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A b s t r a c t .  In this paper we study the class ~ of all inner functions whose 
non-zero Frostman shifts are Carleson-Newman Blaschke products. We present 
several geometric, measure theoretic and analytic characterizations of .M in terms 
of level sets, distribution of zeros, and behaviour of pseudohyperbolic derivatives 
and observe that A4 is the set of all functions in H ~ whose range on the set of 
trivial points in the maximal ideal space is OD U {0}. 

1 I n t r o d u c t i o n  

Let H ~~ be the algebra of  bounded analytic functions in the open unit disc I~ of  

the complex plane and let 

p ( z , w ) =  z - w  , z , w ~ D  

be the pseudohyperbol ic  distance in D. A pseudohyperbolic  disc centered at z E I1~ 

of  radius 0 < ~ < 1 is given by Dp(z, ~) = {w E D : p(w, z) ~< ~}. A sequence o f  

points (z,~) in I~ is called an interpolating sequence if for  any bounded sequence 

(wn) of  complex numbers, there exists f e H ~ such that f ( zn)  = wn for all n E N. 

A celebrated result o f  L. Carleson [Ca] asserts that (zn) is interpolating if and only 

ifp(zn,Zm) > ~ > 0 for all n # m and # = ~-]~,~__1(1 - Jzn[2)~z~ is a Carleson 

measure (see [Ga]). Recall that # is a Carleson measure if there exists a constant 

C = C(#) > 0 such that #(Q) ~< Cg for any box Q of  the form 

Q = Q(Oo, e) := {re i~ : 0 ~< 1 - r ~< g, ] 0 - 00[ ~< s 

A Blaschke product  
o o  

B ( z )  = 1-I Iznl Z n -  z 
n=l  Zn i----Z~ 
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with distinct zeros zn is called an interpolating Blaschke product if (z,~) is an 

interpolating sequence, oz equivalently, if 

inf(1 -Iz ,d2)lB'(z , , ) l  > o. 

Interpolating Blaschke products play a crucial role in the theory of  H ~ .  For 

instance, they appear naturally when studying the structure of  the maximal ideal 

space M(H ~~ o f H  ~ . The pseudohyperbolic distance ,o can be extended to M(H '~) 
by defining 

p(m, Cn) = sup {If(m)l : f E H ~ ,  l l f l l~ ~< 1, f ( ~ )  = 0}. 

Here, as usual, we are identifying f with its Gelfand transform, that is, f(m) = 
m(f). The Gleason part of  a point m E M(H ~) is defined as 

P(m) = {~  E M ( H ~ ) :  p(m,r~) < 1}. 

It is a fundamental result of  K. Hoffman that either P(m) is a singleton or P(m) is 

an analytic disc. Moreover,  for every m E M(H~176 there exists a continuous map 

L,,, f rom D onto P(m) with Lm(O) = m such that f o Lm E H ~176 whenever f E H ~176 

([Ho2]). The Hoffman map Lm has the form 

Lm(z) = lim z + z~ 
a l+2az' 

where (za) is any net of points in D converging to m in the weak-,-topology of 

M(H~176 Hoffman also proved that a point m E M(H ~176 has a nontrivial Gleason 

part, that is, P(m) # {m}, if and only if m E D or m lies in the weak-*-closure of  

an interpolating sequence in D. In that case, Lm is a bijection. The set of  points in 

M(H ~) with nontrivial Gleason part is denoted by G. 

A Blaschke product B with zero sequence (zn) is called a Car leson-Newman 

B laschke product if the measure 

o~ 

= 

is a Carleson measure or, equivalently, if B is the product  of  finitely many interpo- 

lating Blaschke products (see [MS], [McK]). It is weU-known that v is a Carleson 

measure if and only if 

oo 

sup < oo, 
~ E A u t D n =  1 

where Aut D is the set of  all conformal  maps o f  D onto itself (see [Ga]). 
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A bounded analytic function I is called inner if for almost all e ~~ E 011), 

lim I(rei~ = 1. 
r---~l I 

An inner function I can be decomposed as I = eieBSu, where B is a Blaschke 

product and 

is a singular inner function associated with the positive finite singular Borel measure 

#. 

For a E D, let v~ denote the automorphism of  I~ sending a to 0, defined as 

T~(Z) = (a -- z) / (1  - -~z) ,  z E ~. It is clear that v~ o I is inner if I is inner. Actually, 

a result of  O. Frostman asserts that T~ o I is a Blaschke product  for any ct E D 

except, possibly, for a set of  logarithmic capacity 0 ([Fr] and [Ga]). 

Several authors ([Toe], [Ni], [GuIz], [MT]) have studied Car leson-Newman 

Blaschke products B for which v~ o B is also a Car leson-Newman Blaschke product  

for any a E l~. Let  us denote this set o f  functions by P (see [Toe]). Obviously, 

every finite Blaschke product is in P.  But P is much bigger than that. In fact, let 

B be a thin Blaschke product; that is, a Blaschke product with zero sequence (zn) 

satisfying 

lim (1 -Iznl2)lB'(z,,)l = 1 .  
n---~ oo 

It is easy to check that thin Blaschke products are in 79. This class 7 9 plays 

an important role in studying closed subalgebras of  L~(I/)) (see [GoIz]). Certain 

elements of  P also appear in the study o f  almost isometries in the hyperbolic plane 

(see [GP]). It is well-known that the elements in 7 9 can be characterized in terms 

of  the distribution o f  their zeros ([Ni]) or in terms of  their behavior on the maximal 

ideal space ([To2], [GuIz], [MT]). For  example, 79 is the set of  functions in H a 

which are unimodular  on the set of  trivial points in M(H~176 

The main purpose of  this paper is to study the class .A4 of  inner functions I 

for which T~ o I is a Car leson-Newman Blaschke product for  any a E ID \ {0}. 

Note that 79 _C f14. Whereas 79 only contains Blaschke products,  it is easily 

seen that the singular inner function S(z) = exp ((1 + z ) / ( z  - 1)), which 

corresponds to the Dirac measure at the point 1, is in .M. Actually, a straight- 

forward calculation shows that for any a E lI) \ {0}, the zeros o f  ra o S form an 

interpolating sequence (see [GoIz], [Mo]). It follows from Hoffman ' s  theory that 

{m �9 M ( H  ~)  : 0 < IS(m)l < 1} C G. Since this property is preserved by finite 

products, we deduce that S u �9 .A4 whenever  # is a finite linear combination of  Dirac 

measures. The main goal of  this paper is to present some other nontrivial examples 

of  singular inner functions in .A4. The construction of  some of  our examples is 
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based on the following characterization of  the functions in 34, a result which we 

prove in Section 3. 

Theorem 1. Let I be an inner function. Then the fo l lowing assertions are 

equivalent. 

(a) I �9 34, that is, r~ o I is a Car l e son-Newman  Blaschke product  f o r  any 

�9 D \ {o}. 

(b) For every 0 < e < 1, there exists c = c(e , I )  < 1 such that the set 

{z �9 D : c < II(z)l < 1 - e} does not  contain any pseudohyperbol ic  

disc o f  radius bigger than c. 

(c) For every 0 < e < 1, there exists ~ E]0, 1[ and  6 E]0, 1[ such that f o r  any 

z E l~wi the  < II(z)[ < 1 - e ,  o n e c a n f i n d w  E l ~ w i t h p ( z , w )  < 6 s u c h t h a t  

(1 -IwlZ)lI'(w)l > o. 

(d) For any trivial point  m E M(H~176 that is P ( m )  = {m}, one has either 

II(m)l -- 1 or I ( m )  = O. 

(e) For any m E G, ei ther I o Lm is an inner funct ion  or I o Lm = O. Here Lm 

is the Hoffman map corresponding to m. 

A positive measure is called discrete if it is a weighted, finite or countably 

infinite sum of  point masses. A positive measure # is called continuous if it does 

not give any mass to any singleton. A singular inner function S u is called discrete 

(respectively, continuous) if # is a discrete (respectively, continuous) measure. 

We use part (b) of  Theorem 1 to find examples o f  nontrivial discrete singular 

inner functions in .A4. We also give examples of  both discrete and continuous 

singular inner functions not belonging to 34. Moreover,  we characterize the 

compact  sets E C_ OD for which S u E 34 for any positive measure # supported 

on E. To this end, recall that a compact  set E ~ 0 of  the unit circle is called 

porous if there exists 0 < e < 1 such that for any arc J C 01~ with J n E ~ r 

there exists a subarc J C J ,  IJI > ~lJI, such that j N E = 0. For example,  the set 

{e i2-k : k E N} U {1} is porous for e = ( 1 / 4 ) 1 ,  whereas  {e ik-1 : k E N} U {1} is 

not porous. Moreover,  the usual 1/3-Cantor set is porous. Finally, we mention that 

any porous subset of  aD has one-dimensional Lebesgue  measure zero. 

Our result is the following: 

Theorem 2. Let E be a compact  subset  o f  the unit circle. Then, the fo l lowing 

conditions are equivalent. 



FROSTMAN SHIFTS OF INNER FUNCTIONS 289 

(a) For any positive singular measure # supported on E, the inner function Su 

belongs to M ,  that is, 7"~ o Su is a Carleson-Newman Blaschke product  fo r  

any a E D \ { 0 } .  

(b) E is porous. 

This al lows us to give a first example  of  a continuous singular  inner function 

in .M. 

It is wel l -known that the behaviour  o f  the modulus o f  an inner function (or, 

more generally, an arbitrary bounded analytic function) is related to the behaviour  

of  the Poisson integral o f  a certain posit ive measure  ([Bi]). More  concretely,  given 

an inner function I which decomposes  as I = B.  S,,, where B is a Blaschke product  

with zero sequence (bn), we consider the measure  

1 
(1.1) # : Itl = : ~ ( 1  - [bn[2)~b, + a. 

One o f  our major  goals  is to character ize the inner functions I in .M in terms o f  the 

behaviour  of  their corresponding measures  #/ .  To state our result, we need some 

more  notation. Given a point z E D, denote  by J(z)  the arc centered at e iargz of  

length 2(1 - I z l ) ,  by Q(z) the Carleson box Q(e i a,g ~, 1 - Izl) with base  J (z ) ,  that is, 

J(z) = {e '~  10 - argzl ~< 1 - Izl}, 

Q(z) : {reie: 0 ~< 1 - r ~< 1 - [z[, [8 - argz[ ~< 1 - Izl}, 

and by s : :  1 - Izl (respectively f ( J ( z ) ) )  the length o f  the Car leson box Q(z) 

(respectively, its base  J(z)) .  Moreover ,  for N > 0, NQ (z )  is the Carleson box 

Q(e iarg~, N(1 - Izl). Note that NQ(z )  = B if N is sufficiently big. Arclength o f  

an arc J c_ aD is denoted by IJI. Finally, P~(w) = (1 - Iz12)/I 1 - ~zl 2 stands for  

the Poisson kernel. Here  z E D and w E D. 

T h e o r e m  3. Let  I be an inner funct ion and It = It1 be the measure defined in 

(1.1). The fol lowing two conditions are equivalent. 

(a) I ~ ~4, that is, there exists a E D \ {0} such that T~ o I is not a Carleson-  

Newman Blaschke product. 

(b) There exist C > 0, z,, E D, Iz,d ~ 1, 0 < m,~ < 1, mn -~ 1 and integers 

n( N)  --+ co as N -+ oo, such that 

(b.1) 
f I ~,(Q(z)) c } s u  :p(z,z.) m . . . . j 0  

and  
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(b.2) 

[ P~(w)d#(w) > O. s u p  s u p  
n>n( N) zE Dp(zn,m.) JD\NQ(z) N-'+oo 

The proof of  Theorem 3 uses several ideas from [Bi]. Condition (b. l)  will be 

used to construct further examples of  continuous singular inner functions in 34. 

Furthermore, condition (b. 1) can also be applied to obtain examples of  Blaschke 

products in 3//, but not in "P. 

Corollary 4. Any Blaschke product whose zero set lies in a Stolz angle belongs 

to the class 3,t. 

The paper is organized as follows. In Section 2, some known results on 

Carleson-Newman Blaschke products are collected. Section 3 is devoted to the 

proof of  Theorem l, which is applied in Section 4 to present examples of  discrete 

singular inner functions in .M. Theorem 2 is proved in Section 4, and a first 

example of  a continuous singular inner function in 34 is given there. Section 5 

contains the proof of  Theorem 3, which is applied in Section 6 to present other 

examples of  continuous singular inner functions in . ~  and to prove Corollary 4. 

The paper concludes with some observations and questions. 

As usual, the letter C denotes an absolute constant whose value may change 

from line to line. Also, constants which only depend on a given parameter m are 

denoted by Ci(m), i = 1 , 2 , . . . .  

2 Car l e son-Newman Blaschke products 

We begin with a Lemma on the relation between pseudohyperbolic discs and 
Stolz domains. 

Lemma 2.1. (a) Let r (M)  = {z e D:  Izl > 1/2, Iz - 1[ < M(1 - [z[)} be 

a Stolz domain. Then sup{r > 0 : 3 Dp(z, r) C r (M)} < 1. 

(b) Let 0 < r(M) < 1 converge to 1 as M goes to infinity. Then there exist 

pseudohyperbolic discs D o f  radius p(M), p(M) --r 1 as M --~ co, such that 

D _c r (M)  n {z �9 D: Iz] > r(M)}. 

P r o o f .  Let us recall that Dp(z, r) coincides with the euclidean disc K centered 
1 --r ~ at l_~---:~z and euclidean radius R = r 1--L=-15~ We may assume that z �9 [0, 1[ and 1--r~)z) z" 

that r < [z]. Hence, by ([Ga], p. 3), the smallest distance of  a point in Dp(z, r) to 

0 is A = ~ biggest is B = x+rIzl" 1 = ~1~' the I zl+" 

If Dp (z, r) c r (M),  then R/(1 - B) < tan ~ for some a = a (M)  �9 ]0, ~r/2[. But 

R/(1 - B) = rP+l=l) This yields both assertions (a) and (b). [] 
(1-r]zl)(l-r) " 
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One can find in the literature many different descriptions of  the Carleson- 

Newman Blaschke products. We collect some of them in the following result for 

further reference. 

T h e o r e m  2.2. [Ho2], [KL], [McK], [GIS], [To2] Let I be an inner function. The 

following conditions are equivalent. 

(a) I is a Carleson-Newman Blaschke product. 

(b) 1 is a Blaschke product whose zero set is a finite union o f  interpolating 

sequences. 

(c) There exist e = e(I) > 0 and ~ = ~(I) < 1 such that the set 

{z e /~ : II(z)l < ~} does not  contain any pseudohyperbolic  disc o f  

radius bigger than 6. 

(d) There exist e > 0 and rl > 0 such that fo r  any z E D with II(z)l < e, one can 

f ind Y. E II), p(Y., z) < 1 - e, such that 

(1 -i~l~)lr(~)l > ,7. 

(e) The zeros o f  I on the maximal  ideal space M ( H  ~ lie in the set G o f  

non-trivial points. 

P r o o f .  The equivalence between (a) and (b) is due to [McK] and follows from 

the observation that if u = ~ ( 1  - Iz,,12)6~. is a Carleson measure, there exists a 

constant N E N such that any pseudohyperbolic disc of  radius 1/2, say, contains at 

most N points of  the sequence (zn) (see also [MS]). The equivalence between (b) 

and (e) follows from Hoffman's  theory (see [GIS] or [To2]). The fact that (b) and 

(c) are equivalent can be found in [KL]. It remains to show that (d) is equivalent to 

(e) . Assume that (e) does not hold. Then there is a trivial point m with I (m)  = O, 

By [Ho2], there exists a sequence (zn) in I~ such that I o L~, tends to zero locally 

uniformly in I~. Hence, for every 8 E ]0, 1[, 

(2.1) sup (1 - Iz l2) l I ' (z ) l  -~ 0 
zEDp(z. ,6) 

as n -~ ~ .  Thus (d) cannot hold. 

On the other hand, if (d) does not hold, then we may choose for r = 7/= 1/n  a 

point z,~ with II(zn)l < 1/n  and such that (1-1zl2)lI'(z)l < 1 /n  on Dp(z,~, l - l / n ) .  In 

particular, (2.1) holds. Thus (I o Lm)' = 0 for any cluster point m of  the (z,~). Since 

I (m)  = 0, we have I o L,~ - 0, and so, for any 0 < 6 < 1, sup~eD,(z.,Z)]I(z)] ~ 0 

as n --+ or This contradicts (c), which was shown to be equivalent to (e).  [] 
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From part (c) of  Theorem 2.2, it is obvious that the set a E D for which r~ o I  is a 

Car leson-Newman Blaschke product  is open. Observe also that as a consequence 

of  (e), given an inner function I ,  the set of  a E II~ for which r o o  I is not a Car leson-  

Newman Blaschke product coincides with the intersection o f  D with the range o f  

I on the set of  trivial points. 

It is well-known that Car leson-Newman Blaschke products cannot have radial 

limit 0. Indeed,  if  

lim II(reie)l = 0, 
r----~ 1 

then l ( z )  tends to 0 whenever z approaches e i~ within any Stolz angle 

r ( M )  = { z :  Iz - e'al ~< M(1 - Izl)}. 

Fix e > 0. Let  0 < r (M)  < 1 be such that III < ~ on  r ( M )  n {Izl > r (M)}.  By 

Lemrna 2.1, F (M)  M {Izl > r (M)}  contains pseudohyperbol ic  discs o f  radii close 

to 1 as M -~ c~. Applying (c) , we would get that I is not a Car leson-Newman 

Blaschke product. 

3 P r o o f  of  T h e o r e m  1 

We first need some auxiliary results, interesting in their own right. Let  dA 

denote area measure and let 

{ ~ supf lf,(z)t~(1 I'ra(z),2)dA(z) < o o }  B MOA = f E H(1D) : IIfIIB,,,oA :=  
aED J D 

be the usual space o f  analytic functions o f  bounded mean oscillation. It is well- 

known that Ill  o ~tlB,~o~ = IISII~,,,oA whenever  ~ is a conformal  automorphism of  

D and f E BMOA. Note also that 

1 f a  0 2 ~ l l f  - f(0)ll~ < ] f ' (z) l~(1 - Izl 2) dA(z) < IIf - f (  )ll2, 

where Ilfll= is the usual H 2 norm of  f (see [Sh], p. 39). 

L e m m a  3.1.  Let I be a function in BMOA. Given e > 0 and 0 < m < 1, there 

exists c = c(e, m, IIIIl~Mo,) < 1 such that 

sup (1 - I w l ) l I ' ( w ) l  > ~ f o r a l l  Izl _< r 
wEDp(z,m) 

implies that r < c. 

Moreover, c can be chosen so that for  every r ,  --~ 1, there exists en --~ 0 and 

ran -~ 1 satisfying c(en,mn, []II1~,,,o~) < rn. 
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P r o o f .  Assume that sup~eD,(z,m)(1 - [wl)lI'(w)[ > e for all Izl < r. Let  m.  

be defined by m.  = (rn + 1/2)/(1 + rn/2). We claim that 

(3.1) f (1 -Iwl2)lI'(w)l~dA(w) > C(rn)E2(1 - I z l ) ,  
Jw EDp(z,mo) 

where C(rn) can be chosen to be (1 - re)C, for some constant C. To show this, 

observe that for  any w E Dp(z, m.), the quantity (1 - Iwl =) is comparable  to (1 - lz[); 

more precisely, we have 

1 - Iw[ 2 > 1 - m ,  (1  - Iz[ 2) > (1 - m ) ( 1  - I z l ) .  
- 4 

S o  we only need to show that 

(3.2) f [I'(w)12dA(w) > C1~ 2. 
Yw EDp(z,rn.) 

To prove (3.2), let w(z) E D;(z, m) be such that 

(1 - Iw(z)12) lg(w(z)) l  = sup (1 - [wl2)[I ' (w)[ .  
wEDp(z,m) 

Observe that the definition o f  rn. gives Dp(w(z), 1/2) C Dp(z, m.). Hence, 

(3.3) fweD.(z,m.) II'(w)12dA(w) > fwEDp(w(z),l/2) II'(w)12dA('w) 

> Cx[I'(w(z))[2(1 -Iw(z)l) 2 > C1~ 2. 

Here the second inequality holds because [/'l s is subharmonic and Dp(w(z), 1/2) 

contains an euclidean disc centered at w(z) of  euclidean radius comparable to 

(1 - [w(z)[). This proves (3.2) and so (3.1). 

Next, we multiply both sides o f  (3.1) by 1/(1 - [z[) 2 and integrate with respect 

to area measure dA(z) i n the  disk centered at the origin and radius r. Hence 

,_f.l<_,- __f,,,ez~,(.,,n. )(1 - Izl)-= (1 - Iw12)l I '  (w)l 2 dt(w)dt(z) 
(3.4) 

> ~(m) f c2(1 - lzl)-~dA(z) = 2~rg'(m)E 2 [log(I/(1 - r)) - r] .  
I_<r 

Let  F-E denote  the characteristic function o f  the set E.  By Fubini, the left hand 

term in (3.4) is bounded above by 
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Using the facts that 

1 - I z l  [6'2(1 m.)]  -1 (72(1-  m. )  < - -  < 
1 - I w l  

whenever  z c Dp(w, m.) ,  and that the euclidean radius of  Dp(w, m.)  is bounded 

above by 1_--~. (1 - [w[), we can further estimate the interior integral by 

f :  (1 - I z ] ) -2dA(z )  < Ca (1 - ] w l ) - Z A ( D p ( w , m . ) )  < C(m), 
: :ED.(  . . . ... ) - (1 - m.)  2 - 

where C(m) = C4(1 - m) -4 and where ,4 is the euclidean area. Thus the left hand 

term in (3.4) is bounded above by 

C(m) f (1 Iwl2)lI'(w)ladA(w) < C(m) 2 - IIIII.MoA- 
Ylw [<l 

Accordingly, we have by (3.4) 

(3.6) C(m) 2 2rr~(m)e2 r] I[lllsMoA > [log(I/(1 - r)) - . 

From this we conclude that r has to be bounded away from 1; thus r < 

c(E,m, (IIII~MOA) < 1. More precisely, 

1 2 
- r < C 6 I I I I I B M o A  

l O g l _ r  ~ 2 ( 1 - m )  5" 

Note that the function log ~ - r is strictly increasing to infinity for r ---} 1. It is 

now easy to check that i f rn  --+ 1, then we may chose ~,~ --> 0 and m,, ~ I such that 

C611III2~Mo~ 1 
- -  rn. ~ , ~ - ~ -  m--~),)~ < log 1 - r,, [] 

L e m m a  3.2.  Let f E BMOA and let Dn = Dp(an,pn) be a sequence of  

pseudohyperbolic disks o f  pseudohyperbolic center an and pseudohyperbolic 

radius Pn, Pn ~ 1 as n --+ oo. Then there exist pseudohyperbolic disks D n C Dn of  

pseudohyperbolic radius also tending to 1 such that 

(3.7) sup (1 - lwl=)lf'(w)l ~ 0 as n ---} cx~. 
wED~ 

P r o o f .  Le t / ) n  = Dp (an, rn), where 0 < rn < I is defined by 2r,~/(1+ r~) = pn. 

We now apply Lemma 3.1 to the functions f o rn, where ~'n is the automorphism 

of  the unit disk interchanging an and the origin, (7-,,) -1 = r,~. According to the 
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second assertion in Lemma 3.1, we may choose en - r  0 and mn -~ 1 such that 

c(en, ran, [[f[[aMOA) < rn. Note that [If o 7-nI[aMOg = [[fI[BMOA" By Lemrna 3.1, 

one can find Zn, ]Znl < rn, such that 

sup (1 - Iwl2)l(f o r,,)'(w)l < e,,. 
wEDp(z~,mn) 

Since  (1 - I w l 2 ) l ( f  o r, ,)'(w)l = (1 - I~.(w)12)lf'(Tn(w))l and the pseudohyperbo l i c  

distance is invariant under automorphisms o f  the disk, we deduce 

sup (1 -l~12)lf '(~)l < e,~. 
(EDp(r~ (z,~),m~) 

Choose D~ = Dp(rn(Z,~), rain{m, ran}). We claim that D n is contained in Dn. This 

follows from the fact that if w E D n , then 

p(w, ~'n ( z , ) ) +  p(~'n(zJ, a~) r~) On, 
p(w, an )<  l + p(W, Tn(Zn))p(rn(zn),an) < 2rn/( l  + = 

because p(rn(z~), an) = Iz,,I < r,,. [] 

P r o o f  o f  T h e o r e m  1. (a) ==~ (b) : Let  I E A'/. Assume that (b) does not 

hold. Then there exists e > 0 such that the set E = {e < I I ( z ) l  < 1 - e} contains 

arbitrarily large pseudohyperbolic discs, say Dn = Do(zn,r~ ) C_ E, where rn --+ 1. 

By Lemma 3.2, there exist an E Dn and D~ := D(ampn)  C_ Dn, Pn -+ 1, such 

that limn suppeD. (1 -- tzle)lI'(z)[ = 0. Taking a subsequence, if  necessary, we may 

assume that I(an) -+ w for some w E I~ \ {0}. Since 

2 
(1 - Izl 2) I(r~ o I ) ' ( z ) l  _< 1 _ ~ ( 1  - izl~)lr(z)l  -~ o, 

uniformly on D~, as n -+ oe, we obtain by Theorem 2.2 (d) that rwo I cannot be a 

Car leson-Newman Blaschke product. This contradicts the assumption that I E .M. 

(b) ==~ (c) : Let  z E I~ with e < [I(z)[ < 1 - e. By (b) applied to e/2,  there exist 

8 = ~(e/2) and ~ E 1~ with p(z, 5) < ~ < 1, such that [I(;~)[ < e /2  or [I(5)[ > 1 - e / 2 .  

In both cases, we deduce [I(z) - I(5)[ > e/2. Let  7 be the hyperbolic geodesic 

curve joining z and 5. Since 

f f .  Id,,,I II(z) - / ' (~)1 ~< I/ '(w)lldwl ~< (sup(1 - Iwl2) l I ' (w) l )  1 - I w [  2 

< sup(1 - Iwl~)lI'(w)l C(~), 

there exists w E 7 so that 

(1 -Iwl~)lr(w)l > 2c(~) 
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and (c) holds. 

(c) = ~  (a) : L e t a  E D \ { O } .  F o r u  = r ~ o I ,  we show that condition (d) 

in Theorem 2.2 holds. Choose e E ] 0, tal /2[,  to be determined later, sufficiently 

small. Then lu(z)l < e implies that 

I~l - e 
1 - elal 

Choose e' > 0 so small that 

I~I- Ic~I/2 
E ~ < 

1 -lallo<l/2 

[a I + e 
- -  < I I ( z ) l  < 1 + elc~--~" 

and I~1 + 1~1/2 < 1 -  d .  
1 + 1<~11<~1/2 

By (c), applied to e', there exists g(e ' )  > 0 and r/'(e') > 0 such that for any z E D 

with e' < II(z)l < 1 - e', there exists w E D with p(w,z )  _< g(e ' )  and 

(1 - Iwl2) lX'(w) l  > d(g).  

This implies that 

(1 - t w ? ) l ~ , ' ( w ) l  > 1 -I~1_______~ (1 _ iwl~)tl ,(w)t > ,1 > 0. 
- 4 

I f e  > 0 is chosen so small that ~'(e') < 1 - e, we see that condition (d) in Theorem 

2.2 is fulfilled. Hence u is a Car leson-Newman Blaschke product. 

That (a) is equivalent to (d) is easily seen by using Theorem 2.2, (a) ~ (e) 

and the fact that I(x)  = a if  and only if (r~ o I ) (x)  = 0 whenever  a E D. 

It remains to show that (d) is equivalent to (e) .  Suppose that (d) does not hold. 

Then there exist a trivial point x and a E D \ {0} such that I (x)  = a. The inner 

function u = v,~ o I vanishes at x. By [GM], there exists a nontrivial part P ( m )  

such that u vanishes identically on P(m) .  Hence I - a on P(m) ;  and so I o Lm is 

the constant function a, which is surely not inner. 

To show that (d) implies (e),  let m E G and consider the inner-outer factorization 

of  f = I o Lm. Then f = uF,  where u is inner and F is outer. We may assume that 

f is not identically zero. Let  x E M(L~176 Note that Lm(x)  is trivial whenever  x is 

trivial (see [BUD. Then f ( x )  = I (L ,n(x) )  �9 {0} U 0D. Since lu(x)l = 1, we have 

F(x)  �9 {0} U 0D. Thus, the range R of  F on the Shilov boundary OH ~176 of  H ~176 is 

contained in {0} U OD. Note that R coincides with the essential range o f  the L ~176 

function F on 0D (see [HOl], p. 171). Hence, 0 �9 R isolated would imply that F 

has radial value 0 on a set of  positive Lebesgue measure,  a contradiction. Thus F 

has modulus one everywhere on OH ~ and so is inner, hence a constant. [] 

As an immediate consequence of  Theorem 1 and Theorem 2.2, we get that an 

inner function I (or equivalently a Blaschke product) belongs to :P if and only i f  

for every e El0, 1[ the level set {llI < e} does not contain arbitrary large pseudo- 
hyperbolic discs. 
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4 P r o o f  o f  T h e o r e m  2 

We first need two well-known auxiliary results. The second of  these is a 

comparison between the modulus of  an inner function and the Poisson integral of  

its corresponding measure. See [Bi]. For the reader's convenience, we include the 

short, elementary proofs. Recall that 

P z ( ~ )  - 

is the Poisson kernel and that 

1 - I z l  2 
11 - ~ z [  2 

(4.2) 

a n d  

(4.3) 

M o r e o v e r ,  

(4.4) 

i f [ a r g z  - t[ < 7r. 

f 
P~ (~,) = J~ Pz (w)d~,(w), 

where # is a Borel measure on ~. Finally, for a set E C_ D, E r 0, let p ( z ,  E )  = 

inf{p(z, z) : z E E} be the pseudohyperbolic  distance of  E to z, z E I~. If  E = 0, 

then we let p ( z ,  E )  = 1. 

L e m m a  4.1.  I f  z a n d  w are  in D, t hen  

(4.1) 11 - ~ z [  < 3(1 - I z l ) +  1 - I w l  + [a rgz  - argw[; 

a n d / f  I arg w - arg z t <_ re, t hen  

l l a r g w _  argzl _< [e ia~g~ - eiargw[ _< [ a rgw- -  argz[ 
71" 

21z-wl _> lzll~ ~a~gw --~iarg~l. 

le i' - z I >  1 l arg z - t[ 
71" 

P r o o f .  Inequalities (4.2) and (4.4) are well-known. To prove (4.1), we proceed 
as follows: 

11 - ~ z [  = I(1 - ~z )  + ~ z -  ~ z [  < 1 - [z[ 2 + [ z -  w[ < 2(1 - [z[) + [ z -  w[ 

and 

IZ--Wl <_ llzleiargz--lwleiargz + llwlei arg �9 _ [wle i arg w] 
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]lzl - Iwl] + I e iarg~ - e i a r g w [  ~ ( 1  - -  Iwl) + (1 - Izl) + le '~rg~ - e'~rg~~ 

<_ (1 - Iwl) + (1 - I z l )  + l a r g z  - argwl .  

To prove  (4.3), we note that 

Iz - wl > Izll e ' ~ g z  - e i a r g w [  -- ]lwl - Izl[ ___ ]zl[ e i a r g w  -- e i a r g z [  - -  [Z - -  W[. 

Hence  

2 l z -  wl > Izl[ ei~'g~- ei~rg~l. [] 

L e m m a  4 .2 .  Let I be an inner function with zero sequence (z~). Let # = #t 

be defined as 
1 

# = ~ E ( 1  - [znl2)Sz, + a, 
n 

where a is the measure associated with the singular part  o f  I. Then, f o r  

E = {zn : n C N} and any z E 11~, one has 

1 
(4.5) P~(#) ~< log II(z)1-1 <~ p(z, E) - - - - - Z P * ( # ) '  

and 

(4.6) 

C-I(#(Q(z)) ~'~ #(2'~Q(z) ~_2~-'Q(z))'~ 
\ g(O(z)) + 2ng(2nQ(z)) ] ~ log II(z)l  -a 

n = l  

C ( # ( O ( z ) )  ~ -~# (2nO(z l~_2~- 'O(z l )~  
<" p(z, E) 2 \ e(Q(z))  + 2nt (2nQ(z) )  / "  

n : l  

Here C > 1 is a universal constant. 

Note  that when I has no zeros,  Pz(#)  = log I I ( z ) 1 - 1 .  

P r o o f .  Observe  that 

- 1  

logl I (z) [  -1 = S-" log  ~ +Pz(a ) .  
[ 1 - z - z l  

Now, using that 1 - x 2 ~< logx  -2  ~< (1 - x2) /x  2, which  holds for  0 < x < 1, and 

the identi ty 

z - z n  2 (1 - I z l 2 ) ( 1  - [z.[  2) =:  k(z., z), 
1 - 1 - z-nz = 11 - z-nz[ 2 

we deduce  
z - z,~ -2 1 

k(z,,, z) <~ log 1 - f , ,z <~ p(z, E) 2 k(z , ,  z). 
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Now observe that ~.k(z'`,z) 
~ ( 1  - Iz'`12)5=. at the point z. So 

is the Poisson integral of  the measure 

P~(#) ~< log I I (z ) l - '  ~< - -  

To prove (4.6), we decompose the integral as 

P~(u) 
p(z,  E)  2' 

/Q ~ Pz(w)d#(w) P~(lz) = P=(w)dlz(w) + E 
(z) "̀>1 

and use the fact that there exists a universal constant C > 1 such that 

(4.7) 

and 

(4 .8)  

C -1 C 
1 -Iz------~l <" P~(w) ~< 1 - I z~  for w e Q(z) 

C -1 C 

22,,(1 _ izl) ~< e ~ ( w )  ~< 25,,(1 _ izl) for  w ~ 2"`Q(z) \ 2 n - l Q ( z ) .  

To prove (4.7) and (4.8), first note that P~(w) s ~ always holds. To show 

the left inequalities, let w E 2nQ(z), n = 0,1, 2 , . . . .  Then the result follows from 

the observations that by Lemma 4.1, 

l1 - ~ z l  < (1 -Iwl) + 3 ( 1  -Izl) + [ a r g z -  argw[  

< 2n(1 - Izl) + 3(1 - Izl) + 2'*(1 - Izl). 

To show the right inequality in (4.8) (which is trivial for  n = 1), note that for  

n > 2 and 2"`(1 - Izl) > 1 - I w l  ___ 2"-1(1 -Iz l ) ,  we have 

I1 - w = t  _> Iz - wl _> (1 - I w l )  - (1 - Izl) _> 2"-1 (1  - I=1) - (1 -Iz[) > 2n-~(1 -[z[); 

also, for 7r > l argw - argz[ _> 2"-1(1 - Izl) and Izl >_ 1/2, we have by (4.3), 

211-~z1> 2 l z - w l >  [zlllargz-argw[> 112"`-1(1-1z1)> 2n-4(1--lZ[). 

The case Izl _ 1/2 offers no problem, since 23Q(z) = ~,  and so we may restrict 

to n _< 3. Now (4.6) follows from (4.7) and (4.8) by noticing that g(2'~Q(z)) = 

2ngQ(z) whenever  2"`(1 - [z[) _< zr, that #(2"`Q(z) \ 2n-XQ(z)) = 0 whenever  

2"-1(1 - tz[) > 7r and that fo rn0  with 2n~ - [ z ] )  < rr < 2"`~ - [z[), we have 

that 
1 g(2"`OO(z)) 

(2nog(Q(z)) <_ 1. [] 
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As mentioned in the introduction, any singular inner function whose singular 

set is finite belongs to the class 34. The situation is different when the singular 

set is infinite. We first present two ways of  constructing discrete singular inner 

functions which do not belong to the class 3d. 

For short, let us write [81,82] for the arcs {e i~ : 01 < 8 < 02}. 

E x a m p l e  1. Given ~,, E 01~, ~,, --+ 1, one can use E. Decker's result [De] to 

construct a discrete measure # such that 

limSt,(r~n ) =  1/2, n = l , 2 , . . . .  
r---~l 

Then S u ~t .M because, by the remarks at the end of  Section 2, 7-1/2 o S~, is not a 

Carleson-Newman Blaschke product. 

E x a m p l e  2. Let # be a positive singular measure on 0D. Suppose that the 

derivative D of  # at e i~ is strictly positive (and finite). Then S~, does not belong 

to 34. 

In fact, if D = limt__+0- #(It, O])/[t - 01 = limt__,0+ #([O, t])/[t - O[ > 0, then, by a 
theorem of  Fatou (see [Ko], p. 11), 

lim / w  P~(w)dp(w)=27rD 
zEF(h4) 

,~exp( ia)  [=1 

for every Stolz domain I ' (M) at 0. Hence 

lim IS,(=)l = e x p ( - 2 7 r D ) .  
zEr (M)  

�9 ~exp(,19) 

Since by Lemma 2.1, F(M) contains with M --+ oo arbitrary large pseudohyperbolic 

discs, we see that by Theorem 1 (b) ,  S~, r 34. 

As a concrete example, we mention/~ = ~,,~--x en(~,. + &,.), where an = e i /"  

1 . We could replace an by any point of  the form e/e-, On > O, and ~n - ~ n+l 
where O,~ is strictly decreasing to 0 and satisfies On+l/0,, --+ 1 and t,~ by O, - en+l. 

In fact, this implies that the derivative of  # at z = 1 is 1. Just note that for t > 0, 

there is a unique k E N with Ok+l < t < Ok. Then 

#([0, t])/t < #([0, Ok])/Ok+l = Ok/Ok+l 

and 

#([0,  t ] ) / t  > #([0,  ek+ t ] ) /ek  = ek+~/ek. 

Another concrete example could be built upon the following construction. Let  
1 Mk E N tend to infinity and assume that within the arc [2-r,-r, ~-] we have Mk + 1 
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equidistant points 0"` (including the endpoints). Let ~,~ = [ 0 n +  1 - 8n[. Note that 
~n ~ 1 7 r ~ M k  if 2~1~ < 8"`+1 < 0,~ < ~ .  Then the measure 

oo 

. - -  + 

"`=1 

has derivative 1 at the point z = 1. Thus the singular inner function associated with 

# is not in M .  

In contrast with these examples, it is worth mentioning that there exist sequences 

an E cOD which converge (fast) to 1 such that any singular inner function whose 

singularities lie in {an } t_J { 1 } belong to A4. This is a consequence of  Theorem 2, 

which is proved below. 

P r o o f  o f  T h e o r e m  2. (a) ~ (b) : Assume that (b) does not hold, that is, 

that E is not porous. Then for any en > 0, e'` ---r 0, there exists an arc Jn, J'` AE # 0, 

such that for any arc ff,~ C_ J'` with I&l ___ ~'`l&l, we have if'` A E # 0. Let us 

call this the np-property. We assume without loss of  generality that e'`n ~ ---r O, 

en < 1/4 and that 1/en is an integer. We claim that by taking convenient subarcs, 

respectively subsequences,  we may assume that the J'` are pairwise disjoint, that 

the centers converge monotonically to some point on the circle (hence the lengths 

IJnl converge to zero), that IJ'`+ll < I&l < 1 and that 

(4.9) dist(J '`+l,  J'`) > [J'`]. 

To begin the construction, let J0 = cOD. Assume that J1 , . . - ,  J'` have been 

constructed. We now construct J,~+l. Let ~n+l' = [Jnl/8~, Cttn+l = 8 E n + I E ' ` + I ' I ,  By 
the np-property applied for e" ,+1, we obtain an arc I,,+1, In+l fq E ~ 0 such that for 

any ]'`+1 CC_ In+l with IL+~I _ e~+xlI.+~l, we have 1,+1 13 E # O. Let Jn+l be a 

subarc o f  I'`+l with [J'`+l[ = e '+ l  1I,+1 I. Since e '+ l  > " e'`+t, we have J'`+l AE # O. 
Moreover, IJ'`+l[ _< 27re'+l < l I j ' `  I. It is clear that whenever  J'`+l C_ J'`+l 
with [0n+l[ > i u _ ~e'`+l[J'`+i[, we have IJ'`+ll > c'`+ll*r'`+xl, so J'`+l n E # 0. If 
Jn+l A J'` = 0, We skip the next step. 

So suppose that J'` r3 J,~+~ # 0. Choose Jn+~ __ J'`+~, same centers, with 

Is = �88 Since [J'`+ll < IJ'`l, there exists j '` C_ J'` with Jn A ,],+1 = 0 and 
IJnl = l lJ ' ` l .  By our construction, Jk A E # 0 for k = n, n + 1. Now replace J'` by 

J'` and J'`+l by J,~+l. This ends the inductive construction of  a preliminary set of  

arcs (J'`) with the rip-property for (e'`/2). 

Now choose a monotone subsequence of  the centers o f  the a,~. The associated 

arcs are again denoted by J'`. Note that [J'`[ -+ 0. We may suppose that for all n, 

the arc Jn lies to the left o f  an+l. Now suppose that dist(J '`+l,  J'`) > [J'`[ is not 
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satisfied. Then choose as new J,~ the left half o f  the old Jn. Clearly, (4.9) is then 

satisfied. Of  course, we also have that for any arc Jn C_ Jn with I&l -> ~nlJnl, 
J,~ A E # 0. This ends the construction of the sequence of  arcs (jn). 

Now we split each Jn into e~ 1 adjacent subarcs {J (n , k )  : k = 1 , . . .  ,e~ 1} of  

length enlJnl. By assumption, each J(n, k) meets E. Let a(n, k) E E A  J(n, k). Let 

A(n, k) be the distance of  a(n, k) to a(n, k + 1) and let 

e~ 1 - I  Oo 

k = l  n : l  

Note that # is supported on E. We show that S~, r M .  To this end, by Theorem 

l(b), it is sufficient to construct points zn e II~ such that for constants c > 0 and 

C > 0, we have c < P:(#) < C on the pseudohyperbolic discs Dp(zn, 1 - I /n) .  

Choose zn E D such that J(zn) = 1 J n .  Then 1 - Iz,,I = Id, d/Sn.  We claim that 

for any z E Do(z, ,  1 - 1/n) and n large enough, we have 

(4.10) J(z)  C J~. 

To see this, let p(z, z,~) < rn,~, where mn = 1 - 1/n. Note that [zn] > mn. Let 

{ ] z n t - m n  1 - [ z n [  } 
Q = wE I~: [w[ > 1 - [zn[mn ' [ a r g w - a r g z n [  < [Z~-[~-mn " 

Observe that 
- I J n l  [Jn[ > 1 [zn[ _ [ , l n [  > ~ .  

7 Iznl-m,~ 8 - I A I  8 
We claim that Dp(zn, ran) C_ Q. In fact, by ([Ga], p. 3), p(z, zn) < m,, implies that 
]z[ > I : ~ l - ' ~ -  - 1-1~n I,,~" Moreover, if (without loss of generality) zn is positive, and 

Iznl- ( 1 -Iznl 

then for n large enough, the imaginary part of  A is bigger than the euclidean radius 

R of  Dp(zn, mn), where 

1 - I z n l  ~ 
R = ran1 - m~lzn[ 2" 

Hence Dv(zn, ran) C_ Q. Thus we have found an estimate of  the arguments for the 

elements in Dp(zn, ran). Since for every z ~ Dp(zn, mn), 

- (1 + m,,)(1 - [z,,l) IJ,,I [zn[-m,~ 1 [zn[ < + ~  < 2 n ( 1 - [ z n [ ) +  [Jn[ 
1 1 - [zn[mn + Iz,,I - mn 1 -- mn -- - - 7  

1 
= + I ~ l < ~ l ~ l ,  
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we conclude that J(z) C_ Jn (see Figure l ) .  

dn .~n,u) 

Figure 1. 

Next  we show that for  large n and every z e Dp(z,,, mn), the number  o f  points 

a(n, k) within the arc J(z) tends to infinity with n ~ co. In fact, for these z, we 

have by ([Ga], p. 3), 

(4.11) 
t J ( z ) l  = 1 - Iz l  >_ : 

I z . I  + m,~ (1  - m . ) ( :  - Iz.I) 
1 + m,,Iz,,I 1 + m.tz,~l 

1 IJ,',l 
> ~n(:- Iz . I )  = ( 4 ~ ) ~  

Since enn 2 --+ O, we see that the number  of  intervals J(n, k) (which have length 

: . lJ .I)  belonging to J(z) tends to infinity as n --+ co. This  yields the assertion 

above.  

Next  we c la im that for z E Dp(z,~, m , ) ,  

(4.12) lim #,,,(J(z)) 
,,--,~o IJ(z)l - 1; 

in other words,  #,, looks like linear measure  at J(z). To see this, we note that at 

most . two of  the arcs J(n, k) which meet  J(z) are not entirely contained in J(z). 
Hence 

#n(J(z)) = ~_. A(n,k) ~ ~ A(n,k) _ JJ(z)l-  2~,JJ~J. 
k:a(n,k)EJ(z) k:J(n,k)C_J(z) 
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Thus, by (4.11), 

#,~(J(z)) > 1 2~nlJnl > 1 32~nlJnln2 - 1 - 32enn 2 ~ 1. 
I J ( z ) l  - I J ( z ) l  - I Jn l  

By the same argument, we also see that 

#n(J ( z ) )  < 1 + 32cnn 2 --+ 1. 
I J ( z ) l  - 

This proves (4.12). Applying Lemma 4.2, we obtain that 

P~(#) >1 Pz(un) >>. c-~/2 

whenever  n is large and z E Dp(z,~, ran). 

On the other hand, if p E N, as above, we see that 

/zn(2PJ(z)) < 2 
12pj(z)l - 

whenever  n is large and z E Dp(zn, mn). Observe that 2PJ(z) = 

12PJ(z)l > 2plJ(z)l whenever  p is big. Hence,  by L e m m a  4.2, 
0D and 

p ~ ( # . )  ~< c ~  , . ( 2 ~ J ( z ) )  
p=o 22PlJ(z)l <~ 4C. 

We next estimate the contribution coming f rom ~ k#,~ #k. Let z E D p ( zn , mn ). 

Since tzk(Jk) < IJkl, we have 

~ f j  1 -Izl ~ 1 -I~l 2 Idkl = :  X, (4.13) E P , ( # k ) =  [-~---~12 d#k(~) ~< E [~k--~-12 
k:/:n ~ k ~ n  

where {k is the point in gk closest to z. 

Now 

f j  1 - I z l  2 ,, 1 - I z l  = , ,  
] - ~ - - ~ a ~  . . . . .  irlk _ ~i-2-1aklzl for some zlk = rlk(z) E Jk. 

We show that for z E D,(zn ,  ran) and k ~ n, we have 

(4.14) I w  - zl < 3. 
I~k - z[ - 

In fact, i f  we assume that A := [argz  - arg~kl < 7r/2 and notice that J(z )  C_ dn, 
then by (4.9) 

[r/k -- z I < Ir/k - ~kl + I~k ~ zl < 1 + [Jt~___~l 

I ~  - zl  - I~k - zl  - I~k - zl  
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I&l I______LI 7r IAI < 1 § ~rlAI 
5 1§  ilzl_e~A I 5 1§  i s ina l  < 1 § ~-~--- 2dist (d,~,Jk)" 

But by (4.9), dist(Jn, Jk) > dist(Jk+l,  dk) > I&l if  k < n and dist(Jn, dk) > 

dist(Jn+l,  J,~) > I&l i f k  > n. Thus, since I&l < IJ.l i f k  > n, we obtain 

I,~ - z______Jl 
I ~ k -  zl < 1 + ~ < 3 .  

If rr/2 _< A < rr, then [~k - z[ > 1, and so 

Ink - zl < 2. 
I~k - zl - 

Hence, in both cases, 

(4.15) I _< 3 , is r _ zl 2 < 67r _< 20. 

We conclude that for any z E Do(z,,,, m,~), 

4C + 20/> P=(#) ) C-~/2. 

Since mn = 1 - 1/n --r 1, we deduce that property (b) of  Theorem 1 is not satisfied 

and therefore S~, r M .  

(b) ==r (a) : Suppose that E is e-porous. Let  # be a positive singular measure 

supported in E.  Fix 0 < ~/< 1/2. Consider  the set 

L = {z E I~: r /<  I S , ( z ) l  < 1 - .} .  

We show that this level set does not contain arbitrary large pseudohyperbol ic  discs. 

Thus, by Theorem 1 (b) , S~, E M.  

First we claim that there exists a constant C = C(e) such that for  any z E L, there 

exists ~ E/I~ with p(z, 5) <~ C(e) < 1 such that J(~) A E = 0. I f  d(z) A E = 0, then 

we let ~ = z. I f  d(z) A E ~ 0, there exists by (b) an arc ff C d(z) ,  I JI > eIJ(z)l, with 
J A E  = 0. Choose  ~ E I~ suchthat  d(~) = J. Note that 1 - I z  [ > 1-1~ I > e(1-1z[). 
Hence we get by Lemma  4.1, 

1 --  p 2 ( z , ~ )  = (1 -Izl2)(1 -1~12) 
Jl -~512 

e(1 -Izl) 2 e 
-> [3(1 - I z l )  + (1 - I~ l )  + [arg~ argzl] 2 -> ~ "  

Thus p(z, 5) < V/1 - t / 25  =: C(e). 
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I f  Is . (~) l  < 0 or  ]Su(s > 1 - r~. then we are done ,  s ince the disc D . ( z , C ( e ) )  

is then not  conta ined in {w : r/ < IS.(w)[ < 1 - ~}. So we may  suppose  that 

Is . (~) l  ___ ,7. We now cons t ruc t  z" := re  iarg'~ with p ( z * , z )  < C(e ,  rl) for  which 

[S.(z*)l  > 1 -  r/. Let  
log 

6 =  
50 log ["  

Note  that 6 < 1/2. Choose  r E]0, 1[ such that 1 - r = 6(1 - [$[) and let z* = re  i~,g ~ 

Thus  1 - I~1 _> 1 - I z ' l  = 6(1 - I~1). 
By L e m m a  4.1. we have 

1 - p2(5, z*) = (1 - 1~12)(1 - l z * l  2) 
I1 - ~ 1  ~ 

6 ( 1 - I Z l )  2 > 6 

-> [3(1 -I~1) + (1 - Iz ' l )  + larg5 - a r g z ' l ]  2 - ~ "  

Thus  p(z*,s  <_ ~/i - 6 /16  =: C(r/). Combin ing  this with p(z,?,)  < C(~) ,  we see 

that p(z, z*) < C(c, rl). 
N o w  we  evaluate  S u at z*. No te  that fo r  e it E Oil) \ J(s le it - ~1 is compa rab l e  

to le it - z ' l ;  more  precisely,  s ince a rgs  = argz*  and 1 - Iz*l = 6(1 - Is we have 

by (4.4),  

Hence 

I ~ - ~ I ~'~ - ~'[ + [~ - ~'I < I + (1  - ]~I) - (1  - Iz'l) 
I-~ -- -z-:-I < [ e i t - z * l  - ~ [ a r g z "  - t[ 

< 1 + (1  - 6 ) ( 1  - I~1) < 1 + 7r < 5 .  

- -~(a  - I ~ 1 )  - 

f 1 - I z ' l  2 
log [S.(z ')1-1 = __]~:e"eO~J(~) -_- ~-~]id#( t ) 

< 26 f t :e , ,coi~j(~)  1 -  , ~ t - _  ~-[2 Ii '~[e't-~2J 2 

< 5 0 6 f  , 1 - ] ~ t  2 
- I-~ ~-- T(~ du(t) 

t :e i EOD 

1 1 
= 5061og [Su(5)] -1 < 5061og ~ = log 1 - ,7" 

Thus  we have found a point  z* with p(z ,  z*) < C(e ,  rl) such that ISu(z*)[ > 1 - ,7. 

There fo re ,  the level set L does  no t  contain any hyperbo l i c  disc o f  radius larger  than 

or equal  to C(e,,7). Hence  condi t ion  (b) in T h e o r e m  1 is satisfied. The re fo re ,  

s .  e M .  [] 
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We remark that if the set E C_ 0ID contains a sequence (a,~) converging to a 

such that 

O~ n - -  Ol 
(4.16) § a s n - + o o ,  

( 2 n +  1 - -  OL 

then it is quite easy to find a subset F o f  E and a singular inner function supported 

on F which does not belong to 34 (see the following paragraph). In particular, 

such a set is not porous. Trivial examples are sets containing a continuum. 

To construct  F ,  we may assume that a = 1 and that argo~n > 0 for all n. Put 

F = {a,~ : n E N} U {1}. Let en be the length of  the arc [c~,~+l,a,~]. Let  # be the 

measure 
oo oo 

n = l  n = l  

Since the derivative of  # at 1 is 1, by Example 2, we see that the associated 

singular inner function S u r 34. Now S t = $1 $2, where $1 is associated to 

#1 = ~,~--1 s Obviously, #1 is supported on E and S2(z) = $1(~). Since 

l (z )  �9 34 r I(-2) �9 34, we obtain that $1 • 34. 

Let  us also mention that there exist compact  sets which are, roughly speaking, 

"5-porous at every point" (the 5 depending on the point), but which are not porous. 

In fact, let Ok = 1/2 2~ and consider the points fib,, = 0} + 1/(1 + 1/k) n for  n > n(k). 

Then for all k, the sets Ek = {e i~k." : n > n(k)} U {e i~ } are 5k-porous, but since 

6k ~ 0, E = U~~ Ek is not porous. 

This example also shows that there exist nonporous sets which do not have 

property (4.16). 

On the other hand, we have the following result. 

Proposition 4.3.  Let E C_ I~ be a compact set. Suppose there exist 5 > 0 and 

for  every O �9 E some e = e(O) > 0 such that for  every (x ,y)  �9 E 2 with x r y, 

0 < lY - OI < e and 0 < Ix - 01 < e, we have 

(4.17) J x - O  1 y 0 l > &  

Then E is CS-porous for  some universal constant C > O. 

Proof. By a compactness argument, it is easily seen that we have only to test 

open arcs J containing a given O E E and of  length less than e(0). 

So let J be such an arc with J M E r 0. If  J contains only one point of  E,  then 

there trivially exists J '  c_ J with [J'[ = ] l J [  such that J '  f-1E = 0. Without loss 

of  generality, we may assume that 0 < 0' = sup{x : x E E fq J} and that 0 lies in 
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the left half  of  J. If  18 - 8' I < �88 then there exists J '  C J with J '  A E = 0 and 

IJ'l--- �88 
So let I 0 - a' I > �88 We shall construct J' C_ ,11 := [0, O'] with J '  A E = 0 and 

IY'l _> �89 _> ~alJI. 
Note that ,/1 C_ a implies that IJl[ < e(8). By (4.17), we have for every 

,/2 = [8, ~o] g J1 with ~o E E and qa < 8' that 

IJ~l - 1 j~ > a .  

Thus I&l - I&l ~ ~l&l, and hence 

IJl[ 
I&l < 1 +----~" 

Hence, for the supremum of  those ~, ]~,8'[ AE = 0 .  L e t  J' = ] ~ , 8 ' [ .  Then 

]J'[ = I,/11- I J21 > (flJ21. If  I J21 > then SJ'l > I, then _ _ �89 _ �89 if I J21 < �89 
IJ'l > �89 (since dl = J2 U J'). [] 

E x a m p l e  3. Using Theorem 2 and the fact that the usual 1/3-Cantor set E 

is porous, we obtain a continuous singular inner function S ,  E 34. Just take for 

the singular measure given by the Cantor-function associated to E (this is a 

continuous, weakly increasing function on [0, 1] which has zero-derivative at each 

point of  [0, 1~] \ E). 

At the end of  Section 6, we give an example of  a continuous singular inner 

function in 34 whose support is not porous. 

It would be interesting to know a characterization of  those non-porous sets E 

for which there exists a singular inner function in 34 whose set of  singularities is 

E. We guess that for every compact set E C_ 0D, there is a singular inner function 

S whose set of  singularities equals E and which belongs to 34. 

5 P r o o f  o f  T h e o r e m  3 

P r o o f .  (a) ~ (b) : Let a E D \ {0} be such that ra o I is not a Car leson-  

Newman Blaschke product. Then, by Theorem 2.2, there exist zn E D, [z,,[ ~ 1, 

and 0 < m~, < 1, m n -~ 1 such that 

(5.1) sup {lI(z) - ~1: p(z, ~,)  ~ m;,} ~ 0. 

In particular, I has no zeros on {z : p(z, zn) <~ m~,} if  n is sufficiently large. Then, 

considering rhn = m~ - (1 - m~)W2, one can check that 

p(D,(z,~,rh,~),D \ Dp(zn,m*)) ) 1. 
n--~. OO 
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Hence 

(5.2) p(Dp(z,, rhn), {z E D:  I(z) = 0}) } 1. 
n - - +  o o  

Therefore,  applying (4.5) and (5.1), one obtains 

(5.3) sup {IfgPz(w)dl~(w ) - l o g l a , - 1 1  : p(z,z,~) <~ rhn} ,~oo>0" 

The constant C in part (b) o f  the statement will be C = (log la -11)/Tr and ra,~ 

will be chosen such that m,~ < ~,~, but still with mn -~ 1. 

We first show that (b.2) holds. For  N > 0 and z E D, let us consider z(N) = 
(1 - N(1 - Izl))exp(i Argz).  Then if N > 0 is fixed and z is sufficiently close 

to the unit circle, z(N) E D. Moreover,  z(N) and z lie on the same radius and 

x - I z ( N ) l  - N(1 - I z l ) .  Fix N > 0. We claim that p(z,z(N)) <~ 1 - 1/N. In fact, 

since z(N) and z have the same argument, 1 - 1IN < Izl and Iz(N)l < Izl, we have 

p(z,z(N))-Izl - I z ( N ) l  

1 -Iz(N)llzl  

(N - 1)(~ - I z l )  N - 1 
= - -  _ _  < ~  

1 - Izl + I z l N ( 1  - lzl) 1 + Nlzl 
Choose rhn such that 

2rnn 
1 + < ~ .  

(1 -Iz(N)l) - (1 - I z l )  

1 - I z l ( 1  - N(1 - I z l ) )  

N - 1  N - 1  1 

1 + N(1 - ~ )  N N" 

- -  - -  m n .  

There exists n(N) such that rhn > 1 - 1/N for  every n > n(N). Hence,  for  every 

z E Dp(zn, rhn), 

p(z(N),z) + p(Z, Zn) < 1 - 1 / N  + rhn 2~n 
p(z(N), zn) < 1 + p(z(N), z)p(z, zn) - 1 + (1 - 1/N)rh, < 1 + rh2n < rhn. 

Thus 

(5.4) z(N) E Dp(zn, ~n) whenever  z E Dp(zn,rhn) and n > n(N). 

Next  we claim that if w q~ 2NQ(z), then 

(5.5) 11 - ~w[ >/c11 - z(N)w{, 

where c is an absolute constant. 

In fact, observe that by (4.1) we have for N > 3, 

(5.6) 
[1 - z(N)z I < (1 - Iz(N)l) + 3(1 - [z D + l a r g z -  a rgz(N)I  

< ( N +  3)(1 - lzl) < 2 N ( 1 -  Iz[). 
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Hence,  if 1 - }w[ > 2N(1 - [z[), we obtain 

I I - z ( N ) z l < 2 N ( 1 - [ z ] )  < 1 - l w l _ < l  1 - 2 w  I. 

On the other hand, if rr/2 > lol := [ a r g z -  argw[ > 2N(1 - I z l ) ,  then 

2-101 < I sin0}--[Im (e - is  - Izwl) [  _< ]e -'~ -Izwl[ < I1 -e'~ -~w[; 
7I" 

and if  rr/2 < lel ___ ~, then 

1 1 arg w I. I 1 - ~ w l  = [e - '~  -Izwl[ >_ v/ lzwl2+l > 1 > - T r >  l a r g z -  
71" 71" 

Hence,  in both cases (by (5.6)), 

l1 - z (g)z  I <_ 2N(1 - I z l )  < [ a r g z -  argw[ < rr[1 - 5w[. 

Therefore  

I1 - z(N)w[ < 11 - z(N)z} + }zz(N) - z(N)w I < rr[1 - 5w[ + [z - w[ 
(5.7) 

< 7r[1 - 5w I + ] - ~w[ < ~5[1 - ~w[. 

This finishes the proof  of  (5.5). 

It fol lows immediate ly  f rom (5.5) that 

C p~(w) <~ -~(N)(W) 

Thus 

if w r 2NQ(z). 

C 

_ -~ P:(g)(w)dtz(w). 

Now, if  p(z, z,~) ~< rh,~ and n > n(N), then by (5.4) we have p(z(N), zn) ~< rhn; this 

means  that  we may  apply (5.3) to obtain 

f Pz(N)(w)d#(w) <~ + 1, log)a) -1 

if  n is sufficiently large. Therefore ,  for n >_ n(N) sufficiently large, and any z E D 

with p(z, zn) ~ rhn, we have 

\~NQ(,,) Pz(w)d#(w) <~ ~ ( l o g  la1-1 + 1), 
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which  gives  (b.2).  

We now p r o v e  (b. 1). Le t  e > 0. Choose ,  accord ing  to (b.2), an in teger  N = N(e )  

such that 

(5.8) f 
sup I Pw({)d#(~) < g 

wC:D,(z.,rh.) aDk.NO(w) 

fo r  all n > n(N). Define  mn by  

2mn 
l + m Z n  

2 We m a y  a s s u m e  that  r/,~ < 1/25. Fo r  eve ry  z E Dp(zn,mn), let Le t  r/n = 1 - m n. 
r = r (z)  sa t is fy  

1 1 - r (z )  
(5.9) 25 1 - I z l  - '7,,. 

In part icular ,  1 - I r ( z ) l  < 1 - Jzl. F o r  each  z E D, with p(z, z,~) <~ ran, cons ide r  the 

a r c  

L(z) = {r(z)e'~ 10 - a rgz l  ~< (1 - 6)(1 - Izl)},  

where  ~ = ~(z) > 0 is chosen  so that  

(5.10) NQ(w) C Q(z) i f w  E L(z) 

and z E Dp(zn, m,,). 

To show that  this is poss ible ,  o b s e r v e  that  i f e  i~ E NQ(w), w E L(z), we have  

1O-  a r g z  I ~< 1 8 -  a r g w  I + l a r g w -  a r g z  I 

< N ( 1  - I~1)  + (1 - 6 ) ( 1  - Izl) = N ( 1  - r(z)) + (1 - 6 ) ( 1  - I z l ) ,  

which  is sma l l e r  than 1 - [z I because  

if  6 = 6(z) is c h o s e n  so that  

N(1- r (z ) )  
1 - I z l  

- - I - ( 1 - 6 ) <  1 

N(1  - r(z)) 
< 6 .  

1 -Iz l  

So (5.10) holds.  

We  c l a im  that  the cho ice  o f  r (z )  impl ies  that  for  eve ry  z E Dp(zn, ran) we have  

(5.11) L(z) C {w:  p(w, zn) <. rh,} 
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(see Figure 2). 

D(zn,ffln) 
D(zn,mn) 

Figure 2. The set L(z).  

To see this, we first compute for w E L(z) the distance p(w, z) using (4.1): 

(1  - I z l ) ( 1  - I w l )  1 - p2(w, z) >_ 
((1 - I z l ) +  3(1 - Iwl)  + ( argz - a rgwl )  ~ 

> (1 -Izl)(1 -Ir(z)[)  1 1 - [ r (z) l  
- ( (1  - ( z l )  + 3 ( 1  - ( e l )  + 1 - ( z l )  2 = 2--5 1 - Izl  = ,1 . ,  

Hence p ( w ,  z )  < v ~  - rh, = mn. We conclude that 

p(w, z) + p(z,~, z) mn + m,~ _ rh,~. 
p(w, Zn) < 1 + p(w, z)p(zm z) < 1 + mnmn 

By (5.8), (5.10) and (5.11), we obtain 

sup [ Pw(~)d#(~) < ~. (5.12) 
wEL(z) JD\Q(z) 

By (5.3), (5.11) and the fact that m,~ < rh,~ < rh,~, weseethat  for z e Dp(z, ,  ran), 

sup f P w ( ( ) d # ( ( ) - l o g l o t ] - '  [ < e 
wEL(z) JD 

for n sufficiently large. Hence, for every z E Dp(z,~, m,,), (5.12) yields 

su, I [  <2E (5.13) 
weL(z) IJQ(z) 
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for  n suff ic ient ly  large. 

Let Idwl be  the usual  l inear  m e a s u r e  (a rc- length)  on L(z). W e  integra te  (5.13)  

a long  L(z) to ob ta in  

(5.14) 1 /Q fL Pw(~) ldwld#(~)- l~  < 2 e  
(~) (~) 

for  all z E Dp(zn, ran). 

Le t  d = J(z)  = {0:  10-argz[ < ( 1 -  ~ ( z ) ) ( 1 -  Izl)}. O b s e r v e  that  fo r  w E L(z), 

1 - r (z )  2 

(5.15) fL(~) P~(5)ldwl = fo~J I ei~ - ~ - ~ ) 1 2 r ( z ) d O  

1 - r ( z )  2 f 1-r(z)2l~l 2 
I < 2~. 

1 --  7 ( z - - ~ [  2 JoeJ le ~~ - Cr(z)l: r(z)dO _ 

B y  (5.2) and  (5.11),  we  get  that  

(5.16) p ( L ( z ) , { z * E D : I ( z * ) = O } ) ~ I  a s n - - + o o  

un i fo rmly  in z e Dp(zn, m,,). 

To obta in  a lower  es t ima te  in (5.15),  we  first need  to s h o w  that  (5 .16)  impl ies  

that  for  f ixed t > 0 and ~ E (1 - t)Q(z) o suppp ,  

1 - r ( z )  
(5.17) lira 1 - r(z)l~l - 1 u n i f o r m l y  for  z e Dp(zn, ran) as n --+ co. 

To show this,  we  m a k e  two observa t ions .  First,  we  note  that  i f p  E Q(z) satisfies 

1 - r(z) < 1 - Ipl _< 1 - Izl, where  z e Dp(z,~, m,~), then p E Dp(zn, rhn). In fact ,  

l a r g p  - a r g z  I < 1 - Izl, hence  by  (4.1),  

and the re fo re  

1 - p ~ ( z , p )  (1 - IP l ) (1  - I z l )  
(1 - [Pl + 3(1 - Izl) + ] a r g p  - arg zl) 2 

1 - r ( z )  2 
> 2 5 ( 1 - [ z  D - r / n - - - i - r a n '  

p(p,z) + p(z, Zn) < 2ran 
P(p, Zn) < 1 + p(p,z)p(Z, Zn) - 1 + m 2 -- rhn < rhn. 

Since  by  (5.2) ,  {z : I(z) = 0} ~ Dp(z,,, rhn) = 0, e v e r y  po in t  r e Q(z) n s u p p #  

then has m o d u l u s  b igge r  than r (z ) ,  p r o v i d e d  n is suff ic ient ly  large.  

Nex t  o b s e r v e  that  with r = r(z), 

1 - r  1 

1 - rI~ ] 1 -F r 1-[r " 
l - r  
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To show (5.17), assume that ~ does not tend to 0, say 1 _> ~ _ r  - > r / >  0. Then  

we  c h o o s e  w E L(z) with a r g w  = argO, where  ~ E (1 - t)Q(z) M supp#.  Here  we 

have used that ~(z) --r 0 as Izl ~ 1. Since Iwl = r (z )  < I~1, we obtain,  by (4.1), 

(1 - I w l ) ( 1  - I ~ 1 )  1 - p2(w,~) > 
(1 - I w l )  + 3(1 - I ~ 1 )  + l a r g w -  arg~l)  2 

> r/(1 - I w l )  2 _- ,j > 3_ > 0. 

3 ~_.~_~_1 ~ - - ( ( 1 -  Iwl) + 3(1 - I~1)) 2 [x + l - r (~ ) j  64 

But  the left hand side o f  this inequali ty tends to ze ro  by (5.16). Thus  (5.17) is 

proved.  

O u r  next  step to prove a lower  est imate o f  the Po i sson  integral will be to show 

that  fo r  ~ E (1 - t)Q(z) M s u p p #  we  have r(z)~ E Q(z). Indeed,  by  (5.17) and (5.9), 

1 - r l ~ l  1 - r i l l  1 - r  
. . . .  --~ l x 0 = 0  
1 - Iz[ 1 - r 1 - Izl 

as n -~ c~. Hence  1 - r i l l  < 1 - Izl. Since r is real we  get  that r~ E Q(z). 
Finally,  in our  last step, we  show that le ~~ - z ] / ] e  ~~ r~l is bounded  by  a 

cons tan t  depend ing  only  on t wheneve r  z E Dp(z,, m , ) ,  ~ E (1 - t)Q(z) o supp#  

and 0 E [0, 27r[ \ J .  We p roceed  as follows.  C h o o s e  n so large, and hence  Izl so 

c lose  to 1, that 1 - t/2 <. 1 - ~(z). Hence,  for  0 E [0, 27r[ \ J ,  we have 

2 
t ( 1  - I z l ) .  le iO -- ~r  I _> ~r-lO -- argO[ > ~ ( t  - ~(z))(1 - Izl) > 

Since  r~ E Q(z), we get 

le  i~ - z l  I e~~ - r~l + I"~ - zl Ire - zl 
( 5 .18 )  I ~-~ - - ) ~ l  < le i~ - r(I = 1 + [e,O _ r([  

d iam Q(z) < 1 + 4(1 - Izl) < 1 + 47r/t. 
< 1 + t (  1 _ Izl) - ~ -  lzl) - 

We are now able to p rove  that we can take 27r - e  as a lower  b o u n d  o f  

fL(.) P~,(~)ldwl whenever  n is large. M o r e  precisely,  we  c la im that fo r  fixed t > 0 

and ( E (1 - t)Q(z) n supp#,  the integral fL(~) P~(~)ldwl converges  un i fo rmly  for  

z E Do(z,,, ran) to 2 r  wheneve r  n goes  to infinity. This  can  been  seen as fol lows.  

First, we see that by  (5.17),  

P~(~)ldwl = r Pr((eiO)clO = 27rr 1 -- r 2 
I== 1 --Ir~l  2 ,2, [ 1 - I r ~ p  -+ 27r 

as n --+ ~. On the other hand, whenever z E Dp(z., m.), ~ E (1 - t)Q(z) N supp# 

and w = re i~ we obtain by (5.9) and (5.18), 

rio P~(~)r dO < 2 f[o 1 - r  
, 2 7 r [ \ J  - -  ,2,~[\J [ ei~ -- ~r d0 
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f~o (1 - Izl)~. le '~ - zl ~ [ < 50 ~ - - ~  I ~ : ~  dO <_ C(t)o, Job P~(~)d~ = 2~C(t)~?n. ,2~[\g 

Since ~?,~ ~ 0, we finally get that fL(~) Pw(~)ldw[ converges uniformly to 21r for 

z E Do(z~,mn) and ~ E (1 - t)Q(z) M supp# as n ~ oo. 

Hence, by (5.14), (5.15) and the preceding paragraph, 

2 #(Q(z))  1 f f >>- ~ JQI(~) gLl(~) P~(5)Idwld#(~) >~ log I~1- ' -  2r IL(z) l 

and for fixed t > 0, 

(2~r-~)P((1-t)Q(Z))lL(z)l ~< IL-L-~I /Q(~) fL(r Pw(5)ldwld#(~)<~l~ 

uniformly for z E Dp(zn, m,~) if n is sufficiently large. 

The second estimate applied to a point z* = z(t) such that (1 - t)Q(z*) = Q(z) 
reads 

(2~ ,u(Q(z)) -e) ~ x<loglal-2+2e. 

By the continuity of  the functions r(z(t)) and 8(z(t)) within a fixed disc Dp(zn, m,~), 
we have IL(z(t))l -~ IL(z)l i f t  --4 0. We deduce 

(2~ - ~) ~(Q(z)) 
IL(z)~-r ~ log I~1-1 § 2E 

if z E Dp(z~, m,~) and n is sufficiently large. 

Since ]L(z)] = 2r(z)(1 - (f(z))(1 - Iz]) = 2r(z)(1 - 6(z))g(Q(z)) and 6(z) -~ 0, 
respectively r(z) ~ 1, as ]z[ ~ 1, we obtain 

2~2 [log [c~[-1 _ 2el ~< #(Q(z))g(Q(z)____~ ~< ~ 2  [log [ a l - '  + 2e] 

for z E Dp(zn, mn) and n sufficiently large. Since e > 0 is arbitrary, we finally 
obtain 

#(Q(z))  log i~l -~ 
/ 

sup I --* 0 as n -~ ~ .  
zEDp(z,~,mn) ~ "ff 

I 

This finishes the proof  of  (b. 1). 

(b) ==~ (a) : We show that for any 0 < m < 1, one has 

(5.19) sup { ]log II(z)1-1 - 7rCl: p(z, zn) <. m} 

This implies that for any e > 0, the set 

>0. 

{z E D:  exp( - 'xC - e) _< II(z)l _ exp( - l rC  + e)} 
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contains arbitrarily large pseudohyperbolic discs. Applying part (b) of  Theorem 1 

we deduce that I r A4. 

Observe that condition (b.1) implies that # cannot have a point mass on 

{z : p(z, zn) < ran} for large n. In fact, suppose that 

sup [ u ( Q ( z ) ) / ( 1  - Izl) - c [  < $ < 1, 
z6Dp(z,~,m,~) 

where 0 < (f << C is a small number to be fixed later, and that/~ has point mass at b 

with p(b,z,~) < m,~. Note that #(b) = (1 - Ibl2)/2. Choose a ~ Do(z., m.), a # b, 
such that arga = argb and 1 - Ibl > 1 - lal > (1 - $ ) (1  - Ibl). Let  R = Q(b) \ {b}. 

Then Q(a) c Q(b) implies 

(5.20) C + (f > #(Q(b)) > #(R) > #(Q(a) ) 1 - lal 
- a - lb l  1 -Ib---~ 1 - [ a l  1 - Ib[ > ( C  - $~(_,,1 - $~_,. 

Since 
#(Q(b)) #(R) 1 + Ibl 

1 - Ib l  - 1 -Ib~ + - - V - - '  

we get a contradiction to (C + (~) - (C - $)(1 - $) < 1/2 i f6  is sufficiently small. 

We deduce that for fixed 0 < m < 1, 

p({z :p(z ,  zn)<~ r a } , { z : I ( z ) = O } )  ~ l a s n - + o o .  

In order to prove (5.19), it is therefore sufficient, by (4.5), to show 

(5.21) sup {] f Pz(w)d4~(w) - zrC I : p(z, zn) <~ m}  n-..*oo7 0" 

The proof  proceeds by discretizing the Poisson integral of  #. Given e > 0, apply 

(b.2) to obtain N = N(E) and n(e) := n(N) such that for all n >_ n(e), 

(5.22) f P~(w)d~(w)-fN Pz(w)d#(w) < e 
Q(z) 

uniformly in z E Dp(z,~, ran). For such a z, given a small number 6 > 0 (to be fixed 

later and depending only on e > O) such that N/5 is an integer, we split the arc 

Ng(z) into N/5 disjoint subarcs {Jk : k = 1 , . . . ,  N/5} of  length IJkl = 5lJ(z)l. We 

denote by Qk = {re is : e i~ 6 Jk, 1 -- r <_ g(dk)) the Carleson box which meets the 

unit circle at the arc Jk. We claim that ,u has no mass on Sn := NQ(z) \ I.J Qk for 

p(z, zn) < m and n big. To see this, note that 

s. = {w e ~ :  ~(1 - I z l )  _< 1 - Iw l  < N(1 - Izl) ,  I argw -argzl  <_ N(1 -[zl)  }. 



FROSTMAN SHIFTS OF INNER FUNCTIONS 317 

(5.25) 

Hence 

Hence, for w �9 Sn, we have by (4.1) that 1 - p 2 ( z , w )  >_ 6 / ( 2 N + 3 ) 2 ;  and so 

p(w, z) <_ c = C(N, 6) < 1. Thus 

p(w, z) + p(z, z,,) c + m 
- - < m n  p(w, zn) <_ 1 + p(w, z)p(z, zn) <- 1 + ern - 

whenever n is large, since rn,, ~ 1. Since # has no mass on Dp(zn, ran), we get 

(5.23) u(NQ(z)  \ LJ Qk) = o. 

Next we claim that 

(5.24) IP=(w) - P , ( w k ) l  ~< C6Pz(w) if w, wk �9 Qk. 

To see this, note that I w - wkl < diam Qk, hence Iw - wk[ < 46(1 - Izl). 

Therefore, 

- 46(1 - I z l )  tl - wkzl < I1 - mzl + Iwz W~zl < 1 + -- 1 + 4J. 

l l  - w z l  - I1  - ~ z l  - 1 - I z l  

1 - I z l  2 1 - I z l  2 I1 - ~ k z l  ~ 
P=(w) - I1 - ~ z l  2 --- 11 - Wkzl 2 11 - wzl 2 < (1 + 46)2Pz(wk). 

From this it is easy to conclude that IPz(w) - Pz(wk)l < C6Pz(w), which is 

(5.24). 

From (5.24) and (5.23), we deduce that for z E Dp(zn, m), n large, 

g/, 1 S N (5.26) iN  P:(w)dla(W) - ~_,Pk(wk)u(Qk) C6 Pz(w)d#(w). 
Q(z) k=l c2(z) 

Here wk is any point in Qk- Later we take wk E Qk so that Q(wk) = Qk. 
We want to show that the right side term of  (5.26) is small if 6 > 0 is small. We 

use the standard estimates of  the Poisson kernel given in Lemma 4.2 to show 

iN M /l(2kO(z)) (5.27) P=(w)d#(w) < C1 Z 2kg(2kO(z))" 
Q(z) k=o 

Here M = [log 2 N] + 1 and, without loss of  generality, N(1 - ]zl) < 1/4, so that 

g(2kO(z)) = 2kg(Q(z)). 

Letz(k)  �9 l~bedefinedsothatQ(z(k)) = 2kQ(z). Notethat  1-1zk I = 2k(1-lzl).  

Hence p(z(k), z) <_ x/1 - (1/16)(1/2k). Since k ~< M = [log 2 N] + 1, which is fixed, 

and p(z, zn) ~< m < 1, we have 

p(z(k), z) + p(z, z,) 
p(z(k), Zn) <~ 1 + p(z, zn)p(z(k), z) <~ C(N, m) < 1. 
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Hence p(z(k),z,,) < m,., i f n  is large. Thus (b.1) gives 

#(2kq(~)) 
e(2kQ(z)) 

< C + I ,  k = 0 , . . . , M ,  

and (5.27) yields 

Hence (5.26) gives 

fN P:(w)dp(w) 201(C + 1). <~ 
Q(z) 

(5.28) 
N/~ (wk)#(Q~) 

fN P:(w)d#(w) - ~'~ P: 2~C,(C + 1)C <<. 
Q(z) k=l 

uniformly on Dp(zn, m) for n sufficiently large. Now is the time to specify 5; fix 

El0, 1/4[ so that 2~C1(C + 1)C' < e. Choose wk so that Q(wk) = Qk. Observe 
that 

1 - I z l  _> 1 - Iwkl = e(Qk) = e(Jk) = ~e(J(z)) = 5(1 - Izl) 

and that I argwk - argz i < N(1 - tzl). Hence p(wk, z) < V/1 -- 5/(4 + N) 2. 

We conclude that for z E Dp(z,~,rn), 

p(wk, z,,) <~ p(wk, z) + p(z, zn) 
1 + p(z, z,,)p(w~, ~) 

~< C ( J , N , m )  < 1, 

which is smaller than mn i f n  is sufficiently large. Thus (b.l)  gives 

#(Qk) I C <e, k = l , . . . , N / 5  

if n is sufficiently large. Therefore, for all z such that p(z, zn) <~ m, 

(5.29) 
NI~ NI6 I NI6 
Z P:(wk)P(Qk) - C Z P~(wkli(Ok)l < e ~_P~(wk)g(Qk). 
k = l  k = l  k = l  

T o  further estimate the Poisson sums, we have to show that for every ~, r/E Qk, 

( 5 . 3 0 )  1 - 4 5  < l1 - ~z..__~[ < 1 + 4 L  
- I1 - g z l  - 

Indeed, 

l1 - ~z l  > I1 - fiz{ - Ifiz - ~z l  
[ 1 - f i z  I - I I - ~ z  I 

~ ( - ~  diam Qk 
_>1 I - I > 1 -  1 - [ z l  > l - 4 &  

The upper estimate was proven in (5.25). 
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Now applying this to the upper and lower Riemann-Darboux sums of  the 

Poisson integral given by 

N/~ 1 - I z ?  ~v/6 1 - I z l  ~ IAI, 
u = ~ I ~ -  . . . .  ~-fflJkll and s = ~ 1~s zl ~ 

k = l  k = l  

where ((k,0k) E Jk x Jk, we obtain by (5.30), 

N/6 N/5 1 - Izl 2 ~Vla 1 - Izl 2 . 10k - zl ~ 
R  ̀:= ~ P~(wk)l&l = ~ if _-~--~1~ IJkl _< ~ 1?7~---712 ,ok~ i i - ~  

k = l  k = l  k = l  

< (1 + 45)2s < 27r(1 + 4~) ~ < 32 

as well as 

R  ̀> (1 - 4,~)2u _> 2~(1 - 4a)s 

Hence 

(5.31) JR. - 27r1 _< 48zr~ < 200e. 

Note that this holds for all z such that p(z, zn) <~ m and n sufficiently large. 

Thus, since e(Qk) = �89 (5.22), (5.28), (5.29) and (5.31) show 

+ P,(w)d#(w) - Z P z ( W k ) p ( Q k )  
Q(z) k = l  

+ Pz(wk)P(Qk) -- C Pz(Wk)e(Qk) 
k = l  = 

,,-", I N/,~ t 

c 
< e + e + - - ~ - e +  2 0 0 e = C * e  

for all z E Dp(zn, m) if  n is sufficiently large. This yields (5.21). 

6 

[] 

C o n t i n u o u s  s i n g u l a r  i n n e r  f u n c t i o n s  a n d  B l a s c h k e  
p r o d u c t s  i n  .hl 

6.1 

uous singular inner functions not belonging to the class M .  One way to do this 

C o n t i n u o u s  s ingular inner  funct ions .  It is easy to exhibit contin- 
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is again to use results o f  E. Decker [De], who constructed continuous singular 

measures # for which l imr .1  Su(r ) = 1/2, for example. Another way is to use a 

result of  K. Stephenson on covering maps. For instance, if 0 E K is a compact 

subset of  the disc of  logarithmic capacity zero, the covering map II :/I~ ~ / I~  \ K 

is a singular inner function. I f  a E K,  r~ o H is also singular. So if ca rdK > 1, 

II ~ M .  Moreover, II is a continuous singular inner function if  0 is a limit point of  

K ([St]). 

The construction of  continuous singular inner functions in the class .M whose 

support set is the whole circle, thus not porous, uses the singular measures given 

in the following result. We first introduce the dyadic decomposition of  the unit 

circle. 

For k = 1, 2 , . . . ,  let ~-k be the collection of  the 2 k pairwise disjoint (half-open) 

arcs o f  the unit circle of  length 2rr2 -k. So, given J E Jrk, there are two arcs 

J1, J2 E fk+ l  such that J = J1 U J2. The arcs in ~'k are called the dyadic arcs of  
the unit circle of  generation k. 

P r o p o s i t i o n  6.1. For 2 > A > i let iz be a positive measure on the unit circle 

such that fo r  any dyadic arcs J, J1, J2 in 0~) with J = 31 U J2 and g(di) = g(J)/2,  

i = 1, 2, one has 
#(J ')  ~-~) 
IJ,---f 

f o r  i = 1 or i = 2. Then # is singular with respect Lebesgue measure, and its 

corresponding singular inner function S u belongs to the class 2vl. 

P r o o f .  The fact that # must be singular is well known. Actually, # is 

concentrated on a set of  Hausdorff  dimension h(A) / log  2, where 

h(A) = ~ log + (1 - 7)  log . 

See [He], where a more general result is proved. To show that S u E 3,4, observe 

that by hypothesis, #(J) / l J[  and U(Ji)/lJi[ can never be close simultaneously to 
any given number, because 

[lz(Ji)/IJi[ - #(J)/ lJ[[ > (A - 1)#(J) /[J[ .  

This contradicts condition (b.1) in Theorem 3. Note that p(z, zi) < V/i - -  2/81 

whenever z and zi are taken such that J(zi)  = Ji and J(z)  = J. [] 

Construction o f# .  This is well-known; we sketch it for the convenience of  the 

reader. We define the probability measure # by induction. Put #(011)) = 1, and 

assume that the mass of  # has been defined on all of  the generation k. I f  J is such 
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an arc and J = J1 U J2 its decomposi t ion in two disjoint arcs o f  length s  we 

define 

~(J1) = (A/2)#(J)  and #(J2) = (1 - A/2)#(J) .  

So the mass of  # on arcs of  generation k + 1 is defined. Iterating this construction, 

we obtain a probabili ty measure # on OD such that for the dyadic arc Jn(O) of  the 

n-th generation containing e i~ 

#(J,~(O)) = (A/2) "(n'~ (1 - A/2) n-'(n'~ 

where v(n, 0) is the number  of  dyadic arcs of  length bigger than 2 -'~ containing 

e i~ whose #-mass is A/2 times the/~ mass of  its predecessor. The Law of  Large 

Numbers tells us that 

lim v(n, O) 
n--~oo 

So 

- - - A / 2 ,  f o r # - a . e . e  i~  

where 

lim l~ = h(A) for #-a.e. e i~ COD, 
n--r co 22 

A 

(see [He]). We deduce that p is absolutely continuous with respect  to Hausdorf f  

measure HZ if fl < h(A)/ log 2 and singular with respect to Hausdor f f  measure H. r 

if 7 > h(A)/ log 2. In particular, # is singular with respect to linear measure. 

6.2 Blaschke products.  As mentioned in the Introduction, we now use 

Theorem 3 to show that any Blaschke product  B having its zeros in a Stolz angle 

F belongs to .hA. Since .M is closed under  multiplication, this extends to Blaschke 

products whose zero sets lie in finitely many Stolz angles. Let  us also mention a 

related result due to D. Marshall and D. Sarason, which states that if ), E D is not 

a cluster point o f  B i t  and if A is not in the set {B(a) : B'(a) = 0}, then ~x o B is an 

interpolating Blaschke product  (see ILl). 

Proof  o f  C o r o l l a r y  4. Let  B be a Blaschke product  whose zeros lie in a 

Stolz angle. We may assume that its vertex is the point 1 and thus 

{z 6 D: B(z) = 0} C {z 6 D:  [z[ > 1/2, 11 - z I < M(1 - [z[)} =: r ( M )  

for some fixed M > 1. Let  # be the measure associated to B in Theorem 3. We 

will check that condition (b.1) in Theorem 3 does not hold. Le t  z E D satisfy 

> o. e(Q(z)) 
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Then Q(z) f3 F(M) r 0. We show that there exists a constant C = C(M) < 1 
such that for every z E I"(M), there exists 5 E D with p(z, ~.) <~ C such that 

Q(~) M F(M) = 0. Assuming this has been done, it follows immediately that 

#(Q(5)) = 0, since/z has its support at the zeros o f /3 ,  but those lie in the cone 

F(M).  Thus condition (b.1) in Theorem 3 does not hold, and so B E .A4. 

To show the existence of  the constant C, consider the cone 

F * =  w E D : l w l > l / 2 , - 1 - : - ~ < 2 +  M . 

Since 
I1 - zl (2/7r)1 argzl 

M > ~ > whenever z E F(M), 
1 - 1 z l -  X - l z l  

we see that F(M) C F*, the inclusion being strict. Now choose 5 E D satisfying 

arg5 7rM and 1 - l z l = l - 1 5 1 .  i-= I~l - 2 +  2 

To show that Q(5) does not meet F(M), it is sufficient to prove that the left comer  

q of  Q(5) does notbelong to F(M). Indeed, 

If  0 = arg q, then 

I1 - q l  

q = I ~] exp ( i ( a r g 5 -  (1 -[51))).  

1 Iq----~ > 1 ]q---~ > - 1 > (1 + M ) -  2 _ M .  
- - - - ~ 1 1 - ] ~ 1  

Hence q r F(M). In order to finish the proof, it remains to observe that, by 
(4.1), 

(1 - I z [ )  2 1 1 - p~(~, z) > 
(4(1 - Izl) + l a r g z -  argSI) 2 >- (4 + 2M~ + 2) z" 

Hence p(z, ~,) < C(M). [] 

We conclude with some observations and open questions. 

As a special case of  Corollary 4, we mention the following: let /3 be an 

interpolating Blaschke product having its zeros in a cone; then B E 79. For 

example, if x,, E ]0, 1[ is any separated sequence (this means that p(xn, x,,,) > ~ > 0 
for n r m), then the associated Blaschke product b is interpolating, hence in 

7 9. Taking xn = 1 - 2 -n,  we get that p(zn,x,~+l) ~ 1/3. Thus, by Schwarz's 

lemma, Ibl < 1/2 on the radius [r0, 1[. Hence the pseudohyperbolic diameter of  

this level set is 1 (although it does not contain arbitrary large pseudohyperbolic 

discs). Thus b f[ (Ns), a class of functions studied by Nestoridis ([Ne]) and 
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Tolokonnikov ([To2]) and defined as the set o f  all inner functions I such that for 

every ~7 E]0, 1[ the pseudohyperbolic diameters of the connected components of  the 

set {z E D : II(z)l < n} are less than 6(I, rl) < 1. According to [To2], the space 

(Ns) is a subset of  79; therefore, (Ns) is actually a proper subset of  79. 

We also note that Corollary 4 cannot be generalized to convex domains tangent 

to the unit circle. In fact, the interpolating Blaschke product 

s -  U2 
b -  

1 - (1/2)S'  

where S(z)  = exp[-(1 + z)/(1 - z)] is the atomic inner function, is, by the definition 

of  At, not in 3//; but its zeros are located on the horocycle ~ = 1/2. I I -z l  g 
The atomic inner function plays another important role in the representation of  

functions in .A4. 

L e m m a  6.2. Let S t be a singular inner function in A4 and let S be the atomic 

inner function S (z )  = exp[-(1 + z)/(1 - z)]. Then there exists a Blaschke product 

b E 79 such that 

S~, = S o b .  

Moreover, 

(6.1) {x G M ( H ~ 1 7 6  S~,(x) = O} C_ {x E M(H~176 : b(x) = 1}. 

P roo f .  Following [St] and [GLMR], the function 

b - log S~, + 1 
log S~, - 1 

is inner and S~, = S o b. Let x be a trivial point. Suppose that ]b(x)l < 1. Then, 

by [Ho2l, we have S~,(x) = (S o b)(x) = S(b(x))  E D. Since S has no zeros in D, 

we get a contradiction to the fact that S u does not take any value in D \ {0} on the 

set of  trivial points. Thus b E 79. In particular, b is a Carleson-Newman Blaschke 

product. 

To prove (6.1), take x E M ( H  ~176 with b(x) # 1. By the Corona Theorem, there 

exists a net (z~) in I~ with z~ -4 x, and so b(z,~) ~ b(x). Hence S(b(z,~)) -4 S~,(x) 

and, by the analyticity of  S outside {1}, we also have S(b(z,~)) -4 S(b(x)).  But 

S(b(x))  ~ O. [] 

It would be interesting to give a characterization of  those b E 79 for which 

S o b 6  .M. 

We have the following question. Let # = ~n~176 1 SkSO~ be a discrete measure. 

Assume that 0k -4 0 and that ~ k = l  sk/I 8 - Ok[ converges. By a result of  Cargo 
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[C], we know that the singular inner function S~, associated with # (and each of  

its subfactors) has a radial limit of  modulus one in e iO. Is S# �9 .A//? This class 

of  singular inner functions is the analogue of  the so-called Frostman Blaschke 

products (see [To2]). For example,  it is known that whenever  

oo 1 - I z . I  
sup 

= l1 -  z.I 
w < C X ~  

then the Blaschke product B with zeros (zn) is in 7 9 (see [To2]). 

In general, Act is not closed under taking subfactors, nor under composition. 

For  example,  S o S 9( .M, where S is the atomic inner function. In fact, S(x) = 0 

for  some trivial point x, so by [Ho2], (S o S)(x) = S(0) �9 I~ \ {0}. 

Now let B �9 79. Suppose that B(0) # 0. Then, for  the same reason as above, 

B o S r M .  But, as we are going to show, 

I =  B(O) - B o S t .M. 

1 - B(O)B o S 

In fact, B �9 79 implies that /3  := (r~ o rB(0)) o B is a Car leson-Newman Blaschke 

product  for  every a �9 D. Obviously /3(0)  ~ 0, if a ~ 0. By [Mo], we know that 

b o S is an inter16olating Blaschke product whenever  b is an interpolating Blaschke 

product  which does not vanish at the origin. Hence,  for  every a �9 D, a ~ 0, 

ra o I = (ra orB(0) o B) o S 

is a Car leson-Newman Blaschke product. Thus I �9 .A4. Noticing that rn(0) o B 

vanishes at the origin, we can write it in the form rB(0) o B = zC for some C �9 79. 

Then we get that I = S(C o S). Clearly C o S ~ .M. 

In this connection, we may ask whether for every inner function I there exists 

a second inner function I* such that I I*  �9 .A4? 

Let  us also point out that for  every inner function I �9 .M, there exists a Blaschke 

product  B �9 A4 such that 

{x �9 M ( H  ~176 \ D: I (x)  = 0} = {x �9 M ( H  ~ )  \ I~ : B(x)  = 0} 

and 

{x E M ( H ~ ) :  II(x)l = 1} = {x �9 M ( H ~ ) :  IB(x)I = 1}. 

This is an immediate consequence o f  a result o f  Guil lory and Sarason [GS] which 

says that any inner function is codivisible in H r162 + C with a Blaschke product. 
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