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BMO FOR NONDOUBLING MEASURES

J. MATEU, P. MATTILA, A. NICOLAU, anp J. OROBITG

1. Introduction. The Calderdn-Zygmund theory of singular integrals has been
traditionally considered with respect to a measure satisfying a doubling condition.
Recently, Tolsa [T] and, independently, Nazarov, Treil, and Volberg [NTV] have
shown that this standard doubling condition was not really necessary. Likewise, in
the homogeneous spaces setting, functions of bounded mean oscillation, BMO, and its
predualH?!, the atomic Hardy space, play an important role in the theory of singular
integrals.

This note is an attempt to find good substitutes for the spaces BM@7anvdhen
the underlying measure is nondoubling. Our hope was that we would have been able to
prove some results of Tolsa, Nazarov, Treil, and Volberg, via BMbinterpolation,
but in this respect we were unsuccessful.

Let 4 be a nonnegative Radon measurelh A function f € Lﬁm(u) is said to
belong to BMQu) if the inequality

) /Q () = foldu(x) < C(Q)

holds for all cubesQ with sides parallel to the coordinate axeg; = (w(Q)~1t
fodM denotes the mean value ¢f over the cube). The smallest bound’ for
which (1) is satisfied is then taken to be the “norm” pfin this space, and it is
denoted byl f|+.

One says that BMQu) has the John-Nirenberg property when there exist positive
constants1 andcz so that whenevef € BMO(u), then for everyh > 0 and every
cubeQ with sides parallel to the coordinate axes, one has

n({x € 0:1f(x) = fol > A}) < cre™ Wl

Itis well known that if a measurg is doubling (i.e., there exists a consté@ht= C (1)
such thatu(2Q) < Cu(Q) for all cubesQ), then it satisfies the John-Nirenberg
inequality. We give examples of nonnegative Radon measurd®’omhich do not
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have the John-Nirenberg property. On the other hand, we show that for a large class
of measures, the John-Nirenberg property holds.

THEOREM 1. Letu be a nonnegative Radon measureRih Assume that for every
hyperplanelL, orthogonal to one of the coordinate axes,L) = 0. Suppose thaf is
in BMO(w). Then there exist constants andcz, independent of, so that for every
A > 0 and every cub@ with sides parallel to the coordinate axes, one has

—CoA
Il 1l
When the measurg is the Lebesgue measure (or any other doubling measure) on

R", the John-Nirenberg theorem follows from a stopping time argument using dyadic
cubes. The estimate that is needed is

n(fx e Q:1f(x)— fol > 1}) Sclexp< )M(Q)~

|f20 = fol =ClI fll+

which follows from the fact thaji(2Q)/u(Q) is bounded from above. When the
measureu is not doubling our approach, following an idea of Wik [W], it is based
on the following covering lemma.

COVERING LEMMA. Letu be a positive Radon measure®Y such that for every
hyperplaneL, orthogonal to one of the coordinate axgg,L) = 0. Let E be a subset
of R", and letp be a real number in0, 1). Suppose thak is contained in a cube
Qo, with sides parallel to the coordinate axes, and suppose @l#t) < pu(Qo).
Then there exists a sequer{@; } of cubes with sides parallel to the coordinate axes
and contained inQg such that

(@) n(Q;NE)=pu(Q;);

(b) the family{Q,} is almost disjoint with constanB(n), that is, every point of

R" belongs to at mosB(n) cubesQ ;;
(c) E'cUU; Qj, whereE’ is the set of+-density points of.

We say that is au-density point ofE when lim._0(Q (x, r) NE)u(Q(x,r)) ™t
=1, whereQ(x, r) denotes the cube centeredradind sidelength. The assumption
on the measurg means that, given a cub@, with 2u(Q) < u(R"), there exists
a cubeQ > Q such thatu(Q) = 2.(Q). The proof of our covering lemma uses a
variant of the well-known Besicovitch covering theorem.

At first sight, the assumption on the measure in the statement of Theorem 1 seems
quite restrictive, but the next result disproves this feeling.

THEOREM 2. Letu be a nonnegative Radon measureRh Assume that for any
point p € R", u({p}) = 0. Then there exists an orthonormal system ...,e,} S0
that for every hyperplané with normal vectote; (i € {1,...,n}), u(L) =0.

As in the case of the Lebesgue measure, the John-Nirenberg theorem gives the
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duality H(u) —BMO(u), whereH (1) is a natural atomic Hardy space. gt (1)
be the space of bounded functions with compact support. One can then prove the
following interpolation result.

THEOREM 3. Let u be a nonnegative Radon measure Rh. Assume that for
every hyperpland., orthogonal to one of the coordinate axgeg,L.) = 0. LetT be
a sublinear operator that is bounded frohy° (1) to BMO(u) and fromH () to
L1(). ThenT extends boundedly to eveky’ (1), 1 < p < co.

As in the case of a doubling measure, the proof follows easily from a Calderén-
Zygmund decomposition and from tHie’-estimates for the sharp maximal function

1
n(Q)

() = sup /Qlf—fgldu,

where the supremum is taken over all cubes centeradeaR”. However, as Joan
Verdera pointed out to us, Theorem 3 is quite unsatisfactory. Roughly speaking, no
interesting operatof mapsH*(u) to L1(1), when the measurg is not doubling.
We present an example to illustrate this phenomenon.

Finally, we compare BMQu), defined as above with cubes whose sides are parallel
to the coordinate axes, with BM@) defined with balls;f € BMO, (w) if there exists
C < oo such that for every balB c R” there isa € R such that

) /BIf—aIdMSCM(B).

Recall that ifu is a doubling measure, the spaces Biyipand BMQ, () coincide.
In our setting of nondoubling measures, the situation is quite different. Precisely, we
have the following theorems.

THEOREM 4. There exists an absolutely continuous measurily R2 and f €
Li(n) such thatf € BMO,(n) but for any choice of the coordinate axgsé¢
BMO(w).

TueoreM 5. There exists an absolutely continuous meagurien R? and f €
LY(n) such that f € BMO(u) for all choices of the coordinate axes but ¢
BMO,, (1).

In any case, the question that arises is: May the space BidCGa good choice for
dealing with functions of bounded mean oscillation? Fot b < oo, we say that
f € BMOY (w) if

/ |f —al?dp < Cu(B),
B

with C, B, anda as above. Itis clear that BMQu) = BMOf(M) if the John-Nirenberg
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inequality holds. From this point of view, we realize that B is better than
BMOp ().

THEOREM 6. There exists an absolutely continuous meaguriln R2 and f €
L1() such thatf € BMOy(p) but f ¢ BMOf(,u) for all p > 1. In particular, the
John-Nirenberg inequality fails.

This result may seem surprising. However, two elementary geometric facts, which
are important in our analysis, distinguish between dealing with balls or cubes. First,
a cube may be covered by a finite number of subcubes, while for balls a countable
number of subballs is needed. Second, when intersecting two cubes, the sections have
equal diameter, while for balls, the length of the sections may decay exponentially
when the balls become nearly disjoint. The first fact provides the necessary covering
properties that are used in the proof of Theorem 2. The decay mentioned in the second
one gives some extra help to construct functions in BM@hich do not fulfill the
John-Nirenberg inequality. It is worth mentioning that if instead of cubes or balls,
one considers regular polygonsfsides, in the definition of BMO, the analogue of
Theorem 2 holds. However, the constaitsc, depend onv.

The paper is organized as follows. Section 2 contains the proof of Theorems 1 and
2, as well as an example of a Radon measure for which the John-Nirenberg estimate
does not hold. Section 3 is devoted to the Calderén-Zygmund decomposition, the
L? estimates for the sharp maximal function, and the proof of Theorem 3. Section 4
contains the proof of Theorems 4, 5, and 6. Finally, we include an appendix with a
proof of the John-Nirenberg theorem on spaces of homogeneous type, because it is
not easy to find in the literature a proof for the Lebesgue measure which immediately
generalizes to doubling measures.

2. John-Nirenberg inequality. The main goal of this section is to prove Theo-
rem 1; that is, the John-Nirenberg property holds for a wide class of measures. We
also give an example of a measwend a functionf, for which f € BMO(w), but
f doesn’t satisfy the John-Nirenberg inequality.

In the case of the Lebesgue measurimn R", the John-Nirenberg estimate follows
from a stopping time argument that uses dyadic cubes. A trivial but essential fact
is that for any cube&, one hasn(2Q) < Cm(Q), whereC is a constant. Then if
f € BMO(m), it follows that

|f20 — fol =C,

which is the estimate that is needed in the stopping time argument.

When the measurg is supported in the real line and has no atoms, one can
prove Theorem 1 along the same lines. The only modification that is needed consists
of replacing the usual dyadic grid by adyadic grid, which is constructed in the
following way. Given an interval, the first generatiorG1(/) consists of the two
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disjoint subintervald,, I_ of I satisfyingu(ly) = u(I-) = u(I)/2. The second
generationG,(I) is G1(I.) UG1(I-). Next generations are defined recursively. One
can now use the usual stopping time argument to prove the John-Nirenberg estimate
for such measures.

To prove Theorem 1 for > 1 we need the following Besicovitch covering theorem.

BESICOVITCH COVERING THEOREM. LetA be a subset dR”, and let%® be a family
of rectangles with sides parallel to the coordinate axes, such that each poit of
is the center of some rectangle @f Assume tha# is a bounded set or that the
diameters of rectangles &t are bounded. Moreover, suppose that the ratio of any
two sidelengths of a rectangle @fis bounded by.

Then there is a finite or countable collection of rectangkgse % such that they
cover A, and every point oR” belongs to at mosB(n) rectanglesr;, where B(n)
is an integer depending only on

For this result, see [G]; also the proof given in [M] for balls can be easily modified.

Proof of covering lemma.For anyx € Qg and forr > 0 satisfyingr < £(Qo), we
defineQ(x, r) as the unique cube (parallel to the coordinate axes) with sidelength
containingx, contained inQo and with centely closest tax (see Figure 1).

Qo _ Qo
O(x,r)
X ;y 4 Q(X,V)
oV r
X v
FIGURE 1

If x € QoN E’, we define the functiot,(r) = u(Q(x,r) NE)/u(Q(x,r)) for
0 < r < £(Qo). Clearly, this is a continuous function satisfyihg(£(Qo)) < p by
hypothesis and lim, g/, (r) = 1, sincex is a density point. Consequently, there
exists a positive number, such thati, (r,) = p. Hence, for anyc € QoNE’ we
defineQ(x) = Q(x, r¢). Now, we could not apply the Besicovitch covering theorem,
becausec may not be the center a@p(x). To circumvent this obstacle, for any cube
Q(x) we define the rectanglB(x) in R" as the unigue rectangle R" centered on
x such thatR (x) N Qo = Q(x). Denote by this family of rectangles (see Figure 2).

Itis an easy computation to check that the ratio of any two sidelengths of a rectangle
in & is bounded by 2. So, by the Besicovitch covering theorem we have a countable



538 MATEU, MATTILA, NICOLAU, AND OROBITG

Qo Qo

Q(x)

0|

Xe ' o X

FIGURE 2

collection of rectangle®R; € % such that they coveE’ N Qo, and every point of
R" belongs at most taB(n) rectanglesr;. Then, if we take the family of cubes
92 ={Q(x): R(x) = R; for somej}, it is clear that) is a countable family of cubes
satisfying properties (a), (b), and (c). O

Now, the covering lemma is one of the main ingredients we use to prove Theorem 1.

Proof of Theorem 1. We may assume thdtf||. = 1. Let Qg be an arbitrary cube,
with sides parallel to the coordinate axes. Put, for any integeg,

Ex={x € Qo: f(x)— fo, >k},
Sk=1{x € Qo:|f(x)— fool > k}.

Clearly, u(Ex) < n(Sk) < u(Qo)/k. In particular,u(Ex) < u(Qo)/2 and by the
covering lemma we can cover the g&f, k > 2, with a sequencéQ; ;} of almost
disjoint cubes with constar®(n), parallel to the coordinate axes, such that

1
pn(ExNQy,j) = EIL(Qk,j)-

Therefore,

. 1
3) w(EfN Q. ) = SH(Qk ),
and

4) W(E) =D Qe jNE) =D 1(Qx. ).
J J
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On the other hand, for arf/> 0, one has

1
1=||f||*2—2/ {f If(y)—f(x)ldu(X)}du(y)
2(1(Qk, )" Y ors Won;

1
> —2/ du(y){/ If(y)—f(x)ldu(X)}
(1(Qr.j)) " V Exeeny, E{NQk.j

k

- z/L(EkJreﬁQk,j)M(l’f;ﬁﬁQk,j) ZZM(Ek-i-Zka‘j)

(1(x. ) 2u(Qx, )

where the last inequality comes from (3). So, one obtai(B; 1, N Ok, ;) < (2/O)n
(Qk, ;). This inequality and (4) give

2 C
W(Ej+e) < ZM(Qk,j NEgye) < ZZM(Qk,j) < zl/v(Ek)-
J J

Similar arguments can be used to obtain the same estimate for thexrset@o :
f(x)— fo <k}, k <0. The estimates combine to

A
M(Skte) < zM(Sk),

whereA is an integer depending only on the dimension.
We take? = 2A and find

1
U(Sk+24) < EM(Sk),
which, for any positive integep implies:

1(S2+24p) <277 (S2) <277 (Qo),

from which the conclusion of the theorem follows. Observe that the constaatsl
c2, in the statement of Theorem 1, do not dependwpthey only depend on. [

Now, we give a Radon measure for which the John-Nirenberg inequality does not
hold. We consider the cage= 1. Letu = Zn>1(1/2"2)81/,,, whereéy,, is a Dirac
mass in the point Az, and let f(1/n) = 2". To show thatf belongs to BMQu),
it is enough to consider intervals= [1/N>, 1/N1], where N1 and N2 are positive
integers andV, can also be infinity. Obviously,
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Therefore,
N2 N2
1 / N N2 1 N N2 2" 1
—— [ |f=2M|du=2"T Y S22V <2V Y <
n) Jp g1 2 412" 2%

Consequentlyf € BMO(u). In order to verify thatf does not satisfy the John-
Nirenberg inequality, one can see thatfee 2V, whereN is a large positive integer
and/ =[O0, 1],

u{xel:lf(x)—f1|>t}§u(|:0,%:|>= iéi

On the other hand,2€ 1.(1) is of order 22" Hence, the John-Nirenberg inequality
holds only if ],/2"’2 < B2-¢2" for some constanB, but this inequality fails when
N is big enough.

The same construction can be repeated in the plane to get a continuous example. We
take a family of segments,,, with endpoints(1/»,0) and(1/n,1), and we define
a measurew = Zn>1(1/2"2)?€1|L,,, whered!|,, is the 1-dimensional Hausdorff
measure orL,. Taking the functionf such thatf|,, = 2", one can check that
f € BMO(u), but the John-Nirenberg property is not satisfied.

However, observe that in accordance with Theorem 2 rotating the coordinate
axes, the corresponding BM@), where i is the above measure, has the John-
Nirenberg property.

Proof of Theorem 2.We now show that ifu is a continuous Radon measure on
R, then we can choose the coordinate axes in such a wayitdgd) = 0 for all
cubesQ with sides parallel to the axes. We first give the very elementary argument
in the plane.

So letu be a continuous Radon measure RA. Let & be the set of the lines
L through the origin such that(L’) > 0 for some lineL’ parallel toL. We claim
thatZ is at most countable. Otherwise there exist 0, R < oo, and distinct lines
Ly, Lo, ... € £ such that for some lines’ parallel toL; and A; = LN B(0, R),
we haveu(A;) > e for all i. But fori # j, A;NA; is either empty or a singleton,
whenceu(A; NAj) = 0. Thusu(B(0,R)) > n(lJ; Ai) = > u(A;) = oo, which
is a contradiction.

Since¥ is at most countable, so is the $ét of the orthogonal complementst,

L € %. ChoosingL ¢ U%"*, the linesL and L' give the desired coordinate axes.

To prove our claim inR", it seems to be convenient (although not necessary) to
use invariant measures on Grassmannians (see, e.g., [M, Chapter 3] for them). Let
G(n,m) be the set of alln-dimensional linear subspaces®f, and lety, ,, be the
unigue orthogonally invariant Radon probability measure on it. We also allen0;
thenG(n,0) = {0} andy, 0 = 0. ForV € G(n,m) and 0< k < m, we letG(V,k)
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be the space df-dimensional linear subspaces %f and we letyy ; be the natural
measure on it.
Let 1 be a continuous Radon measureRh Denote

Gm={V €Gn,m): u(V+x) >0 for somer € R"}.

We leave it to the reader to check th@}, is a Borel set.
Lemma 1. Lety, ,—1(G,—-1) =0.

Proof. We prove thatif 0< m < n and ify, ,(G,) > 0, theny, ,,—1(G,,—1) > O.
Thus if y, ,—1(G,—1) > 0, induction givesy, o(Go) > 0, which means that has
atoms and gives a contradiction.

So supposey, ., (G,,) > 0. We have that

Yn.m(Gm) = f VVJ-,l({L € G(VJ_y D:L+Ve Gm})d)/n,mflv.

This follows from the uniqueness ¢4, ,, since also the right-hand side defines an
orthogonally invariant Radon probability measure®:, m). Thus the set of those
V € G(n,m—1) for which

(5) yia({Le GV D) :L+VeGy})>0

has positivey, ,,—1 measure. Hence it suffices to show that (5) impliesthatG,,_1.

Let V € G(n,m — 1) satisfy (5). For every. € G(V+,1) such thatL +V € G,,,
thereisx(L) € R"” such thaju (L +V +x(L)) > 0. Since there are uncountably many
such linesL, we must have for some # L’ (cf. the argument foR?2 above),

w((L+V+x(L)N(L'+V+x(L))) >0.

But (L+V +x(L)N(L'+V +x(L")) c V+x for somex € R"” by easy linear
algebra. Consequently, € G,,_1, and Lemma 1 is proved. O

LEMMa 2. If G € G(n,n—1) and if y, ,—1(G) = 0, then there are coordinate
axes in such a way that ¢ G for every coordinate hyperplang.

Proof. We use induction om. If n = 2, theny,1(G+) = 0 andL, L+ will do
for L ¢ GUG™. Suppose the lemma holds R 1. As above, by the uniqueness of
Yn.n—1, W€ have

vi({L € G, 1) : Lt € G}) = yuu-1(G) =0

and

/yLL,n_z({v €G(LTn—=2):L+V €G})dyn1L = yun-1(G) =0.



542 MATEU, MATTILA, NICOLAU, AND OROBITG

Thus, we can choosk € G(n, 1) such thatLt ¢ G and
Vitwo({VeGL  n—2): L+V eG})=0.

By our induction hypothesis, we can choose coordinate dxgs.., L,_1 for
L+ such that for every coordinate: — 2)-plane V, we haveL +V ¢ G. Then
L1,...,L,—1, L are the required axes R". 0

Combining Lemmas 1 and 2 we see that given a continyotlneere are axes such
that (V) = 0 for all hyperplanes parallel to the coordinate planes, as required.

The last part of this section is devoted to the introduction of the predual of
BMO(u) : H(w). In the case of the Lebesgue measuteBMO(m) can be viewed
very naturally as the dual of an atomic spaté ™ (m) (see [J, 3.11]). In this section
we claim that for the measures satisfying the hypothesis of Theorem 1, one can
consider the atomic spadél > (), and its dual space is BMQ).

A functiona is called ap-atom, 1< p < oo, if there exists a cub@ such that

() aeLP(), llallLrqy <pn(@)YP-L

(i) spta C Q;

(iii) andpL =0.

In the caseu(R") < oo, the constant A(u(R™)) is also considered an atom.

Thus, we define a Banach spabe-”(u) in the following way: f € HY?(u) if
and only if there exist; € R andp-atomsg; such thad | |A;| <occandf =) ; A;a;.
For f € HYP(u), we define its norntl f'{| 1.0, to be inf)_ |41, where the infimum
is taken over all sequenceés;);c; occurring in such an atomic decomposition fof
Whena is a p-atom one can check tht:||;1.,,) <1, and SoHL? (1) is continu-
ously embedded i1(w). It is also an easy computation to verify that-72(u) is
continuously embedded iHLP1(p) if 1 < p1 < p» < 00.

Now, we can state the following duality result.

THEOREM 7. Let u be a nonnegative Radon measureRAi. Assume that for
every hyperplane., orthogonal to one of the coordinate axgs(L) = 0. Then
(HYP (u))* =BMO(w) if 1 < p < oo.

In these notes we don't prove this result because the main argument follows using
the same ideas as in the case of the Lebesgue measure. For a good exposition of this
result in the case of the Lebesgue measure, see [J, 3.11].

By the above theorem we have a family of Banach spates(u), with the same
dual. Hence, since they are continuously embedded, one in the other, we can conclude
that they coincide, and so we can defifié(u) = H-?(u) forany p, 1 < p < .

To finish this section we want to remark that the main ingredient in the proof of
the above result is the John-Nirenberg inequality, and so Theorem 7 can be stated in
a more general setting. That is, if we have a positive Radon meaduarR” (for this
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measure we define BM@), and BMQ(i) satisfies the John-Nirenberg property),
then we can definé/1(x) and(H1(x))* = BMO(u).

3. Interpolation. This section is devoted to prove a Calderon-Zygmund decom-
position for functions ir.1(x) and a result on interpolation of operators. This follows
from estimating the.” (u)-norm of a function by thd.” (u)-norm of its sharp max-
imal function.

LemMma 3 (Calderén-Zygmund decomposition)et . be a nonnegative Radon
measure inR" such thatu(L) = 0 for every hyperpland. orthogonal to one of
the coordinate axes. Suppose we are given a fungtien.1(x) and a positive num-
ber, with A > || f|l1/(w(R™)). There exists a decomposition pf f = g+ b, and a
sequence of cubgg) ;}, so that

() |gx)| < Cafor u-a.e.x;
(i) b=7Y)bj, where eactb; is supported inQ;, [bjdu =0, and [|b;|du <
Mu(Q));
(i) {Q;} is almost disjoint with constark(n);
(V) 3510 < C/x [y 0, I f1dn.

Proof. Let Mf be the centered Hardy-Littlewood maximal function

Mf (x) = sup

1
- d ’
- e /Q o)

whereQ(x, r) is the cube with center and sidelengtir.

For eachx € E;, = {x : Mf(x) > A} we consider a cub&(x,r,) such that
fg(m) | fldu > Au(Q(x,ry)). Then we proceed as in the proof of covering lemma.
We define

1

~ (0. r)

We haveD(r,) > A and lim._. oo D(r) = || fll1/(u(R™)) < A. Therefore, because
D(r) is a continuous function ofr,, co), we get a cube&, centered akt such that

D(r): / lfFDldp(y).
Qx.r)

1
A=
n(Q@x) Jo,

(6) [fldp.

Applying the Besicovitch covering theorem we have an almost disjoint seqgienge
of cubes such thak,, C | J; 0 and such that (6) holds for eachy.
Consider functions
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and} ¢; =1onlJ; Q;, and define

bj=(fei—(feio;)xo;-
Clearly,
/ijlduff Ifld/Hr/ |f</’j|dlL§2/ fldp = 22u(0))
0 0;j o} Qj

and

/bjd,uzo.

Finally, takeg = f —>_ ;b andb =3, b;.
Now, if x ¢ | Q;, theng(x) = f(x) and the differentiation theorem giveg(x)| <
A foru-aex ¢ JQ;. Whenx e JQ;,

gx)=> (fe)o,x0; <*B(n)
J
becaus€ Q;} is almost disjoint and f¢;) o, < A. O

THEOREM 8. Let 1 be a nonnegative Radon measureRf such thatu(L) =0
for every hyperpland. orthogonal to one of the coordinate axes.
(a) Assumeu(R") = co. Then, one has

I£1p < C.m|f*],. 1<p<oo,
forany f € LY(u).
(b) Assumeu(R") < oo. Then,
Hf—/[R fau| =cp.m|ff], 1<p<oo,

p

forany f € L(w).

Proof. We only prove (a) because (b) follows in a similar way. As in the case of
the Lebesgue measure, one only has to prove the following genequality

@) ,u({x eR": f(x) > anx, f#(x) < yk}) < m(a,y,n)u({x eR": f(x) > A})

for » > 0O sufficiently large, where > 1, y > 0 are positive constants and where
m(a,y,n) < 1. Actually, we get

m(a,y,n) =Cn)a—1-2y) y.



BMO FOR NONDOUBLING MEASURES 545
LetEy ={x € R": f(x) > A}. Foru-a.e.x € E; one has

im M@ NNE)
m ——=
=0 u(Q(x.r)

On the other hand, the Chebyshev inequality gives

i MQENNE) _ il
r=oo pu(Qx,r) T Au(RM)

LetA > 0. Sinceu puts no mass to any hyperplane orthogonal to one of the coordinate
axes, one can choose a cufdéx) centered at such that

® p(QWINE) = Ju(0w).

We first observe that if2(x) is centered at a point € Ej, for which f#(x) < yx,
one has

A
9) 2 < fow) < A(142y).
Actually,
fo> ———Au(QWNE;) =&
°7 u(ow) Moy

and sinceQ(x) is centered at a point € R”, where f#(x) < y 1, we have

1
pn({x € Q) 1 1f(x) = fow! = 2yA}) < EM(Q(X)).

Sinceu(Q(x)NES) = (3/4)u(Q(x)), there existy € Q(x) N E{ such that £ (y) —
fow)l < 2yi. Sincef(y) <1, we deduce

fQ(x) < A(1+2y).

~We apply the Besicovitch covering theorem to the family of cup@éx)}, x €
E) = {x € E, : f#(x) < yA}. Then we obtain an almost disjoint family of cubes
{0} with the following properties

1 -
M(QJHEA)ZZM(QJ‘), EACUQj.

J

So the estimate

(10) 1w(Q;NEw) < (@—1-2)"Yyu(Q))
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finishes the proof.
Using again thap; is centered at a point € R”, where f#(x) < y 1, we have

/|f—ﬁyMM<VMAQﬂ
Qj
On E,; one hasf > ai. Thus, (9) gives

/Q_ |f = fo;ldi = 1n(Q;NEa)ia—1-2y).
Then

1(QjNEy)Ma—1-2y) < yru(Q)),
which gives (10). =

As in the case of the Lebesgue measure [théoundedness of the sharp function
gives a result on interpolation of operators.

Proof of Theorem 3. We first assumei(R”) = oco. The proof follows closely the
arguments in [J, p. 43]. Since functionslif® («) with mean zero are denseirf (u),
1 < p < o0, one only has to prove

ITfll, <Clifllp

for such functions. In fact, we show
(11) |TH*|, <Clifllp, 1<p<oo,

and apply the previous theorem. Observe that the corresponding hypothesis holds
becausef € L° (i) with mean zero implieg € H(u); henceT f € L(uw).

By the Marcinkiewicz interpolation theorem (see [S]), the strong inequality (11)
follows from the weak estimate

(12) n({x e R" : (TH*x) > 1)) 1<p<oo,

p
_ CIflp
=
wherei > 0.
Let {Q;} be the collection of almost disjoint cubes associated with the Calderon-
Zygmund decomposition gff |? at the value\.”. So, we write

f=btg=) (fo;—(fe)e,)xe;+8

J

such that
lglloc < C(n)A.
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Set
bj=(fe;j=(fe)o,)xe;:
then supb;) C Q;, b; has mean zero and

/v|bj|pfc(”))hp,“«(Qj)-

Q;

Remember

115
D om(@)) ==k

So, one has
1B g1y < CIAY (@) < COAM P f1Ip.

SinceT is bounded fromL2°(1) to BMO(w), the function(T g)* is bounded by a
multiple of A. Hence, ifcg is a sufficiently large constant, we have

{x : (Tf)#(x) > ZCOA} - {x : (Tb)#(x) > cok}.
Now,

w({x s (Th*(x) > cor}) < M({x :M(Tb)(x) > %cM}) < C—”Tb”l,

whereM is the Hardy-Littlewood maximal function. The boundedness of the operator
T from H(u) to L1(n) gives

ITbll1 < ClIbll 1

which gives (12) and finishes the proof.
Whenu(R") < oo, the proof follows the same lines using that constant functions
are inH(w). O

Given a functionf on R denote byT, f, the Hilbert transform off with respect
to u,

T,f(x)=p.V. /&du(y).
x—y

We give an example, due to Verdera [V], of a meagumn R for which we know that
the operatof, is bounded orL.” (1), 1 < p < oo, but it is not bounded front 1 (1)
to L1(1). Before proceeding to define the measurand the functioh € H(u),
we make some computations.

Considere > 0 sufficiently small, and let = [¢, 2¢] andJ = [/€, /€ +¢€]. Write
f=@Q/e)xs— x1], and letv be the Lebesgue measure restricted-ef, 0)|U U J.
A simple calculation gives, whene [—1, 0],

T, f(x)= %(|Og(26 —x)—log(e —x) —log(v/€ +€—x) +log(v/e —x)) = 0,
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and then we have
0
/|Tuf|dv z/ T, f ()] dx = Clloge].
-1

Observe that functiorf belongs toH1(v) with norm bounded by 2, but with respect
to the Lebesgue measuyeis an atom with norm of order—1/2. Now, one repeats
this construction at different scales.

Let (x) be a sequence of positive numbers tending to zero and verify@g: +
€x+1 < € (and s0Y_;-; k~2|loge; | = 0o). Define intervals

Ii=lex.2¢,]  and  Jp = [er, /e +ex].

Let u be the Lebesgue measure restricted-ef, 0] U,f‘;z(lkUJk). Clearly, u does
not satisfy any doubling condition, and easify, is bounded inL2() because/u =

gdm, whereg? = g. Observe that the first condition on the sequetge means
that J;11 is at the left-hand side of;. So, the functiorny;, = Egl(xlk —xJs) is a
u-atom. Define

=1
h = Z ﬁak.
k=2

SinceZk‘2 < 400 anday, are atoms, one hdse H1(u). On the other hand,

0 o0 1 0 0 1
/lTﬂh|du2/1|Tﬂh(x)|dx:ZﬁflTuak(x)dxzCZﬁllogekl = +00.
- k=2" 7 k=2

Thatis, T, h ¢ L1(w).

4. BMO with balls and cubes. Theorems 4, 5, and 6 are proved with a similar
construction. To simplify slightly, we do not constryctas an absolutely continuous
measure but as a sum of weighted length measures on some circles. Since the oscil-
lation of f on two neighboring circles is at most 1, it is clear from the proof that by
replacingu with a sum of weighted Lebesgue measures on very narrow annuli, we
get the same conclusions.

We choose nonincreasing sequenggsand(};),i = 1,2, ..., of positive numbers
such that for all,

1 &
(13) £1= 5. gi41 =< 1—10

(14) A=, O<n <27, Aitl < A4,

NI

(15) Ve 27 < e
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Set
Si={xeR?:|x| =1—¢},
Ti={x eR?: |x| = 1+¢]},

ps =y 1S,

1

pr=) 27| T,
i

W=pus+ur,
f = ZiXS,'UT,'-
i

Clearly, f belongs toL(x) with

o0

/fdu < 87121'27“ = (p.

i=1

We now fix a discB with centerx and radius-. If BN S; # @ for somei, we let
io be the smallest such Similarly, jo is the smallesy such thatBNT; # @ if such
aj exists.

LemmMa 4. If BNT; # ¢ for somej, then

/ |f = Jjoldur < copr (B).
B
Proof. As BNT;, # ¢}, we see by simple geometry that

HL(BNT;) <5#(BNTjp1) forj> jo

(sinceT; andTj,,1 are much closer to each other thariftg). Hence,

[ 1 = deldur = Y- iz 50T
B i=Jo
<5HNBNTjp41) Y (j—jo)2 ™/
J>Jjo

< o2 O Y (BN Tjg41) = con(BNTjps1) < copr(B). O

Lemma 5. We havef € BMO,(u). More precisely, (2) holds with an absolute
constantc.

Proof. Let B be as above. We consider four cases.
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Case li|x| <1/2. If BNS2 =0, f is constant orB Nsptu. Otherwisey > 1/3,
and using trivial geometry and the assumptiens= A1 = 1/2 andes < ¢1/10, we
have%1(BnS1) > 2/5 and

1
w(B) > 1 %(BNSy) > z

Thus,

1
- du <5 | fdu < 5co,
M(B)/Bfusffufo

and (2) holds withu = 0, ¢ = 5¢o.
From now on we assume that| > 1/2 and, by Lemma 4, thaB N S; # @ for
somei.

Case 2:eitheB C {y : |y| < 1} or jo > ip+2. We may assume th&8N.S;,> # 9,
since otherwisef = ig orip+1 on BNsptu. As B meetsS;, andS;,;», and it does
not meetT;,», one sees by simple geometry (see Figure 3) that

1(B) = hig41% (BN Sig11) > Aigh1/FEigr1.
#L(BNS) <2 reigrz fori>ig+1,
HYBNT) <2 /reigr2 fori>ig+1.

FiGure 3. Case 2
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Thus, also using (15),
/If—ioldui§ (i —ionH (BNS)+ Y (i—ig)2 ' % (BNT)
B . .=
i>ig i>ip+2

<3u(B)+4Eigr2 ), (i—i0)2"'

i>ig+2
< 3u(B)+co\/T€ig+2 27i0=2
< 3u(B) +co /Teigr1 Aig+1 < (3+co)u(B).

Hence, (2) holds in this case with= 3+ cg. In the last two cases, we also assume
that BNT; # ¥ for some;.
Case 3.jo =io, io+1, orip+2. Sinces;y ;1 < €;,/10 andB meets botts;; and
Ty, one easily sees that for> jo,
HLBNS;) <2 (BN Tjys1).

Thus,
/ |f —joldps < 2u(BNSjy-2)+u(BNSj—D)+ Y _ (i — jo)ri# (BNS;)
B .
i>jo
<3u(B)+2H (BN Tjpr1) Y (i —jo)2"
i>jo

< 3u(B) +co2 O (BN Tjo41)
< (B+co)u(B).

Combining this with Lemma 4, we have (2) with= 3+ ¢ in Case 3.
Our final case is the following.

Case 4:jg < ig. Then fori > jo,
#YBNS)<HY(BNT;) and  HY(BNT) <5 BNTjpt1).

Thus,
/ |f—Joldu < Z(z’ —jo) (i +27HHYBNT)
B i>jo
<2) (i—jo)2 "% BNT,) < 2cou(B).
i>jo

Hence, the proof of Lemma 5 is complete. O
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To prove Theorem 4 we choose sequenégsand(ji) of positive integers and the
sequencese;) and(};) in such a way that; +k < ji <irs1,

(16) 8,»2,( < Eiptks
a7)
1 . . 1 .. .
)»1:5, A=A, fori=ig, ... ig+k, )ui_,_lfz)»i fori =ip+k,..., ji,
for all i andk. We leave to the reader as an exercise to check that this choice, keeping
also (13)—(15), is possible. Moreover, once the other numbers dttithstep are

chosen, we can takg as large as we wish. The choice ffis determined in the
proof of the following lemma.

Lemma 6. Under the conditions (13)—(17), ¢ BMO(w) for any choice of the
coordinate axes.

Proof. Let Qi be the square with center on the-axes, sidelengthe? , and the
right-hand vertices o8 (see Figure 4).

N

Ok

Sik+k 1

FIGURE 4. Proof of Lemma 6

Sik—l

By (16) fori = ig,...,ix +k, Qr N S; does not meet the vertical sides ©f,
whence it is an arc with;, < #1(0rNS;) < 3e;,. Thus, by (17),
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w(OkNS) = Ay HHQRNS) = higey,  fori =iy, ... ix+k.

We choosej; such that
1 1.1 A
H(QrNSiv1) < 5% (QrNS;) fori > ji.
By (13) and elementary geometry, this is possible. Then by (17),

1
n(QkNSiy1) < SH(QkNS)  fori = ix+k.

Thus,
ix+k
p(Q1) =Y QNN+ Y u(QkNS))
=iy i>ig+k
ir+k ir+k

<2 QNS =2k ) H(QNS)

i=iy i=ij

< 12)»,',(/(8,’,{.

For any numbeu, there are at leadt/3 valuesi € {it, ..., i +k} such that f (x) —
al| > k/3 forx € S;. Thus

1 1 kk 1

—aldp > = A, = ——k.
200 Jo T TN Z 150 eer, 3375 = 108

Hence,f ¢ BMO(u) and Lemma 6 is proved; consequently Theorem 4 is also proved.
O

Proof of Theorem 6. The proof follows much the same lines as the one given for
Theorem 4, but in the present case both the measure and the function are not constant
on circles. Letn > 9 be an integer. Let

(18) M=4T" Ap=-=Ay=mT24TM

Let A > 0, and choose; > €2 > --- > g, such that (13) and (15) are satisfied.
We chooser. much smaller than.p, and then we choose the sequerieg, very
quickly decreasing. Sef; and 7; as before. Divide the unit circl§! into disjoint
consecutive arcdy, ..., Ign of length 2r8~". For each; divide /; into disjoint
consecutive arcg; o, ..., 12, Of length %1(1J~,,-) =278"/2m+1) = £,. Set,
with tA = {tx : x € A},
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1‘;(,,' =Q-e)lji C Sk, J]k, = 1+ex)Jji C T,

2m 2m
k k
Skj::LJ[N’ ij::LJJN”
i=0 i=0
m 8"
s =D D | ML +2 Y 9 1 |
k=1j=1 i#m
m 8" m 2m
MT:ZZ Zz_l_k%lljjl'{’idl_ Z 21—2)71—/{%].']]_]{’1. ,
k=1j=1 \i=0 i=m+1
M= ps+NT, and
m 8" m m-+k
F=230 X G=mtboxge o+ D0 k=g o
k=1j=1 \i=m—k I /s i=m—+1 J» Js

Therefore, easy computations give

w(Te ) =275, and  |pr| =80, ~m™ 1~ u(1),

—m

4-m
(1+24"m?) ~ — =~ p(S1), wheneven <4 "m™2,
m m

llesll =

fdu>~e,27" and /‘fduTZZ*m,
Tk,

4—m 4—m
/fdug ~ 7(1+A4mm3) ~ — wheneven < 4 "m 3.
Then, clearlyf € L1(x) with [ fdw < collull, wherecg is as before.
Note thatf = 0 on the extreme arcs df; ; and that it oscillates linearly tb in
the middle. Since the measure decays exponentially in the migdagain nicely
in BMO, (u7), as the next lemma shows. LBtbe a disc with center.

LeEmmaA 7. There isa € R such that
/ |f—aldpr < Cpr(B).
B
Moreover, if for somek, BN Ty ; # ¢ for at least two indiceg, then we can take
a=0.

Proof. Suppose thaBN T ; # @, and suppose that the indice$or which BN
J}’{i # ¢ form a sequenceéy, i1 +1,...,i2 such thatiy =0 orig =1 orix = 2m
or ip = 2m — 1 or form two sequencesd,i; +1,...,i» andis,iz+1,...,i4 such
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thatii = 0 oripy = 1 andig = 2m or i4 = 2m — 1. We say then thaB intersects
Ty,; noncentrally. Otherwise, we say thatintersectsT; ; centrally. We also say
that B intersectsT; centrally or noncentrally if it intersects sondg ; centrally or,
respectively, noncentrally.

We claim that if B intersectsT ; noncentrally, then

(19) / fdu < cou(BNTy ;).
BNTg

Suppose, for example, that there is only one sequénce, i as above withi; =0
oriy = 1. The other cases are similari3f= 0, 1, or 2, thery =0, 1,or2onBNT; ;,
and (19) is clear.

Otherwise,/} , C B, whence

w(BNTy ;) = 2727491 (5 ,) = 27274,

f fdusf Fdpu~ 2",
BﬂTk.j Tk, j

J
Hence, (19) follows.
Assume now that for sormie BN Ty ; # ¢ for at least two values of. We claim that

and

(20) /B.fduT < 16cour (B).

Letki,k1+1,..., ko be thosek for which BN T, # 0.
We examine three cases separately. First, suppdseersectsly, centrally. Then
BNTy, = BNTy,, ; for some; and

(21) / fdu < fdu>~,27".

BﬂTkl Tk]_,j
We see by simple geometry that if thes decrease sufficiently quickly, our assump-
tion (that for somek, BN T ; # ¥ for at least twoj) implies that

(22) (BN Ty 41) = 2727 Ry,

Moreover,ko = m and B intersects the remainingj, noncentrally. Combining (19),
(21), and (22), we get (20) for this first case. On the other hand, ifitersects
both T, and Ty, noncentrally, thenB intersects every; noncentrally and again
(20) follows from (19). Finally, wherB intersectsl;, noncentrally and, centrally,
our assumption implieg.(B N Ty,) > 27k1¢,,. Then B intersectsT} centrally for
k=ks,....kp, and as in (21),

k2
Yol fdu<m—k)2 ", <2780, < ur(B).
k3 BNTy
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Combining this with (19), we also obtain (20).

To finish the proof of Lemma 7, suppose that for evirthere is at most ong
such thatB N Ty ; # ¥. Then the values of for which BN T # ¢ form a sequence
ki,k1+1,..., k2, and the indey for which BNT ; # @ is the same for alt; <k <
k2. Moreover, the indicesfor which BN JJ’.‘}I.H # ¢ (if there are any) form a sequence
i1,i1+1,...,i2. If the sequencés;) decreases sufficiently quickly N Jj{i = ¢ for
k > ki, i1 <ii—1,andi > i+ 1. Thuspr(B) < 4u(BN(Tiy,j U Tk, +1,7)). Then,
by similar easy estimates as before,

/If—alduriC/ \f —aldu < C2ur(B),
B Bﬁ(TlejUTlirl’j)

wherea = min{f(x) : x € BN (Ty,,; U Ty41,j)}- This completes the proof of
Lemma?. O

We want to show again that (2) holds for somwith an absolute constant that
is, f € BMOy(u).

Suppose first thatc| < 1/2. We may assume th&N S, # ¢. Then B contains at
least 8 ~* arcs/7,, and so

w(B) > 8" hit,,/2=2"0,,/16~4""m™ L,

We have
/ fdps < / fdps~4""m™t < u(B)
B

provided we choosg < ¢,,/(m?2r). If B NTy, ; # ¢ for at most onej for everyk,
then we get

/ fdur < Z/ fdu>~m27"¢, <16m4 " u(B) < u(B)
B ke=1" Th.j

sincem > 9.
If BNTy, ; # ¢ for at least two indiceg, for somek, we have by Lemma 7,

/deur < Cu(B).
Combining these inequalities we obtain

/deu < Cu(B)
in caselx| < 1/2.

Assume then thgk| > 1/2. As previously, we study different cases. By Lemma 7
we may assume th&N Sy # ¢ for somek. The case where this happens onlyies 1
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is trivial, so suppose tha NS for somek > 1. If BNS, = BN T4 = @, the diameter
of B is at most 2,. Choosing 2, < ¢,,, there are two pair§1, j1) and(i2, j2) such
that for everyk, Bm(ljk’l. U‘]jk,i) =@ unless(i, j) = (i1, j1) or (i, j) = (i2, j2). Then
we can use almost identical arguments as in the proof of Theorem 4, because in this
scale both the measure and the function are almost constant on circles.
Suppose then th& N T4 # @. Then, choosing, sufficiently small for allk > 5,

r(BN(SkUT) <25 w(BNT),

whence, ag <k on S UTy,

| fan=aus)+ Yok uBOT) < @+ Bu(B) = 12u()
B k=5

Finally, we are left with the case wheBN S2 £ @ andBN T4 = @. If B intersects
only S2 and Ss, it is trivial. Therefore, assumB NS, # ¥. Letr be the radius oB.
We then have

1(BNS3) > AH (BN S3) > Ay/res

and fork > 4,
w(BN(SkUTY) < 2% %X (BN (S UTY)) < 22 %1 (BN Sa) < 2375 /r2ea.

Choosinge4 < A2e3, we conclude

/fdu < 3M(B)+/ fdu
B\S2US3

m
<3uB)+) k2" freq

k=4
< 3u(B)+6/rea
< 3u(B)+6A/res <9u(B).

This completes the proof that the functighbelongs to BMQ(w) with the norm
independent ofz. We point out that ifB is a disc not contained ifx : |x| < 3}, then

(23) /deu < Cu(B).

Clearly, whenu (BN S) > 0, we haveu(B) > ur(B) > |u|l/100, and thus (23)
holds. If w(BNS) = 0, then eitherBNT, =¥ or BN Ty ; # ¥ for at least two
indices;. In both cases we get (23) from Lemma 7.

To finish the proof of Theorem 6, we choose digs B», ... such that the discs
3By are disjoint. Le{ M, } be an increasing sequence of integer numbers (for instance,
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M = 9+k). Takingm = My, we use the above construction in edhappropriately
scaled. Then we get in&g a measure, and f; € BMO(uy) with uniformly bounded

BMO,-norms. Set
w=> e =Y fi
k k

Let B be any disc. IB C 3By for somek, thenuz = Mk and (2) holds. Otherwise,
B is not contained in By for anyk. Then by (23),

[ rau=3 [ feam =¥ mimr = cuis.
k k

So f € BMO, (). Denote by the radius oy, and note that, (By) ~ rid—M+ Mk‘l.
Then for anya € R and allk, we have

€ By:|f(x)—al Mil o Mk 4~ 02y, 8k > M q (By)
: —al > — — . ~— .
pL X k X a 3 = 3 k2 My =Tk 3M’§ MkM k

This implies trivially (by the Chebyshev inequality) thakz BMOZ(M) forall p > 1.
Thus, finally, the proof of Theorem 6 is complete. O

Proof of Theorem 5.Let m > 3 be an integer; we haw, ..., ¢, such that; <
1/2 and O< ¢j41 <¢;/10forl<i <m. LetS; ={x:|x|=1—¢;} andT; = {x :
|x| = 1+¢;} as before. We choose the sequetge so quickly decreasing that the
following hold:

(24) QN S(r)) <27"H(QNSiy1)

forl—e;io <r <l4ei12, 1<i <m-—2,andforany squar@ such thatDp N S; £ ¢
andQNTy2=0;

(25) #(QNS() < 2% (QNTi41)
forl—e;11 <r<1,1<i<m-—1,and for any squar@ such thatQ N 7; # (. Here
S(r) denotedx : x| =r}.
We definen and f as in the proof of Theorem 4 with
M=-=Ay=A=2"",
Thenf =i onS;UT;.

First, we observe that the BM@Qu)-norm of f is at leasin /9, since for any: € R
andD = {x : |x| < 1},

3
—/ \f —aldp > u({x € D | f(x)—al > m/3}) = w(D)/3
mJp
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Second, we claim that (1) holds for any squé@rsvith an absolute constant. For
this we can follow the argument in the proof of Theorem 4. Lemma 4 and its proof
hold with B replaced byQ as they standp and jg are defined in the same way with
Q in place of B. We need not worry about where the center@fies, so our first
case is the analogue of Case@:C D or jo > ig+ 2. In this case, (24) yields

HH(QN (S UT)) < 209 (BN Sig1) < 21u(B)

fori > ip+1, and the inequalities in Case 2 can be repeated. In jgaseg, io+ 1,
or ip+2 (see Case 3), we have by (25),

#1(QNS) <291 (QNTjpt1)

for i > jo, and the same argument works again. Finallypik ig, the proof runs as
it is with B replaced byQ.
To complete the proof of Theorem 5, we use the same method as at the end of the
proof of Theorem 6, defining =3, f, anduw =73, wn. Thenf € BMO(u) (for
all choices of the coordinate axes), butz BMO, (). O

Another variant of functions of bounded mean oscillation is the following one.
Suppose that in the definition of the space Biyipwe only consider cubes (with
sides parallel to the axes) centered at the support of the measive denote this
new space of functions by BM@Qu). Obviously, BMQ(1t) is contained in BMQ(uw),
and as the next example shows, this inclusion can be strict, even for the restriction of
the Lebesgue measure to a cube.

Example. The idea to construct our example is simple, but again the explanation
becomes a little tedious. Take the squate = [0, 1] x [—1/2,1/2], and letu be
the planar Lebesgue measure restricteddin Now, we consider a collection of
squares which are dyadic with respecidg. For each positive integérand for each
j=1,2,...,2c1 we define squares

1 j—1j
+ _
Qk’j_[()’?}x[ 2k 7?}5

_ 11 [= 1=J
Q= [0’§} % [7 % }
Let ¢ be a Lipschitz function satisfying
() 0<p=<1
(i)

p()=1 ifze[—

p(z)=0 ifz¢[—
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(iii) Vel < 4.
Then define

ol @=0@ ()  and g =02 (¢ ;).

wherec,jj andc, ; are the centers cQ,jj andQ; ;. Thus,<p,jfj is equal to 1 orQ,jj,
has support contained tﬂ/Z)Q,ji, and||V<p,:fJ.|| <8.2¢. The functionw,;j satisfies
the analogous properties.

Write

oo 261
- + -
b=3 > (0;—vc;)
k=1 j=1
When Q is any square contained ifg, a standard computation (or an application of

[GJ, Lemma 2.1]) gives
1

—_— b—bo|d C.
M(Q)./Q| oldp <

If Q is any square with center lying i@o, then there is a squam C Qg so that
QNQoC Pandu(Q) > (1/4Hu(P). So,

/le—bplduf/Plb—bPIdMSCM(P)SCM(Q)-

Consequentlyh € BMO,(u). On the other hand, le®; be a square such that, N
Qo = [0,1/2F] x [-1/2,1/2]. Thenu(Qx) = 2~%. By symmetry ofb, Jo,b=0.
Observe that

o0 .
j k. k
Ib—bQIdM=f DED AL )
ka ¢ Ok J»X_:kzﬁ_l 2 2

Thereforep ¢ BMO(w).

Now, we describe an example that shows that the John-Nirenberg inequality is
false for BMQ.(u), even for absolutely continuous measugreand cubes centered
at points of the support of the measure. For simplicity, our measure again contains
pieces on line segments, but obviously it can be fattened without destroying the
desired properties.

Letm > 1 be an integer. Set

Li={&x,»:(G-D/m<x<j/m y=1}, ji=1....m,
Ji={x,»:(G-D/m<x<j/my=1+1m}, j=1...m,
K:{(x,y):Ofxfl,y:O},

I =

m m
Un. 7=
j=1 j=1
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Then consider the measure

m
w=2"%" K +m 2t [ 1+ 279t

j=1
and the function o,
f = ZjXIjUJj
j=1
(see Figure 5).
27191
1+1/m ! | : 1J
f=i
1 | | | 11
m—12-mgel
f=0 K
0 w=2"get 1

FiGure 5. The functionf and the measure, whenm =4

It is easy to check that for every squapewith sides parallel to the coordinate axes
and with center if UJ UK, there isa = a(Q) € R such that

(26) /Q|f—a|dM§CM(Q)~
Actually, if the center ofQ is in K, one may take = 0 because

ffduicu(l) and /fdMSCM(J)'
1 J

If the center ofQ is in 1 U J, one may assume its sidelengttQ) > 1/m. Since
n(lj) < u(Jj), one has

/ |f —aldp < 3/ |f —aldu.
0 onJ
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Now, since the measuye decays exponentially id, the functionf | J looks like a
logarithm. Hence, it: = min{;j : J; N Q # ¥}, one has

/ |f —aldp < Cu(QNJ).
onJ

So, (26) is proved. Notice also that if one has a cgbthat contains eithek, I, or
J, then (26) holds witla = 0.
Taking
0 ={(x,y): x| <14+1/2m, |y| <1+1/2m},

we have that for any € R,

. 27" Q)
M({x €Q:|f(x)—al> m/3}) = 3, > A

As in the proofs of Theorems 5 and 6, we now apply this construction to a sequence

of squares. Consider a collecti¢®,, : n = 1,2, ...} of disjoint squares whose left
side is in they-axis and that satisfies

dist(Qn, Om) = 2max{£(Qn), £(Qm)}, n #m.

Let u,, fn be the measure and the function given by the construction above in the
squareQ,, with m = n. Set

MZZ,U%’ fZan

One hasf € BMO.(u). To see this, observe that if a culgecentered at a point in
O intersects some othé?;, j # k, thenQ; C Q and, moreoverQ contains thek
or J piece of the cub& ;. So, as remarked above, one has

/ijd.uj <Cu;(Q)

and adding up,
/Qfdu < Cu(Q).
So, f € BMO,.(u). On the other hand, as before, for ang R, one has
(On)
ulx e Qi 1f 0 —al>n/3) = 2,
and the John-Nirenberg inequality fails.

APPENDIX: JOHN-NIRENBERG THEOREM ON SPACES OF HOMOGENEOUS TYPE

Let (X,d, n) be a space of homogeneous type in the sense of Coifman and Weiss
[CW, p. 587]. Thus, the quasidistandesatisfies

d(x,y) < K(d(x,2)+d(z, ),
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and the positive Borel measugeis doubling

,u(B(x, Zr)) < D,u(B(X,r))7

whereB(x,r) ={y € X :d(x, y) < r} is the ball centered at and radius- > 0.

Remark. There exists a constamtsuch that ifc € B(a, R) and O< p < 12K R/5,
thenB(x, p) C B(a,aR). (Takea = K((12K /5)+1).)

Our goal is to check the following.

THEOREM A. There exist two positive constantsand b such that for anyf e
BMO(X) and for any ballS C X, one has

(27) pc({xeS:|f—f5|>A})§,3exp{— }M(S), for all A > 0.

K| £l

Proof. We guess that the proof we present here is implicit in the work of Coifman
and Weiss [CW, p. 594, footnote]. However, since they didn't write it explicitly, there
has been some confusion in the literature.

We follow the standard stopping time argument; that is, we assume fedarge
enough and fix somg;. Then we study the sefs € S: | f(x) — fs| <A1}, {x € S:
| £ ()= fs| < 2n}, up tof{x € S| f(x) — fs| <mAiy~ A}

In showing (27), we assumigf ||« < 1 and fixS = B(a, R). We define a maximal
operator associated ®(if we replaceS by another ball, then the maximal operator
changes),

1

Msf(x) = SUP{M

/ | f(y)— fsldu(y): Bball,x e B, BC B(a,otR)}.
B

Using a Vitali-type covering lemma, one can prove that

A
p({x: Msf(x)>1}) < —R(S),

whereA is a constant that only depends &nhand D but not onS.

Takeio > A. Consider the open sét = {x : Mg f(x) > Ao}. We haveu (U NS) <
(A/ o) (S) < u(S), and therefor& NU€ # .

Definer(x) = (1/(5K))dist(x, U°). If x, y € §, thend(x, y) < 2K R. SinceU‘N
S#£@, if x €S, we haver(x) <2KR/(5K) =2R/5.

Clearly,

unsc |J Bx.rw)cu.
xeuns

Again by a Vitali-type covering lemma (e.g., see [CW, Theorem 3.1]), we can select
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a finite or countable sequence of disjoint b&lix ;, »;)} such that; =r;(x) and
unsc| JB(xj.4Kr;) CU.
j
On the other hand,
B(Xj,GK}’j)ﬂUC #@

and
12K R
B(xj,6Krj) C B(a,aR) because §r; < :

Thus, we get
1

S S _ foldu < Ao,
1(B(x;,6Kr;)) /;(va6K’.f)|f Jsldit=to

and consequently, if we Writ&;l) = B(xj,4Kr}), we obtain

|fs— fs;1 < /If fs| < coro = A1,

n(S;)

becauseu is a doubling measure.
By the differentiation theorem,

@
[f(x)— fs| <rp foru-aexe S\Usj .
j
Moreover,

/

) CA A
Zus <CZM (xj:7/)) = Cr(U) = S=p(S) = - ().

Now, we do the same construction for eatf. Again

£ = fy

<Xt forpu-ae.xe S;l)\ U Sl.(z),
i

and therefore for these points

[f(x)—fsl < ‘f(x)_fs(l) +‘fS(1) —fs’ < Ao+coro < 2coro :=2)1.
j j

It is clear (takinghg = 2A’) that

N\ 2
(U s<2>) < Z n(st) < (f ) 1(8) =2"2u(S).

By continuing this process, we would finish the proof. O
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Recently, in [B] and [MP], other correct proofs of the John-Nirenberg inequality
for homogeneous-type spaces have been presented.

(B]
[Cw]

(GJ]
[G]
[J]

[MP]
M]

NTV]
[S]
(7]

V]
W]
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