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Abstract. LetN be the Nevanlinna class and let B be a Blaschke
product. It is shown that the natural invertibility criterion in the
quotient algebra N/BN , that is, |f | ≥ e−H on the set B−1{0}
for some positive harmonic function H, holds if and only if the
function − log |B| has a harmonic majorant on the set {z ∈ D :
ρ(z,Λ) ≥ e−H(z)}; at least for large enough functions H. We also
study the corresponding class of positive harmonic functions H in
the unit disc such that the latter condition holds. We also discuss
the analogous invertibility problem in quotients of the Smirnov
class.

1. Introduction

The Nevanlinna class N is the algebra of analytic functions f in
D, the unit disc of the complex plane, such that log |f | has a positive
harmonic majorant in D. Any f ∈ N factors as f = BF , where B
is a Blaschke product and F ∈ N is invertible, as are all zero-free
functions in the Nevanlinna class. Any principal ideal in N is thus
of the form BN , and if the zero set of B is Λ = {λk}, this ideal is
the set of functions in N which vanish at Λ. Fix a Blaschke product
B and f ∈ N . It is clear that the class [f ] = {f + Bh : h ∈ N} is
uniquely determined by the restriction of f to Λ. If [f ] is invertible
in the quotient algebra N

/
BN , then there exists a positive harmonic

function H such that |f(λk)| ≥ e−H(λk), k = 1, 2, . . . However, the
converse is not true in general. For a given Blaschke product B, we
would like to find out which positive harmonic functions H will make
the converse true.

The analogous problem for the algebra H∞ of bounded analytic func-
tions f in the unit disc, with the obvious necessary condition for invert-
ibility |f(λk)| ≥ ε > 0, was studied in [6] in connection with the Corona
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Theorem and interpolating sequences. We first need to give some back-
ground on the classical H∞ theory. Recall that H∞ is endowed with
the norm ||f ||∞ := sup{|f(z)| : z ∈ D}.

We will use the standard pseudohyperbolic distance on D given by

ρ(a1, a2) := |a1 − a2||1− a2a1|−1,

for a1, a2 ∈ D.
We now recall two classical results of Carleson. A sequence of points

Λ = {λk} in D is called an interpolating sequence (for H∞) if for any
bounded sequence of complex values {wk} there exists f ∈ H∞ such
that f(λk) = wk, k = 1, 2, . . .. A celebrated result of Carleson states
that Λ = {λk} is interpolating if and only if there exists a constant
δ > 0 such that

(1− |λk|2)|B′(λk)| ≥ δ, k = 1, 2, . . . ,

where B is the Blaschke product with zeros {λk}. Observe that

(1− |λk|2)|B′(λk)| =
∏
j:j 6=k

ρ(λk, λj).

The classical Corona Theorem states that the ideal generated by the
functions f1, . . . , fn ∈ H∞ is the whole algebra H∞ if and only if
inf{|f1(z)| + · · · + |fn(z)| : z ∈ D} > 0. See [3], [4], or Chapters
VII and VIII of [5].

A function I ∈ H∞ is called inner if |limr→1 I(rξ)| = 1 for almost
every ξ in the unit circle ∂D. Any inner function I factors as I = BS,
where B is a Blaschke product and S is an inner function without
zeros. It follows from the classical Theorem of Beurling on the invariant
subspaces of the shift operator, that any weak* closed ideal in H∞ is
of the form IH∞ = {Ih : h ∈ H∞} for some inner function I. See
[5], page 82. Fix an inner function I and consider the quotient Banach
algebra H∞

/
IH∞ with the norm

||[f ]||
H∞
/
IH∞ = inf{||f + Ih||∞ : h ∈ H∞}, f ∈ H∞.

Let Λ = {λk} be the zero set of I. It is clear that if [f ] is invertible in
H∞

/
IH∞, then inf |f(λk)| > 0. This condition is not always sufficient

as one can observe considering the extreme situation where I is zero-
free.

Let δ = δ(I) be the infimum of the positive numbers γ > 0 such that
if f ∈ H∞, ||f ||∞ ≤ 1 satisfies infk |f(λk)| ≥ γ, then [f ] is invertible in
H∞

/
IH∞, or equivalently, there exist g, h ∈ H∞ such that fg = 1+Ih.

Hence, if γ > δ(I), for any f ∈ H∞, ||f ||∞ ≤ 1 with infk |f(λk)| ≥ γ,
we have that [f ] is invertible in H∞

/
IH∞; while if 0 < γ < δ(I) there
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exists f ∈ H∞, ||f ||∞ ≤ 1 with infk |f(λk)| ≥ γ such that [f ] is not
invertible in H∞

/
IH∞.

Gorkin, Mortini and Nikolski proved in [6] that δ(I) = 0 if and only
if I satisfies that, for any ε > 0, we have

(1) inf{|I(z)| : ρ(z,Λ) > ε} > 0.

If I is a Blaschke product whose zeros Λ are a finite union of inter-
polating sequences (or, equivalently, if

∑
k(1− |λk|)δ(λk) is a Carleson

measure), then condition (1) is satisfied. Here δ(λk) denotes the Dirac
mass at the point λk. However, there are Blaschke products I satisfying
(1) whose zeros are not a finite union of interpolating sequences. See
[6] and [1]. For this reason, the authors of [6] called property (1) the
Weak Embedding Property (WEP). It would be interesting to describe
the Blaschke products I satisfying the WEP in terms of the location
of their zeros. Some further results and questions on inner functions
satisfying the WEP can be found in [2].

The study of the invertibility inH∞
/
IH∞ was continued by Nikolskii

and Vasyunin in [11], where it was proved that for any 0 < δ < 1, there
exists a Blaschke product I such that δ(I) = δ. In other words, one can
find an invertibility threshold at any level, by choosing the Blaschke
product appropriately. The main purpose of this paper is to discuss
the analogous problem in the Nevanlinna class.

We now turn to the analogues in the Nevanlinna class of the above
results. In many of those, positive harmonic functions will play the role
that was played by positive constants in the H∞ setting. We begin with
interpolating sequences.

Let Har+(D) denote the cone of positive harmonic functions in D.
Given a sequence of points Λ = {λk} ⊂ D, let W (Λ) be the set of
sequences of complex sumbers {wk} such that there existsH ∈ Har+(D)
with log+ |wk| ≤ H(λk), k = 1, 2, . . .. Observe that {f(λk)} ⊂ W (Λ)
for any f ∈ N . A sequence of points Λ = {λk} ⊂ D is called an
interpolating sequence forN if for any sequence of values {wk} ⊂ W (Λ)
there exists f ∈ N such that f(λk) = wk, k = 1, 2, . . . It was proved
in [7] that Λ = {wk} is an interpolating sequence for N if and only if
there exists H ∈ Har+(D) such that

(2) (1− |λk|2)|B′(λk)| ≥ e−H(λk), k = 1, 2, . . . ,

where B is the Blaschke product with zeros {λk}.
Using a result of T. Wolff, Mortini proved the following version of

the Corona Theorem for N . Let f1, . . . , fn ∈ N . Then there exist
g1, . . . , gn ∈ N such that f1g1 + · · · + fngn = 1 if and only if the
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function − log(|f1|+ · · ·+ |fn|) has a harmonic majorant in D. See [9]
or [10].

The analogue of the WEP in the Nevanlinna class was introduced
in [8] where it was proved that invertible classes [f ] in N

/
BN are

precisely the classes for which there exists H = H(f) ∈ Har+(D) such
that |f(λk)| ≥ e−H(λk), k = 1, 2, . . . if and only if B satisfies the fol-
lowing analogue of the WEP: for any H1 ∈ Har+(D) there exists H2 ∈
Har+(D) such that

|B(z)| ≥ e−H2(z) if ρ(z,Λ) ≥ e−H1(z).

In contrast with the situation in H∞, the main result in [8] states that
this property holds if and only if the zeros of B are a finite union of
interpolating sequences in the Nevanlinna class.

As we said, the main purpose of the present paper is to discuss an
analogue in the Nevanlinna class of the result of Nikolski and Vasyunin
([11]) described above. Let B be the Blaschke product with zero set
Λ = {λk}. Fix f ∈ N . As mentioned above, a necessary condition
for the class [f ] to be invertible in N

/
BN is that there exists H ∈

Har+(D) such that

(3) |f(λk)| ≥ e−H(λk), k = 1, 2, . . . .

In analogy with the definition of δ(B) in the context of H∞, we are
interested in which functions H ∈ Har+(D) have the property that (3)
guarantees that the class [f ] is invertible in N

/
BN . Since functions

f ∈ N without zeros are invertible in N , we can always choose a
representative of any class [f ] as f ∈ H∞ with ||f ||∞ ≤ 1 and assume
that H is bigger than any prescribed function in Har+(D). Our first
result says that this invertibility problem is equivalent to the existence
of a harmonic majorant of − log |B| restricted to a certain subset of D.

Definition 1. A function F : D −→ [0,+∞) has a harmonic majorant
on the set E ⊂ D if there exists H ∈ Har+(D) such that F (z) ≤ H(z)
for any z ∈ E.

We will need an auxiliary function associated to any Blaschke se-
quence.

Definition 2. Given a Blaschke sequence Λ = {λk}, let HΛ denote the
positive harmonic function defined by

(4) HΛ(z) =
∑
k

∫
Ik

1− |z|2

|ξ − z|2
|d ξ|, z ∈ D,
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where Ik := {ξ ∈ ∂D : |ξ − λk/|λk|| ≤ 1 − |λk|} denotes the Privalov
shadow of λk.

Theorem 1. Let B be a Blaschke product with zero set Λ = {λk}.
(a) There exists a universal constant C > 0 such that the follow-

ing statement holds. Let H ∈ Har+(D) and assume that the
function − log |B| has a harmonic majorant on the set {z ∈ D :
ρ(z,Λ) ≥ e−H(z)}. Then for any f ∈ H∞, ||f ||∞ ≤ 1 such that

(5) |f(λk)| > e−CH(λk), k = 1, 2, . . . ,

there exist g, h ∈ N such that fg = 1 +Bh.
(b) There exist universal constants C0 > 0 and C > 0 such that the

following statement holds. Let H ∈ Har+(D) with H ≥ C0HΛ.
Assume that for any f ∈ H∞, ||f ||∞ ≤ 1 such that

|f(λk)| > e−CH(λk), k = 1, 2, . . . ,

there exist g, h ∈ N such that fg = 1 + Bh. Then, the func-
tion − log |B| has a harmonic majorant on the set {z ∈ D :
ρ(z,Λ) ≥ e−H(z)}.

In Corollary 2, after the proof of this theorem in Section 2, we show
how the result can be extended to Bézout equations with any number
of generators.

Observe that Theorem 1 is analogous to the equivalence of (a) and
(b) in [8, Theorem A]. Hence, given a Blaschke product B with zero set
Λ, and for large enough positive harmonic functions H, the invertibility
problem in the quotient algebra N /BN can be reduced to the study
of the following class.

Definition 3. Given a Blaschke product B, let H(B) be the set of
functions H ∈ Har+(D) such that − log |B| has a harmonic majorant
on the set {z ∈ D : ρ(z,Λ) ≥ e−H(z)}.

It is easy to see that constant functions are always in H(B) (see
Proposition 4.1 of [7] or Lemma 1 below), and that if H1 ∈ H(B) and
H2 ∈ Har+(D), H2 ≤ H1, then H2 ∈ H(B). In this language the main
result of [8] reads as follows: H(B) = Har+(D) if and only if Λ is a
finite union of interpolating sequences for N .

Our next result says that for any Blaschke product B, H(B) does
contain unbounded functions.

Theorem 2. Let B be a Blaschke product with zero set Λ = {λk}.Then,

(a) There exists a function H ∈ Har+(D) with lim supk→∞H(λk) =
+∞, such that − log |B| has a harmonic majorant on the set
{z ∈ D : ρ(z,Λ) ≥ e−H(z)}.
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(b) There exists a function H ∈ Har+(D) with lim supk→∞H(λk) =
+∞ such that if f ∈ H∞, ||f ||∞ ≤ 1 satisfies |f(λk)| ≥ e−H(λk),
k = 1, 2, . . ., then there exist g, h ∈ N such that fg = 1 +Bh.

Conversely, given two positive harmonic functions H1, H2, where the
condition H1 ≤ H2 does not hold, we would like to see whether there
exists a Blaschke product that discriminates between them, that is to
say, such that H2 ∈ H(B) but H1 /∈ H(B). We obtain such a Blaschke
product in two different cases.

Theorem 3. (a) Let H1, H2 ∈ Har+(D) such that

lim sup
|z|→1

H1(z)

H2(z)
= +∞.

Then there exists a Blaschke product B with zero set Λ such
that − log |B| has a harmonic majorant on the set {z ∈ D :
ρ(z,Λ) ≥ e−H2(z)} but has no harmonic majorant on the set
{z ∈ D : ρ(z,Λ) ≥ e−H1(z)}.

(b) For any η0 > 0, and any unbounded positive harmonic function
H, there exists a Blaschke product B such that H ∈ H(B) but
(1 + η0)H /∈ H(B).

The first part of the theorem can be applied in particular when
H2 = 1, which means that for any unbounded H1 ∈ Har+(D), there
exists a Blaschke product B so that H1 /∈ H(B). It should be noted
that in the second part of the theorem, the Blaschke product B has
zeros concentrated in a way controlled by the size of the harmonic
function H we started from. The next result involves this critical size.
In order to state it, we need more notation.

Consider the usual dyadic Whitney squares

Qk,j = {reiθ ∈ D : 2−k ≤ 1− r < 2−k+1, j2π2−k ≤ θ < (j + 1)2π2−k}.
where k ≥ 0 and j = 0, . . . , 2k − 1. Consider also the corresponding
projections on ∂D given by

Ik,j = {eiθ ∈ ∂D : j2π2−k ≤ θ < (j + 1)2π2−k}.
Given a Blaschke sequence Λ = {λk} and a dyadic Whitney square

Q let N(Q) = #(Λ ∩ Q) be the number of points of Λ in Q. Observe
that there exists a universal constant C > 0 such that for any dyadic
Whitney square Q and any z ∈ Q we have HΛ(z) ≥ CN(Q).

In connection to part (b) of Theorem 3, it is interesting to observe
that for functions H ∈ Har+(D) growing sufficiently fast with respect to
the number of zeros of B, we have H ∈ H(B) if and only if CH ∈ H(B)
for some (all) constants C > 0.
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Theorem 4. Let B be a Blaschke product with zero set Λ. Let H ∈
Har+(D) such that

(6) inf{eH(z) : z ∈ Q} ≥ N(Q),

for any dyadic Whitney square Q. Assume that the function − log |B|
has a harmonic majorant on the set {z ∈ D : ρ(z,Λ) ≥ e−H(z)}. Then,
for any C > 1, the function − log |B| has a harmonic majorant on the
set {z ∈ D : ρ(z,Λ) ≥ e−CH(z)}.

Part (b) of Theorem 3 shows that the above result no longer holds
when condition (6) is not verified.

Our last result provides a sufficient condition for a function H ∈
Har+(D) to belong to H(B). Given a dyadic Whitney square Q let
z(Q) denote its center.

Theorem 5. Let B be a Blaschke product with zero set Λ. Let A be the
collection of dyadic Whitney squares Q such that N(Q) = #(Λ∩Q) >
0. Let H ∈ Har+(D). Assume that there exists H1 ∈ Har+(D) such
that N(Q)H(z(Q)) ≤ H1(z(Q)) for any Q ∈ A. Then, the function
− log |B| has a harmonic majorant on the set {z ∈ D : ρ(z,Λ) ≥
e−H(z)}.

Notice that we impose no direct restriction on the values of H in
the dyadic squares where no zero of B is present. Moreover, we will
introduce a class of Blaschke products for which this sufficient condition
is also necessary. This is done at the end of Section 2. In Section 4
we study the corresponding invertibility problem in quotients of the
Smirnov class.

In this paper, C0, C1, C2 . . . will denote absolute constants while C(δ)
will denote a constant which depends on the parameter δ > 0.

This work was motivated by a question asked to one of us by Nikolai
Nikolski during the Congress ”Complex Analysis and Related Topics”
in April 2018, about the Nevanlinna analogue of the main result of
[11]. It is also a pleasure to thank Xavier Massaneda for many helpful
conversations.

2. Theorems 1 and 2

Recall that if Λ is a Blaschke sequence, HΛ denotes the positive
harmonic function defined in (4). The proof of Theorem 1 uses two
auxiliary results. The first one is Proposition 4.1 of [7].

Lemma 1. Let B be a Blaschke product with zero set Λ. Then, for
any δ > 0 there exists C = C(δ) > 0 such that − log |B(z)| ≤ CHΛ(z)
if ρ(z,Λ) ≥ δ.
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Lemma 2. Let Λ be a Blaschke sequence and let A be a sequence of
points in D verifying that there exists a constant 0 < γ < 1 and a
natural number k such that for any a ∈ A there is λ(a) ∈ Λ with
ρ(a, λ(a)) ≤ γ and #{a ∈ A : λ(a) = λ} ≤ k for any λ ∈ Λ. Then,
A is a Blaschke sequence and for any δ > 0, there is a constant C =
C(γ, δ, k) > 0 such that∑

a∈A:ρ(a,z)>δ

log

∣∣∣∣ a− z1− az

∣∣∣∣−1

≤ CHΛ(z), z ∈ D.

Proof. Since ρ(a, z) > δ, there is a constant C1 = C1(δ) > 0 such that

log

∣∣∣∣ a− z1− az

∣∣∣∣−1

≤ C1

(
1−

∣∣∣∣ a− z1− az

∣∣∣∣2
)

= C1
(1− |a|2)(1− |z|2)

|1− az|2
.

Observe that since ρ(a, λ(a)) ≤ γ, there is a constant C2 = C2(γ) > 0
such that ∫

I(λ(a))

1− |z|2

|ξ − z|2
|dξ| ≥ C2

(1− |a|2)(1− |z|2)

|1− az|2
.

Here I(λ(a)) = {ξ ∈ ∂D : |ξ−λ(a)/|λ(a)|| ≤ 1−|λ(a)|} is the Privalov
shadow of λ(a). We add up these inequalities and, since any λ ∈ Λ will
be repeated at most k times, we get the result. �

A sequence A = {ak} of points in D is called separated if η(A) =
inf{ρ(a1, a2) : a1, a2 ∈ A, a1 6= a2} > 0. The number η(A) is called the
separation constant of A.

Corollary 1. Let Λ be a Blaschke sequence and let A be a separated
sequence of points in D with separation constant η = η(A). Assume that
there exists 0 < γ < 1 such that for any a ∈ A there is λ(a) ∈ Λ with
ρ(a, λ(a)) ≤ γ. Then, A is a Blaschke sequence and for any 0 < δ < 1,
there is a constant C = C(η, γ, δ) > 0 such that∑

a∈A:ρ(a,z)>δ

log

∣∣∣∣ a− z1− az

∣∣∣∣−1

≤ CHΛ(z), z ∈ D.

Proof. Since A is a separated sequence, there exists a constant k =
k(γ, η) > 0 such that #{a ∈ A : λ(a) = λ} ≤ k. Then, the result
follows from Lemma 2. �

We are now ready to prove Theorem 1.
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Proof of Theorem 1. (a) We first show that there exists a universal
constant C > 0 such that for any f ∈ H∞, ||f ||∞ ≤ 1 satisfying (5),
there exists H1 = H1(f,B) ∈ Har+(D) such that

(7) − log(|B(z)|+ |f(z)|) ≤ H1(z), z ∈ D.

By Lemma 1, one only needs to check (7) for points z ∈ D with
ρ(z,Λ) ≤ 1

2
. Therefore, fix z ∈ D and λk ∈ Λ with ρ(z, λk) ≤ 1

2
. As-

sume that ρ(z, λk) ≤ e−H(z). By the Schwarz Lemma, ρ(f(z), f(λk)) ≤
e−H(z). Now, the inequalities

e−H(z) ≥ ρ(f(z), f(λk)) ≥
|f(λk)| − |f(z)|
1− |f(z)||f(λk)|

yield

|f(z)| ≥ |f(λk)| − e−H(z)

1− e−H(z)|f(λk)|
.

Let C > 0 be a sufficiently small universal constant to be fixed later.
Then, the assumption (5) gives

|f(z)| ≥ e−CH(λk) − e−H(z)

1− e−H(z)e−CH(λk)
.

By Harnack’s inequality, H(z) and H(λk) are comparable. Hence we
can choose a sufficiently small universal constant C > 0 such that

|f(z)| ≥ 1

2
e−CH(z).

Hence, − log |f | has a harmonic majorant on the set {z ∈ D :
ρ(z,Λ) ≤ e−H(z)}. By assumption, − log |B| has a harmonic majorant
on the set {z ∈ D : ρ(z,Λ) ≥ e−H(z)} and (7) follows. Now, apply the
Corona Theorem for the Nevanlinna class to obtain functions g, h ∈ N
such that fg = 1 +Bh.

(b) Consider now the set Λ̃ = {z ∈ D : ρ(z,Λ) ≤ 1/2} and the family
F of dyadic Whitney squares Q such that Q ∩ Λ̃ 6= ∅. Consider the
set E = {z ∈ D : ρ(z,Λ) < e−H(z)}. Observe that there is a universal
constant C1 > 0 such that HΛ(z) > C1N(Q) for any z ∈ Q and any
dyadic Whitney square Q. Hence H(z) ≥ C0C1N(Q) for any z ∈ Q and
if the constant C0 is taken sufficiently large, we deduce that Q\E 6= ∅.
For each Q ∈ F , pick a(Q) ∈ Q\E such that

log |B(a(Q))|−1 = max{log |B(z)|−1 : z ∈ Q\E}.
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Consider the sequence A = {a(Q) : Q ∈ F} and pick a positive
number δ such that for any z ∈ D, the hyperbolic disc D(z, δ) intersects
no more than four distinct dyadic Whitney squares. Since A is the
union of at most four δ-separated sequences, Corollary 1 gives that A
is a Blaschke sequence. Moreover, if BA denotes the Blaschke product
with zero set A, there exists a constant C2 = C2(δ) > 0 such that

(8) log |BA(z)|−1 ≤ C2HΛ(z) + 4 log ρ(z, A)−1, z ∈ D.
Observe that since δ > 0 is a universal constant, so is C2. Fix

λk ∈ Λ. Let Qk be the Whitney square containing λk, and ak ∈ A such
that ρ(λk, ak) = ρ(λk, A). Hence, either ak ∈ Qk or ak belongs to a
Whitney square Q with Q ∩ Qk 6= ∅. Let H ∈ Har+(D), H ≥ C0HΛ.
Harnack’s inequality gives that there exists a universal constant C3 > 0
such that C3H(λk) ≥ H(ak). Since ρ(ak, λk) ≥ e−H(ak), we deduce that
ρ(ak, λk) ≥ e−C3H(λk). Using (8) we deduce that

log |BA(λk)|−1 ≤ C2HΛ(λk) + 4C3H(λk).

By assumption, H ≥ C0HΛ and we deduce that

log |BA(λk)|−1 ≤ (C2C
−1
0 + 4C3)H(λk),

that is, the function f = BA satisfies estimate (5) with the constant
C = C2C

−1
0 + 4C3. By assumption, there exist g, h ∈ N such that

Bg + BAh = 1. We deduce that there exists H1 ∈ Har+(D) such that
− log |B(ak)| ≤ H1(ak), k = 1, 2, . . .. Hence, − log |B| has a harmonic
majorant in Ω =

⋃
Q∈F(Q\E). Since, by Lemma 1, − log |B| has a

harmonic majorant on D\(
⋃
Q∈F Q), the proof is complete.

�
The proof of part (a) can be easily adapted to show the following

more general fact:

Corollary 2. Let B be a Blaschke product with zero set Λ = {λk}.
Then there exists a universal constant C > 0 such that the follow-
ing statement holds. Let H ∈ Har+(D) and assume that the function
− log |B| has a harmonic majorant on the set {z ∈ D : ρ(z,Λ) ≥
e−H(z)}. Then for any f1, . . . , fn ∈ H∞, ||fi||∞ ≤ 1, i = 1, . . . , n, such
that

n∑
i=1

|fi(λk)| > e−CH(λk), k = 1, 2, . . . ,

there exist g1, . . . , gn, h ∈ N such that
∑

i figi = 1 +Bh.

On the other hand, the n-tuple analogue of part (b) trivially holds,
because the hypothesis for n ≥ 1 implies the hypothesis for n = 1
which is the one used in Theorem 1.
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The proof of Theorem 2 uses the following auxiliary result.

Lemma 3. Let {Qj} be an infinite sequence of different dyadic Whitney
squares and let {Mj} be a sequence of positive numbers with limj→∞Mj =
∞. Then there exists H ∈ Har+(D) and a constant C0 > 0 such that
Hj = sup{H(z) : z ∈ Qj} satisfies Hj ≤ Mj + C0 for any j = 1, 2, . . .,
and lim supj→∞Hj =∞.

Proof. For any Whitney cube Q, let us set

(9) hQ(z) :=

∫
I(Q)

1− |z|2

|eiθ − z|2
dθ

2π
,

where I(Q) is the radial projection of Q onto ∂D.
Note that there exists an absolute constant c > 0 such that the

function hQ verifies the following properties:
(10)

0 ≤ hQ(z) ≤ 1,∀z ∈ D; hQ(z) ≤ l(Q)

c(1− |z|)
; 0 < c ≤ hQ(z),∀z ∈ Q.

We will construct inductively a sequence of coefficients µm and an
increasing sequence of integers (jm) so that H :=

∑
m µmhQjm

satisfies
the conclusion of the Lemma. There is no loss of generality in assuming
that l(Qj+1) ≤ l(Qj) for all j. Let H0 := 0. For any k > 0, let us denote

H(k) :=
∑k

m=1 µmhQjm
. Let H

(k)
j := supQj

H(k). We want to prove by
induction on k that:

(11) H
(k)
j ≤Mj +

k∑
m=1

2−m/2, j = 1, 2, . . . .

In particular, this will show that supkH
(k) will be bounded on any

square Qj, therefore H :=
∑∞

j=1 µmhQjm
will be well defined and will

satisfy Hj ≤Mj + C0, for all j ∈ Z+.
For k = 0, the property (11) is vacuously true. Suppose it is verified

for k. Since H(k) is bounded and Mj →∞, there exists R ∈ (0, l(Qjk))

such that for any j ∈ Z+ such that l(Qj) ≤ R, then Mj − H
(k)
j ≥

2(k+1)/2. Now there exists R′ < R such that for all z such that |z| ≤
1−R/2 (in particular, for z ∈ Qj with j ≤ jk) and for all Q such that
l(Q) ≤ R′, hQ(z) < 2−k−1. Pick jk+1 to be the smallest j such that
l(Qj) ≤ R′, and µk+1 := 2(k+1)/2. Then for all j such that l(Qj) ≥ R,
by the induction hypothesis,

H
(k+1)
j = H

(k)
j + µk+1hQjk+1

≤ H
(k)
j + 2(k+1)/22−k−1 ≤Mj +

k+1∑
m=1

2−m/2.



12 ARTUR NICOLAU AND PASCAL J. THOMAS

On the other hand, for all j such that l(Qj) ≤ R,

H
(k+1)
j = H

(k)
j + µk+1hQjk+1

≤ H
(k)
j + µk+1 = H

(k)
j + 2(k+1)/2 ≤Mj,

by the choice of R. The inductive condition (11) is verified. Finally,
notice that for z ∈ Qj so that j = jm for some m,

H(z) ≥ µmhQjm
≥ c2m/2 →∞ as m→∞.

�

Proof of Theorem 2. (a) For each dyadic Whitney square Q let N(Q) =
#(Q∩Λ) and let U(Q) be the collection of at most nine dyadic Whitney
squares Q1 such that Q1∩Q 6= ∅. Observe that there exists an absolute
constant δ > 0 such that

δ ≤ ρ(Q,D \ U(Q)) := inf{ρ(z, w) : z ∈ Q,w ∈ D \ U(Q)}
for any dyadic Whitney square Q. Consider also M(Q) = #(U(Q) ∩
Λ). Let {Qj} be the collection of dyadic Whitney squares such that
M(Qj) > 0. The Blaschke condition gives that∑

M(Qj)l(Qj) <∞.

Then there exists a sequence {M̃j}, M̃j ≥M(Qj) for any j ≥ 1, with

lim
j→∞

M̃j

/
M(Qj) = +∞ and

∑
M̃jl(Qj) <∞.

Lemma 3 provides H ∈ Har+(D) such that H(z) ≤ M̃j

/
M(Qj) +

C0 for any z ∈ Qj and lim supj→∞ sup{H(z) : z ∈ Qj} = +∞.
Since the sequence Λ is contained in ∪Qj, Harnack’s inequality gives
that lim supk→∞H(λk) = +∞. We will now show that the function
− log |B| has a harmonic majorant on the set {z ∈ D : ρ(z,Λ) ≥
e−H(z)}. Since ρ(Λ,D\∪Qj) ≥ δ > 0, Lemma 1 gives that − log |B| has
a harmonic majorant on D\∪Qj. Now fix z ∈ Qj with ρ(z,Λ) ≥ e−H(z)

and split Λ = Λ1 ∪ Λ2, where Λ1 = {λk : ρ(λk, z) ≤ δ} and Λ2 = {λk :
ρ(λk, z) > δ}. By Lemma 1, there exists a constant C = C(δ) > 0 such
that ∑

λk∈Λ2

log ρ(λk, z)
−1 ≤ CHΛ(z).

On the other hand, since ρ(λk, z) ≥ e−H(z), we have∑
λk∈Λ1

log ρ(λk, z)
−1 ≤ H(z)M(Qj) ≤ M̃j + C0M(Qj) ≤ (1 + C0)M̃j.
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Consider the harmonic function H1 :=
∑

j M̃jhQj
, where hQ is as in

(9). By the last estimate in (10), H1(z) ≥ cM̃j for any z ∈ Qj. We
deduce that

log |B(z)|−1 ≤ CHΛ(z) + c−1(1 + C0)H1(z),

and this finishes the proof of part (a).
To prove part (b), let C be as in Theorem 1 (a), and H̃ a function

as in part (a). If we set H := CH̃, applying Theorem 1 (a) yields our
result.

�

A Family of Blaschke products
We now present a family of Blaschke products B for which the family

H(B) can be easily described. Let Λ = {λk} be a separated sequence
in D, that is, assume η = inf{ρ(λk, λj) : k 6= j} > 0. Let N = {Nj} be
a sequence of positive integers tending to infinity such that∑

Nj(1− |λj|) <∞.

Consider the Blaschke product B(Λ, N) defined as

(12) B(Λ, N)(z) =
∏
j

(
λj
|λj|

λj − z
1− λjz

)Nj

, z ∈ D.

Consider the pairwise disjoint pseudohyperbolic disks Dj = {z ∈ D :
ρ(z, λj) ≤ η/4}, j = 1, 2, . . .. By Lemma 1, − log |B(Λ, N)| has a
harmonic majorant on D\ ∪j Dj. Again, by Lemma 1, there exists a
constant C > 0 and a function H1 ∈ Har+(D) such that∑

k 6=j

log ρ(z, ak)
−Nk ≤ CH1(z), z ∈ Dj, j = 1, 2, . . . .

Fix H ∈ Har+(D). Then, − log |B(Λ, N)| has a harmonic majorant on
{z ∈ D : ρ(z,Λ) ≥ e−H(z)} if and only if there exists H1 ∈ Har+(D)
such that

Nj log ρ(z, aj)
−1 ≤ H1(aj), j = 1, 2, . . . ,

whenever ρ(z, aj) ≥ e−H(z). Hence, − log |B(Λ, N)| has a harmonic
majorant on {z ∈ D : ρ(z,Λ) ≥ e−H(z)} if and only if the mapping aj →
NjH(aj) has a harmonic majorant. Hence for the Blaschke products
B = B(Λ, N) we have H ∈ H(B) if and only H satisfies the sufficient
condition given in Theorem 5.
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3. Theorems 3,4 and 5

We start with the proof of part (a) of Theorem 3.

Proof of Theorem 3 (a). Let aj ∈ D with

lim
j→∞

H1(aj)

H2(aj)
=∞.

Considering a subsequence if necessary, we can assume that ρ(aj, ak) ≥
1/2 if k 6= j. By Harnack’s inequality H1(aj)(1−|aj|) ≤ 2H1(0) for any
j. Hence limj→∞(1−|aj|)H2(aj) = 0. Pick a sequence {Nj} of positive
integers such that limj→∞Nj(1 − |aj|)H2(aj) = 0 and limj→∞Nj(1 −
|aj|)H1(aj) = +∞. Considering again a subsequence of {aj} if neces-
sary, we can assume that

(13)
∑

Nj(1− |aj|)H2(aj) <∞.

Now let B be the Blaschke product defined by

B(z) =
∏
j

aj
|aj|

(
aj − z
1− ajz

)Nj

, z ∈ D.

As discussed at the end of the previous section, for any H ∈ Har+(D),
the function − log |B| has a harmonic majorant on the set {z ∈ D :
ρ(z, {aj}) ≥ e−H(z)} if and only if the mapping F (H) defined by
F (H)(aj) = NjH(aj), j ≥ 1, and F (H)(z) = 0 if z /∈ {aj}, has a
harmonic majorant. Since limj→∞NjH1(aj)(1− |aj|) = +∞, the map-
ping F (H1) can not have a harmonic majorant. Consider the function

H3(z) =
∑
j

NjH2(aj)hQj
,

where Qj is the dyadic Whitney square containing aj. Here hQ is the
function defined in (9). Since l(Qj) is comparable to 1−|aj|, the above
sum converges by (13). Observe that last estimate of (10) gives that
there exists an absolute constant C1 > 0 such that

H3(aj) ≥ C1NjH2(aj), j = 1, 2, . . .

Hence F (H2) has a harmonic majorant. �

Proof of Theorem 3 (b). By Harnack’s inequality, there is a constant
γ ∈ (0, 1) such that for any dyadic Whitney square Q, any positive har-
monic function H, any z, z′ ∈ Q, we have γH(z′) ≤ H(z) ≤ γ−1H(z′).
Pick η ∈ (0, η0).

Given an unbounded positive harmonic function H, we can choose a
sequence of dyadic Whitney squares {Qj} such that
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(1) l(Qj+1) < l(Qj), j ∈ Z+, and
(2) If zj denotes the center of Qj,

H(zj)→∞ and H(zj) ≤
γ

2(1 + η)
log

1

l(Qj)
.

To prove that we can satisfy the second condition, in the case where

max
z:|z|=1−l(Qj)

H(z) ≤ γ

2(1 + η)
log

1

l(Qj)
,

it is enough to choose Qj to be the dyadic Whitney square where the
maximum is attained; otherwise, we know that the average value of H
on the circle {z ∈ C : |z| = 1 − l(Qj)} is H(0), so for j large enough
we can find a dyadic square Qj where

(14)
γ3

2(1 + η)
log

1

l(Qj)
≤ H(zj) ≤

γ2

2(1 + η)
log

1

l(Qj)
.

Observe that since H is unbounded we have limj→∞H(zj) = ∞. We
shall need to take subsequences of {Qj}, while keeping the same name
for the sequence. Choose a sequence Rj → 0 such that

(15) lim
j→∞

logR−1
j

H(zj)
= 0.

Observe that limj→∞ l(Qj)
2H(zj) log 1

Rj
= 0. Indeed, for j large enough,

we have

0 < l(Qj)
2H(zj) log

1

Rj

≤ l(Qj)
2H(zj)

2 ≤
(
l(Qj)

γ2

2(1 + η)
log

1

l(Qj)

)2

.

Now, with [·] denoting the integer part of a real number, define the
sequence of integers

(16) Nj :=

 1

l(Qj)
(
H(zj) log 1

Rj

)1/2

 .
For z0 ∈ D and t > 0, let Dρ(z0, t) = {z ∈ D : ρ(z, z0) ≤ t} denote

the pseudohyperbolic disk of radius t centered at z0. We define the
sequence Λ as the union of finite sequences Λ(k) ⊂ Qk. For each k, Λ(k)

is the union of

(1) the point zk with multiplicity Nk and
(2) a maximal subset of points λj = λj(k) contained in the pseudo-

hyperbolic disc Dρ(zk, Rk) such that for any i 6= j, ρ(λi, λj) ≥
e−(1+η)H(zk).
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Note that we are adding to the multiple zero zk a set of points λj with
a cardinality on the order of R2

ke
2(1+η)H(zk), which tends to infinity by

(15). We proceed to take a subsequence of Λ (still denoted by the same
letter) that will make it, among other things, a Blaschke sequence.

First observe that

(17) lim
j→∞

l(Qj)Nj log
1

Rj

= lim
j→∞

(
log 1

Rj

H(zj)

)1/2

= 0,

and

(18) lim
j→∞

l(Qj)NjH(zj) = lim
j→∞

(
H(zj)

log 1
Rj

)1/2

=∞.

On the other hand, applying the second inequality in (14) and (15),
one gets

(19) lim
j→∞

(
l(Qj)e

2(1+η)H(zj)R2
j log

1

Rj

)
= 0.

We now complete the definition of Λ by restricting the indexes k such
that ρ(Qk, Qj) ≥ 1/2 if k 6= j and taking a subsequence so that

(20)
∞∑
j=1

l(Qj)

(
Nj log

1

Rj

+ e2(1+η)H(zj)R2
j log

1

Rj

)
<∞,

which is possible by (17) and (19). Let Λ = ∪Λ(k) be the resulting
sequence.

Observe that an immediate consequence of this is that Λ is now a
Blaschke sequence, since

∞∑
j=1

l(Qj)
(
Nj + e2(1+η)H(zj)R2

j

)
<∞.

Claim 1. For k large enough,

{ζ ∈ Qk : ρ(ζ,Λ) ≥ e−H(ζ)} ∩Dρ(zk, Rk) = ∅.

Proof. For any ζ ∈ D(zk, Rk), there is a λj such that ρ(ζ, λj) <
e−(1+η)H(zk). Since limk→∞Rk = 0, by Harnack’s inequality, there is
a number γk < 1 with limk→∞ γk = 1, such that γkH(zk) ≤ H(z) ≤
γ−1
k H(zk) for any z ∈ D(zk, Rk). Then, for k large enough,

log ρ(ζ, λj) < −(1 + η)H(zk) ≤ −γ−1
k H(zk) ≤ −H(ζ).

�
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We henceforth restrict attention to the tail of the sequence where
the conclusion of Claim 1 holds.

Claim 2. H ∈ H(B).

Proof. Since ρ(Qk, Qj) ≥ 1/2 if k 6= j, it is enough to majorize, on each
Qk, the part of the product corresponding to the local zeros, that is,
to find H1 ∈ Har+(D) such that∑

λ∈Λ∩Qk

log
1

ρ(ζ, λ)
≤ H1(zk), ζ ∈ Qk, k = 1, 2, . . . ,

if ρ(ζ,Λ) ≥ e−H(ζ). By the previous Claim this only occurs when
ζ /∈ Dρ(zk, Rk). Then the above sum breaks into two terms: those
corresponding to λ = zk can be estimated by −Nk logRk, and those
admit a harmonic majorant because by (20),

∞∑
j=1

l(Qj)Nj log
1

Rj

<∞.

The second term corresponds to the points λ = λj ∈ Λ(k) \ {zk}. After
applying an automorphism of the disc mapping λk to 0, the correspond-
ing sum ∑

λj∈Λ(k)\{zk}

log
1

ρ(ζ, λ)

reduces to a Riemann sum for the area integral of log 1
|z| , with disks of

(Euclidean) radius e−(1+η)H(zk). The integral is convergent, and after
an elementary computation, one finds that the second term is bounded
by a fixed multiple of e2(1+η)H(zk)R2

k log 1
Rk

. Again by (20), this term
also admits a harmonic majorant. �

We now want to show that − log |B| has no harmonic majorant on
the set {z : ρ(z,Λ) > e−(1+η0)H(z)}.

Claim 3. For k large enough,

{ζ ∈ Qk : ρ(ζ,Λ) ≥ e−(1+η0)H(ζ)} ∩D(zk, e
−(1+η)H(zk)) 6= ∅.

Proof. The choice of the points {λj} gives that there is a point ζ such
that ρ(zk, ζ) = e−(1+η)H(zk) and for any λj ∈ Λ(k) \ {zk}, we have
ρ(ζ, λj) ≥ 1

2
e−(1+η)H(zk). Therefore, since η < η0, for k large enough,

log ρ(ζ,Λ) ≥ − log 2− (1 + η)H(zk) ≥ − log 2− γ−1
k (1 + η)H(ζ)

≥ −(1 + η0)H(ζ).

�
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Let ζ be a point in the non empty intersection given by Claim 3.
Since B has a zero at zk of multiplicity Nk, ,

log
1

|B(ζ)|
≥ Nk(1 + η)H(zk)

and (18) implies that this cannot admit a harmonic majorant, because
any majorizing function would have to grow faster than 1/l(Qk) at the
points zk. �

The proof of Theorem 4 uses the following variant of Lemma 1.1 of
[8].

Lemma 4. There exists a universal constant C0 ≥ 1 such that the
following statement holds. Let Λ be a Blaschke sequence and H ∈
Har+(D). Let z ∈ D with eH(z) ≥ max{C0,#{λ ∈ Λ : ρ(λ, z) ≤ 1

2
}}.

Then there exists z̃ ∈ D with ρ(z̃,Λ) ≥ e−H(z̃) and ρ(z̃, z) ≤ e−H(z)/C0.

Proof. We can assume that H(z) ≥ 100. A calculation shows that
there exists a constant C1 > 1 such that

C−1
1 t2(1− |z|)2 ≤ Area Dρ(z, t) ≤ C1t

2(1− |z|)2.

Using these estimates and the fact that H(z) ≥ 100, one can show that
there exists a sufficiently large universal constant C0 > 0 such that
the pseudohyperbolic disk Dρ(z, e

−H(z)/C0) contains more than e3H(z)/2

pairwise disjoint pseudohyperbolic disks Dj of pseudohyperbolic radius
e−H(zj). Here zj denotes the center ofDj. Since eH(z) ≥ #(Λ∩Dρ(z,

1
2
)),

there exists at least one Dj with Dj ∩ Λ = ∅ and we can take as z̃ the
center of Dj. �

Proof of Theorem 4. Let C0 ≥ 1 be the constant appearing in Lemma
4. We can assume C > 1. We will show that there exists a constant
C1 = C1(C) > 0 such that, for any z ∈ D with C−1

0 ≥ ρ(z,Λ) ≥ e−CH(z)

there exists z̃ ∈ D with ρ(z̃,Λ) ≥ e−H(z̃) and

(21) log |B(z)|−1 ≤ C1(log |B(z̃)|−1 +HΛ(z̃)).

Fix z ∈ D with C−1
0 ≥ ρ(z,Λ) ≥ e−CH(z). Apply Lemma 4 to find z̃ ∈

D with ρ(z̃, z) ≤ e−H(z)/C0 such that ρ(z̃,Λ) ≥ e−H(z̃). Let Λ = {λk}
and split Λ = Λ1 ∪ Λ2 ∪ Λ3 where Λ1 = {λk : ρ(z, λk) ≤ e−H(z)/2C0},
Λ2 = {λk : e−H(z)/2C0 < ρ(z, λk) ≤ 1/2} and Λ3 = {λk : ρ(z, λk) ≥
1/2}. By lemma 1, there exists a constant C2 > 0 such that∑

λk∈Λ3

log ρ(z, λk)
−1 ≤ C2HΛ(z).
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If λk ∈ Λ2, we have ρ(z̃, λk) ≤ ρ(z, z̃) + ρ(z, λk) ≤ 2ρ(z, λk). Using the
obvious estimate 2x ≤ x1/2, which holds for 0 ≤ x ≤ 1/2, we deduce
ρ(z̃, λk) ≤ ρ(z, λk)

1/2. Hence,∑
λk∈Λ2

log ρ(z, λk)
−1 ≤ 2

∑
λk∈Λ2

log ρ(z̃, λk)
−1 ≤ 2 log |B(z̃)|−1.

Finally, since ρ(z,Λ) ≥ e−CH(z) we have that∑
λk∈Λ1

log ρ(z, λk)
−1 ≤ CH(z)#Λ1.

Observe that if λk ∈ Λ1, then ρ(z̃, λk) ≤ ρ(z, z̃)+ρ(z, λk) ≤ 2e−H(z)/2C0

and we deduce that there exists a universal constant C3 > 0 such that

log |B(z̃)|−1 ≥
∑
λk∈Λ1

log ρ(z̃, λk)
−1 ≥ C3

H(z)

C0

#Λ1.

Hence, there exists a constant C4 > 0 such that∑
λk∈Λ1

log ρ(z, λk)
−1 ≤ C4 log |B(z̃)|−1.

Collecting these estimates one finds a constant C5 > 0 such that

log |B(z)|−1 ≤ C5(log |B(z̃)|−1 +HΛ(z)).

Since by Harnack’s inequality HΛ(z) and HΛ(z̃) are comparable, this
proves (21). Now (21), the assumption and another application of
Harnack’s inequality, give that − log |B| has a harmonic majorant on
the set {z ∈ D : C−1

0 ≥ ρ(z,Λ) ≥ e−CH(z)}. By Lemma 1, there exists
a constant C6 > 0 such that − log |B(z)| ≤ C6HΛ(z) if ρ(z,Λ) ≥ C−1

0 .
This completes the proof. �

Proof of Theorem 5. Fix z ∈ D with ρ(z,Λ) ≥ e−H(z). Consider Λ1 =
{λk : ρ(λk, z) ≤ 1/2} and Λ2 = {λk : ρ(λk, z) > 1/2}. By Lemma 1,
there exists an absolute constant C1 > 0 such that∑

λk∈Λ2

log ρ(λk, z)
−1 ≤ C1HΛ(z).

On the other hand, since ρ(z,Λ) ≥ e−H(z), we have∑
λk∈Λ1

log ρ(λk, z)
−1 ≤ H(z)#Λ1.
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Let Q be the dyadic Whitney square containing z. Since there exists
a universal constant 0 < C2 < 1 such that each point λk ∈ Λ1 satis-
fies ρ(λk, z(Q)) ≤ C2, we deduce that there exists a constant C3 > 0
such that H(z)#Λ1 ≤ C3H1(z). Hence, C1HΛ + C3H1 is a harmonic
majorant of − log |B| on the set {z ∈ D : ρ(z,Λ) ≥ e−H(z)}. �

Corollary 3. Let B be a Blaschke product with zero set Λ. Let H ∈
Har+(D) such that ∑

N(Q)H(z(Q))l(Q) <∞,

where the sum is taken over all dyadic Whitney squares Q such that
N(Q) > 0. Then, − log |B| has a harmonic majorant on the set {z ∈
D : ρ(z,Λ) ≥ e−H(z)}.

Proof of Corollary 2. Consider the harmonic function H1 ∈ Har+(D)
defined by

H1(z) =
∑

N(Q)H(z(Q))hQ, z ∈ D,
where the sum is taken over all dyadic Whitney squares Q with N(Q) >
0. Observe that by (10), there exists a positive constant C > 0 such
that H1(z(Q)) ≥ CN(Q)H(z(Q)) for any Q with N(Q) > 0. Now the
result follows from Theorem 5. �

4. Smirnov quotient algebras

A quasi-bounded harmonic function is a harmonic function in the
unit disc which is the Poisson integral of an integrable function in the
unit circle. We denote by QB+(D) the cone of positive quasibounded
harmonic functions in D. An analytic function f in D is in the Smirnov
class N+ if the function log+ |f | has a quasi-bounded harmonic majo-
rant in D. A function in the Nevanlinna class is in the Smirnov class if
and only if its canonical inner-outer factorization has no singular func-
tion in the denominator. Hence the Smirnov class N+ is an algebra
where the invertible functions are exactly the outer functions. Interpo-
lating sequences inN+ were described as those sequences {zn} of points
in D for which there exists H ∈ QB+(D) such that condition (2) holds.
See Theorem 1.3 of [7]. Mortini’s proved in [9, Satz 4] the following
Corona type Theorem in the Smirnov class. Given f1, . . . , fn ∈ N+,
the Bézout equation f1g1 + · · ·+ fngn ≡ 1 can be solved with functions
g1, . . . , gn ∈ N+ if and only if there exists H ∈ QB+(D) such that

n∑
i=1

|fi(z)| ≥ e−H(z), z ∈ D.
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Given an inner function I with zero set Λ = {λk} we want to study
invertibility in the quotient algebra N+/IN+. Let f ∈ N+ and assume
that the class [f ] is invertible in N+

/
IN+, that is, there exist g, h ∈

N+ such that fg = 1 + Ih. Then there exists H ∈ QB+(D) such that

(22) |f(λk)| ≥ e−H(λk), k = 1, 2, . . . .

We are interested on studying the converse statement. Observe that
if I had a non constant singular inner factor, then for any h ∈ N+

there would exist ξ ∈ ∂D such that I(z)h(z) would tend to zero when z
approaches ξ non-tangentially. Hence if I has a non constant singular
inner factor, we can not expect that condition (22) implies that [f ] is
invertible in N+

/
IN+. When I is a Blaschke product, we have the

following analogue of Theorem 1.

Theorem 6. Let B be a Blaschke product with zero set Λ = {λk}.
(a) There exists a universal constant C > 0 such that the following

statement holds. Let H ∈ QB+(D) and assume that the function
− log |B| has a quasibounded harmonic majorant on the set {z ∈
D : ρ(z,Λ) ≥ e−H(z)}. Then for any f ∈ H∞, ||f ||∞ ≤ 1 such
that

|f(λk)| > e−CH(λk), k = 1, 2, . . . ,

there exist g, h ∈ N+ such that fg = 1 +Bh.
(b) There exist universal constants C0 > 0 and C > 0 such that the

following statement holds. Let H ∈ QB+(D) with H ≥ C0HΛ.
Assume that for any f ∈ H∞, ||f ||∞ ≤ 1 such that

|f(λk)| > e−CH(λk), k = 1, 2, . . . ,

there exist g, h ∈ N+ such that fg = 1+Bh. Then, the function
− log |B| has a quasibounded harmonic majorant on the set {z ∈
D : ρ(z,Λ) ≥ e−H(z)}.

Hence, as in the case of the Nevanlinna class, the invertibility prob-
lem in N+/BN+ reduces to study the set of functions H ∈ QB+(D)
such that − log |B| has a quasibounded harmonic majorant on the set
{z ∈ D : ρ(z,Λ) ≥ e−H(z)}. So, given an inner function I with zero set
Λ, it is natural to consider the set HQB(I) of functions H ∈ QB+(D)
such that − log |I| has a quasibounded harmonic majorant on the set
{z ∈ D : ρ(z,Λ) ≥ e−H(z)}. Our next result says that if I has a
non constant singular inner factor, then HQB(I) does not contain large
functions.

Lemma 5. Let I be an inner function with zero set Λ and non constant
singular inner factor S. Then for any H ∈ Har+(D) with H > HΛ,
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the function − log |I| has no quasibounded harmonic majorant on the
set {z ∈ D : ρ(z,Λ) ≥ e−H(z)}.

Proof. We argue by contradiction. So assume that H,H1 are quasi-
bounded positive harmonic functions such that

(23) − log |I(z)| ≤ H1(z) if ρ(z,Λ) ≥ e−H(z)

For any z ∈ D we apply Lemma 1.1 of [8] to get z̃ ∈ D with ρ(z, z̃) <
e−H(z)/10 and ρ(z̃,Λ) > e−H(z). Hence (23) gives

− log |S(z̃)| ≤ H1(z̃).

By Harnack’s inequality, there exists an absolute constant C > 0 such
that − log |S(z)| ≤ CH1(z). Since − log |S| is the Poisson integral of a
non trivial singular measure on the unit circle, this is a contradiction.

�

If I has a non constant singular inner factor and finitely many or
very sparse zeros, the set HQB(I) is empty. On the other if I satisfies
the WEP property then HQB(I) contains the constants. When I is a
Blaschke product, HQB(I) is the whole cone of positive quasiharmonic
functions if and only if the zeros of I are a finite union of interpolating
sequences in the Smirnov class. See [8]. We have not explored the
analogues of our Theorems 2-5 for the class HQB(B).
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