
Shortest paths algorithms in weighted graphs

Lluís Alsedà
Departament de Matemàtiques

Universitat Autònoma de Barcelona
http://www.mat.uab.cat/~alseda

Version 3.0 (May, 2023)

Subject to a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Internacional license
(http://creativecommons.org/licenses/by-nc-sa/4.0/)

Table of Contents

Shortest paths in weighted graphs . 1

The routing problem statement: Single-source shortest paths 14

The single-source shortest paths problem for unweighted graphs:
Breadth-first search . 15

Dijkstra’s Algorithm . 16

A? Algorithm . 69

Shortest paths in weighted graphs

Contents

1 Reminder of basic graph definitions
2 Concatenation of paths
3 Weighted graphs
4 Basic definitions on weighted graphs
5 Shortest paths
6 Shortest paths do not always exist
7 Basic properties of shortest paths: Optimality Principle
8 Basic properties of shortest paths: Triangle Inequality

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 1/90

Reminder of basic graph definitions

1 A (combinatorial) graph is a pair G = (V ,E) consisting of a set
of vertices or nodes V , and a subset E ⊂ V × V of the Cartesian
product V × V .

In the case of an undirected graph the elements of E are called
edges and the pairs (a, b) ∈ E are considered unordered (that is,
there is an edge between a ∈ V and b ∈ V when (a, b) ∈ E or
(b, a) ∈ E — i.e., the pairs (a, b) and (b, a) are identified).

In the case of a directed or oriented graph the elements of E are
called arrows and the pairs (a, b) ∈ E are considered with order
(that is, there is an arrow from a ∈ V to b ∈ V if and only if
(a, b) ∈ E , and the pairs (a, b) and (b, a) are not identified).

1http://en.wikipedia.org/wiki/Graph_theory
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 2/90

Reminder of basic graph definitions

The order of a graph is the number of vertices, i.e. the
cardinal of the set V : |V |.
The size of a graph is the number of edges or arrows, i.e. the
cardinal of the set E : |E |.
The degree or valence of a vertex is the number of edges
reaching or leaving the vertex (if an edge connects a vertex
with itself it counts twice). For directed graphs,

the in-degree of a vertex is the number of edges that arrive to
the vertex, and
the out-degree of a vertex is the number of edges coming out
of the vertex.

The vertices that belong to a single edge (i.e. the vertices of
valence 1) are called terminal or leaf vertices.
A vertex with valence larger than 2 is called branching.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 3/90

Reminder of basic graph definitions: paths and loops

A path is a linear sequence of connecting edges. When the
graph is oriented, the end of an arrow must be the beginning
of the next one.

The length of a path is the number of its edges or arrows.

A loop or circuit is a closed path. That is, the end of the last
edge coincides with the beginning of the first one.

A path is called acyclic if it does not contain any circuit or
loop. Observe that a path is cyclic if and only if it has
repeated vertices. Equivalently, a path is acyclic if and only if
every vertex appears at most once in the path.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 4/90

Basic graph definitions: Concatenation of paths
Given two paths

α =
(
a0 −→ a1 −→ · · · −→ an

)
of length n, and

β =
(
b0 −→ b1 −→ · · · −→ bm

)
of length m,

such that an = b0, we define the concatenation of α and β, denoted by
αβ, as the path

αβ :=
(
a0 → a1 → · · · → an → b1 → · · · → bm

)
.

Observation: The length of αβ is n + m, i.e. the addition of lengths of
α and β.
Assume that α is a loop (i.e. an = a0). In what follows we will use the
following notation:

α1 := α,

α2 := αα,

α3 := α2α = ααα,

· · · · · · ,

αn :=
(
αn−1

)
α =

n times︷ ︸︸ ︷
αα · · · α for every n ≥ 2.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 5/90

Weighted graphs

A weighted graph2 or a network is a graph in which a number (the
weight) is assigned to each edge (see the examples in Page 7).
Such weights might represent for example costs, lengths or
capacities, depending on the problem at hand.

Notationally the weight associated to and edge or arrow is usually
written above the edge or the arrow.

Also, we can encompass all the weights of a graph in a single
edge-weight function:

ω : E −−−−−−−−−→ R
a 7−−−−−−−−−→ ω(a)

(x , y) 7−−−−−−−−−→ ω
(
(x , y)

)

2A weighted graph can be both directed and undirected.
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 6/90

Basic definitions on weighted graphs

DB

A

EC

10

3

2

8

2

1 74 9

Example on the edge-weight
function: ω

(
(C ,D)

)
= 8.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 7/90

Basic definitions on weighted graphs
In a weighted graph, the weight of a path
α = v0 −→ v1 −→ · · · −→ vn is defined to be

ω(α) :=
n∑

i=1
ω
(
(vi−1, vi)

)
.

Example (on the weighted graph at the right of Page 7)
Consider the following (weighted) path in the graph:

α = A 10−−−−−→ B 1−−−−→ C 4−−−−→ B 2−−−−→ D 7−−−−→ E .

Then ω(α) = 10 + 1 + 4 + 2 + 7 = 24.

Observation
If αβ is a concatenated path then, clearly,

ω(αβ) = ω(α) + ω(β).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 8/90

Shortest paths
The minimum or optimum weight of a path from a to b is defined
as

σ
(
u, v

)
:= min{ω(α) : α is a path from u to v}.

Convention: σ
(
u, v

)
=∞ if no path from u to v exists.

Important observation (see the example in the next page)
The minimum weight σ

(
u, v

)
of a path may not exist. However,

when it exists it is uniquely defined.

A minimal path from u ∈ V to v ∈ V is any path from u to v with
weight σ

(
u, v

)
(i.e. with minimum weight), whenever the

minimum weight σ
(
u, v

)
exists.

Observation: non-unicity of minimal paths
In general, there might be several minimal paths between a given
pair of vertices.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 9/90

Shortest paths do not always exist
A minimum weight path may not be well defined when there is a negative weight cycle

Consider the weighted graph at the right of Page 7 with ω
(
(C ,B)

)
= 4

replaced by ω
(
(C ,B)

)
= −4. Consider also a family of paths

αn =
(
A −→ B

)(
B −→ C −→ B

)n(B −→ D −→ E
)

with n ≥ 1, similar to the ones from the previous example. Then,
ω
(
αn
)

= ω
(
A −→ B

)
+ ω
((

B −→ C −→ B
)n)+ ω

(
B −→ D −→ E

)

= ω
(
A −→ B −→ D −→ E

)
+ nω

(
B −→ C −→ B

)

= 19− 3n.

The minimum weight σ
(
A,E

)
of a path from A to E is not defined since in the

graph there are such paths of arbitrarily small (negative) weight, because

lim
n→∞

ω
(
αn
)

= lim
n→∞

19− 3n = −∞.

Conclusion
All edge weights must be non-negative or, equivalently, the edge-weight
function ω is a function from E to R+: ω : E −−−−−−−→ R+.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 10/90

More on weighted graphs

In the spirit of the previous page, a weighted graph (V ,E , ω) will
be called

non-negative whenever ω(a) ≥ 0;
positive if ω(a) > 0; and
strongly positive if there exists τ > 0 such that ω(a) ≥ τ

for every edge a ∈ E . Observe that a positive weighted graph is
strongly positive whenever the graph has finite size.

The conclusion of the previous page is that the minimum weight
(and hence the notion of optimal path) is only defined for
non-negative weighted graphs. However, to assure the convergence
of routing algorithms, for the single-source shortest paths problem,
we will require that the graph is strongly positive.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 11/90

Basic properties of shortest paths: Optimality Principle

Theorem (Optimality principle)
Any sub-path of a minimal path is minimal.

Proof
Let αδβ be a minimal (concatenated) path from u to v , where δ is a
sub-path from x to y .
Assume by way of contradiction that δ is not a minimal path from x to y .
Then there exists a path µx ,y from x to y , such that ω

(
µx ,y

)
< ω(δ) (in

particular, µx ,y 6= δ). So, αµx ,yβ is another path from u to v such that
ω
(
αµx ,yβ

)
= ω(α) + ω

(
µx ,y

)
+ ω(β) < ω(α) + ω(δ) + ω(β) = ω(αδβ);

which contradicts the assumption that αδβ is a path from u to v of
minimal weight.

u x y vα β
δ

µx ,y

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 12/90

Basic properties of shortest paths: Triangle Inequality
Theorem (Triangle Inequality)
For all u, v , x ∈ V , we have σ

(
u, v

) ≤ σ(u, x)+ σ
(
x , v

)
.

Proof
Observe that if either does not exist path from u to x or from x to v ,
then σ

(
u, x
)

+ σ
(
x , v
)

=∞, and the lemma holds. Otherwise, let µu,x
be a minimal path from u to x (i.e. ω

(
µu,x

)
= σ

(
u, x
)
), and let µx ,v be

a minimal path from x to v (i.e. ω
(
µx ,v

)
= σ

(
x , v
)
).

The concatenated path µu,xµx ,v is clearly a path from u to v , and
ω
(
µu,xµx ,v

)
= ω

(
µu,x

)
+ ω

(
µx ,v

)
= σ

(
u, x
)

+ σ
(
x , v
)
.

Hence (by the definition of minimum weight)
σ
(
u, v
)
≤ ω

(
µu,xµx ,v

)
= σ

(
u, x
)

+ σ
(
x , v
)
.

u

x

v
µu,v

µu,x µx ,v

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 13/90

The routing problem statement: Single-source shortest paths

The single-source shortest paths problem
Let (V ,E , ω) be a strongly positive weighted graph. Given a
source vertex ξ ∈ V , find a minimal path and the optimum path
weight from ξ to every node from V .

The routing problem
Let (V ,E , ω) be a strongly positive weighted graph. Given a
source vertex ξ ∈ V and a goal node3 γ ∈ V , find a minimal path
and the optimum path weight from ξ to γ.

The single-source shortest paths problem for standard
(unweighted) graphs is usually formulated in a rooted graph, being
the root the source vertex.

3The notation ξ ∈ V to denote the source vertex, and γ ∈ V for the goal
node will be kept throughout the rest of the presentation.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 14/90

The single-source shortest paths problem for unweighted
graphs: Breadth-first search

The single-source shortest paths problem for unweighted graphs
Let (V ,E) be an unweighted graph or, equivalently, let (V ,E , ω)
be a weighted graph with constant weight function ω;
i.e. ω(a) = 1 for every a ∈ E .
Given a source vertex ξ ∈ V , find a minimal path and the optimum
path weight from ξ to every node from V .
As it is well known, this is equivalent to the computation of the
depths of all nodes from a graph, with the source node as root.

This problem can be solved in time O(|V |+ |E |) by the
Breadth-first search algorithm (by means of a FIFO queue). The
BFS algorithm computes a minimal spanning tree of the graph.

Graphs: Definitions and Basic Algorithms, Pages 50 to 70,
http://mat.uab.cat/~alseda/MatDoc/GrafsDefimovs-en.pdf

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 15/90

Dijkstra’s Algorithm

Contents

1 Introduction to Dijkstra’s Algorithm
2 Dijkstra’s Algorithm in pseudocode
3 Comments on Dijkstra’s Algorithm
4 An example of the Dijkstra’s Algorithm
5 Convergence of Dijkstra’s Algorithm
6 Queue management strategies
7 Queue management strategies: Binary Heap priority queues
8 Binary Heap priority queues: Comments on implementation

and data types, and a proposal
9 Analysis of Dijkstra’s Algorithm efficiency
10 An implementation of the Dijkstra’s Algorithm in C
11 An implementation of a priority queue as a linked list in C

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 16/90

Introduction to Dijkstra’s Algorithm

Dijkstra’s algorithm is designed to solve the single-source shortest
paths problem by computing a minimal spanning tree.

It can also solve the routing problem by stopping the algorithm
once the shortest path to the destination node has been
determined.

Dijkstra’s algorithm is based on a (controlled) greedy strategy ;
that is, it makes a local optimal choice at every stage4.

4A greedy strategy does not usually produce an optimal solution by itself.
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 17/90

Dijkstra’s Algorithm in pseudocode
Dijkstra’s Algorithm for graphs, using an efficient priority queue

procedure Dijkstra(graph G, source)
Pq ← EmptyPriorityQueue
expanded[G.order]← initialized to false
dist[G.order] ← initialized to ∞
parent[G.order] ← uninitialized



 .

Declaration and initial assignment:
expanded[v] = true ⇐⇒ v is extract min-
taken-out from the list and expanded
dist: distances vector from source to every node
parent: previous vertices in an optimal path

dist[source] ← 0
parent[source] ←∞
Pq.add with priority(source, dist[source])

}
.

Initialization: source has distance 0 to
itself, has no parent and is enqueued

while (not Pq.IsEmpty) do . The main loop
node ← Pq.extract min() . extract min removes a node with minimal dist from Pq
expanded[node] ← true . node has been removed from the priority queue and will be expanded
for each adj ∈ node.neighbours and not expanded[adj] do

dist aux ← dist[node] + ω(node, adj) .
New cost from source to
adj through node

if (dist[adj] > dist aux) then
if (dist[adj] = ∞) then Pq.add with priority(adj, dist aux)
else Pq.decrease priority(adj, dist aux)
end if . Relaxation step
dist[adj] ← dist aux
parent[adj] ← node

end if
end for

end while
return dist, parent

end procedure

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 18/90

Comments on Dijkstra’s Algorithm
dist[v] =∞ for some vertex v
This will happen at termination whenever the vertex v is
unreachable form the source. This may indicate that the graph is
not connected or that it is directed and there is no (direct) path
from the source vertex to v .

How the minimal spanning tree is specified?
Through the vectors dist and parent.

dist[v] gives the computed optimal distance from source to
the vertex v.
parent[v] specifies the predecessor of the node v in a
shortest path.

Thanks to the vector parent we can backwards construct the
computed optimal paths to all vertices, thus building a minimal
spanning tree.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 19/90

Comments on Dijkstra’s Algorithm

Consequences of the necessity of the extract min function
The most important operation to be performed with the queue is
the extract min function.
As a consequence, the queue management completely determines
the efficiency of the algorithm (see the Analysis of Dijkstra’s
Algorithm efficiency starting in Slide 52, and specially Slide 53).
This analysis shows that a plain FIFO queue (as in the Breadth
First Search Algorithm) is not the best option here, and that we
rather have to use a priority queue.
Different strategies of queue management will be discussed in the
part Queue management strategies starting in Slide 28.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 20/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A

C E B D

dist 0

3 5 7 9

parent nil

A C C B

PriQueue A
dist 0

parent nil

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A

C E B D

dist 0

3 5 7 9

parent nil

A C C B

PriQueue C B
dist 3 10

parent A A

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A C

E B D

dist 0 3

5 7 9

parent nil A

C C B

PriQueue E B D
dist 5 7 11

parent C C C

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A C E

B D

dist 0 3 5

7 9

parent nil A C

C B

PriQueue B D
dist 7 11

parent C C

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A C E B

D

dist 0 3 5 7

9

parent nil A C C

B

PriQueue D
dist 9

parent B

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A C E B D
dist 0 3 5 7 9

parent nil A C C B
PriQueue

dist
parent

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

An example of the Dijkstra’s Algorithm

A

DB

EC

10

3

4 8

2

9

2

1 7

expanded A C E B D
dist 0 3 5 7 9

parent nil A C C B

PriQueue
dist

parent

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 21/90

Convergence of Dijkstra’s Algorithm
The convergence of Dijkstra’s Algorithm is assured by the next

Theorem
The equality dist[v] = σ(source, v) holds whenever a vertex v ∈ V is
dequeued (with the function extract min) and expanded, and it is maintained
during the rest of the algorithm. In particular, Dijkstra’s algorithm terminates
with dist[v] = σ(source, v) for every vertex v ∈ V .

To prove this theorem we will use the following two lemmas:

DA–Lemma 1
The inequality dist[v] ≥ σ(source, v) holds at every iteration of the
algorithm, for every vertex v ∈ V .

DA–Lemma 2
Let α be a minimal path from source to a vertex v ∈ V . Let u be the
predecessor of v in α, and assume that dist[u] = σ(source, u). Then, if the
edge (u, v) is relaxed we have dist[v] = σ(source, v) after the relaxation.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 22/90

Convergence of Dijkstra’s Algorithm (II)
DA–Lemma 1
The inequality dist[v] ≥ σ(source, v) holds at every iteration of the
algorithm, for every vertex v ∈ V .

Proof of DA–Lemma 1
The initial assignment

dist[] ← initialized to ∞
dist[source] ← 0

guarantees that dist[v] ≥ σ(source, v) holds for every vertex v ∈ V when the
algorithm starts (before the while loop).
Now we will prove that these inequalities are maintained during the whole algorithm.
Assume by way of contradiction that there exists a first vertex v for which
dist[v] < σ(source, v). Let u be the vertex that caused dist[v] to change (by
setting dist[v] = dist[u] + ω(u, v) at a relaxation step). We have,

dist[v] < σ(source, v) . assumption

≤ σ(source, u) + σ(u, v) . triangle inequality

≤ σ(source, u) + ω(u, v) .
optimal path has weight smaller than or
equal to the weight of a specific path

≤ dist[u] + ω(u, v) = dist[v]; .
v is the first vertex for which
dist[v] < σ(source, v)

a contradiction.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 23/90

Convergence of Dijkstra’s Algorithm (III)
DA–Lemma 2
Let α be a minimal path from source to a vertex v ∈ V . Let u be the
predecessor of v in α, and assume that dist[u] = σ(source, u). Then, if the
edge (u, v) is relaxed we have dist[v] = σ(source, v) after the relaxation.

Proof of DA–Lemma 2
The minimality of α and the Optimality Principle imply that

σ(source, v) = ω(α) = σ(source, u) + ω(u, v).

Observe that when the value of dist[v] is modified by the algorithm, it decreases
strictly. Assume that, at some step of the algorithm, dist[v] ≤ σ(source, v). By
DA–Lemma 1 we have that dist[v] = σ(source, v) until the end of the algorithm.
Thus, the lemma holds in this case.

Suppose now that dist[v] > σ(source, v) before the relaxation. We have,
dist[v] > σ(source, v) = σ(source, u) + ω(u, v) = dist[u] + ω(u, v).

Then, during the relaxation step the algorithm sets
dist[v] = dist[u] + ω(u, v) = σ(source, v).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 24/90

Convergence of Dijkstra’s Algorithm (IV)
Theorem (Convergence of Dijkstra’s Algorithm)
The equality dist[v] = σ(source, v) holds whenever a vertex v ∈ V is
dequeued (with the function extract min) and expanded, and it is maintained
during the rest of the algorithm. In particular, Dijkstra’s algorithm terminates
with dist[v] = σ(source, v) for every vertex v ∈ V .

Proof of Theorem
If dist[v] = σ(source, v) holds whenever a vertex v ∈ V is dequeued, then this
equality is maintained during the rest of the algorithm because of DA–Lemma 1 and
the fact that the values dist[v] cannot increase during the computation.
So, we only need to prove the first statement of the theorem. Assume that v ∈ V is
the first vertex for which the inequality dist[v] 6= σ(source, v) holds at the moment
of dequeueing it with the function extract min. Note that, by DA–Lemma 1, in fact
we have dist[v] > σ(source, v).
Let us denote by S the set of vertices u ∈ V that have been already dequeued with
the function extract min and expanded. Clearly,

source ∈ S,
v /∈ S because the algorithm is just going to dequeue v , and
since v is the first vertex that will be dequeued with dist[v] > σ(source, v),
the equality dist[u] = σ(source, u) holds for every vertex u ∈ S whenever it is
dequeued, and it is maintained during the rest of the algorithm.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 25/90

Convergence of Dijkstra’s Algorithm (V)
Proof of the Theorem

Proof of Theorem (continued)
Let β be a minimal path from source to v . Since source ∈ S, there exist vertices
x , y ∈ V such that:

1 (x , y) is an edge of β,
2 y /∈ S, and
3 every vertex lying in the

sub-path of β from source
to x (including x) belongs
to S.

When the vertex x was dequeued
and added to S, we had

dist[x] = σ(source, x),
and the edge (x , y) was relaxed. By
DA–Lemma 2 with v replaced by y ,
u replaced by x , and α replaced by
the sub-path of β from source to y
(notice that α is a minimal path by
the Optimality Principle), we get

dist[y] = σ(source, y)
after the relaxation of (x , y).

source

a1
a2

a3

x

Set S

y

v

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 26/90

Convergence of Dijkstra’s Algorithm (VI)
Proof of the Theorem

Proof of Theorem (end)
Since y /∈ S, then either dist[y] =∞ > dist[v] (recall that every node in the
queue has finite dist value), or y is in the queue and dist[v] ≤ dist[y] because v
is being dequeued with extract min.
On the other hand, since v is farther from source than y in the minimal path β, we
have σ(source, y) ≤ σ(source, v).
Then, summarizing,

dist[v] ≤ dist[y] = σ(source, y) ≤ σ(source, v) < dist[v];

a contradiction.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 27/90

Queue management strategies
Here we will describe and comment four alternative queue
management strategies towards the efficient use (and
implementation) of the extract min function.

Boolean State Vector
In this strategy the list is implemented as a vector of bolean type
(to store true or false values) of fixed size order (such as
IsNodeInQueue[order]), which works as follows: A node v is in
the queue if and only if IsNodeInQueue[v] = true.
Comments: This strategy wastes a lot of memory (uses during
the whole algorithm the same amount of memory of a queue
having all nodes in it), and really gives a “worst case scenario” for
the search of the queue element with minimum cost. Indeed, the
whole boolean state vector has to be checked to detect which
nodes belong to the queue and, for each of them, its costs has to
be compared with the current minimum cost candidate.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 28/90

Queue management strategies
Plain linked list (not sorted)
The indices of the vertices in the queue are stored as a plain linked
list (see the document below).
Comments: The memory use of this strategy is minimal: just one
integer per node in the queue (to store the index), and the memory
used by the pointers in the list maintenance. Moreover, the queue
automatically resizes itself to have length equals to the number of
enqueued nodes. However, the function extract min is very
inefficient: first one has to run the whole queue to determine the
node with minimum cost; second one has to run again thee queue
to travel to that node to dequeue it.

Queues implementation with a plain linked list can be seen at:
Tipus de Dades, Estructures i Llistes en in C: Stacks i Cues,
http://mat.uab.cat/~alseda/MatDoc/
DadesEstructuresLlistes-StacksICues.pdf

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 29/90

Queue management strategies

Linked list sorted by priority (cost)
The indices of the vertices in the queue are stored as a linked list,
but the list must be sorted according to cost (being the first list
element the one with a vertex with a smaller cost, and the last list
element the one with a vertex with a larger cost) at every step of
the algorithm.

This has the following consequences:
The function extract min is trivial: One has to
systematically dequeue the first element in the list.
The function enqueue must choose the right place to insert a
new element in the list according to its cost, to maintain the
assumption that the list is sorted according to cost at every
step of the algorithm.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 30/90

Queue management strategies
Linked list sorted by priority (cost) — continued

The function decrease priority or requeue (that had
nothing to do in the previous two strategies and was, in fact,
useless), now has to keep the ordering of the list. This must
be done by (perhaps) moving the “relaxed vertex” (which has
decreased its cost) to a new specific place closer to the
beginning of the list.

Comments: As for a plain linked list, the memory usage of this
strategy is minimal for the same reasons. The function
extract min is trivial but the management of the list (enqueue
and requeue functions) is a bit more involved.

In the following slides we will discuss the Binary Heap priority
queue strategy. We will forget about Fibonacci Heap priority queue
strategy, which seems to be the most efficient one but rather
difficult to implement.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 31/90

Queue management strategies: Binary Heap priority queues

The Binary Heap priority queues strategy is exactly the same as
with the priority queues that use a linked list (sorted by cost) but
using a binary arrangement (binary tree) as storage data type for
the queue instead of using a linear one.

In particular, the same comments apply as for the case of linked
lists sorted by priority: The memory usage is minimal but the
management of the list is a bit more involved. However, the
function extract min is a bit more complicate than the one for
linked lists sorted by priority because it destroys the binary
structure that must be reconstructed.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 32/90

Queue management strategies: Binary Heap priority queues
Definition
A binary heap is a binary tree with a
value stored at every node which
verifies the following two basic
properties:
Shape Property (Completeness):
all levels of the tree except possibly
the last (deepest) one are completely
filled (with two children per node)
and, if the last level of the tree is not
complete, the nodes at this level are
filled from left to right.
Heap Property: the value stored in
each node is less than or equal to the
values stored at the node’s children,
according to some total order.

A Binary Heap Example

Le
ve
l2

Le
ve
l1

Le
ve
l0

Level3

h
78

i
114

j
94

d
75

e
93

f
32

g
30

b
70

c
28

a
25

The depth of a node is also called its level in binary heap notation.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 33/90

Binary Heap priority queues
Comments on the item with lowest value

On the item with lowest value and the function extract min
The iterative use of the Heap Property tells us that the value of a
given node N is smaller than or equal to the values of all nodes in
the subtree that has the node N as root.

In particular, the root of the whole binary heap (the only node that
is at level 0) is the item with the lowest value (see the example in
the previous page).

Consequently, when the priority queue uses a binary heap, the
function extract min does not need to perform any search to do
its task.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 34/90

Binary Heap priority queues
Comments on the shape and the number of elements of a binary heap

The shape of a binary heap can be characterized by the number of levels `, and
the number of nodes r in the last level.
By convention ` is zero if and only if the binary heap is empty.
Observations

When the binary heap is non-empty (that is, when ` > 0), the levels are
numbered 0, 1, . . . , `− 1, according to their depth in the tree.
Every level n ∈ {0, 1, . . . , `− 1} has at most 2n nodes. By the
completeness property, the levels n ∈ {0, 1, . . . , `− 2} have exactly 2n
nodes, and the last level `− 1 has 1 ≤ r ≤ 2`−1 elements. Consequently,
when ` = 1 the last level (which is level 0) is necessarily full.
The total number of nodes in a non-empty binary heap is:

T :=
{
1 when ` = 1, and
20 + 21 + · · ·+ 2`−2 + r =

(
2`−1 − 1

)
+ r when ` ≥ 2.

Moreover, the maximum number of nodes that can be stored in a binary
heap with ` levels is 2` − 1.
Example: The binary heap in the previous figure has ` = 4 levels, and at
the last level there are r = 3 nodes. So, in total it has
T =

(
24−1 − 1

)
+ 3 = 10 nodes.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 35/90

Binary Heap priority queues
Basic operation procedures

IsEmpty
Tells whether a binary heap is empty. Equivalently it checks whether the
number of levels of the binary heap is zero or positive.

dequeue or, equivalently, extract min
Reads and deletes the root node (see Slide 34). This leaves a broken heap that
must be repaired to a new “legal” one.

enqueue
Adds a new node to a binary heap so that the new binary heap is “legal”.

requeue
Used when a node that is already in the binary heap has changed its value to a
lower one. In this case the shape property is still maintained but not necessarily
the heap property since the node to be re-queued may have a new value smaller
than the one of its parent.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 36/90

Binary Heap priority queues
Basic Operation: indexing a binary heap and auxiliary low-level procedures

Indexing a binary heap
A node in a binary heap is indexed (located) by a pair (d,p) where:
d is the depth (level) at which the node is located in the binary heap. Of

course d ∈ {0, 1, . . . , `− 1}.
p is the position (from left to right) occupied by the node in the level d.

Then,
p ∈

{{
0, 1, . . . , 2d − 1

}
if d ≤ `− 2, and

{0, 1, . . . , r − 1} if d = `− 1.
Observation: When d = 0, (d,p) must be (0, 0), which is the root node.

parentOf(d,p) is defined5 only for d > 0

parentOf(d,p) =
(
d− 1,

⌊ p
2
⌋)
,

where for x ∈ R, bxc denotes the integer part function or floor function which
gives, by definition, the greatest integer less than or equal to x .

leftchildOf(d,p) and rightchildOf(d,p) are only defined when d < `− 1
leftchildOf(d, p) = (d + 1, 2p) and rightchildOf(d, p) = (d + 1, 2p + 1).

5When d = 0, (d, p) = (0, 0) is the root node whose parent is undefined.
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 37/90

Binary Heap priority queues
Super Basic Operations: the heapify up low-level standard procedure

Heapify Up Assumptions
We have a non-empty binary heap which verifies the shape property, and there
exists a unique node (d,p) such that valueOf(d, p) < valueOf(parentOf(d, p))
(that is, the heap property is satisfied for all nodes except for (d,p)).
Observation: The node (d,p) cannot be the root since it has no parent. In
particular ` ≥ 2 (i.e. the number of levels is larger than one).

Algorithm: The heapify up repairing procedure
procedure heapify up(d,p) . The input is the only node that breaks the heap property

while d > 0 and valueOf(d,p) < valueOf(parentOf(d,p)) do . When d = 0 no repair is needed
node aux ← node(d,p)
node(d,p) ← node(parentOf(d,p))
node(parentOf(d,p)) ← node aux

}
.

Swapping the nodes
(d,p) and parentOf(d,p)

(d,p) ← parentOf(d,p) . Now parentOf(d,p) is the node that perhaps breaks the heap
property, and is going to be checked in the next iterationend while

end procedure

Observation
In the whole procedure above the shape property is maintained. So, we only
have to take care of repairing the heap property.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 38/90

Binary Heap priority queues
Super Basic Operations: the heapify down low-level standard procedure

Heapify Down Assumptions
We have a non-empty binary heap which verifies the shape
property, and there exists a unique node (d,p) which has at least
one child and such that either
valueOf(d, p) > valueOf(leftchildOf(d, p)), or
valueOf(d, p) > valueOf(rightchildOf(d, p)) (if rightchildOf(d,p) exists).
In particular, the heap property is satisfied for all nodes except for
(d,p) (if a node has no children, then it automatically satisfies the
heap property).
Observation: When a node has a unique child, it must
compulsory have the left child by the shape property. The
assumption above that the node (d,p) has at least one child
implies that d < `− 1 (i.e., the node (d,p) cannot belong to the
last level), and if d = `− 2, then p ≤

⌊
r−1
2

⌋
. In particular, again,

` ≥ 2 (i.e. the number of levels is larger than one).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 39/90

Binary Heap priority queues
Super Basic Operations: the heapify down low-level standard procedure

Algorithm: The heapify down repairing procedure
procedure heapify down(d,p) . The input is the only node that breaks the heap property

while d < `− 1 and Exist(leftchildOf(d,p)) do . Otherwise (d,p) has no children,
and hence it does not break the
heap property; no repair is needed

D
et
er
m
in
in
g
sm

al
lso

n:
th
e

ch
ild

wi
th

lo
we

rc
os
t

/

{smallson ← leftchildOf(d,p)
if Exist(rightchildOf(d,p)) and valueOf(rightchildOf(d,p)) < valueOf(smallson) then

smallson ← rightchildOf(d,p)
end if
if valueOf(d,p) ≤ valueOf(smallson) then

return . The heap property is already verified by (d,p); no repair is needed
end if
node aux ← node(d,p)
node(d,p) ← node(smallson)
node(smallson) ← node aux

}
. Swapping the nodes (d,p) and smallson

(d,p) ← smallson . Now smallson is the node that perhaps breaks the heap property, and is
set to be checked in the next iterationend while

end procedure

Observation
In the whole procedure above the shape property is maintained. So, we
only have to take care of repairing the heap property.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 40/90

Binary Heap priority queues
Basic Operation: the requeue procedure

requeue (or, equivalently, heapify up):
A node already in the binary heap has changed its value to a lower one
In this case the shape property is still maintained but not
necessarily the heap property, since the node to be re-queued may
have a new value smaller than the one of its parent (provided that
it has parent; i.e., is not the root node).
In this case the node to be re-queued verifies the assumptions of
the Heapify Up procedure, and to repair the heap we only need to
use the function heapify up.
In other words, requeue and heapify up are the same functions.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 41/90

Binary Heap priority queues
Basic Operation: strategy for the enqueue procedure

Step 0: If the binary heap is empty the node is added as the
unique level 0 element. This heap fulfils both the shape
and heap properties.

Step 1: Adding the node without breaking the shape
property. The new node is added to the last level,
consecutively to the existing nodes (leaving no holes).
If the last level is already full (it is level d and has 2d

elements), a new level d+1 is created with the new
node as the only element.

Step 2: Repairing the heap to fulfil the heap
property. In this case either the binary heap already
verifies the heap property, or the added node verifies
the assumptions of the Heapify Up procedure. In this
second case, to repair the heap we only need to use the
heapify up function.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 42/90

Binary Heap priority queues
Basic Operation: the extract min or dequeue procedure

Step 1: Read the root node (by the heap property it is the one we are
looking for), and eliminate it. Observe that the root node cannot be
deleted since the remaining object, if it is not-empty, does not verify
the shape property (it is not a tree any more; it has become two
disconnected binary trees).

Step 2: Replace the root node by the last node of the binary
heap (the rightmost one of the last level), and delete
this last node. This removes the old root node from the queue
and reduces the size of the binary heap by 1 (because we delete the
last node) without breaking the shape property.

Step 3: Repairing the heap to fulfil the heap property. The
result of Step 2, with very high probability, does not verify the heap
property. Specifically, all nodes will verify the heap property except,
perhaps, the new root node which will have a cost too large.
However, observe that the new root node verifies the assumptions of
the Heapify Down operation. Thus, the repairing of the heap is
achieved simply by using the heapify down function starting with
the root node.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 43/90

Binary Heap priority queues
Binary Heap: Comments on implementation and data types

In the implementation of almost every algorithm it is crucial to
choose the right abstract data type (for efficiency and
programming easiness).
In the case of a binary heap, it seems reasonable to use a binary
tree. However this is not recommended because it creates some
programming complications and subtleties. For instance the binary
tree must be bi-directional to allow going from children to parent
and from parent to children, and this must be dealt appropriately
in the code.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 44/90

Binary Heap priority queues
Binary Heap: Comments on implementation and data types

Surprisingly enough, in most applications, a binary heap is
implemented as a (linear) consecutive levels vector of length
2ν − 1, where ν is the maximum number of levels allowed. The
idea is that all levels are stored consecutively in the vector: first
the unique element of level 0; second the two elements from level
1; third the four elements from level 2; etc.
This has a certain level of inefficiency due to three serious
Drawbacks:

1 The management of the binary heap through this data
structure needs to map the 2-dimensional coordinates (d,p) to
1-dimensional vector indexes (in fact the parent and children
functions are programmed directly in linear coordinates for
efficiency). More concretely, the element (d,p) of the binary
heap is stored at the position

(
2d − 1

)
+p in the consecutive

levels vector.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 45/90

Binary Heap priority queues
Binary Heap: Comments on implementation and data types

2 The maximum number of elements (and levels) that the
queue may have is fixed a priori. So, unless the consecutive
levels vector is enormous, we can easily run out of space for
the queue provoking an undesirable error (or having to use the
horrible realloc function).

3 The memory consumption does not adapt to the queue size at
any moment of the algorithm. The queue uses 2ν − 1 memory
positions all the time, independently on the queue size.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 46/90

Binary Heap priority queues
Binary Heap: Comments on implementation and data types. A proposal

The abstract data model we propose for a binary heap
implementation is a “triangular matrix” where every row of the
matrix is a level. Thus, the row d = 0, 1, 2, . . . has size 2d.
This can be done by means of the following declarations:
#define MAXNumlevels 32
typedef struct {

short ell; // Initially set to zero
unsigned long r;
unsigned int * level[MAXNumlevels];

} Binary_Heap_Priority_Queue;

Observe that this data type does not assign memory to any level.
To do it, one must use the malloc function.
Example: The initialization of a new (last) level of a queue
Binary Heap Priority Queue Q can be done as follows:
Q.level[Q.ell] = (unsigned *) malloc((1LU << Q.ell)*sizeof(unsigned));
ell = ell + 1;
r = 1; // The new level must be non-empty.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 47/90

Binary Heap priority queues
Binary Heap: Comments, Pros & Conts on the data type proposal

No need of mapping 2-dim to 1-dim coordinates
Every element of this arrangement can be directly indexed by
a pair (d,p), and can be accessed by the simple expression

Q.level[d][p]

On the memory consumption of this data type:
1 No level is assigned memory a priori.
2 A level is initialized and assigned memory only when it is

needed (to store queue elements).
3 When a level becomes empty it is freed to save memory.

Therefore the memory use in this data type is adapted to the
number of elements in the queue except for:

1 the vector unsigned * level[MAXNumlevels] which uses
MAXNumlevels * sizeof(unsigned *) bytes during the
whole algorithm as a management fixed cost, and

2 the 2`− r positions in the last level, that are not used. Observe
that if ` is large this can temporally waste a lot of memory.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 48/90

Binary Heap priority queues
Binary Heap: Why level[MAXNumlevels] is of type unsigned int *?

We assume that the routing graph is stored by using the adjacency
list memory model as a vector of structures (of size the order of
the graph), and each of these structures contains the information
corresponding to one of the vertices.
To add a vertex to the queue it is customary to store its index in
the graph vector (an unsigned integer). In 64 bit systems, the
unsigned int variables and constants use 4 bytes of memory, and
can store numbers up to 232 − 1.
The minimal necessary information relative to a node is: the path
cost and parent computed by the Dijkstra’s Algorithm, the number
of adjacent vertices, and the index and edge-weight of each
adjacent vertex. Assuming that the number of adjacent vertices is
of type unsigned short (2 bytes), that the rest of variables use 4
bytes each, and that there is a unique vertex adjacent to each
vertex, we get that the bare minimum of memory to store a vertex
is 18 bytes.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 49/90

Binary Heap priority queues
Binary Heap: Why level[MAXNumlevels] is of type unsigned int *?

If the graph has 232 vertices (indexed from 0 to 232 − 1), the total
amount of memory used by the graph is:

232vertices · 18 bytes
vertex · 2−30 Giga bytes

byte = 72Giga bytes.

This is already absolutely prohibitive for real applications.
So, for us, there do not exist graphs with more than 232 vertices.
Consequently:

The indices of the graph vector fit in unsigned int variables,
and the queue elements (i.e., the elements of the level[d]
vectors) can be declared of type unsigned int.
Since the maximum number of nodes that can be stored in a
binary heap with ` levels is 2` − 1, there is no reason to set
MAXNumlevels larger than 32. In such case we would not
have enough node indexes to fill the binary heap priority
queue.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 50/90

Binary Heap priority queues
Binary Heap: Comments, Pros & Conts on the data type proposal

The binary heap priority queue is of size both limited
and virtually infinite: A proper explanation. We
already know that we will not have a routing graph with more than
232 − 1 vertices. So, we can put all vertices to the queue without
problems. In other words, we will never see the error: heap full:
Unable to add more elements to the heap. Aborting

In the limit case when the queue is full, all levels in the binary heap
have been initialized and assigned memory. So, the total amount of
memory used by the queue in this case is a little bit more than

(
232 − 1

)
queue positions · 4 bytes

queue position · 2−30 Giga bytes
byte ≈ 16Giga bytes,

which is really affordable.

What is not affordable is to have a graph with more than 232 − 1
vertices, which gives 88Giga bytes as an unrealistically low estimate of
the necessary memory for this exercise.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 51/90

Analysis of Dijkstra’s Algorithm efficiency

Dijkstra’s Algorithm for graphs, using a priority queue
Repetitive part — omitting initialization

while (not Pq.IsEmpty) do
node ← Pq.extract min() .

Average time taken by the function extract min: TEM
node runs among all possible graph nodes =⇒
The while loop runs for |V | repetitionsexpanded[node] ← true

for each adj ∈ node.neighbours and not expanded[adj] do . Loop iterating over all possible graph
edges (node, adj) =⇒
The loop runs for at most |E| repetitions

dist aux ← dist[node] + ω(node, adj)
if (dist[adj] > dist aux) then

if (dist[adj] = ∞) then Pq.add with priority(adj, dist aux) .
else Pq.decrease priority(adj, dist aux) .
end if
dist[adj] ← dist aux
parent[adj] ← node

end if
end for

end while

Estimated average execution time

|V |
(
TEM + TAwP

)
+
(
|E | − |V |

)
TDP

Average time taken by the function decrease priority: TDP
decrease priority is run |E| − |V | times

Average time taken by the function
add with priority: TAwP
add with priority is run |V | times

since every node must be added to the
queue, and it enters to it exactly once

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 52/90

Analysis of Dijkstra’s Algorithm efficiency

Table of estimated average run times for the three main functions
of the Dijkstra’s Algorithm in terms of the queue management strategy

Queue
management TEM TAwP TDP Total Order

State Vector
boolean O

(
|V |
)

O(1) O(1) O
(
|V |2 + |E |

)
O
(
|V |2
)

Plain linked list
not sorted O

(
Q
)

O(1) O(1) O
(
|V |Q + |E |

)
O
(
|V |2
)

Linked list
sorted by priority O(1) O

(
Q
)

O
(
Q
)

O
(
|V | + |E |Q

)
O
(
|E |Q

)

Binary Heap
priority queue O

(
log2
(
Q
))
O
(

log2
(
Q
))
O
(

log2
(
Q
))
O
((
|V | + |E |

)
log2
(
Q
))
O
(
|E | log2

(
Q
))

Notation
Q denotes the average number of elements in the queue during the whole algorithm.
For the computation of the the estimates for the worst case scenarios we can use:
Q ≤ |V | and |E | ∈ O

(
|V |2
)
.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 53/90

Justification of the Dijkstra’s Efficiency Table
Notation for the estimated average run times

In the next computations we set n = |V | and we denote by Qi the
number of elements in the queue for the repetition i of the while
loop, with i = 1, 2, . . . , n.

We denote by ai the total number of times that the function
add with priority is run at the repetition i of the while loop.

We denote by di the total number of times that the function
decrease priority is run at the repetition i of the while loop.

As already said, the function extract min is run once at every
repetition i of the while loop.

Remark: ∑n
i=1 ai = n and ∑n

i=1 di = |E | − n.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 54/90

Justification of the Dijkstra’s Efficiency Table
Estimated average run times for a plain linked list not sorted

Average run time of extract min:
The function extract min has to perform a sequential search through the list to find the element
with minimum cost. Then the expected run time TEM at the repetition i of the while loop is
O
(Qi

2

)
≈ K EM

i
Qi
2 .

Thus, the total run time average is:

1
n

n∑

i=1

K
EM

i
Qi

2
≤

max
{
K EM

1 ,K EM

2 , . . . ,K EM

n

}

2
1
n

n∑

i=1

Qi =

max
{
K

EM

1 ,K
EM

2 , . . . ,K
EM

n

}Q
2

= O
(

Q
2

)
= O
(
Q
)

.

The average run time of decrease priority is O(1):
Here it is assumed that the cost data is not included in the list. More specifically the list must
include only the indices of the nodes that belong to it, while the information about the node’s
costs should be stored either in the node’s vector or in a separate auxiliary vector.

If done like this, the operation decrease priority only has to update the costs in the node’s
vector or the auxiliary vector and the list does not need to be modified.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 55/90

Justification of the Dijkstra’s Efficiency Table
Estimated average run times for a linked list sorted by priority in increasing order

Average run time of add with priority:
The function add with priority has to perform a sequential search through the list to find the
place where to insert the new element according to its cost. The expected run time TAwP at the
repetition i of the while loop is aiO

(Qi
2

)
≈ aiK

AwP

i
Qi
2 . The total run time average is:

1
n

n∑

i=1

aiK
AwP

i
Qi
2 ≤

max
{
a1K

AwP

1 , a2K
AwP

2 , . . . , anK
AwP

n

}

2
1
n

n∑

i=1

Qi =

max
{
a1K

AwP

1 , a2K
AwP

2 , . . . , anK
AwP

n

}Q
2

= O
(

Q
2

)
= O
(
Q
)

.

Average run time of decrease priority:
decrease priority has to perform a sequential search through the list to find the place where to
re-insert the node according to its new cost, and remove it from the initial place. Since the list is
sorted in cost-ascending order, the initial place of the node whose cost is being modified it bigger
than the new place where it has to be inserted. So, we only need to do a single sequential search.
The expected run time TDP at the repetition i of the while loop is diO

(Qi
2

)
≈ diK

DP

i
Qi
2 .

The total run time average is:
1

|E | − n

n∑

i=1

diK
DP

i
Qi
2 ≤

max
{
d1K

DP

1 , d2K
DP

2 , . . . , dnK
DP

n

}

2
n

|E | − n
1
n

n∑

i=1

Qi =

n max
{
d1K

DP

1 , d2K
DP

2 , . . . , dnK
DP

n

}

|E | − n
Q
2

= O
(

Q
2

)
= O
(
Q
)

.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 56/90

Justification of the Dijkstra’s Efficiency Table
Estimated average run times for a binary heap sorted by priority

Average run time of extract min:
Here the complexity comes neither from the extraction nor from the deletion of the node. It rather
comes from the heapify operation to rebuild the binary heap after removing the first node.

The run time TEM at the repetition i of the while loop is O
(

log2(Qi)
)

= K EM BH

i log2(Qi).
Since the log2 function is concave, by Jensen’s Inequality, the total run time average is:

1
n

n∑

i=1

K
EM BH

i log2(Qi) ≤ max
{
K

EM BH

1 ,K
EM BH

2 , . . . ,K
EM BH

n

} 1
n

n∑

i=1

log2(Qi)
Jensen Ineq.
≤

max
{
K

EM BH

1 ,K
EM BH

2 , . . . ,K
EM BH

n

}
log2
(
Q
)

= O
(

log2
(
Q
))

.

Average run time of add with priority:
The run time TAwP at the repetition i of the while loop is O

(
log2(Qi)

)
= aiK

AwP BH

i log2(Qi).
Again by Jensen’s Inequality the total run time average is:

1
n

n∑

i=1

aiK
AwP BH

i log2(Qi) ≤ max
{
a1K

AwP BH

1 , a2K
AwP BH

2 , . . . , anK
AwP BH

n

} 1
n

n∑

i=1

log2(Qi)
Jensen Ineq.
≤

max
{
a1K

AwP BH

1 , a2K
AwP BH

2 , . . . , anK
AwP BH

n

}
log2(Q) = O

(
log2
(
Q
))

.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 57/90

Justification of the Dijkstra’s Efficiency Table
Estimated average run times for a binary heap sorted by priority

Average run time of decrease priority:

The run time TDP at the repetition i of the while loop is diO
(

log2(Qi)
)
≈ diK

DP BH

i log2(Qi).
The total run time average is:

1
|E | − n

n∑

i=1

diK
DP BH

i log2(Qi) ≤

n max
{
d1K

DP BH

1 , d2K
DP BH

2 , . . . , dnK
DP BH

n

}

|E | − n
1
n

n∑

i=1

log2(Qi)
Jensen Ineq.
≤

n max
{
d1K

DP BH

1 , d2K
DP BH

2 , . . . , dnK
DP BH

n

}

|E | − n
log2
(
Q
)

= O
(

log2
(
Q
))

.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 58/90

An implementation of the Dijkstra’s Algorithm in C
Initializations and main

#include <stdio.h>
#include <stdlib.h>
#include <values.h> // For MAXFLOAT = \infty and UINT_MAX = \infty

typedef struct{ unsigned vertexto; float weight; } weighted_arrow;
typedef struct{ char name;

unsigned arrows_num; weighted_arrow arrow[5];
float dist; unsigned parent;

} graph_vertex;

#define ORDER 5

int main() { register unsigned i;
graph_vertex Graph[ORDER] = {

{ ’A’, 2, {{1, 10}, {2, 3}}, MAXFLOAT, UINT_MAX }, // vertex 0
{ ’B’, 2, {{2, 1}, {3, 2}}, MAXFLOAT, UINT_MAX }, // vertex 1
{ ’C’, 3, {{1, 4}, {3, 8}, {4, 2}}, MAXFLOAT, UINT_MAX }, // vertex 2
{ ’D’, 1, {{4,7}}, MAXFLOAT, UINT_MAX }, // vertex 3
{ ’E’, 1, {{3,9}}, MAXFLOAT, UINT_MAX }, // vertex 4

};

Dijkstra(Graph, 0U);

fprintf(stdout, "Vertex | Cost | Parent\n-------|-------|-------\n");
fprintf(stdout, " %c (%u) |%6.1f |\n", Graph[0].name, 0U, Graph[0].dist);
for(i=1; i < ORDER; i++)

fprintf(stdout, " %c (%u) |%6.1f | %c (%u)\n",
Graph[i].name, i, Graph[i].dist, Graph[Graph[i].parent].name, Graph[i].parent);

}

Output: the minimal spanning tree

Vertex	Cost	Parent
A (0) | 0.0 |
B (1) | 7.0 | C (2)
C (2) | 3.0 | A (0)
D (3) | 9.0 | B (1)
E (4) | 5.0 | C (2)

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 59/90

An implementation of the Dijkstra’s Algorithm in C
Priority queue declarations and the Dijkstra function code

typedef struct QueueElementstructure {
unsigned v;
struct QueueElementstructure *seg;

} QueueElement;
typedef QueueElement * PriorityQueue;

int IsEmpty(PriorityQueue Pq){ return (Pq == NULL); }

void Dijkstra(graph_vertex * Graph, unsigned source){
PriorityQueue Pq = NULL;
char expanded[ORDER] = {[0 ... ORDER-1] = 0};

Graph[source].dist = 0.0;
add_with_priority(source, &Pq, Graph);

while(!IsEmpty(Pq)){ register unsigned i;
unsigned node = extract_min(&Pq);
expanded[node] = 1;
for(i=0; i < Graph[node].arrows_num; i++){

unsigned adj = Graph[node].arrow[i].vertexto;
if(expanded[adj]) continue;
float dist_aux = Graph[node].dist + Graph[node].arrow[i].weight;
if(Graph[adj].dist > dist_aux){

char Is_adj_In_Pq = Graph[adj].dist < MAXFLOAT;
Graph[adj].dist = dist_aux;
Graph[adj].parent = node;
if(Is_adj_In_Pq) decrease_priority(adj, &Pq, Graph);
else add_with_priority(adj, &Pq, Graph);

} } } }

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 60/90

An implementation of a priority queue as a linked list in C
The priority queue functions code: extract min

Notation and the definition of a Priority Queue
Given pointers QueueElement *a, *b, we will write a < b to denote that the
queue element *b is a descendant (in the queue) of the element *a
(that is, b = a->seg->seg· · · ->seg).
In these notes a Priority Queue verifies

a < b ⇐⇒ Graph[a->v].dist ≤ Graph[b->v].dist
for every pair of valid pointers QueueElement *a, *b.
Then the function extract min has to deal (without any search) with the first
element of the queue.

The extract min function code
unsigned extract_min(PriorityQueue *Pq){

PriorityQueue first = *Pq;
unsigned v = first->v;

*Pq = (*Pq)->seg;
free(first);
return v;

}

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 61/90

An implementation of a priority queue as a linked list in C
The priority queue functions code: add with priority

The add with priority function code
void add_with_priority(unsigned v,

PriorityQueue *Pq, graph_vertex * Graph)
{ QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement));

if(aux == NULL) exit(66);

aux->v = v;

float costv = Graph[v].dist;
if(*Pq == NULL || !(costv > Graph[(*Pq)->v].dist)) {

aux->seg = *Pq; *Pq = aux;
return;

}

register QueueElement * q;
for(q = *Pq; q->seg && Graph[q->seg->v].dist < costv; q = q->seg);
aux->seg = q->seg; q->seg = aux;
return;

}

Ex
it
wi
th

er
ro
rc

od
e

th
e
D
ev
il’
s
nu

m
be
r

*P
q

=
NU

LL
is
eq
ui
va
len

tt
o
qu

eu
e
em

pt
y:

Th
e
qu

eu
e
is
in
iti
al
ize

d
wi
th

v.
Th

en
au

x-
>s

eg
=

*P
q

=
NU

LL
co
rre

ct
ly

m
ar
ks

th
at

au
s
is
th
e
en
d
of

th
e
qu

eu
e.

Standard creation of a new queue element

The check !(costv > Graph[(*Pq)->v].dist) occurs when *Pq != NULL.
Then the queue *Pq is not empty, and the new element aux containing v
must be the first element of the queue.

At this point *Pq != NULL and Graph[(*Pq)->v].dist < costv.
This for loop computes the largest QueueElement *q with q ≥ *Pq such that Graph[q->v].dist <
costv (the insertion point of aux). The loop ends either with:

q->seg = NULL: then, *q is the last element of the queue (equivalently costv is greater than all costs
in the queue) and aux must be placed at the end of the queue (i.e. after *q — q->seg = aux), or

Graph[q->v].dist < costv <= Graph[q->seg->v].dist: then, *q is not the last element of the
queue (q->seg != NULL), and aux must be placed between *q and *(q->seg).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 62/90

An implementation of a priority queue as a linked list in C
The function requeue with priority code:

a simple but inefficient approach to decrease priority

Notation and Strategy
pv denotes the pointer QueueElement * pv to the element of the queue which

contains v. In particular, pv->v = v.
prepv denotes the pointer QueueElement * prepv to the element of the queue

which is before *pv. That is, prepv->seg = pv, and prepv->seg->v = pv->v = v.
Strategy: Remove *pv from the queue and re-enqueue v with the new decreased cost.

The requeue with priority function code
void requeue_with_priority(unsigned v,

PriorityQueue *Pq, graph_vertex * Graph){
if((*Pq)->v == v) return;

register QueueElement * prepv;
for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * pv = prepv->seg;
prepv->seg = pv->seg;
free(pv);

add_with_priority(v, Pq, Graph);
}

Nothing to do: The first element of the queue is v. Since the new
Graph[v].dist is smaller, it is not necessary to re-order the queue.
In the rest of the function, (*Pq)->v != v⇐⇒ *Pq < pv⇐⇒

*Pq <= prepv < prepv->seg = pv.

fo
r
lo
op

to
se
qu

en
tia

lly
co
m
pu

te
pr

ep
v:

It
is

no
t
ne
ce
ss
ar
y
to

ch
ec
k

pr
ep

v-
>s

eg
!=

NU
LL

sin
ce

pr
ep

v
is
in
iti
al
ize

d
as

*P
q,

(*
Pq

)-
>s

eg
<=

pv
an
d

v
=

pr
ep

v-
>s

eg
->

v
is
in

th
e
qu

eu
e.

Th
en
,i
n
th
e
lo
op

,p
re

pv
->

se
g
wi
ll
ru
n
th
ro
ug

h
th
e
qu

eu
e
ele

m
en
t
co
nt
ai
ni
ng

v.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 63/90

An implementation of a priority queue as a linked list in C
The function decrease priority code (with detailed comments in the next pages)

The decrease priority function code
void decrease_priority(unsigned v,

PriorityQueue *Pq, graph_vertex * Graph){
if((*Pq)->v == v) return;

float costv = Graph[v].dist;
if(!(costv > Graph[(*Pq)->v].dist)){ register QueueElement *prepv;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * swap = *Pq;
*Pq=prepv->seg; prepv->seg=prepv->seg->seg; (*Pq)->seg=swap;
return;

}

register QueueElement *q, *prepv;
for(q = *Pq; Graph[q->seg->v].dist < costv; q = q->seg);
if(q->seg->v == v) return;

for(prepv = q->seg; prepv->seg->v != v; prepv = prepv->seg);
QueueElement *pv = prepv->seg;
prepv->seg = pv->seg; pv->seg = q->seg; q->seg = pv;
return;

}

Nothing to do: The first element of the queue is v. Since the new
Graph[v].dist is smaller, it is not necessary to re-order the queue.
In the rest of the function, (*Pq)->v != v⇐⇒ *Pq < pv⇐⇒

*Pq <= prepv < prepv->seg = pv.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 64/90

An implementation of a priority queue as a linked list in C
Comments to the decrease priority function code
The special case costv <= Graph[(*Pq)->v].dist

The new cost costv of *pv is smaller than
or equal to the cost of *Pq.

Strategy: *pv has to be moved to the beginning of the queue
Consequently, we need to compute prepv and

connect *prepv with *(pv->seg) = *(prepv->seg->seg)
Remark: This justifies why we need to compute prepv instead of the (apparently more natural)
computation of pv.

Computation of prepv (pv = prepv->seg)
As we have seen, here we have (*Pq)->v!=v, which is equivalent to

*Pq <= prepv < prepv->seg = pv.
We can compute prepv with this for loop — see the “callout” note at page 63.

Case: !(costv > Graph[(*Pq)->v].dist)
float costv = Graph[v].dist;
if(!(costv > Graph[(*Pq)->v].dist)){ register QueueElement *prepv;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * swap = *Pq;
*Pq=prepv->seg; prepv->seg=prepv->seg->seg; (*Pq)->seg=swap;
return;

}

!(
co

st
v

>
Gr

ap
h[

(*
Pq

)-
>v

].
di

st
)

⇐
⇒

co
st

v
<=

Gr
ap

h[
(*

Pq
)-

>v
].

di
st

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 65/90

An implementation of a priority queue as a linked list in C
Comments to the decrease priority function code
The general case costv > Graph[(*Pq)->v].dist

The new cost costv of *pv is larger than
the cost of *Pq.

Notation
In the general case, when the loop below stops, we have q >= *Pq and

Graph[a->v].dist < costv <= Graph[q->seg->v].dist
for every QueueElement *a such that *Pq <= a <= q (see the corresponding
“callout” note at page 62).

Strategy
Compute q and pv (in fact, prepv), and re-allocate *pv = *(prepv->seg) between
*q and *(q->seg).

Computation of q and exit if q->seg = pv
register QueueElement *q, *prepv;
for(q = *Pq; Graph[q->seg->v].dist < costv; q = q->seg);
if(q->seg->v == v) return;

Exercise: if(q->seg->v == v) there is nothing to do
When q->seg->v = v ⇐⇒ q->seg = pv it is not difficult to see that the queue is still
sorted after decreasing Graph[v].dist.

From now on q->seg->v != v ⇐⇒ q->seg != pv which implies q->seg < pv.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 66/90

An implementation of a priority queue as a linked list in C
Final comments to the decrease priority function code

Strategy recalled
Compute q (already done) and prepv, and re-allocate *pv = *(prepv->seg) between
*q and *(q->seg).

Computation of prepv

As we have seen, here we have q->seg < pv, which is equivalent to
q->seg <= prepv < prepv->seg = pv.

Then the for loop below sequentially computes prepv.
It is not necessary to check the condition prepv->seg != NULL (see the vertical “callout” note at
page 63) because prepv is initialized as q->seg <= prepv and v = prepv->seg->v is in the
queue. Then, in the loop, prepv->seg must run through the queue element containing v.

Computation of prepv and re-allocation of *pv = *(prepv->seg)
for(prepv = q->seg; prepv->seg->v != v; prepv = prepv->seg);
QueueElement *pv = prepv->seg;
prepv->seg = pv->seg; pv->seg = q->seg; q->seg = pv;
return;

Re-allocation of *pv = *(prepv->seg) between *q and *(q->seg)

We also need to connect *prepv with *(pv->seg) = *(prepv->seg->seg).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 67/90

Optional Exercise
Implement the Dijkstra’s Algorithm in C with a binary heap
priority queue. That is, implement a binary heap priority queue in
C and use it in Dijkstra’s Algorithm.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 68/90

A? Algorithm

Contents

1 Introduction to A? Algorithm
2 A? Algorithm pseudocode
3 An example of the A? Algorithm
4 On the heuristic function
5 An example of the A? Algorithm: Comparing two heuristics
6 The A? Basic Step
7 The A? Basic Operation
8 An A? Basic Lemma — How A? works
9 Algorithmic properties of A?

Termination and Completeness
Admissibility
Dominance and Optimality
Monotone (Consistent) Heuristics
Properties of Monotone Heuristics

10 Implementation of the A? Algorithm in C
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 69/90

Introduction to A? Algorithm6

A? is a graph traversal and path search algorithm for solving the routing
problem. It is complete, optimal and computationally efficient. It is the best
solution in many cases (despite of the major practical drawback that it stores
all generated nodes in memory).

A? is an informed search algorithm, or a best-first search. It maintains a tree of
paths originating at the start node and extending one edge at a time until its
termination criterion is satisfied. A? can be seen as an extension of Dijkstra’s
Algorithm. It achieves better performance by using heuristics to guide its
search.

At each iteration of its main loop, A? needs to determine which of its paths to
extend. It does so based on the cost of the path and an estimate of the cost
required to extend the path all the way to the goal. Specifically, A? selects the
path that minimizes f (v) = g(v) + h(v) where v is the next node on the path,
g(v) is the cost of the path from the start node to v , and h(v) is a heuristic
function that estimates the cost of the cheapest path from v to the goal node.

A? terminates when the path it chooses to extend, is a path from start to goal
or if there are no eligible paths to be extended.

6Inspired in https://en.wikipedia.org/wiki/A*_search_algorithm
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 70/90

Introduction to A? Algorithm
The heuristic function7 is problem-specific. When it is admissible, meaning that
it never overestimates the actual cost to get to the goal, A? is guaranteed to
return a least-cost path from start to goal.

Typical implementations of A? use a priority queue to perform the repeated
selection of minimum (estimated) cost nodes to expand. This priority queue is
known as the Open Queue (or Open Set). At each step of the algorithm, the
node with the lowest f value is removed from the queue, the f and g values of
its neighbours are updated accordingly, and these neighbours are added to the
queue. The algorithm continues until a removed node (thus the node with
lowest f value out of all open nodes) is a goal node. The f value of that goal is
then also the cost of the shortest path, since h at the goal is zero in an
admissible heuristic.

To find the actual sequence of steps that constitute a shortest path, as in
Dijkstra’s Algorithm, one has to keep track of the predecessor of each node on
the computed shortest path. At A? termination, the ending node will point to
its predecessor, and so on, until some node’s predecessor is the start node.

7As an example, when searching for the shortest route on a map, h(v) might represent the
straight-line distance from v to the goal, since that is physically the smallest possible distance
between any two points.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 71/90

A? Algorithm pseudocode
procedure AStar(graph G, start, goal, h)

Open ← EmptyPriorityQueue
parent[G.order] ← uninitialized . General initialization
g[G.order] ← initialized to ∞ .

Important to detect the non-
visited (and non-enqueued) nodes

g[start] ← 0
parent[start] ←∞ .

Open Set initialization: start has distance
0 to itself, has no parent and is enqueued

Open.add with priority(start, g, h)
while not Open.IsEmpty do . The main loop

current ← Open.extract min(g, h) .

if (current is goal) then return g, parent . We have found the solution
for each adj ∈ current.neighbours do

adj new try gScore ← g[current] + ω(current, adj) . New cost from start to
adj through currentif adj new try gScore < g[adj] then

parent[adj] ← current
g[adj] ← adj new try gScore
if not Open.BelongsTo(adj) then Open.add with priority(adj, g, h)
else Open.requeue with priority(adj, g, h)
end if

end if
end for

end while
return failure . goal is not accessible from start

end procedure

extract min removes a node current with minimal cost
f (current) = g(current) + h(current) from the Open Queue.
Subsequently, the node current will be expanded.

Re
la
xa
tio

n
st
ep

/

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 72/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

A
0

0.471
nil

expanded A

D C B F E H G P S U

g 0

0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471

0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil

A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406
15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

D C B
0.471 0.495 0.528
0.942 0.99 1.036
A A A

expanded A

D C B F E H G P S U

g 0

0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471

0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil

A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

C B E
0.495 0.528 23.626
0.99 1.036 24.146
A A D

expanded A D

C B F E H G P S U

g 0 0.471

0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942

0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A

A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

B F E P
0.528 12.528 23.626 35.347
1.036 19.419 24.146 39.224
A C D C

expanded A D C

B F E H G P S U

g 0 0.471 0.495

0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99

1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A

A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

F E P
12.528 23.626 35.347
19.419 24.146 39.224

C D C
expanded A D C B

F E H G P S U

g 0 0.471 0.495 0.528

12.528 19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036

19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A

C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406
15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

E P
19.419 35.347
19.939 39.224

F C
expanded A D C B F

E H G P S U

g 0 0.471 0.495 0.528 12.528

19.419 19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419

19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A C

F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

H G P
19.939 23.704 35.347
20.459 24.334 39.224

E E C
expanded A D C B F E

H G P S U

g 0 0.471 0.495 0.528 12.528 19.419

19.939 20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939

20.459 21.199 39.224 41.734 41.734

parent nil A A A C F

E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

G P
20.569 35.347
21.199 39.224

H C
expanded A D C B F E H

G P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939

20.569 35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459

21.199 39.224 41.734 41.734

parent nil A A A C F E

H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

P I
35.347 37.975
39.224 44.632

C G
expanded A D C B F E H G

P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569

35.347 39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199

39.224 41.734 41.734

parent nil A A A C F E H

C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406
15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

S Q I O T
39.224 40.165 37.975 51.525 54.478
41.734 43.141 44.632 55.975 59.681

P P G P P
expanded A D C B F E H G P

S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347

39.224 41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224

41.734 41.734

parent nil A A A C F E H C

P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

U Q I O T R
41.734 40.165 37.975 51.525 54.478 60.056
41.734 43.141 44.632 55.975 59.681 63.255

S P G P P S
expanded A D C B F E H G P S

U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224

41.734

f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734

41.734

parent nil A A A C F E H C P

S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

An example of the A? Algorithm
Finding the optimal path from source node A to node goal U (heuristics to be discussed)

A

B D E G

C F H

P

S U

Q O K I J

R T N L M

0.
52
8

0.495

0.4
71

0.508

3.
43
7

12.033

34.8
52

23.155

6.891

4.285

0.520 0.6
30

17.406

15.216

10.625

17.320

6.657

16.450

12.373

3.618

4.450

6.450

16.178

5.203

4.818

3.877

19.131

3.199

2.976

20.832 2.510 13.313

Open Queue
g
f

parent

Q I O T R
40.165 37.975 51.525 54.478 60.056
43.141 44.632 55.975 59.681 63.255

P G P P S
expanded A D C B F E H G P S U

g 0 0.471 0.495 0.528 12.528 19.419 19.939 20.569 35.347 39.224 41.734
f 0.471 0.942 0.99 1.036 19.419 19.939 20.459 21.199 39.224 41.734 41.734

parent nil A A A C F E H C P S

Observe that the f -values of the expanded nodes are non-decreasing and there is no re-opened node (to be
expanded again). As we will see this is due to the fact that the heuristic function is monotone.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 73/90

On the heuristic function
The whole algorithm and, in particular, its efficiency depend on the heuristic function

As we will see, the best heuristic function estimates (but never
overestimates) the actual cost to get to the goal from any node.

Simple general example for weighted graphs
(does not use latitude and longitude)
Let G = (V ,E , ω) be a weighted graph and let γ denote the goal
node. For every vertex v ∈ V we can set

h(v) :=
{

min{ω(v , u) : (v , u) ∈ E} if v 6= γ,
0 if v = γ.

We will show that this heuristic function is admissible and
monotone. However, it is very bad since it is far from correctly
estimating σ(v , γ).

In the example contained in the next slides we will see the
enormous importance of choosing the best possible heuristic
function.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 74/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A

B C E F G

g 0

1 2 3 3 102

f 0

1 2 3 3 102

parent nil

A B C D F

Open
Queue

g
f

parent

A
0
0
nil

expanded A

B D F G

g 0

1 2 3 102

f 0

102 102 102 102

parent nil

A B D F

Open
Queue

g
f

parent

A
0
0
nil

C E
2 4
103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99
1

expanded A

B C E F G

g 0

1 2 3 3 102

f 0

1 2 3 3 102

parent nil

A B C D F

Open
Queue

g
f

parent

B
1
1
A

expanded A

B D F G

g 0

1 2 3 102

f 0

102 102 102 102

parent nil

A B D F

Open
Queue

g
f

parent

B
1

102
A

C E
2 4
103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1
1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B

C E F G

g 0 1

2 3 3 102

f 0 1

2 3 3 102

parent nil A

B C D F

Open
Queue

g
f

parent

C D
2 2
2 102
B B

expanded A B

D F G

g 0 1

2 3 102

f 0 102

102 102 102

parent nil A

B D F

Open
Queue

g
f

parent

D C
2 2

102 103
B B

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B C

E F G

g 0 1 2

3 3 102

f 0 1 2

3 3 102

parent nil A B

C D F

Open
Queue

g
f

parent

E D
3 2
3 102
C B

expanded A B D

F G

g 0 1 2

3 102

f 0 102 102

102 102

parent nil A B

D F

Open
Queue

g
f

parent

F C
3 2

102 103
D B

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B C E

F G

g 0 1 2 3

3 102

f 0 1 2 3

3 102

parent nil A B C

D F

Open
Queue

g
f

parent

F D
4 2
4 102
E B

expanded A B D F

G

g 0 1 2 3

102

f 0 102 102 102

102

parent nil A B D

F

Open
Queue

g
f

parent

G C E
102 2 4
102 103 104
F B F

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99
1

expanded A B C E F

F G

g 0 1 2 3 4

3 102

f 0 1 2 3 4

3 102

parent nil A B C E

D F

Open
Queue

g
f

parent

D G
2 103

102 103
B F

expanded A B D F G
g 0 1 2 3 102
f 0 102 102 102 102

parent nil A B D F

Open
Queue

g
f

parent

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1
1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B C E D

F G

g 0 1 2 3 2

3 102

f 0 1 2 3 102

3 102

parent nil A B C B

D F

Open
Queue

g
f

parent

F G
3 103
3 103
D F

expanded A B D F G
g 0 1 2 3 102
f 0 102 102 102 102

parent nil A B D F

Open
Queue

g
f

parent

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B C E D F

G

g 0 1 2 3 2 3

102

f 0 1 2 3 102 3

102

parent nil A B C B D

F

Open
Queue

g
f

parent

G
102
102
F

expanded A B D F G
g 0 1 2 3 102
f 0 102 102 102 102

parent nil A B D F

Open
Queue

g
f

parent

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

An example of the A? Algorithm: Comparing two heuristics
Finding the optimal path from source node A to node goal G

Heuristic function
A B C D E F G H

h 0 0 0 100 0 0 0 0

A

F G

H

D

B

C E

1

1

1

1

1

1

99

1

Heuristic function
A B C D E F G H

h 0 101 101 100 100 99 0 1

A

G

D

B F

C E H

1

1

1

1

1

1

99

1

expanded A B C E D F G
g 0 1 2 3 2 3 102
f 0 1 2 3 102 3 102

parent nil A B C B D F

Open
Queue

g
f

parent

expanded A B D F G
g 0 1 2 3 102
f 0 102 102 102 102

parent nil A B D F

Open
Queue

g
f

parent

C E
2 4

103 104
B F

F44E

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 75/90

The A? Basic Step

Let v ∈ V be a vertex of G for which there exists a node u ∈ V \ {γ}
such that:

1 (u, v) ∈ E is an edge of the graph,
2 u is removed from the Open Queue by the function extract min,

and
3 g(v) > g(u) + ω(u, v).

Then, the if clause of the relaxation step holds true for adj = v, and
g(v) is set to the lower value g(u) + ω(u, v) <∞,
u is set to be parent[v], and
v is set to belong to the Open Queue with the new g(v) value.

Moreover, this is the only way that v can enter to the Open Queue and
parent[v] can be modified.

Definition
The operation described in the above remark will be called relaxing the
node v after expanding the node u.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 76/90

The A? Basic Operation
Based on the construction (or exploration) of paths

Definition: Path constructed by the A? Algorithm at a relaxation
Let α :=

(
ξ=v0 → v1 → · · · → vn−1 → vn

)
be a path in a graph G .

We say that α has been constructed by the A? Algorithm at a
relaxation of vn (or, equivalently, at a vn opening) whenever vn is
relaxed after the expansion of vn−1 (and thus added to the Open
Queue), and parent[vj] = vj−1 for j = n − 1, n − 2, . . . , 2, 1 at
the relaxation of vn (in particular, g(vi) <∞ for
i = 0, 1, 2, . . . , n − 1).
After relaxing vn, we also have

g(vn) <∞ and vn−1 = parent[vn].

Remark
Every relaxation of a vertex v generates a new path from ξ to v
that is strictly cheaper than all other paths from ξ to v
constructed so far for the algorithm.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 77/90

The A? Basic Operation
Acyclic paths

Definition: Acyclic Path
A path is called acyclic if it does not contain a loop. Equivalently,
a path is acyclic if and only if every node appearing in the path is
not repeated (i.e., it appears exactly once in the whole path).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 78/90

An A? Basic Lemma — How A? works

All paths constructed by the A? Algorithm are acyclic.

Proof of A? Basic Lemma
Assume by way of contradiction that A? has just constructed a cyclic path

ξ = v0 −→ v1 −→ · · · −→ vm −→ vm+1 −→ · · · −→ vm+k −→ vm,
with v0, v1, . . . , vm, vm+1, . . . , vm+k pairwise different. Then, prior (i.e., just before)
the relaxation of vm after the expansion of vm+k we have the following situation:

1 The nodes
v0 = parent[v1], v1 = parent[v2], . . . , vm = parent[vm+1],
vm+1 = parent[vm+2], . . . , vm+k−1 = parent[vm+k],

have been previously relaxed,
2 (vm+k , vm) is an edge of the graph,
3 vm+k is removed from the Open Queue by the function extract min,

and finally (since vm has been already expanded, and 1 and 3 from Slide 76 hold),
m−1∑

i=0

ω(vi , vi+1) = g(vm) > g(vm+k) + ω(vm+k , vm) =
m+k−1∑

i=0

ω(vi , vi+1) + ω(vm+k , vm) >
m−1∑

i=0

ω(vi , vi+1);

a contradiction.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 79/90

Algorithmic properties of A?: Termination

A? always terminates on finite graphs.

Proof
Let C be the maximal subgraph of G that contains ξ and is connected. Clearly, C is
finite because G is finite and every path of G starting at ξ is contained in C .
On the other hand, the number of acyclic paths starting at ξ (and thus contained in
C) is finite.
By the A? Basic Lemma, the A? Algorithm constructs a subset of the acyclic paths
starting at ξ, and traverse the subgraph of C formed by the union of these (finitely
many) acyclic paths in finite time. Recall that reopened nodes correspond to new
acyclic paths from ξ to the node being reopened, since A? only reopens a node when
constructing a path strictly cheaper than (and thus different from) the ones
constructed previously to the node being reopened.
So, either

γ ∈ Cγ ∈ Cγ ∈ C and A? will stop after finding the goal node (when extracting γ from the
Open Queue with the function extract min) and ending the construction of an
acyclic path from the source ξ to γ; or
γ /∈ Cγ /∈ Cγ /∈ C and, in this case, A? will traverse the whole graph C (searching for the
inexistent γ) by sequentially constructing all (finitely many) acyclic paths
contained in C starting at ξ. After finishing the construction of all these paths
the algorithm stops with an error message.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 80/90

Algorithmic properties of A?: Completeness

Completeness
An algorithm is said to be complete if it termi-
nates with a (non necessarily optimal) solution
when one exists.

Completeness Theorem
A? is complete.

Proof
By using the notation from the proof the termination property we
get that γ ∈ C by assumption. So, by the proof the termination
property, in this case A? constructs an acyclic path from the source
ξ to γ, thus giving a solution path.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 81/90

Algorithmic properties of A?: Admissibility

Admissibility
An algorithm is admissible if it is guaranteed to
return an optimal solution whenever a solution
exists.

Definition
An heuristic function h is said to be
admissible if for every vertex v ∈ V ,

h(v) ≤ σ(v , γ)
where γ is the goal node.

Admissibility Theorem
If h is admissible,
then A? is admissible.

Example (the heuristic function from Page 74 is admissible)
If v = γ we have: h(v) = h(γ) = 0 = σ(γ, γ).
If v 6= γ, let α be an optimal path from v to the node goal γ and let u ∈ V be
such that (v , u) ∈ E and α starts with (v , u). We have

h(v) = min{ω(v , x) : (v , x) ∈ E} ≤ ω(v , u) ≤ ω(α) = σ(v , γ).

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 82/90

Algorithmic properties of A?: Dominance and Optimality

Dominance

An algorithm A?1 is said to dominate A?2 if every
node expanded by A?1 is also expanded by A?2.
Similarly, A?1 strictly dominates A?2 if A?1 dom-
inates A?2 and A?2 does not dominate A?1. We
will also use the phrase “more efficient than”
interchangeably with dominates.

Optimality
An algorithm is said to be optimal over a class
of algorithms if it dominates all members of that
class.

Definition
An heuristic function h2 is more informed than h1 if both are admissible
and h2(v) > h1(v) for every non-goal vertex v ∈ V . Similarly, an A?

algorithm using h2 is said to be more informed than that using h1.

Theorem
If A?2 is more informed than A?1, then A?2 dominates A?1.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 83/90

Algorithmic properties of A?: Monotone Heuristics

By the triangle inequality we have σ(u, γ) ≤ σ(u, v) + σ(v , γ) for
every u, v ∈ V , where γ ∈ V denotes the goal node. Since, by
admissibility h(·) is an estimate of σ(·, γ), it is now reasonable to
expect that if the process of estimating h(·) is consistent, it should
inherit the above inequality and satisfy h(u) ≤ σ(u, v) + h(v) for
every u, v ∈ V .

Definition (Consistency and Monotonicity)
An heuristic function h is said to be consistent if

h(u) ≤ σ(u, v) + h(v)
is satisfied for all pairs of nodes u, v ∈ V .
An heuristic function h is said to be monotone if it satisfies

h(u) ≤ ω(u, v) + h(v)
for every u, v ∈ V such that (u, v) ∈ E is an edge of the graph.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 84/90

Algorithmic properties of A?: Monotone Heuristics
Monotonicity may seem, at first glance, to be less restrictive than
consistency, because it only relates the heuristic of a node to the
heuristics of its immediate successors. However, a simple proof by
induction on the depth of the descendants of u shows the following

Theorem
An heuristic function is monotone if and only if it is consistent.

It is also simple to relate consistency to admissibility.

Theorem
Every consistent heuristic is admissible.

Example (the heuristic function from Page 74 is monotone and admissible)
Let u, v ∈ V be such that (u, v) ∈ E is an edge of the graph. Then,

h(u) = min{ω(u, x) : (u, x) ∈ E} ≤ ω(u, v) ≤ ω(u, v) + h(v)
because h is non-negative.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 85/90

Algorithmic properties of A?: Monotone Heuristics
Theorem (All discovered paths are optimal)
An A? algorithm guided by a monotone heuristic finds optimal paths to
all expanded vertices v ∈ V . That is, as in Dijkstra’s Algorithm,

g(v) = σ(ξ, v)
for every expanded vertex v ∈ V .

Theorem (Monotonicity of the sequence of f –values)
Monotonicity implies that the sequence {f (vi)}`

i=1 of f –values of the
sequence of vertices {vi}`

i=1 expanded by A? is non-decreasing8.

Theorem (Easy expansion conditions)
If h is a monotone heuristic, then the necessary condition for expanding a
vertex v ∈ V is given by

σ(ξ, v) + h(v) ≤ σ(ξ, γ),
and the sufficient condition is given by the strict inequality

σ(ξ, v) + h(v) < σ(ξ, γ).

8And this gives a way to check when an heuristic function is not monotone.
Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 86/90

Implementation of the A? Algorithm in C
Declarations and auxiliary functions

Graph declarations and auxiliary functions
typedef char bool; enum {false, true};
typedef struct{ unsigned vertexto; float weight; } weighted_arrow;
typedef struct{ char name; unsigned arrows_num; weighted_arrow arrow[5]; } graph_vertex;
typedef struct { float g; unsigned parent; } AStarPath;

bool AStar(graph_vertex *, AStarPath *, unsigned, unsigned, unsigned);

void ExitError(const char *miss, int errcode) {
fprintf (stderr, "\nERROR: %s.\nStopping...\n\n", miss); exit(errcode);

}

Priority Queue and A? declarations and auxiliary functions
typedef struct QueueElementstruct { unsigned v; struct QueueElementstruct *seg; } QueueElement;
typedef QueueElement * PriorityQueue;
typedef struct { float f; bool IsOpen; } AStarControlData;

float heuristic(graph_vertex *Graph, unsigned vertex, unsigned goal){ register unsigned short i;
if(vertex == goal) return 0.0;
float minw = Graph[vertex].arrow[0].weight;
for(i=1; i < Graph[vertex].arrows_num ; i++){
if(Graph[vertex].arrow[i].weight < minw) minw = Graph[vertex].arrow[i].weight;
}
return minw; }

To implement the function Open.BelongsTo() efficiently in time
Instead of sequentially explore the whole queue to determine whether a given node v belongs to the list, it is much
simpler to check if ASCD[v].IsOpen is true. The drawback is that this bool variable costs one byte more per node,
and its maintenance must be done manually (add with priority automatically sets this variable for easiness).To

sa
ve

m
em

or
y
we

on
ly
st
or
e
th
e

f-
va
lu
es

se
pa
ra
te
ly
(a
nd

no
tt

he
h-
va
lu
es
).

Th
e
va
lu
e
of

h
=

f-
g
wi
ll
th
en

ha
ve

to
be

co
m
pu

te
d
fro

m
f
an
d

g.

Question
Is the heuristic function good? If not, how to improve it?

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 87/90

Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {
{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},
...
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };
AStarPath PathData[GraphOrder];
unsigned node_start = 0U, node_goal = 20U;

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)
printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name	Distance

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

Starting at node goal, reverse the parents path so that successor
becomes parent and, conversely, parent becomes successor.
Then, we can write the optimal path forward; starting at
node start until we arrive at node goal.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 88/90

Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)
printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name	Distance

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

graph_vertex Graph[GraphOrder] = {
{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},
{’C’, 4, { {0, 0.495}, {3, 3.437}, {5, 12.033}, {15, 34.852} }},
{’D’, 4, { {0, 0.471}, {1, 0.508}, {2, 3.437}, {4, 23.155} }},
{’E’, 4, { {3, 23.155}, {5, 6.891}, {6, 4.285}, {7, 0.520} }},
{’F’, 2, { {2, 12.033}, {4, 6.8910} }}, {’G’, 3, { {4, 4.285}, {7, 0.630}, {8, 17.406} }},
{’H’, 2, { {4, 0.520}, {6, 0.630} }},
{’I’, 5, { {6, 17.406}, {9, 6.657}, {10, 15.216}, {11, 10.625}, {12, 17.320} }},
{’J’, 2, { {8, 6.657}, {12, 16.450} }}, {’K’, 2, { {8, 15.216}, {14, 12.373} }},
{’L’, 2, { {8, 10.625}, {12, 3.618} }}, {’M’, 3, { {8, 17.320}, {9, 16.450}, {11, 3.618} }},
{’N’, 2, { {14, 4.450}, {19, 6.450} }},
{’O’, 4, { {10, 12.373}, {13, 4.450}, {15, 16.178}, {19, 5.203} }},
{’P’, 5, { {2, 34.852}, {14, 16.178}, {16, 4.818}, {18, 3.877}, {19, 19.131} }},
{’Q’, 3, { {15, 4.818}, {17, 3.199}, {18, 2.976} }}, {’R’, 2, { {16, 3.199}, {18, 20.832} }},
{’S’, 4, { {15, 3.877}, {16, 2.976}, {17, 20.832}, {20, 2.510} }},
{’T’, 4, { {13, 6.450}, {14, 5.203}, {15, 19.131}, {20, 13.313} }},
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 88/90

Implementation of the A? Algorithm in C
main program and results

#define GraphOrder 21

int main() {
graph_vertex Graph[GraphOrder] = {
{’A’, 3, { {1, 0.528}, {2, 0.495}, {3, 0.471} }},
{’B’, 2, { {0, 0.528}, {3, 0.508} }},
...
{’U’, 2, { {18, 2.510}, {19, 13.313} }} };
AStarPath PathData[GraphOrder];
unsigned node_start = 0U, node_goal = 20U;

bool r = AStar(Graph, PathData, GraphOrder, node_start, node_goal);
if(r == -1) ExitError("in allocating memory for the OPEN list in AStar", 21);
else if(!r) ExitError("no solution found in AStar", 7);

register unsigned v=node_goal, pv=PathData[v].parent, ppv; PathData[node_goal].parent=UINT_MAX;
while(v != node_start) { ppv=PathData[pv].parent; PathData[pv].parent=v; v=pv; pv=ppv; }

printf("Optimal path found:\nNode name | Distance\n----------|---------\n");
printf(" %c (%3.3u) | Source\n", Graph[node_start].name, node_start);
for(v=PathData[node_start].parent ; v !=UINT_MAX ; v=PathData[v].parent)
printf(" %c (%3.3u) | %7.3f\n", Graph[v].name, v, PathData[v].g);
return 0; }

Output: Shortest path
Node name	Distance

A (000) | Source
C (002) | 0.495
P (015) | 35.347
S (018) | 39.224
U (020) | 41.734

Starting at node goal, reverse the parents path so that successor
becomes parent and, conversely, parent becomes successor.
Then, we can write the optimal path forward; starting at
node start until we arrive at node goal.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 88/90

Implementation of the A? Algorithm in C
The AStar function code

bool AStar(graph_vertex *Graph, AStarPath *PathData, unsigned GrOrder,
unsigned node_start, unsigned node_goal){ register unsigned i;
PriorityQueue Open = NULL;
AStarControlData *Q;

if((Q = (AStarControlData *) malloc(GrOrder*sizeof(AStarControlData))) == NULL)
ExitError("when allocating memory for the AStar Control Data vector", 73);
for(i=0; i < GrOrder; i++) { PathData[i].g = MAXFLOAT; Q[i].IsOpen = false; }

PathData[node_start].g = 0.0; PathData[node_start].parent = ULONG_MAX;
Q[node_start].f = heuristic(Graph, node_start, node_goal);
if(!add_with_priority(node_start, &Open, Q)) return -1;

while(!IsEmpty(Open)){ unsigned node_curr;
if((node_curr = extract_min(&Open)) == node_goal) { free(Q); return true; }
for(i=0; i < Graph[node_curr].arrows_num ; i++){
unsigned node_succ = Graph[node_curr].arrow[i].vertexto;
float g_curr_node_succ = PathData[node_curr].g + Graph[node_curr].arrow[i].weight;
if(g_curr_node_succ < PathData[node_succ].g){
PathData[node_succ].parent = node_curr;
Q[node_succ].f = g_curr_node_succ + ((PathData[node_succ].g == MAXFLOAT) ?
heuristic(Graph, node_succ, node_goal) : (Q[node_succ].f-PathData[node_succ].g));
PathData[node_succ].g = g_curr_node_succ;
if(!Q[node_succ].IsOpen) { if(!add_with_priority(node_succ, &Open, Q)) return -1; }
else requeue_with_priority(node_succ, &Open, Q);
}
}
Q[node_curr].IsOpen = false;
} /* Main loop while */
return false;
}

To check easily whether a
given node v belongs to the
queue: It does so if and only
if Q[v].IsOpen is true.

For node start we have
f = h because g = 0.0.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 89/90

Implementation of the A? Algorithm in C
The AStar function code

bool AStar(graph_vertex *Graph, AStarPath *PathData, unsigned GrOrder,
unsigned node_start, unsigned node_goal){ register unsigned i;
PriorityQueue Open = NULL;
AStarControlData *Q;

if((Q = (AStarControlData *) malloc(GrOrder*sizeof(AStarControlData))) == NULL)
ExitError("when allocating memory for the AStar Control Data vector", 73);
for(i=0; i < GrOrder; i++) { PathData[i].g = MAXFLOAT; Q[i].IsOpen = false; }

PathData[node_start].g = 0.0; PathData[node_start].parent = ULONG_MAX;
Q[node_start].f = heuristic(Graph, node_start, node_goal);
if(!add_with_priority(node_start, &Open, Q)) return -1;

while(!IsEmpty(Open)){ unsigned node_curr;
if((node_curr = extract_min(&Open)) == node_goal) { free(Q); return true; }
for(i=0; i < Graph[node_curr].arrows_num ; i++){
unsigned node_succ = Graph[node_curr].arrow[i].vertexto;
float g_curr_node_succ = PathData[node_curr].g + Graph[node_curr].arrow[i].weight;
if(g_curr_node_succ < PathData[node_succ].g){
PathData[node_succ].parent = node_curr;
Q[node_succ].f = g_curr_node_succ + ((PathData[node_succ].g == MAXFLOAT) ?
heuristic(Graph, node_succ, node_goal) : (Q[node_succ].f-PathData[node_succ].g));
PathData[node_succ].g = g_curr_node_succ;
if(!Q[node_succ].IsOpen) { if(!add_with_priority(node_succ, &Open, Q)) return -1; }
else requeue_with_priority(node_succ, &Open, Q);
}
}
Q[node_curr].IsOpen = false;
} /* Main loop while */
return false;
}

To check easily whether a
given node v belongs to the
queue: It does so if and only
if Q[v].IsOpen is true.

For node start we have
f = h because g = 0.0.

To save computational effort we call the heuristic function to compute h:
h(node succ) = heuristic(Graph, node succ, node goal)

only the first time that we visit a node (PathData[node succ].g == MAXFLOAT). When a node node succ
has been already visited we recover the value of h(node succ) = f(node succ) - g(node succ) (recall
that we are not storing the h-values separately) from the formula

f(node succ) - g(node succ) = Q[node succ].f-PathData[node succ].g.
For efficiency, the computation of

Q[node succ].f = PathData[node succ].g new + h(node succ)
is implemented by means of an arithmetic if.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 89/90

Implementation of the A? Algorithm in C
The AStar function code

bool AStar(graph_vertex *Graph, AStarPath *PathData, unsigned GrOrder,
unsigned node_start, unsigned node_goal){ register unsigned i;
PriorityQueue Open = NULL;
AStarControlData *Q;

if((Q = (AStarControlData *) malloc(GrOrder*sizeof(AStarControlData))) == NULL)
ExitError("when allocating memory for the AStar Control Data vector", 73);
for(i=0; i < GrOrder; i++) { PathData[i].g = MAXFLOAT; Q[i].IsOpen = false; }

PathData[node_start].g = 0.0; PathData[node_start].parent = ULONG_MAX;
Q[node_start].f = heuristic(Graph, node_start, node_goal);
if(!add_with_priority(node_start, &Open, Q)) return -1;

while(!IsEmpty(Open)){ unsigned node_curr;
if((node_curr = extract_min(&Open)) == node_goal) { free(Q); return true; }
for(i=0; i < Graph[node_curr].arrows_num ; i++){
unsigned node_succ = Graph[node_curr].arrow[i].vertexto;
float g_curr_node_succ = PathData[node_curr].g + Graph[node_curr].arrow[i].weight;
if(g_curr_node_succ < PathData[node_succ].g){
PathData[node_succ].parent = node_curr;
Q[node_succ].f = g_curr_node_succ + ((PathData[node_succ].g == MAXFLOAT) ?
heuristic(Graph, node_succ, node_goal) : (Q[node_succ].f-PathData[node_succ].g));
PathData[node_succ].g = g_curr_node_succ;
if(!Q[node_succ].IsOpen) { if(!add_with_priority(node_succ, &Open, Q)) return -1; }
else requeue_with_priority(node_succ, &Open, Q);
}
}
Q[node_curr].IsOpen = false;
} /* Main loop while */
return false;
}

To check easily whether a
given node v belongs to the
queue: It does so if and only
if Q[v].IsOpen is true.

For node start we have
f = h because g = 0.0.

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 89/90

Implementation of the A? Algorithm in C
Priority queue functions code — Alike in Dijkstra’s algorithm

bool IsEmpty(PriorityQueue Pq){
return ((bool) (Pq == NULL));
}
unsigned extract_min(
PriorityQueue *Pq){
PriorityQueue first = *Pq;
unsigned v = first->v;

*Pq = (*Pq)->seg;
free(first);
return v; }

void requeue_with_priority(unsigned v, PriorityQueue *Pq,
AStarControlData * Q){
register QueueElement * prepv;
if((*Pq)->v == v) return;

for(prepv = *Pq; prepv->seg->v != v; prepv = prepv->seg);
QueueElement * pv = prepv->seg;
prepv->seg = pv->seg;
free(pv);

add_with_priority(v, Pq, Q); }

bool add_with_priority(unsigned v, PriorityQueue *Pq, AStarControlData * Q){
register QueueElement * q;
QueueElement *aux = (QueueElement *) malloc(sizeof(QueueElement));
if(aux == NULL) return false;

aux->v = v;
float costv = Q[v].f;
Q[v].IsOpen = true;

if(*Pq == NULL || !(costv > Q[(*Pq)->v].f)) {
aux->seg = *Pq; *Pq = aux;
return true;
}

for(q = *Pq; q->seg && Q[q->seg->v].f < costv; q = q->seg) ;
aux->seg = q->seg; q->seg = aux;
return true;
}

Lluís Alsedà Shortest paths algorithms in weighted graphs General TOC 90/90

