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Figure: Invariant density for the Tg: left 5 = %(\/g—i— 1) right: 3= V7.
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The transition matrix [T = 1;; is defined as:

1 if T(P)) D Py,
Mi; =<0 iijﬂT(P,-):(Z),
No other possibility, because {P;} is Markov

The topological entropy is
htop(T) = logo

for o the leading eigenvalue of 1.
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Rokhlin's formula gives the metric entropy:

N
hu(T) = 3" max{log(t:), 0} u(P;)
i=1
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Not Markov but Matching

For the family Tg, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates x4+ > 0 such that
T"=(07) = T%+(0") and derivatives DT"~(07) = DT"+(0")
The pre-matching set is
{0} TU{T ()} )

The pre-matching partition are the complementary domains of the
prematching set; it plays the role of Markov partition.
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Not Markov but Matching

Theorem: If T has matching, then the density p = % is constant
on each element of the pre-matching partition.

Definition: The matching index is A = k4 — K.

Theorem: On every parameter interval where matching occurs,
topological and metric entropy

decreasing if A > 0;
hu(TB) and htop(Tﬁ) are constant if A =0;
increasing if A <0,

as function of 3.



Figure: Entropy h,(Tg) for 8 € [4.6,6] (I) and 5 € [5.29,5.33] (r).

Entropy seems constant on the parameter interval [2,5]; it is filled
with countably many intervals on which A = 0.
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Remarks on the Proof

v

Let F be the first return map

to a nice interval J o T'”(0 )

The return time is 7.

F is independent of 3, and has only linear branches, so it
preserves Lebesgue measure .

The proportion of branches using ~, in their return time
decreases as [ increases.

By Abramov'’s formula h,(Tg) = de/\ hx(F) is monotone in (.
The periods of periodic points in J change by A if x4 is used
instead of x_. This proportion decreases as 3 increases.
Topological entropy is the exponential growth rate

1
htop(Tg) = lim ;#{n—periodic points},

so it is monotone in 5.
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Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
» Let ry(x) = #{0<i<n:T"(x) >0} If ry,(07) = rp,(0T)
then T™(07) — T"(0%") are a multiple of 2 apart.
> Let Jg = [252,2]. For x € Jg, both x and Ts(x) € [0,2].
» Therefore, if T™(07) € Jg, either T™(07) or T™+1(07) will
match with orb(0%).

» Hence we need to estimate the measure of the set of 8 such
that orb(07™) avoids Jg, and in particular is not dense.
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Non-matching?

Is there always matching?

No. Eg. for 3 =5, 8 = 4% and g = 4}—2, there is no matching.
There is a sequence (3, \ 5 for which there is no matching.
There is Cantor sets in (2,5] and (5, 6], accumulating on 5 resp. 6

of non-matching parameters.

Theorem: The non-matching set E has Hausdorff dimension 1.
The left neighborhood of 3 = 6 is responsible for this:

dimy(E \ (6 —£,6)) < 1 for every € > 0.
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Hausdorff dimension proof

Let 3=6—cand F:[-5,2— 5] = [-5,2] the first entrance map.

2
Jgl2 - 5

I A— —

0
—1
T[f Jg D

wio

Up to the interval [, 0] which moves directly into Jg, this is a
quadrupling map.
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Hausdorff dimension proof

Let K. be the set of points
that remain in [0,2 — £]
for all iterates of F.

v

dimy(K:) — 1 as e — 0.

v

If orb(0%) remain in K., then there is no matching.
In fact, orb(0™) C K. iff orb(0") C K-.
dimpy{8 : orb(07) € K.} = dimy(Kz).

v

v
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Other slopes

Generalize to slope s

Ts(x) T/B_(x):x-l-s if x <0,
xX) =
? Tg(x):ﬂ—sx if x> 0.

For s = 3(v/5+1) and v/2 + 1 and some other, large intervals of
matching has been observed.

Figure: h,(Tp) for s = Y31, 5 < [4.6,6] (1) and ﬁ‘e [‘5.2.29,5‘.33]‘ ().

Note that these slopes are quadratic Pisot numbers.
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Other slopes

F act affinely on H. Restricted to orb(0F), we need to iterate

(i) = (5 2 () (797)

where 7,(0%) is the branch number containing F"(0%), starting

G- e @)=

Matching occurs if there is n such that:

(bi00) = (o)

fhe : ; — V541
Question: Does this happen Lebesgue typically for s = Y57
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