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Preliminaries

Definitions

Basic Terminology

• A dynamical system is a continuous map f on a compact
metric space (X , d).

• An orbit for f is a sequence of the form 〈f i (x)〉i∈N for some
x ∈ X .

• For δ > 0, a δ-pseudo-orbit is a sequence 〈zi 〉i∈N in X
satisfying d(zi+1, f (zi )) < δ for i ∈ N.
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Preliminaries

Definitions

Shadowing

• A map f has shadowing provided that for all ε > 0 there exists
a δ > 0 such that for every δ-pseudo-orbit 〈zi 〉 there exists
x ∈ X such that d(zi , f

i (x)) < ε for all i ∈ N.

• The point x is said to ε-shadow the pseudo-orbit 〈zi 〉.
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Preliminaries

Definitions

Chain Transitivity

• A δ-chain from x to y is a sequence x = z0, z1, . . . zn = y in
X which satisfies d(zi+1, f (zi )) < δ for i < n.

• A map f is chain transitive provided that for all δ > 0 and all
x , y ∈ X , there exists a δ-chain from x to y .
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Preliminaries

Variations on Shadowing

Terminology

• A sequence 〈zi 〉 is a δ-pseudo-orbit on A provided that
A ⊆ {i ∈ N : d(zi+1, f (zi )) < δ}.

• A point x ∈ X ε-shadows 〈zi 〉 on B provided that
B ⊆ {i ∈ N : d(zi , f

i (x)) < ε}.

9 / 23

Chain Transitivity and Variations of the Shadowing Property

Preliminaries

Variations on Shadowing

Terminology

• A sequence 〈zi 〉 is a δ-pseudo-orbit on A provided that
A ⊆ {i ∈ N : d(zi+1, f (zi )) < δ}.

• A point x ∈ X ε-shadows 〈zi 〉 on B provided that
B ⊆ {i ∈ N : d(zi , f

i (x)) < ε}.

9 / 23

Chain Transitivity and Variations of the Shadowing Property

Preliminaries

Variations on Shadowing

(F ,G)-shadowing

• A family F is a collection of subsets of N for which A ∈ F
and A ⊆ B implies B ∈ F .

• For families F and G, a map f has (F ,G)-shadowing provided
that for every ε > 0 there exists a δ > 0 such that if 〈zi 〉 is a
δ-pseudo-orbit on a set A ∈ F then there exists a point x ∈ X
which ε-shadows 〈zi 〉 on a set B ∈ G.

Theorem [BMR]

Suppose that F ⊇ F ′ and that G ⊆ G′. Then every space with
(F ,G)-shadowing has (F ′,G′)-shadowing.
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Variations on Shadowing

Variations on Shadowing

• Many commonly used variations on shadowing are of this form
for appropriate families F and G.

• Let T denote the family of thick subsets of N, i.e. those sets
A ⊆ N containing arbitrarily long intervals.

• Let D denote the family of subsets of N with lower density
equal to 1.
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Variations on Shadowing

• Immediately, ({N}, {N})-shadowing is the usual shadowing.

• (D, T )-shadowing is thick shadowing [Dastjerdi, Hosseini
2010]

• (D,D)-shadowing is ergodic shadowing [Fakhari, Gane 2010]

• Several other shadowing subtypes fit this framework (though
not all.)
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Lemmas

Chain transitivity

Lemma [Richeson, Wiseman 2008]

Let f : X → X be chain transitive and let δ > 0. Then there exists
kδ ∈ N such that for any x ∈ X , kδ is te greatest common
denominator of the lengths of δ-chains from x to x .

• Define the relation ∼δ on x by x ∼δ y provided that there is a
δ-chain from x to y of length a multiple of kδ.

• The are precisely kδ many equivalence classes of ∼δ which are
clopen and are permuted cyclicly by f .
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Lemmas

Chain Lengths

Lemma [BMR]

Let f : X → X be chain transitive. For each δ > 0 there exists
M ∈ N such that for any m ≥ M, and any x , y ∈ X with x ∼δ y ,
there is a δ-chain from x to y of length exactly mkδ.

• This is a straightforward application of the fact that δ-chains
can be concatenated and Schur’s Theorem.
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Theorem

Main Theorem

Theorem [BMR]

For a chain transitive dynamical system, the following are
equivalent:

1 shadowing, i.e. ({N}, {N})-shadowing,

2 (T , T )-shadowing,

3 thick shadowing, i.e. (D, T )-shadowing, and

4 ({N}, T )-shadowing.
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Shadowing and Chain Transitiivity

Theorem

Sketch of Proof

• First, note that {N} ⊂ D ⊂ T so as an application of the
earlier theorem, (2) implies (3) and (3) implies (4).

• So, we need only establish that (1) implies (2) and (4) implies
(1).
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Shadowing and Chain Transitiivity

Theorem

(4) implies (1)

• It is sufficient to show that for any ε > 0 we can find δ > 0
such that any δ-chain in X can be ε-shadowed.

• Let ε > 0 and let δ > 0 be given by ({N}, T )-shadowing.

• Fix a δ-chain z0, z1, . . . zn. Since f is chain transitive we can
find a δ-chain zn, y1, y2, . . . ym, z0 from zn to z0.

• Then z0, z1, . . . zn, y1, . . . ym, z0, . . . zn, y1, . . . ym, . . . is a
δ-pseudo-orbit.
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Theorem

(4) implies (1)

• Let x ∈ X shadow
z0, z1, . . . zn, y1, . . . ym, z0, . . . zn, y1, . . . ym, . . . on a set A ∈ T .

• Since A is thick, it contains arbitrarily long sequences of
consecutive integers.

• In particular, one long enough to gaurantee that x shadows
the pseudo-orbit on some segment coinciding with
z0, z1, . . . zn.

• Then, the approriate iterate of x shadows the δ-chain
z0, z1, . . . zn.
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Theorem

(1) implies (2)

• We must show that for any ε > 0 we can find δ > 0 such that
for any δ-pseudo-orbit 〈zi 〉 on a set A ∈ T , there is an x ∈ X
that ε-shadows it on a set B ∈ T .

• Our strategy is to construct a proper δ-pseudo-orbit 〈qi 〉
which agrees with 〈zi 〉 on a thick set and then find a point x
that shadows this modified pseudo-orbit.

• The point x will then shadow the original pseudo-orbit on a
thick set as desired.
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Theorem

(1) implies (2)

• Let ε > 0 and fix δ > 0 as given by shadowing. Let 〈zi 〉 be a
δ-pseudo-orbit on T where T ∈ T .

• Let K = kδ and let X0,X1, . . .XK be the equivalence classes
of ∼δ named so that f (Xi ) = Xi+1 mod K .

• Define for each i ∈ N the number m(i) ∈ ZK to be the
element of ZK such that zi ∈ Xi+m(i).

• If d(zi+1, f (zi )) < δ it follows that m(i) = m(i + 1).

• Let A = {i ∈ N : m(i) = m(i + 1)}, and notice that this
contains T and is hence thick.
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Theorem

(1) implies (2)

• Let Ak = {i ∈ A : m(i) = k} and notice that for some k , Ak

is thick. Without loss, A0.

• By previous lemma, fix M ∈ N such that for all m ≥ M, and
any x , y ∈ X0 there is a δ-chain of length mK from x to y .

• We can then leverage the thickness to replace segments of
〈zi 〉 for which m(i) 6= 0 (and some parts where m(i) = 0 as
well) with δ-chains of lengths mK .

• In particular, do this in such a way that we retain subintervals
of A0 of arbitrary length.

• The modified sequence 〈qi 〉 is now a proper δ-pseudo-orbit
and agrees with 〈zi 〉 on a thick set.
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Thank you

Thank you!
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