A NOTE ON INTERPOLATION IN THE HARDY SPACES OF THE UNIT DISC

JOAQUIM BRUNA, ARTUR NICOLAU, AND KNUT ØYMA

(Communicated by Albert Baernstein II)

Abstract

In this note we formulate and solve a natural interpolation problem for the Hardy spaces in the unit disc in terms of maximal functions and weighted summable sequences.

1. Introduction

Let \mathbb{D} be the unit disc in the complex plane. For $0<p<\infty, H^{p}(\mathbb{D})$ denotes the Hardy space of holomorphic functions in \mathbb{D} such that

$$
\|f\|_{p}^{p}=\sup _{r} \frac{1}{2 \pi} \int_{-\pi}^{+\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta<+\infty .
$$

In this paper we are interested in the interpolating problem

$$
\begin{equation*}
f\left(z_{n}\right)=w_{n}, \quad n=1,2, \ldots, \tag{1}
\end{equation*}
$$

where $Z=\left\{z_{n}\right\}_{n=1}^{\infty}$ is a sequence in \mathbb{D} satisfying the Blaschke condition

$$
\sum_{n}\left(1-\left|z_{n}\right|\right)<+\infty
$$

In [2] and [3], this problem has already been studied, proving that the restriction operator

$$
R: f \mapsto\left\{f\left(z_{n}\right)\right\}_{n=1}^{\infty}
$$

maps H^{p} onto $\left\{w_{n}: \sum_{n=1}^{\infty}\left|w_{n}\right|^{p}\left(1-\left|z_{n}\right|\right)<+\infty\right\}$ if and only if Z is uniformly separated, i.e.

$$
\inf _{n} \prod_{k \neq n}\left|\frac{z_{k}-z_{n}}{1-\overline{z_{k}} z_{n}}\right| \geq \delta>0
$$

The starting point of this paper is the observation that the growth condition on the $\left\{w_{n}\right\}$,

$$
\begin{equation*}
\sum_{n}\left(1-\left|z_{n}\right|\right)\left|w_{n}\right|^{p}<+\infty \tag{2}
\end{equation*}
$$

is not necessary for a general Blaschke sequence, and in this sense the ShapiroShields result is somewhat unnatural. Here (Section 2) we first obtain elementary

[^0]necessary conditions on the $\left\{w_{n}\right\},\left\{z_{n}\right\}$ for the interpolation problem (1) to have a solution $f \in H^{p}$. These conditions are expressed in terms of k th-order hyperbolic divided differences $\Delta^{k} W$ of the sequence $W=\left\{w_{n}\right\}_{n=1}^{\infty}$ and a corresponding maximal function W_{k}^{*}. For $k=0$ it is simply the statement that the maximal function
$$
W_{0}^{*}\left(e^{i \theta}\right)=\sup \left\{\left|w_{n}\right|: z_{n} \in C_{t}(\theta)\right\}
$$
where $C_{t}(\theta)$ is the Stolz angle at $e^{i \theta}$ of opening t, must be in $L^{p}(\mathbb{T})$. This of course follows from the maximal characterization of $H^{p}(\mathbb{D})$. We also obtain necessary conditions of type (2) for a general Blaschke sequence Z.

In Section 3 we pose and solve the corresponding interpolation problem, one for each k. That is, if

$$
S_{k}^{p}(Z)=\left\{W=\left\{w_{n}\right\}_{n=1}^{\infty}: W_{k}^{*} \in L^{p}(\mathbb{T})\right\}
$$

we prove
Theorem. The restriction map R is onto from H^{p} to $S_{k}^{p}(Z)$ if and only if Z is the union of $k+1$ uniformly separated sequences.

As R always maps $H^{p}(\mathbb{D})$ into $S_{k}^{p}(Z)$, for $k=0$ this result might be called a "Shapiro-Shields theorem revisited".

Finally, we mention that our study has close connections with [4], where a similar result is obtained for H^{∞} (the first named author thanks Professor Nikolskii for pointing this out to him).

2. Necessary conditions

2.1. We will denote by $M_{\alpha} f$ the maximal function

$$
M_{\alpha} f(\theta)=\sup \left\{|f(z)|, z \in C_{\alpha}(\theta)\right\}
$$

corresponding to the angle α. For $z, w \in \Delta$, we set

$$
\rho(z, w)=\frac{w-z}{1-\bar{z} w}
$$

so that $|\rho(z, w)|$ is the pseudohyperbolic distance between z and w.
The following well-known lemma is an obvious consequence of the Cauchy formula:

Lemma 1. Given $0<\alpha<\beta<\pi$ there exists a constant $C=C(\alpha, \beta)$ such that for all holomorphic f and all k,

$$
\sup _{z \in C_{\alpha}(\theta)}(1-|z|)^{k}\left|f^{(k)}(z)\right| \leq C k!M_{\beta} f(\theta)
$$

For a holomorphic function f, we define

$$
\begin{aligned}
\Delta^{0} f(z) & =f(z) \\
\Delta^{1} f(z, w) & =\frac{f(w)-f(z)}{\rho(z, w)}, \quad z, w \in \mathbb{D}
\end{aligned}
$$

and, inductively, for $z_{i} \in \mathbb{D}$

$$
\begin{aligned}
& \left(\Delta^{k} f\right)\left(z_{1}, \ldots, z_{k-1}, z_{k}, z_{k+1}\right) \\
& \quad=\frac{\left(\Delta^{k-1} f\right)\left(z_{1}, \ldots, z_{k-1}, z_{k+1}\right)-\left(\Delta^{k-1} f\right)\left(z_{1}, \ldots, z_{k-1}, z_{k}\right)}{\rho\left(z_{k}, z_{k+1}\right)}
\end{aligned}
$$

Lemma 2. Given $0<\alpha<\beta<\pi$, there exists a constant $C=C(\alpha, \beta)$ such that for any holomorphic function f and $k \geq 1$, one has

$$
\sup _{z_{1}, \ldots, z_{k+1} \in C_{\alpha}(\theta)}\left|\left(\Delta^{k} f\right)\left(z_{1}, \ldots, z_{k+1}\right)\right| \leq C \sup _{t_{1}, \ldots, t_{k} \in C_{\beta}(\theta)}\left|\left(\Delta^{k-1} f\right)\left(t_{1}, \ldots, t_{k}\right)\right| .
$$

Proof. First, let us consider the case $k=1$. If $|\rho(z, w)| \geq \frac{1}{2},\left|\left(\Delta^{1} f\right)(z, w)\right| \leq$ $2(|f(z)|+|f(w)|)$, and if $|\rho(z, w)|<\frac{1}{2}, z, w \in C_{\alpha}(\theta)$, there exists an absolute constant A such that $\left|\left(\Delta^{1} f\right)(z, w)\right| \leq A \sup \left\{(1-|z|)\left|f^{\prime}(z)\right|: z \in C_{\alpha}(\theta)\right\}$. Hence

$$
\sup _{z_{1}, z_{2} \in Z \cap C_{\alpha}(\theta)}\left|\left(\Delta^{1} f\right)\left(z_{1}, z_{2}\right)\right| \leq 2 M_{\alpha} f(\theta)+A \sup _{z \in C_{\alpha}(\theta)}(1-|z|)\left|f^{\prime}(z)\right|
$$

and Lemma 1 finishes the proof.
For $k>1$, fixed z_{1}, \ldots, z_{k}, consider $F_{k}(z)=\left(\Delta^{k-1} f\right)\left(z_{1}, \ldots, z_{k-1}, z\right)$ as a holomorphic function of z. Writing

$$
\left(\Delta^{k} f\right)\left(z_{1}, \ldots, z_{k+1}\right)=\left(\Delta^{1} F_{k}\right)\left(z_{k}, z_{k+1}\right)
$$

and applying the result for $k=1$, one finishes the proof.
The maximal characterization of $H^{p}(\mathbb{D})$ gives the following result.
Theorem 1. Let $f \in H^{p}$ and let $Z=\left\{z_{n}\right\}_{n=1}^{\infty}$ be a sequence of different points in \mathbb{D}. Then, for $k \geq 0$

$$
\sup _{\left\{z_{n_{j}}\right\} \subset Z \cap C_{\alpha}(\theta)}\left|\left(\Delta^{k} f\right)\left(z_{n_{1}}, \ldots, z_{n_{k+1}}\right)\right| \in L^{p}(\mathbb{T}) .
$$

This result immediately gives a set of necessary conditions for the problem (1). Denoting, as before, $W=\left\{w_{n}\right\}_{n=1}^{\infty}$, we introduce

$$
\left(\Delta^{0} W\right)\left(w_{n}\right)=w_{n}, \quad\left(\Delta^{1} W\right)\left(w_{n}, w_{k}\right)=\frac{w_{k}-w_{n}}{\rho\left(z_{n}, z_{k}\right)}
$$

$$
\left(\Delta^{k} W\right)\left(w_{n_{1}}, \ldots, w_{n_{k-1}}, w_{n_{k}}, w_{n_{k+1}}\right)
$$

$$
=\frac{\left(\Delta^{k-1} W\right)\left(w_{n_{1}}, \ldots, w_{n_{k-1}}, w_{n_{k+1}}\right)-\left(\Delta^{k-1} W\right)\left(w_{n_{1}}, \ldots, w_{n_{k}}\right)}{\rho\left(z_{n_{k}}, z_{n_{k+1}}\right)},
$$

the maximal function

$$
W_{k}^{*}\left(e^{i \theta}\right)=\sup _{z_{n_{1}}, \ldots, z_{n_{k+1}} \in Z \cap C_{\alpha}(\theta)}\left|\left(\Delta^{k} W\right)\left(z_{n_{1}}, \ldots, z_{n_{k+1}}\right)\right|
$$

and the sequence spaces

$$
S_{k}^{p}(Z)=\left\{W: W_{k}^{*} \in L^{p}(\mathbb{T})\right\}
$$

with norm

$$
\begin{gathered}
\|W\|_{p, 0}^{p}=\left\|W_{0}^{*}\right\|_{L^{p}(\mathbb{T})}^{p}, \\
\|W\|_{p, k}^{p}=\left\|W_{k}^{*}\right\|_{L^{p}(\mathbb{T})}^{p}+\left\|W_{k-1}^{*}\right\|_{L^{p}(\mathbb{T})}^{p} .
\end{gathered}
$$

Then, $W \in S_{k}^{p}(Z)$ is a necessary condition for (1), for all k.
2.2. Now we look for necessary conditions on $W=\left\{w_{n}\right\}_{n=1}^{\infty}$ for the problem (1) of the type of (2). The following lemma was proved in [1].
Lemma 3. If $h \in H^{\infty}(\mathbb{D})$ and $\varepsilon>0$, the measure

$$
\frac{\left|h^{\prime}(z)\right|^{2}}{|h(z)|^{2-\varepsilon}}(1-|z|) d V(z)
$$

is a Carleson measure with constant $C\|h\|_{\infty} / \varepsilon^{2}$, that is, for all $f \in H^{p}(\mathbb{D})$

$$
\int_{\mathbb{D}}|f(z)|^{p} \frac{\left|h^{\prime}(z)\right|^{2}}{|h(z)|^{2-\varepsilon}}(1-|z|) d V(z) \leq \frac{C}{\varepsilon^{2}}\|f\|_{p}\|h\|_{\infty}
$$

Let us apply this last inequality to $h=B$, the Blaschke product with zeros in Z. We use the notation

$$
B_{n}(z)=\prod_{k \neq n} \frac{\overline{-z_{k}}}{\left|z_{k}\right|} \frac{z-z_{k}}{1-\bar{z}_{k} z}, \quad \mu_{n}=\inf _{k \neq n}\left|\rho\left(z_{n}, z_{k}\right)\right|
$$

i.e. z_{n} is at hyperbolic distance μ_{n} from the other points in Z. We denote by D_{n} the hyperbolic disc centered at z_{n} of radius $\mu_{n} / 2$. As these are disjoint,

$$
\begin{aligned}
\frac{C}{\varepsilon^{2}}\|f\|_{p} & \geq \int_{\mathbb{D}}|f(z)|^{p} \frac{\left|B^{\prime}(z)\right|^{2}}{|B(z)|^{2-\varepsilon}}(1-|z|) d V(z) \\
& \geq \sum_{n} \int_{D_{n}}|f(z)|^{p} \frac{\left|B^{\prime}(z)\right|^{2}}{|B(z)|^{2-\varepsilon}}(1-|z|) d V(z)
\end{aligned}
$$

In $D_{n}, 1-|z| \simeq 1-\left|z_{n}\right|$ and

$$
|B(z)|=\left|B_{n}(z)\right|\left|\frac{z-z_{n}}{1-\bar{z}_{n} z}\right| \simeq \frac{\left|B_{n}(z)\right|\left|z-z_{n}\right|}{1-\left|z_{n}\right|} .
$$

Hence

$$
\frac{C}{\varepsilon^{2}}\|f\|_{p} \geq \sum_{n}\left(1-\left|z_{n}\right|\right)^{3-\varepsilon} \int_{D_{n}}|f(z)|^{p} \frac{\left|B^{\prime}(z)\right|^{2}}{\left|B_{n}(z)\right|^{2-\varepsilon}\left|z-z_{n}\right|^{2-\varepsilon}} d V(z)
$$

We may think that D_{n} is a euclidean disk centered at z_{n} of radius $\mu_{n}\left(1-\left|z_{n}\right|\right)$.
Using polar coordinates in D_{n}, this last integral equals

$$
\int_{0}^{\mu_{n}\left(1-\left|z_{n}\right|\right)} r^{\varepsilon-1}\left\{\int_{0}^{2 \pi}\left|f\left(z_{n}+r e^{i \theta}\right)\right|^{p} \frac{\left|B^{\prime}\left(z_{n}+r e^{i \theta}\right)\right|^{2}}{\left|B_{n}\left(z_{n}+r e^{i \theta}\right)\right|^{2-\varepsilon}} d \theta\right\} d r
$$

In D_{n}, B_{n} does not vanish, hence by subharmonicity the integral in θ dominates

$$
\left|f\left(z_{n}\right)\right|^{p} \frac{\left|B^{\prime}\left(z_{n}\right)\right|^{2}}{\left|B_{n}\left(z_{n}\right)\right|^{2-\varepsilon}}=\left|f\left(z_{n}\right)\right|^{p} \frac{\left|B_{n}\left(z_{n}\right)\right|^{\varepsilon}}{\left(1-\left|z_{n}\right|^{2}\right)^{2}}
$$

Thus we obtain

$$
\begin{equation*}
\frac{C}{\varepsilon}\|f\|_{p} \geq \sum_{n}\left(1-\left|z_{n}\right|\right)\left(\left|B_{n}\left(z_{n}\right)\right| \mu_{n}\right)^{\varepsilon}\left|f\left(z_{n}\right)\right|^{p} \tag{3}
\end{equation*}
$$

We have therefore proved
Theorem 2. For a Blaschke sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$, the measure

$$
\sum_{n}\left(1-\left|z_{n}\right|\right)\left(\left|B_{n}\left(z_{n}\right)\right| \mu_{n}\right)^{\varepsilon} \delta_{z_{n}}
$$

is a Carleson measure with constant $C / \varepsilon, \varepsilon>0$.

If $\left\{z_{n}\right\}_{n=1}^{\infty}$ is a uniformly separated sequence, this result recaptures the wellknown fact that

$$
\sum_{n}\left(1-\left|z_{n}\right|\right) \delta_{z_{n}}
$$

is a Carleson measure.
Of course, Theorem 2 gives as a necessary condition on $W=\left\{w_{n}\right\}$ for (1), namely

$$
\begin{equation*}
\sum_{n}\left(1-\left|z_{n}\right|\right)\left(\left|B_{n}\left(z_{n}\right)\right| \mu_{n}\right)^{\varepsilon}\left|w_{n}\right|^{p}<+\infty, \quad \varepsilon>0 \tag{4}
\end{equation*}
$$

a Shapiro-Shields type condition. We point out that (4) is already captured by the statement $W \in S_{0}^{p}(Z)$. This follows from the fact that Carleson measures boundedly operate on (nonnecessarily holomorphic) functions having maximal function in $L^{p}(\mathbb{T})$ (in this case the function equals w_{n} on z_{n} and 0 elsewhere).

Theorem 2 can be improved, in the sense that $\varphi(t)=t^{\varepsilon}$ can be replaced by a function φ satisfying a Dini-type condition. For instance, multiplying both terms of (3) by ε^{β} and integrating in ε, one obtains

$$
\sum_{n}\left(1-\left|z_{n}\right|\right)\left(\left|\log \left(\left|B_{n}\left(z_{n}\right)\right| \mu_{n}\right)\right|\right)^{-1-\beta}\left|f\left(z_{n}\right)\right|^{p} \leq \frac{C}{\beta}, \quad \beta>0
$$

which can be integrated again, and so on. This leads to improvements of (4), all of them included in the statement $W \in S_{0}^{p}(Z)$. In fact, it is an interesting question to obtain conditions like (4) from $W \in S_{0}^{p}(Z)$ using only the geometry of the sequence Z.

3. Sufficient conditions

Let $Z=\left\{z_{n}\right\}$ be a Blaschke sequence. In section 2.1 it has been shown that the restriction operator

$$
R: f \rightarrow\left\{f\left(z_{n}\right)\right\}_{n=1}^{\infty}
$$

maps H^{p} into $S_{k}^{p}(Z), k=0,1,2, \ldots$.
Theorem 3. Let $Z=\left\{z_{n}\right\}$ be a Blaschke sequence and $k \geq 0$. The restriction operator R maps H^{p} onto $S_{k}^{p}(Z)$ if and only if Z is the union of $k+1$ uniformly separated sequences.

Proof. Assume R is onto. Consider $W=\left\{w_{n}\right\}, w_{n}=\delta_{n, m}$, i.e. $w_{n}=0$ if $n \neq m$ and $w_{m}=1$. An easy inductive argument shows

$$
W_{k}^{*}\left(e^{i \theta}\right) \leq \frac{2^{k}}{\left|\rho\left(z_{m}, z_{m_{1}}\right) \cdots \rho\left(z_{m}, z_{m_{k}}\right)\right|}, \quad z_{m} \in C_{\alpha}(\theta)
$$

and hence

$$
\|W\|_{p, k} \leq \frac{2^{k}\left(1-\left|z_{m}\right|\right)^{1 / p}}{\left|\rho\left(z_{m}, z_{m_{1}}\right) \cdots \rho\left(z_{m}, z_{m_{k}}\right)\right|}
$$

where $\left\{z_{m_{j}}: j=1, \ldots, k\right\}$ are the k points in $\left\{z_{n}\right\}$ closest in the pseudohyperbolic distance to z_{m}. Now, since R is onto, by the open mapping theorem there exists $f_{m} \in H^{p}, f_{m}\left(z_{n}\right)=w_{n},\left\|f_{m}\right\|_{p} \leq C\|W\|_{p, k}$ where C is a constant independent of m.

Hence, $f_{m}=B_{m} \cdot g_{m}$ and

$$
\left|B_{m}\left(z_{m}\right)\right|^{-1}=\left|g_{m}\left(z_{m}\right)\right| \leq C_{1} \frac{\left\|g_{m}\right\|_{p}}{\left(1-\left|z_{m}\right|\right)^{1 / p}} \leq \frac{C_{1} C 2^{k}}{\left|\rho\left(z_{m}, z_{m_{1}}\right) \cdots \rho\left(z_{m}, z_{m_{k}}\right)\right|} .
$$

So,

$$
\begin{equation*}
\left|B_{m}\left(z_{m}\right)\right| \geq A\left|\rho\left(z_{m}, z_{m_{1}}\right) \cdots \rho\left(z_{m}, z_{m_{k}}\right)\right| . \tag{5}
\end{equation*}
$$

We will show that (5) implies that Z is the union of $k+1$ uniformly separated sequences. By Zorn's lemma, there exists a maximal subset Z_{1} of Z such that if $z_{r}, z_{s} \in Z_{1}$ one has $\left|\rho\left(z_{r}, z_{s}\right)\right|>2^{-1} A$. Do the same for Z replaced by $Z \backslash Z_{1}$ and repeat the process to obtain Z_{1}, \ldots, Z_{k+1}. By (5) these sequences are uniformly separated. Now let us show

$$
Z=\bigcup_{j=1}^{k+1} Z_{j} .
$$

If this were not true, there exists $z_{m} \in Z \backslash \bigcup_{j=1}^{k+1} Z_{j}$. By the maximality of each Z_{j}, there exists $z_{m, j} \in Z_{j}$ such that $\left|\rho\left(z_{m}, z_{m, j}\right)\right|<2^{-1} A$. Hence, there exist $k+1$ points in Z at pseudohyperbolic distance from z_{m} less than $2^{-1} A$. This contradicts (5).

To prove the converse, consider first the case $k=0$, that is, $Z=\left\{z_{n}\right\}$ a uniformly separated sequence and $W=\left\{w_{n}\right\} \in S_{0}^{p}(Z)$, i.e. $W_{0}^{*}\left(e^{i \theta}\right)=\sup \left\{\left|w_{n}\right|: z_{n} \in\right.$ $\left.C_{\alpha}(\theta)\right\} \in L^{p}(\mathbb{T})$. Since Carleson measures boundedly operate on functions having maximal function in $L^{p}(\mathbb{T}),(2)$ is satisfied and the Shapiro-Shields result gives $f \in H^{p}(\mathbb{D}), f\left(z_{n}\right)=w_{n}, n=1,2, \ldots$ However, using that $W \in S_{0}^{p}(Z)$ we can give a more elementary proof.

By normal families, the result will be proved if we show that there exists $C>0$ such that for any N, there is $f_{N} \in H^{p}(\mathbb{D})$, satisfying $f_{N}\left(z_{i}\right)=w_{i}, i=1, \ldots, N$, and $\left\|f_{N}\right\|_{p} \leq C$.

Take $\delta>0$ such that $\mathbb{D}_{n}=\left\{z:\left|\rho\left(z, z_{n}\right)\right| \leq 2 \delta\right\}$ are pairwise disjoint. Let $H=H_{N}$ be a C^{∞} in $\mathbb{D}, H(z)=w_{n}$ if $\left|\rho\left(z, z_{n}\right)\right| \leq \delta, H=0$ or $\mathbb{D} \backslash \bigcup_{n=1}^{N} D_{n}$ and $|H(z)| \leq\left|w_{n}\right|$ for $z \in D_{n}$. It is clear that $\left\|M_{\beta}(H)\right\|_{p} \leq\|W\|_{p, 0}$ for some $\beta<\alpha$. Let B be the Blaschke product with zero set Z. We look for solutions of (1) of the form $H-B G$, where

$$
\begin{equation*}
\bar{\partial}(G)=B^{-1} \bar{\partial}(H), \quad\|G\|_{L^{p}(\mathbb{T})} \leq C \tag{6}
\end{equation*}
$$

and C is a constant independent on N.
Since $Z=\left\{z_{n}\right\}$ is uniformly separated, one has $|B(z)| \geq C \inf _{n}\left|\rho\left(z, z_{n}\right)\right|$. Hence,

$$
\begin{aligned}
\left|B(z)^{-1} \bar{\partial} H(z)\right| d m(z) & \leq C(\delta) \sum_{n}\left|w_{n}\right|\left(1-\left|z_{n}\right|\right)^{-1} d m_{\mathbb{D}_{n}} \\
& \leq C(\delta)|H(z)| \sum_{n}\left(1-\left|z_{n}\right|\right)^{-1} d m_{\mathbb{D}_{n}} .
\end{aligned}
$$

Observe that $\mu=\sum_{n}\left(1-\left|z_{n}\right|\right)^{-1} d m_{\mathbb{D}_{n}}$ is a Carleson measure. Now, the function

$$
G(z)=\frac{1}{\pi} \int_{\mathbb{D}} \frac{1-|\xi|^{2}}{(\xi-z)(1-\bar{\xi} z)} B(\xi)^{-1} \bar{\partial} H(\xi) d m(\xi)
$$

satisfies $\bar{\partial} G=B^{-1} \bar{\partial} H$. We estimate $\|G\|_{p}$ by duality.

Let $A \in L^{q}(\mathbb{T}), p^{-1}+q^{-1}=1$ and denote by $P[A](\xi)$ the Poisson integral of A at the point ξ. One has

$$
\begin{gathered}
\left|\int_{0}^{2 \pi} G\left(e^{i \theta}\right) A\left(e^{i \theta}\right) d \theta\right| \leq \int_{\mathbb{D}}|P[|A|](\xi)||B(\xi)|^{-1}|\bar{\partial} H(\xi)| d m(\xi) \\
\quad \leq C(\delta) \int_{\mathbb{D}}|P[|A|](\xi)||H(\xi)| d \mu(\xi) \leq C(\delta) C_{1}\|A\|_{L^{q}(\mathbb{T})}
\end{gathered}
$$

where C_{1} is independent on N, because $P[|A|](\xi) \cdot H(\xi)$ has maximal function in $L^{1}(\mathbb{T})$, so the function G satisfies (6) and this finishes the proof for $k=0$.

Assume the proof is completed for k and let us show it for $k+1$, that is, assume Z is the union of $k+1$ uniformly separated sequences. One can split the sequence $Z=Z_{1} \cup Z_{2}$, where $Z_{1}=\left\{\alpha_{n}\right\}$ is the union of k uniformly separated sequences and $Z_{2}=\left\{z_{n}\right\}$ is uniformly separated.

Let $W \in S_{k+1}^{p}(Z)$. The previous splitting for Z gives $W=W_{1} \cup W_{2}, W_{1}=\left\{s_{n}\right\}$, $W_{2}=\left\{w_{n}\right\}$. Applying the result for $k=0$, one gets $f_{2} \in H^{p}(\mathbb{D}), f_{2}\left(z_{n}\right)=w_{n}, n=$ $1,2, \ldots$ Let B_{2} be the Blaschke product with zero sequence Z_{2}. Now we look for a function $f \in H^{p}(\mathbb{D})$ such that

$$
\begin{equation*}
f\left(\alpha_{n}\right)=\frac{s_{n}-f_{2}\left(\alpha_{n}\right)}{B_{2}\left(\alpha_{n}\right)}, \quad n=1,2, \ldots \tag{7}
\end{equation*}
$$

because $f_{2}+B_{2} f$ will interpolate W at the points Z. By induction, (7) is solvable if and only if

$$
\left\{\left(s_{n}-f_{2}\left(\alpha_{n}\right)\right) B_{2}\left(\alpha_{n}\right)^{-1}\right\} \in S_{k}^{p}\left(Z_{1}\right)
$$

Let $z_{k(n)}$ be the closest point, in the pseudohyperbolic metric, in Z_{2} to α_{n}. Then,

$$
\begin{aligned}
\left(s_{n}-f_{2}\left(\alpha_{n}\right)\right) B_{2}\left(\alpha_{n}\right)^{-1}= & \frac{s_{n}-w_{k(n)}}{\rho\left(\alpha_{n}, z_{k(n)}\right)} \frac{\rho\left(\alpha_{n}, z_{k(n)}\right)}{B_{2}\left(\alpha_{n}\right)} \\
& +\frac{f_{2}\left(z_{k(n)}\right)-f_{2}\left(\alpha_{n}\right)}{\rho\left(\alpha_{n}, z_{k(n)}\right)} \frac{\rho\left(\alpha_{n}, z_{k(n)}\right)}{B_{2}\left(\alpha_{n}\right)} .
\end{aligned}
$$

Now, since $W \in S_{k+1}^{p}(Z)$ and $f_{2} \in H^{p}(\mathbb{D})$, one has

$$
\left\{\frac{s_{n}-w_{k(n)}}{\rho\left(\alpha_{n}, z_{k(n)}\right)}\right\} \in S_{k}^{p}\left(Z_{1}\right), \quad\left\{\frac{f_{2}\left(z_{k(n)}\right)-f_{2}\left(\alpha_{n}\right)}{\rho\left(\alpha_{n}, z_{k(n)}\right)}\right\} \in S_{k}^{p}\left(Z_{1}\right) .
$$

Hence in order to finish the proof it is sufficient to show the following two auxiliary results.
Lemma 4. Let Z be a Blaschke sequence, $W=\left\{w_{n}\right\}$ and $A=\left\{a_{n}\right\}$ two sequences of complex numbers and denote by $W A$ the sequence $\left\{w_{n} a_{n}\right\}$. Then for $k \geq 0$,

$$
\begin{aligned}
& \left(\Delta^{k}(W A)\right)\left(w_{n_{1}} a_{n_{1}}, \ldots, w_{n_{k+1}} a_{n_{k+1}}\right) \\
& \quad=\sum_{j=0}^{k}\left(\Delta^{j} W\right)\left(w_{n_{1}}, \ldots, w_{n_{j+1}}\right) \cdot\left(\Delta^{k-j} A\right)\left(a_{n_{j+1}}, \ldots, a_{n_{k+1}}\right)
\end{aligned}
$$

Lemma 5. Let $Z=\left\{z_{n}\right\}$ be a uniformly separated sequence, B the Blaschke product with zero set Z and $\delta>0$ such that the discs $D_{n}=\left\{z:\left|\rho\left(z, z_{n}\right)\right| \leq \delta\right\}$ are pairwise disjoint. Consider $\Omega=\bigcup_{n} D_{n}$ and $\varphi: \Omega \rightarrow \mathbb{C}, \varphi(a)=B_{b(a)}(a)^{-1}$ where $b(a)=z_{n}$ if $a \in D_{n}$. Let $A=\left\{a_{n}\right\} \in \Omega$ and $\varphi(A)=\left\{\varphi\left(a_{n}\right)\right\}$. Then $\varphi(A) \in S_{k}^{\infty}(A)$, for any $k \geq 0$.

Lemma 4 follows from a simple inductive argument. The case $k=0$ of Lemma 5 follows from the fact that Z is a uniformly separated sequence. For $k>0$, one shows by induction that

$$
z \rightarrow \Delta^{m}\left(a_{n_{1}}, \ldots, a_{n_{m}}, z\right)
$$

is a bounded analytic function in Ω.
Finally, concerning the necessary condition (4), since it is captured from the fact $W \in S_{0}^{p}(Z)$, Theorem 3 shows

$$
R\left(H^{p}(\mathbb{D})\right)=\{W: W \text { satisfies }(4)\}
$$

if and only if Z is a uniformly separated sequence.

References

1. U. Cegrell, A generalization of the corona theorem in the unit disc, Math. Z. 203 (1990). MR 91h:30059
2. V. Kabaila, Interpolation sequences for the H_{p} classes in the case $p<1$, Litovsk. Mat. Sb. 3 (1963), no. 1, 141-147. MR 32:217
3. H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532. MR 24:A3280
4. V. I. Vasyunin, Characterization of finite unions of Carleson sets in terms of solvability of interpolation problems , Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 135 (1984), 31-35. MR 85c:30037
(J. Bruna and A. Nicolau) Department of Mathematics, University Autonoma de Barcelona, 08193 Barcelona, Bellaterra, Spain

E-mail address: bruna@mat.uab.es
E-mail address: nicolau@mat.uab.es
(K. Øyma) Department of Mathematics, Agder College, P.O. Box 607, N-4601 Kristiansand, Norway

[^0]: Received by the editors February 25, 1994 and, in revised form, October 13, 1994.
 1991 Mathematics Subject Classification. Primary 30D55, 30D50; Secondary 46J15.
 The first two authors were partially supported by DGICYT grant PB92-0804-C02-02, Spain.

