I1 = ∪k

l=1Jl and that, for each 1 ≤ j ≤ k, |Jj | = |J̃j |. Note
that, for 1 ≤ j ≤ k − 2, we have that |Jj+2| = |J̃j+2| ≤ |J̃j | because of
Lemma 2. Recursively, consider that we have fixed {Jj}

p
j=1 ∈ G(I) and

{J̃j}
p
j=1 ∈ G(Ĩ), let m,n be the smallest integers such that Im ⊆ I \ ∪p

j=1Jj

and Ĩn ⊆ Ĩ \ ∪p
j=1J̃j , and repeat the previous step with Im and Ĩn.

Given two finite intervals I1, I2, we say that their minimal common pre-
decessor in Dα, denoted Pα(I1, I2), is the interval Pα(I1, I2) ∈ Dα such that
I1∪ I2 ⊆ Pα(I1, I2) and such that for every J ∈ Dα that satisfies I1∪ I2 ⊆ J,
then Pα(I1, I2) ⊆ J. If I1, I2 ∈ Dα, we define their distance in the dyadic
filtration Dα, denoted by distα(I1, I2), as

distα(I1, I2) = log2
|Pα(I1, I2)|

|I1|
+ log2

|Pα(I1, I2)|

|I2|
.

11



Here it is necessary to specify the index α as one could have two intervals
I1, I2 that were dyadic in two different filtrations Dα and Dβ such that the
difference between both distances is as large as desired.

Lemma 4. Consider f ∈ Λα
∗d and I, J ∈ Dα. Then,

|∆1f(I)−∆1f(J)| ≤ ‖f‖∗ d distα(I, J).

Proof. Consider the sequences {Ij}
k
j=0 and {Jj}

l
j=0 in Dα such that I0 = I,

J0 = J, Ik = Jl = Pα(I, J), and such that I∗j = Ij+1 for 0 ≤ j < k, and such
that J∗

j = Jj+1 for 0 ≤ j < l. One has that

|∆1f(I)−∆1f(J)| ≤
k−1
∑

j=0

|∆1f(Ij)−∆1f(Ij+1)|+
l−1
∑

j=0

|∆1f(Jj)−∆1f(Jj+1)|.

Each term of these sums is bounded by ‖f‖∗ and, since there are exactly
distα(I, J) terms, the result follows.

For future convenience, given a finite interval I, we will denote its mid-
point by c(I).

Lemma 5. Fix R ≥ 1 and let I and Ĩ be two adjacent intervals of the same
length. Let N be the integer such that 2−N−1 < |I| ≤ 2−N and let M be the
integer such that 2M−1 < R ≤ 2M . Then, for each k ≥ 1, one has that

|{α ∈ [−R,R] : |Pα(I, Ĩ)| = 2k−N}| ≤ 2M+12−k+2.

Proof. Note that for any value of α, one has that |Pα(I, Ĩ)| = 2k2−N for some
positive integer k. For k ≥ 2, the size of the minimal common predecessor
in Dα is exactly 2k−N if and only if there is some J ∈ Dα, with |J | = 2k−N ,
such that c(J) ∈ I ∪ Ĩ . For the case k = 1, it is only true that if J ∈ Dα,
with |J | = 21−N , is the minimal common predecessor, then c(J) ∈ I ∪ Ĩ ,
while the reciprocal does not hold.

Consider J ∈ DN−k, and consider as well the translated intervals J + α,
for α ∈ [−R,R], and their midpoints c(J + α). The set {α ∈ [−R,R] : c(J +
α) ∈ I ∪ Ĩ} has measure 2−N+1, which is the measure of I ∪ Ĩ . Note that
it is actually here that we implicitly use that R ≥ 1, since otherwise it
could be that this set had length 2M+1. Since in [−R,R] there are at most
2M+12N−k+1 intervals of length 2k−N , the result follows immediately.

Proof of Theorem 2. Assume without loss of generality that I0 = [0, 1] and
fix R ≥ 1. We just need to check that

sup
I

|∆1tR(I)−∆1tR(Ĩ)| ≤ C < ∞,

12



where I ranges over all finite intervals, with Ĩ = I − |I|, and where C is
independent of the value of R. Fix a finite interval I and consider the integer
N such that 2−N−1 < |I| ≤ 2−N . First, we express

∆1tR(I)−∆1tR(Ĩ) =
1

2R

∫ R

−R

(

∆1t
(α)(α+ I)−∆1t

(α)(α+ Ĩ)
)

dα.

Now, for a given α, consider the coverings Gα(I) = {Ij}
∞
j=1 and Gα(Ĩ) =

{Ĩj}
∞
j=1 given in Lemma 3, that satisfy |Ij | = |Ĩj | for j ≥ 1. We can express

|∆1t
(α)(α+ I)−∆1t

(α)(α+ Ĩ)| ≤
∑

j≥1

|Ij |

|I|

∣

∣

∣∆1t
(α)(α+ Ij)−∆1t

(α)(α+ Ĩj)
∣

∣

∣

Observe that α+ Ij ∈ D0 and, since t(α) ∈ Λ0
∗d, using Lemma 2 and Lemma

4 we may bound the previous quantity by

∑

j≥1

|Ij |

|I|

∥

∥

∥
t(α)
∥

∥

∥

∗d
distα(Ij , Ĩj) .

∑

j≥1

2−
j

2 log
(

2N+ j

2 |Pα(I, Ĩ)|
)

,

where we have also used that
∥

∥t(α)
∥

∥

∗d
≤ 1 for every α. Summing over j, we

get
|∆1t

(α)(α+ I)−∆1t
(α)(α+ Ĩ)| . 1 +N + log |Pα(I, Ĩ)|.

Averaging over α, we have

|∆1tR(I)−∆1tR(Ĩ)| .
1

R

∫ R

−R

(

1 +N + log |Pα(I, Ĩ)|
)

dα.

Set Rk = {α ∈ [−R,R] : |Pα(I, Ĩ)| = 2k−N} and recall that, by Lemma 5,
|Rk| ≤ 2M+12−k+2, where M is the integer such that 2M−1 < R ≤ 2M .
Then, we can bound the last quantity by

2−M+1
∑

k≥1

∫

Rk

(

1 +N + log |Pα(I, Ĩ)|
)

dα .
∑

k≥1

2−k
(

1 +N + log 2k−N
)

,

which is bounded by some positive constant C. Note that the factors de-
pending on N and on M cancel out, which means that this last constant
depends neither on R nor on I.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Let f ∈ Λ∗ and let ε0 be the infimum in the left-hand
side of (3). First we show that, whenever ε < ε0, there is no function
b ∈ I(BMO) such that ‖f − b‖∗ ≤ ε. Indeed, assume that for a given ε < ε0
there is b ∈ I(BMO) such that ‖f − b‖∗ ≤ ε. Take ε < ε1 < ε0 and note
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that, whenever |∆2f(x, h)| > ε1 we have that |∆2b(x, h)| > ε1 − ε = δ > 0.
In particular, this means that A(f, ε1) ⊆ A(b, δ). Thus,

1

|I|

∫

I

∫ |I|

0
|∆2b(x, h)|

2dh dx

h
≥

δ2

|I|

∫

I

∫ |I|

0
χA(f,ε1)(x, h)

dh dx

h
,

but the supremum, with I ranging over all finite intervals, of the later
quantity is not finite since ε1 < ε0. By Theorem A, this contradicts that
b ∈ I(BMO).

We are left with showing that there exists a universal constant C > 0 such
that, for any ε > ε0, there is b = b(ε) ∈ I(BMO) such that ‖f − b‖∗ ≤ Cε.
For any such ε, by assumption we have that

C(f, ε) = sup
I

1

|I|

∫

I

∫ |I|

0
χA(f,ε)(x, h)

dh dx

h
< ∞. (14)

Assume now, without loss of generality, that f has support in I0 = [0, 1]. We
claim that (14) implies that D(f, ε) defined by (13) is finite. To see this, take
ε > ε1 > ε0, and let J ∈ D be such that |∆S(J)| > ε/2, which is equivalent
to say that |∆2f(c(J

∗), |J |)| > ε. By Lemma 1, there exists δ > 0 such that if
|x−c(J∗)| < δ|J | and 1−δ < h/|J | < 1+δ, then |∆2f(x, h)| > ε1. Applying
this to every dyadic interval J with |∆S(J)| > ε/2, we find the upper bound

1

|I|

∑

J∈D(I)
|∆S(J)|>ε/2

|J | .
1

|I|

∫

I

∫ |I|

0
χA(f,ε1)(x, h)

dh dx

h
≤ C(f, ε1)

for all I ∈ D. Thus,

D(f, ε) = sup
I∈D

1

|I|

∑

J∈D(I)
|∆S(J)|>ε/2

|J | . C(f, ε1). (15)

Next, for each α ∈ [−1, 1], define f (α)(x) = f(x− α) ∈ Λ∗d. By (15) and
Theorem 5, dist(f (α), I(BMO)d) ≤ ε. Hence, there are b(α) ∈ I(BMO)d and
t(α) ∈ Λ∗d such that f (α) = b(α) + t(α), with

∥

∥t(α)
∥

∥

∗d
≤ ε for all α ∈ [−1, 1].

This allows us to express

f(x) =
1

2

∫ 1

−1
f (α)(x+ α) dα

=
1

2

∫ 1

−1
b(α)(x+ α) dα+

1

2

∫ 1

−1
t(α)(x+ α) dα.

By Theorem B, taking R = 1, the first integral yields a function b ∈ I(BMO).
By Theorem 2, with R = 1 as well, the second integral yields a function
t ∈ Λ∗ with ‖t‖∗ ≤ Cε, where the later constant is the same that appears in
Theorem 2. This completes the proof.
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5 The Higher Dimensional Result

For a Borel set A ⊂ Rd, denote by |A| its Lebesgue measure. Let x =
(x1, . . . , xd) ∈ Rd and h > 0 and denote by Q(x, h) the cube centred at x
and with side length l(Q) = h and edges parallel to the axis. For a signed
Borel measure µ on Rd, we will treat its densities on cubes as first divided
differences, and denote them by

∆1µ(x, h) =
µ(Q(x, h))

|Q(x, h)|
, (x, h) ∈ Rd+1

+ ,

and we also define its second divided differences on cubes as

∆2µ(x, h) = ∆1µ(x, h)−∆1µ(x, 2h), (x, h) ∈ Rd+1
+ .

Here, Rd+1
+ denotes the upper halfspace, Rd+1

+ = {(x, h) : x ∈ Rd, h > 0}.
We say that a signed Borel measure µ on Rd is a Zygmund measure, µ ∈ Λ∗,
if it satisfies

‖µ‖∗ = sup
(x,h)∈Rd+1

+

|∆2µ(x, h)| < ∞.

Note that there can be Zygmund measures that are singular with respect
to the Lebesgue measure (see [Kah69] and [AAN99]). Recall that a real
valued function f on Rd is said to have bounded mean oscillation in Rd,
f ∈ BMO(Rd), if

‖f‖BMO = sup
Q

(

1

|Q|

∫

Q
|f(x)− fQ|

2 dx

)1/2

< ∞,

where Q ranges over all finite cubes in Rd with edges parallel to the axis and
fQ = 1

|Q|

∫

Q f(x) dx. We will say that a signed Borel measure ν on Rd is an

I(BMO) measure, ν ∈ I(BMO), if it is absolutely continuous with respect to
the Lebesgue measure and its Radon-Nikodym derivative is

dν(x) = b(x)dx

for some function b ∈ BMO(Rd). Using a characterisation of BMO(Rd) func-
tions due to R. Strichartz (see [Str80]), one can see that such a measure ν
satisfies

sup
Q

(

1

|Q|

∫

Q

∫ l(Q)

0
|∆2ν(x, h)|

2dh dx

h

)1/2

< ∞. (16)

Conversely, whenever ν satisfies equation (16), it is an absolutely continuous
measure with Radon-Nikodym derivative in BMO(Rd) (see [DN02]).

Here we state a version of Theorem 1 for Zygmund measures in Rd. For
a given Zygmund measure µ and ε > 0, consider the set

A(µ, ε) =
{

(x, h) ∈ Rd+1
+ : |∆2µ(x, h)| > ε

}

.
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Theorem 4. Let µ be a compactly supported Zygmund measure on Rd. For
each ε > 0 consider

C(µ, ε) = sup
Q

1

|Q|

∫

Q

∫ l(Q)

0
χA(µ,ε)(x, h)

dh dx

h
,

where Q ranges over all finite cubes with edges parallel to the axis. Then

dist(µ, I(BMO)) ≃ inf{ε > 0: C(µ, ε) < ∞}.

The proof of this result follows the same lines as that of Theorem 1.
Nonetheless, one has to adapt the auxiliary results used in showing that
theorem. First, we state and show the technical estimate in Rd which is
analogous to Lemma 1. For convenience, given y ∈ Rd−1 and h > 0 we will
denote by q(y, h) the cube in Rd−1 centred at y, with sidelength l(Q) = h
and edges parallel to the axis.

Lemma 6. Let µ ∈ Λ∗ and assume that h′ > h > 0 and |x− t| < h/2. Then

|∆2µ(x, h)−∆2µ(t, h
′)|

≤ Cd ‖µ‖∗

(

h′ − h

h

(

1 + log

(

h

h′ − h
+ 1

))

+
|x− t|

h
log

(

h

|x− t|
+ 1

))

.

Here, the constant Cd does only depend on the dimension d.

Proof. The proof is split in two steps. First, we find an estimate for the case
h = h′ and then another one for x = t. We start showing that, for h > 0,
when |x− t| < h/2

|∆2µ(x, h)−∆2µ(t, h)| ≤ Cd ‖µ‖∗
|x− t|

h
log

(

h

|x− t|
+ 1

)

. (17)

First, if |x− t| > h/2, then

|∆1µ(x, h)−∆1µ(t, h)| . ‖µ‖∗ log

(

|x− t|

h
+ 1

)

. (18)

The argument to show this bound is the same as in Lemma 1. The only
difference is that one has to consider u to be the harmonic extension of µ on
the upper half-space Rd+1

+ , which will be itself a Bloch function, and use the
well known fact (see Chapter V of [Ste70] or [Llo02]) that

|∆1µ(x, h)− u(x, h)| . ‖µ‖∗ .

To show (17), assume without loss of generality that x = (x1, . . . , xd−1, xd)
and t = (x1, . . . , xd−1, x

′
d) with x′d < xd, and |x − t| < h/2. If we denote

y = (x1, . . . , xd−1) ∈ Rd−1, one can see that

|Q(x, h)| (∆2µ(x, h)−∆2µ(t, h)) = µ(l+)− µ(l−) +
µ(L−)

2d
−

µ(L+)

2d
,
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where l+ = q(y, h) × [x′d + h/2, xd + h/2), l− = q(y, h) × [x′d − h/2, xd −
h/2), L+ = q(y, 2h) × [x′d + h, xd + h) and L− = q(y, 2h) × [x′d − h, xd −
h) are parallelepipeds at opposite sides of the cubes Q(x, h) and Q(x, 2h)
respectively. We just show how to estimate |µ(l+) − µ(l−)|, as the other
terms are estimated in the same way. The idea here is to cover l+ with
cubes {Pj} and to use a translated cover {Rj} for l−.

Figure 1: Parallelepiped l+ seen from its base (bold square), and the distribu-
tion of the cubes Pm

j . Cubes of the same size belong to the same generation.

In order to cover l+ with the appropriate cubes, write first h
|x−t| =

∑

n≥0 kn2
−n, where k0 ≥ 2 and kn is 0 or 1 for n ≥ 1 (as in a binary

expansion). We construct a generation 0 placing kd−1
0 cubes with mutually

disjoint interiors of side length |x − t| at one of the corners of l−, forming
alltogether a smaller parallelepiped with one side of length |x − t| and the
rest of length k0|x− t|. Let us denote by {Pm

0 } the set of cubes of generation
0. Assume we have constructed cubes up to generation j−1, that is, we have
chosen {Pm

i }j−1
i=0 . At generation j either we do nothing if kj = 0 or, when

kj = 1, we add a layer of cubes {Pm
j } of side length 2−j |x − t|, such that

{Pm
i }ji=0 have pairwise disjoint interiors, in order to get a new square based

parallelepiped with one side length |x−t| and the rest of (
∑j

n=0 kn2
−n)|x−t|

(see Figure 1). Let {Pm
j } be the cubes of generation j and note that their

total volume is

∑

m

|Pm
j | = |x− t|d





(

j
∑

n=0

kn2
−n

)d−1

−

(

j−1
∑

n=0

kn2
−n

)d−1


 .

If d ≥ 2 we deduce

∑

m

|Pm
j | . d|x− t|dkj2

−j

(

j
∑

n=0

kn2
−n

)d−2

.
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Since
∑j

n=0 kn2
−n ≤ h/|x− t|, we deduce that

∑

m

|Pm
j | . d|x− t|2hd−2kj2

−j (19)

Since the distance between the centres of Pm
j and Rm

j is bounded by a fixed
multiple of h, applying equation (18) we get that

|µ(Pm
j )− µ(Rm

j )| . ‖µ‖∗ |P
m
j | log

(

h

l(Pm
j )

+ 1

)

, (20)

and using (20), we have

|µ(l+)− µ(l−)| ≤
∑

j

∑

m

|µ(Pm
j )− µ(Rm

j )|

≤ C ‖µ‖∗
∑

j

∑

m

|Pm
j | log

(

h

2−j |x− t|
+ 1

)

.

Summing over m and using (19), this is bounded by

C ‖µ‖∗ d|x− t|2hd−2 log

(

h

|x− t|
+ 1

)

∑

j

kj2
−jj,

and we deduce that

|µ(l+)− µ(l−)| ≤ Cd ‖µ‖∗ |x− t|hd−1 log

(

h

|x− t|
+ 1

)

. (21)

This and the analog estimate for |µ(L+)− µ(L−)| yield estimate (17).
The second step is to show that, if h′ > h > 0, then

|∆2µ(x, h
′)−∆2µ(x, h)| ≤ Cd ‖µ‖∗

h′ − h

h

(

1 + log

(

h

h′ − h
+ 1

))

. (22)

Let R(x, h, h′) = q(y, h)× [xd−h′/2, xd+h′/2), where y ∈ Rd−1 is such that
x = (y, xd). Note that R(x, h, h′) is the parallelepiped obtained from dilating
the cube Q(x, h) just in one direction. Denote as well

∆2µ(x, h, h
′) =

µ(R(x, h, h′))

|R(x, h, h′)|
−

µ(R(x, 2h, 2h′))

|R(x, 2h, 2h′)|
.

To show (22), it is enough to see that

|∆2µ(x, h, h
′)−∆2µ(x, h)|≤Cd ‖µ‖∗

h′ − h

h

(

1 + log

(

h

h′ − h
+ 1

))

. (23)

Let us denote Q = Q(x, h), Q̃ = Q(x, 2h), R = R(x, h, h′) and R̃ =
R(x, 2h, 2h′). Note that we can decompose R as the disjoint union Q∪l+∪l−,
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l+

Q

l−

Figure 2: The parallelepiped R can be decomposed into the cube Q and the
square based parallelepipeds l+ and l−.

where l+ and l− are parallelepipeds similar to the ones we used before (see
Figure 2). In the same way, decompose R̃ = Q̃ ∪ L+ ∪ L−, and note that

L+ (and also L−) can be regarded as the union
⋃2d

i=1 L
i
+, where each Li

+ is
a translation of l+. Now, express

∆2µ(x, h)−∆2µ(x, h, h
′) =

µ(Q)

|Q|
−

µ(Q̃)

|Q̃|
−

µ(R)

|R|
+

µ(R̃)

|R̃|
=

h′ − h

h′

(

µ(Q)

|Q|
−

µ(Q̃)

|Q̃|

)

−

(

µ(l+)

hd−1h′
−

µ(L+)

2dhd−1h′

)

−

(

µ(l−)

hd−1h′
−

µ(L−)

2dhd−1h′

)

.

The first term is ∆2µ(x, h)(h
′ −h)/h′, which is bounded by ‖µ‖∗ (h

′ −h)/h.
We will now show that

∣

∣

∣

∣

µ(l+)

hd−1h′
−

µ(L+)

2dhd−1h′

∣

∣

∣

∣

≤ Cd ‖µ‖∗
h′ − h

h

(

1 + log

(

h

h′ − h
+ 1

))

(24)

The last term is estimated in a similar way. First, we use the decomposition
of L+ to split the difference as follows

∣

∣

∣

∣

µ(l+)

hd−1h′
−

µ(L+)

2dhd−1h′

∣

∣

∣

∣

≤
1

2dhd−1h′

2d
∑

i=1

|µ(l+)− µ(Li
+)|.

For each term in this sum, we can use the estimate in (21) for parallelepipeds,
just taking into account that now the role of h is taken by Ch and h′ − h
plays the role of |x − t|. This gives (24), which yields (23) and finishes the
proof.

We also need a dyadic version of Theorem 4. We say that Q is a dyadic
cube in Rd if it is of the form [k12

−n, (k1+1)2−n)× . . .× [kd2
−n, (kd+1)2−n)
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where k1, . . . , kd ∈ Z and n ≥ 0, or if it is of the form [k12
−n − tn, (k1 +

1)2−n− tn)× . . .× [kd2
−n− tn, (kd+1)2−n− tn) where k1, . . . , kd ∈ Z, n < 0

and where tn is the quantity defined in Section 3. We denote here the set of
dyadic cubes in Rd by D and the set of dyadic cubes of side length 2−n by
Dn. As we did before, if Q0 is a given arbitrary cube, we may refer to the set
of dyadic cubes contained in Q0 by D(Q0). For future convenience, given a
signed Borel measure µ on Rd, we define the dyadic second divided difference
as

∆d
2µ(Q) = ∆1µ(Q)−∆1µ(Q

∗), Q ∈ D,

where we used Q∗ to denote the unique dyadic cube that contains Q and
is such that l(Q∗) = 2l(Q). We will also need the maximal dyadic second
divided difference, defined by

∆∗
2µ(Q) = max

Q′

|∆1µ(Q
′)−∆1µ(Q)|, Q ∈ D,

where Q′ ranges over all dyadic cubes contained in Q such that l(Q′) =
l(Q)/2. A signed Borel measure µ on Rd is called a dyadic Zygmund measure,
µ ∈ Λ∗d, if

‖µ‖∗d = sup
Q∈D

∆∗
2µ(Q) < ∞.

A real valued function f on Rd is said to have bounded dyadic mean oscillation
on Rd, f ∈ BMOd(R

d), if

‖f‖BMO d = sup
Q∈D

(

1

|Q|

∫

Q
|f(x)− fQ|

2 dx

)1/2

< ∞.

We will say that a signed Borel measure ν on Rd is a dyadic I(BMO) measure,
ν ∈ I(BMO)d, if it is absolutely continuous and its derivative is

dν = b(x) dx,

where b ∈ BMOd(R
d). It can be checked that ν is such a measure if and only

if it satisfies

sup
Q∈D





1

|Q|

∑

R∈D(Q)

|∆d
2ν(R)|2|R|





1/2

< ∞.

The analog of Theorem 4 for these dyadic spaces is the following.

Theorem 6. Let µ be a compactly supported measure in Λ∗d. For each ε > 0
consider

D(µ, ε) = sup
Q∈D

1

|Q|

∑

R∈D(Q)
∆∗

2
µ(R∗)>ε

|R|.

Then,
dist(µ, I(BMO)d) = inf{ε > 0: D(µ, ε) < ∞}. (25)
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Note that, as we did for functions on R, we can rewrite this result in
terms of dyadic martingales on Rd. We define a dyadic martingale on Rd as
a sequence of functions S = {Sn}

∞
n=0 such that Sn is constant on any cube

Q ∈ Dn and such that

Sn|Q =
1

2d

∑

Q′∈Dn+1

Q′⊂Q

Sn+1|Q
′,

for all Q ∈ Dn, n ≥ 0. Given a measure µ ∈ Λ∗, we can define a dyadic
martingale by taking

Sn(Q) = ∆1µ(Q), Q ∈ Dn, n ≥ 0, (26)

and then ∆S(Q) = Sn(Q) − Sn−1(Q
∗) = ∆d

2µ(Q), for Q ∈ Dn, and we can
rewrite Theorem 6 in terms of martingales. Following this relation between
dyadic second divided differences for measures and martingale jumps, we will
denote ∆∗S(Q) = ∆∗

2µ(Q).

Proof of Theorem 6. Assume that µ is supported on the unit cube Q0 =
[0, 1]d. We need to prove that, for a given ε > 0, there is a measure ν ∈
I(BMO)d satisfying ‖µ− ν‖∗d ≤ ε if and only if D(µ, ε) < ∞. Denote by ε0
the infimum in the left-hand side of (25).

Given ε > ε0, consider the martingale S defined by (26). Approximate
the martingale S by another dyadic martingale B in the following way. Start
taking B(Q0) = S(Q0). Then, for Q ∈ D(Q0), set ∆B(Q) = ∆S(Q) when-
ever ∆∗S(Q∗) > ε, and set ∆B(Q) = 0 otherwise. By construction, it is
clear that |∆S(Q)−∆B(Q)| ≤ ε for any dyadic cube Q. Moreover, for any
such cube Q, we have that

1

|Q|

∑

R∈D(Q)

|∆B(R)|2|R| =
1

|Q|

∑

R∈D(Q)
∆∗S(R∗)>ε

|∆S(R)|2|R| . ‖µ‖∗D(µ, ε). (27)

Define now b(x) = limnBn(x) =
∑∞

n=1∆Bn(x). Using that, for any dyadic
martingale, the increments ∆Bj are L2 orthogonal, we get that

∫

Q0

b(x)2 dx =

∫

Q0

∞
∑

n=1

|∆Bn(x)|
2 dx =

∑

R∈D(Q0)

|∆B(R)|2|R| < ∞,

so that b ∈ L2 and it is finite almost everywhere. Hence, the measure ν
defined by

dν = b(x) dx,

is an absolutely continuous measure that, by (27), is an I(BMO)d measure
such that ‖µ− ν‖∗d ≤ ε.
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On the other hand, if ε < ε0, there exists no measure ν ∈ I(BMO)d
satisfying ‖µ− ν‖∗d ≤ ε. Indeed, take ε < ε1 < ε0 and assume that there
is ν ∈ I(BMO)d such that ‖µ− ν‖∗d ≤ ε. Then, for any Q ∈ D such that
∆∗

2µ(Q
∗) > ε1, we have that ∆∗

2ν(Q
∗) > ε1 − ε = δ > 0. Thus

1

|Q|

∑

R∈D(Q)

|∆d
2ν(R)|2|R| ≥

δ2

|Q|

∑

R∈D(Q)
∆∗

2
µ(R∗)>ε1

|R|,

but the supremum over Q ∈ D of this last quantity is δ2D(µ, ε1), which is
infinite since ε1 < ε. This contradicts that ν ∈ I(BMO)d.

The proof of Theorem 4 follows the same lines than the proof of Theorem
1. We just mention that the construction used to prove Theorem 2 is easily
adapted to the setting of Rd, except for the following detail. Let Q be a
cube in Rd and consider the covering F(Q) = {Rj} of Q by maximal dyadic
cubes, in the same sense as we did in R. In the case d = 1 we could have
at most two elements of the same size in F(Q), but this does not hold for
d ≥ 2. For d ≥ 2, the amount of cubes Rj in F(Q) of size |Rj | = 2−kd|Q|, for
some k ≥ 1, is of the order of 2k(d−1). Using this bound, one sees that the
sums appearing in the estimates in the proof of Theorem 2 are convergent
and bounded by a universal constant.

6 An Application to Sobolev Spaces

Fix 1 < p < ∞. Consider the Sobolev space W 1,p of functions f ∈ Lp whose
derivative f ′ in the sense of distributions is also in Lp. Consider as well, in
the Zygmund class, the subspace Λp

∗ = W 1,p ∩ Λ∗. For x ∈ R, consider the
truncated cone Γ(x) = {(t, h) ∈ R2

+ : |x− t| < h < 1}. In [Nic18] it is shown
that a function f ∈ Lp is in the Sobolev space W 1,p if and only if C(f) ∈ Lp,
where

C(f)(x) =

(

∫

Γ(x)
|∆2f(s, t)|

2 ds dt

t2

)1/2

, x ∈ R.

The purpose of this section is to prove Theorem 3. Following the same
scheme as before, we first need a dyadic version of the previous theorem. Let
us first recall some more concepts and standard results of Martingale Theory
that will be useful later. The quadratic characteristic of a dyadic martingale
S is the function

〈S〉(x) =

(

∞
∑

n=1

|∆Sn(x)|
2

)1/2

, x ∈ R,

and its maximal function is

S∗(x) = sup
n

|Sn(x)− S0(x)|, x ∈ R.

22



Given 0 < p < ∞ and a dyadic martingale S, the Burkholder-Davis-Gundy
Inequality (see [BM99]) states that there exists a constant C = C(p) > 0
such that

C−1 ‖〈S〉‖Lp ≤ ‖S∗‖Lp ≤ C ‖〈S〉‖Lp . (28)

Remember as well that the Fatou set of a dyadic martingale S, denoted by
F (S), is defined as

F (S) = {x ∈ R : lim
n

Sn(x) exists and is finite}.

It is a standard result of Martingale Theory that, for a dyadic martingale S
such that ‖S‖∗ < ∞, its Fatou set is F (S) = {x ∈ R : 〈S〉(x) < ∞}, where
the equality must be understood up to sets of zero measure (see [Llo02]).

Using the characterisation for the Sobolev space W 1,p previously stated,
we say that a function b is in the dyadic space Λp

∗d if its average growth
martingale B, as defined in (9), has quadratic characteristic 〈B〉 ∈ Lp and

‖B‖∗ = sup
I∈D

|∆B(I)| < ∞.

Note that, in fact, Λp
∗d = W 1,p ∩ Λ∗d. Indeed, if b ∈ Λp

∗d, by definition
b ∈ Λ∗d. Moreover, since its average growth martingale B has quadratic
characteristic 〈B〉 ∈ Lp, 〈B〉(x) < ∞ for almost every x ∈ R. Thus, B(x) =
limnBn(x) exists almost everywhere and will satisfy b′(x) = B(x) in the
sense of distributions. Using (28), B∗ ∈ Lp and, thus, B ∈ Lp as well, which
is the same to say that b′ ∈ Lp. We now state the analogous of Theorem 3
in this context.

Theorem 7. Let f be a compactly supported function in Λ∗d and fix 1 <
p < ∞. Let S be the average growth martingale of f. For every ε > 0, define
the truncated quadratic characteristic

D(f, ε)(x) = (#{n : |∆Sn(x)| > ε})1/2 .

Then,
dist(f,Λp

∗d) = inf{ε > 0: D(f, ε) ∈ Lp}. (29)

Proof. Let ε0 be the infimum on (29). Assume 0 < ε < ε1 < ε0 and that
there is b ∈ Λp

∗d such that ‖f − b‖∗d ≤ ε. Let B be the average growth
martingale of function b. Whenever |∆Sn(x)| > ε1, we have that |∆Bn(x)| >
ε1 − ε = δ > 0. Thus,

〈B〉2(x) =
∞
∑

n=1

|∆Bn(x)|
2 ≥

∑

|∆Bn(x)|>δ

|∆Bn(x)|
2

≥
δ2

‖f‖2∗d
D2(f, ε1)
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for all x ∈ R. But, since ε1 < ε0, D(f, ε1) 6∈ Lp and so 〈B〉 6∈ Lp, getting in
this way a contradiction. Hence, we see that dist(f,Λp

∗d) ≥ ε0.
Assume that f is supported on I0. Consider now ε > ε0. Construct a

dyadic martingale B with B(I0) = S(I0) and such that ∆B(I) = ∆S(I) for
all I ∈ D(I0) whenever |∆S(I)| > ε, but take ∆B(I) = 0 when |∆S(I)| ≤ ε.
Note that 〈B〉 ∈ Lp. Therefore, using (28), we see that we can define b′(x) =
limnBn(x) almost everywhere with b′ ∈ Lp. Taking now b(x) =

∫ x
0 b′(s) ds,

we get b ∈ Λp
∗d such that ‖f − b‖∗d ≤ ε. This shows that dist(f,Λp

∗d) ≤ ε0,
completing the proof.

Proof of Theorem 3. Let ε0 be the infimum in (4). Assume 0 < ε < ε1 < ε0,
take δ = ε1 − ε, and assume that there is b ∈ Λp

∗ such that ‖f − b‖∗ ≤ ε.
The same argument used in the first part of the proof of Theorem 7 allows
us to see that

C(b)(x) ≥ δC(b, δ)(x) ≥ δC(f, ε1)(x)

for x ∈ R. Since ε1 < ε0, we have that C(f, ε1) 6∈ Lp and, thus, C(b) 6∈ Lp,
contradicting that b ∈ Λp

∗. Hence, dist(f,Λp
∗) ≥ ε0.

Fix ε > ε0 so that C(f, ε) ∈ Lp. For α ∈ [−1, 1], consider f (α) = f(x+α).
Note that C(f (α), ε) ∈ Lp as well. Using the same argument as in the proof
of Theorem 1, one can see that this fact implies that D(f (α), ε) ∈ Lp. Thus,
for each α ∈ [−1, 1], the function f (α) satisfies the hypothesis of Theorem
7 and may be approximated as f (α) = b(α) + t(α), where b(α) ∈ Λp

∗d with
∥

∥b(α)
∥

∥

∗d
≤ ‖f‖∗ and ‖t‖∗d ≤ ε. Apply now Theorem 2, with R = 1, both

with the mapping α 7→ b(α) and α 7→ t(α) to obtain respectively functions b
and t such that f = b+ t and such that b ∈ Λp

∗ and ‖t‖∗ . ε. This completes
the proof.

7 Open Problems

This last section is devoted to state three open problems closely related to
our results.

1. Observe that Theorem 4 is a generalisation of Theorem 1 for measures
on Rd that works for any d ≥ 1. Nonetheless, we have not been able to
generalise Theorem 1 for functions on the Zygmund class on Rd for d > 1.
We say that a continuous function f : Rd → R is in the Zygmund class
Λ∗(R

d) if

‖f‖∗ = sup
x,h∈Rd

h 6=0

|f(x+ h)− 2f(x) + f(x− h)|

‖h‖
< +∞.

A continuous function on Rd is in I(BMO)(Rd) if its partial derivatives
in the sense of distributions are functions in BMO . It is easy to see that
I(BMO)(Rd) ⊂ Λ∗(R

d). We do not know an analog of Theorem 1 when
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d > 1. Roughly speaking, the method we develop in this paper works dis-
cretising a function in the Zygmund class and modifying its average growth
on certain intervals, so that we end up constructing the derivative of a func-
tion in I(BMO). Nonetheless, when applying this method in d > 1 variables,
one ends up constructing d functions that approximate the divided differ-
ences of a given function in the coordinate directions. However, this system
of d functions is not, in general, the gradient of an I(BMO) function.

2. Another related open problem is to find the closure of the space of
Lipschitz functions, Lip, in the Zygmund class. It is a well known fact that
singular integral operators such as the Hilbert transform are bounded in Lp

for 1 < p < ∞, but they are not in L∞. Nonetheless, they are bounded from
L∞ to BMO and from BMO to itself. In a similar fashion, these operators
are bounded on the Hölder classes Lipα, for 0 < α < 1, but they are not
in the Lipschitz class. However, they are actually bounded on the Zygmund
class, which plays a similar role to that of BMO in the previous setting. In
this sense, this problem would be related to the one solved by Garnett and
Jones in [GJ78], where they find a characterisation for the closure of L∞ in
the space BMO .

3. The open problem mentioned in the previous paragraph is analogous
to the well known open problem of describing the closure of the space H∞ of
bounded analytic functions in the unit disk into the Bloch space B, consisting
of analytic functions f in the unit disk such that supz∈D(1−|z|2)|f ′(z)| < ∞
(see [ACP74]). In [GZ93] the closure of the space BMOA in B is described,
while in [MN11] and [GMP15] the closure of the class Hp∩B is studied. Here
Hp denotes the classical Hardy spaces of analytic functions in the unit disk.
It is worth mentioning that in this setting, the proofs rely on reproducing
formulae that analytic functions fulfill, which are not available in our real
variable situation.
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