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Transitivity on trees

Theorem (Blokh 1987)

If X is a tree and f : X — X Is transitive, then

» f has the relative specification property
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Transitivity on trees

Theorem (Blokh 1987)

If X is a tree and f : X — X is transitive, then
» f has the relative specification property
f: X — X is transitive if

> VYU,V — nonempty open dn € N :

fruU)yNV £0
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Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X — X is transitive, then

» f has the relative specification property

f : X — X has the specification property if [Bowen 1971]
> Ve>0 dm Vk>2 Vxy,...,x,€X
Var < by <---<ag < bgwitha;—bi_1 >m(i=2,...,k)
and Vp > m+ by — ay,
there is a point x € X with fP(x) = x and

d(f'(x), f"(x))) <e  for a;<n<b, 1<i<k.
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Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X — X is transitive, then

» f has the relative specification property

f : X — X has the relative property P if [Banks 1997]

» there exist regular closed sets Dy, ..., D,_1 covering X such
that, for every 0 < i < j < m, D; N D; is nowhere dense,

f(D/) - D(H—l) mod m

and
f™|p, : Di — D; has the property P.
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Transitivity on trees

Theorem (Blokh 1987)
If X is a tree and f : X — X is transitive, then

» f has the relative specification property

Consequently, every transitive tree map

v

is relatively mixing

v

has positive entropy

v

has dense periodic points
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Transitivity on dendrites

2. Transitivity on dendrites
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Dendrites

Dendrite

» a locally connected metric continuum which contains no circle

A point x of a dendrite X is

» end point if X \ {x} is connected
» cut point if X \ {x} is not connected
» branch point if X \ {x} has at least 3 components

E(X) and B(X)

» the sets of all end points and branch points

Tree

» a dendrite with finitely many end points
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Dendrites

An arc A= [a, b] in a dendrite X is called free if
» A\ {a, b} is open in X

For a dendrite X the following are equivalent
» X does not contain a free arc

» branch points of X are dense in X

» end points of X are dense (i.e. residual) in X
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Transitivity on dendrites: Positive results

Theorem (Alseda-Kolyada-Llibre-Snoha 1999; Kwietniak 2011;
Haranczyk-Kwietniak-Oprocha 2011; Dirbak-Snoha-S.2012)

If X is a dendrite containing a free arc and f : X — X s transitive,
then

» f is relatively mixing
» f has positive entropy

» { has dense periodic points
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Transitivity on dendrites: Positive results

Theorem (Alseda-Kolyada-Llibre-Snoha 1999; Kwietniak 2011;
Haranczyk-Kwietniak-Oprocha 2011; Dirbak-Snoha-S.2012)

If X is a dendrite containing a free arc and f : X — X s transitive,
then

» f is relatively mixing
» f has positive entropy

» { has dense periodic points

Theorem (Acosta-Hernandez-Naghmouchi-Oprocha 2013)
If X is a dendrite and f : X — X has a transitive cut point, then
» f is relatively weakly mixing

» { has dense periodic points
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Transitivity on dendrites: Negative results

Theorem (Hoehn-Mouron 2013)

There is a dendrite X (with dense B(X)) admitting a map
f: X — X which is

» weakly mixing but
> not mixing

Moreover, [Acosta-Hernandez-Naghmouchi-Oprocha 2013]
» f is proximal, and thus

» it has a unique periodic (= fixed) point
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Transitivity on dendrites: Negative results
Theorem (S.)

There is a dendrite X (with dense B(X)) admitting a map
f: X — X such that

» f is transitive

» { has infinite decomposition ideal

(that is, f is not relatively totally transitive)
» f has a unique periodic (= fixed) point
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Transitivity on dendrites: The main theorem
C(Xx)

» the space of all subcontinua (= subdendrites) of X equipped
with the Hausdorff metric

N¢(U, V)

» the return time set {n e N: f"(U)NV # 0}
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Transitivity on dendrites: The main theorem

Theorem (S.)

Let o0 : ¥ — ¥ be a subshift. Then there are a dendrite X (with
dense B(X)) and maps f = f, : X — X and D : ¥ — C(X) s.t.

» foD=Doo;ie f(D(y))=D(c(y)) forevery y € ¥

» for every cylinders [, [B] in ¥ and every non-empty open sets
U C Dla], V C D[p] in X there is ng € N such that, for every
n = ng,

n € Ny([a], [8]) = ne Ne(U, V)

consequently, f is transitive (totally transitive, weakly mixing,
mixing) if and only if o is
» if o is aperiodic then f has a unique periodic (= fixed) point
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Corollary

Transitivity on dendrites: The main theorem

There is a dendrite X and maps f, g, h: X — X such that

» f is transitive and has infinite decomposition ideal
> g is weakly mixing but not mixing

» h is mixing but has not dense periodic points
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3. Proof of the main result

3. Proof of the main result
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Structure of the proof

Theorem
For a subshift o : ¥ — Y there is a dendrite X, a continuous map
f:X—XandamapD : ¥ — C(X) such that

» foD=Doo
» Ne(U, V) = Ny([er],[B]) for every ...
» if o is aperiodic then Per(f) = Fix(f) is a singleton

Main steps of the proof.

1. construct the dendrite X

2. define D : ¥ — C(X)

3. construct the map f : X — X
4

. prove the properties of f
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Step 1: The dendrite X

The dendrite X: the universal dendrite of order 3
» branch points are dense

» every branch point has order 3

We can write

X:EijUXOO

m=0

» Xp = [a, b] is a segment

> X1 = XoUU,cqlar, br]

» Xo = XU UrseQz [a,s, brs]

L

» Xoo = {b,: re Q} totally disconnected dense Gs set

where Q is the set of all dyadic rationals in (0, 1)
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Step 1: The dendrite X

b
The set X

DA
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Step 1: The dendrite X

by

bi/q

ba/a
by/g bsys bsyg bzsg

/s

A/

Aajg a2 As/g /4 ar/s

b
The set X3
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Step 1: The dendrite X

by
bys ; ba/a
by/s } bajg ; bs/g — by/g
LFLEFL' LFLEFL IFLEFL LFLEFL TLFLEFL LFLEFL :JihEJih LELEEL
a /s aia as/s a2 As/g /4 ar/s b

The set X5
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Step 1: The dendrite X

by

bi/q

by/g

;E‘;E‘E‘; ;E‘;EE‘;

bsys

F'EF'E’F'

tE;t‘l_l-t‘l-E;t‘l-

bsyg

Fr roErFr rirgrfrggrgvfr

’F’E

E‘Fl lFlE‘Fl

ba/a

bzsg

r'gr'gw

LELE EL LELE EL

ai/s /s as/s a2

The set X3

a/a ar/s

o)
I
i
it
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Step 1: The dendrite X

by

bi/q

by/g

;E‘;EE‘; ;E‘;EE‘;

bsys

P'E:F'E,’F'

;EF;_LFLEFL

bsyg

3 'F'E,'F' FF'E"E'E:E'E"F'

’F'Ev

EFL lFLFFL

ba/a

bzsg

f*gr'g';'

LELE EL. LELE FL

ai/s aia as/s a2

The set X4

a/a ar/s
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L3, Proof of the main result

Step 1: The dendrite X

by

bi/q

by/g

;E‘;EE‘; ;E‘;EE‘;

bsys

P'E:F'E,’F'

;EF;_LFLEFL

bsyg

3 'F'E,'F' FF'E"E'E;E'E"F'

’F'Ev

EFL lFLFFL

ba/a

bzsg

f*gr'g';'

LELE EL. LELE FL

ai/s aia as/s a2

The set X5

a/a ar/s
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Step 1: The dendrite X

We can write

oo o
chlosure(U Xm) = U Xm U X
m=0 m=0

v

Xo = [a, b] is a segment
X1 =X U UreQ[a” br]
Xo =X U Ur5602 [ars, brs]

v

v

v

Xoo = {br 1 r € Q°} totally disconnected dense Gy set
where Q is the set of all dyadic rationals in (0, 1)

u]
o)
I
i
it
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Step 2: The subdendrites D()

Assume that ¥ = {0,1}N and 0 : £ — ¥ is the full shift
D07 Dl

» Dy, Dy are regular closed subdendrites of X
» DuD; =X

» Do N Dy = Xy is nowhere dense in X
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Step 2: The subdendrites D(7)

by

E'} EFD'E};) v}r'Fv;ig}va'}v

bys ba/a
b b
by/s - bajg bs/g - by/g
b b
b E-‘ h E-Fv h E-‘ h E-‘ -‘ (AN Fh ||‘|an nhFh nh&h ;h&h NN ;hﬁh 1!1&!1%&}-' h&h ht‘nh

a /s aia as/s a2 /4 ar/s b

Do, Dy
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Step 2: The subdendrites D(~)
Doo, Do1, D1o, D11

» Dqg, ..., D11 are regular closed subdendrites of X
» Do = Doo U Do1, D1 = D1o U D11
>

Uiois2jos (Dioin N Djojy) = Xi is nowhere dense in X




Transitivity without (relative) specification in dendrites
3. Proof of the main result

Step 2: The subdendrites D()

by

} EFFE}}} P'}'PVF};}E}P'FF}}

bys ba/a
ot b
by/s - bajg bs/g - by/g
b b
b EF h E“v h EF h EF -‘ h E: Fh |h&h nh&h'}h&h ;h&h NN ;};Eh 1!‘;&!\%&!{ h&h hEH

a /s aia as/s a2 /4 ar/s b

Doo, Do1, D1o, D11

u]
o)
I
i
it
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Step 2: The subdendrites D()
For y =107+ € &

» D(v) = D“Yo N D’YO'YI N D’YO'YI’YZ N
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Step 3: Themap f: X — X
fo: Xo — Xo Xo = [a, b]

> a surjective map
> “agrees with” the shift o

fo(x) < x for x € (a, b)

v

v

lim, f)’(x) = a for every x # b
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Step 3: Themap f: X — X
ﬂIX1—>X1

X1=XoU U,EQ[ar, b
» fi(ar) = fo(ar)

» maps every end point b, onto an end point b
that

o(
Jim 76 = b

r) in such a way

for every r € Q
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Step 3: Themap f: X — X

by

baya

bsyg

AN |||||||.|||||||||||||||.|I|||||||||||||_|I|||I|||I|||I| |I|||||||I|||I|.|I|||I|||I|||I|
a /s /s a3/

a2

a/a

arfs

The map f1 : X1 — X1

|I|||I|||I|||I|,|I|||I| il
As/g

b
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Step 3: Themap f: X — X
f1:X1—>X1

X1=XoU U,EQ[ar, b
» continuous surjective extension of fy
> “agrees with” the shift o

» maps every [a,, b,] onto

[fo(ar), bo(r)] = [fo(ar), ag(r)] U [ag(r): bo(r)]

> lim, £,"(x) = a for every x # b, b,

(reQ)
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Step 3: Themap f: X — X

by

by/q

bsys
by/g bsyg bs/s bzs
a

/s a/a

a3 a1z as/s as/a arfg

b
The image of [a1 /5, by /o]

[m]
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Step 3: Themap f: X — X

by

by/q

bsys
by/g bsyg bs/s bzs
a

/s a/a

a3 a1z as/s as/a arfg

b
The second image of [ay 5, by o]

[m]

=
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Step 3: Themap f: X — X

by

by/q

bsys
by/g bsyg bs/s bzs
a

/s a/a

a3 a1z as/s as/a arfg

b
The third image of [ay 5, by /o]

[m]

=
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Step 3: Themap f: X — X
fr: Xon — X (m > 2) Xon = X1 U Usemlar: br]

» continuous surjective extension of f,_1

v

“agrees with” the shift o
maps every [a, be| onto [a,(), by(r)]

> 0: Q™ — (QMU QML) is such that every r € Q™ eventually
falls into Q™1

v

v

lim, f,(br) = b for every r € Q™
lim, £2(x) = a for every x # b, b, (re Q'U---U Q™)

v
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Step 3: Themap f: X — X
f-X—-X

X:Ume U Xso, Xoo:{br: rero}
oy = [0 ifx e X, m >0
X) =
bg(r) if x="bhy, re Q>

> 0: Q> — Q% is determined by g|gm (m > 1)

» X is an f-invariant (not closed) set
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Step 4: Properties of £ : X — X

f is a continuous surjection

» every X,, is a closed invariant set with “trivial” dynamics

» X is an invariant set with “shift-like” dynamics

N
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Step 4: Properties of £ : X — X

f is a continuous surjection

» every X,, is a closed invariant set with “trivial” dynamics

» X is an invariant set with “shift-like” dynamics
f “agrees’ with the shift o

» f maps D(~) onto D(o(7))
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Step 4: Properties of £ : X — X

f is a continuous surjection

» every X,, is a closed invariant set with “trivial” dynamics

» X is an invariant set with “shift-like” dynamics
f “agrees’ with the shift o

» f maps D(~) onto D(o(7))

f has the “same” return time sets as o
> ..
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Step 4: Properties of £ : X — X
Subshifts 5 : ¥ — ¥

(X cy)
» correspond to subsystems
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Thanks for your attention!

o 5 = = £ DA
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