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The map T3

Ta(x) = TE(X)IX-FQ if x <0,
U T =82 ifx>0.

Tg preserves the [ — max{2, 5}, max{2, 5}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.

The map Tp

To(x) = Ty(x)=x+2 if x <0,
g Tg(x):ﬁ—2x if x> 0.

Ts preserves the [ — max{2, 5}, max{2, 5}] and some iterate is
uniformly expanding. Therefore Tz admits an acip.

Figure: Invariant density for the Tg: left 8 = %(\/g—l— 1) right: g = /7.
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The topological entropy is
htop(T) = logo

for o the leading eigenvalue of I1.
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Rokhlin's formula gives the metric entropy:

N
hu(T) =) _ max{log(t;), 0}u(P)
i=1
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Not Markov but Matching

For the family T3, there is no Markov partition in general, but
something called matching takes can occur:

Definition: There is matching if there are iterates x4+ > 0 such that
T5=(07) = T"+(0%") and derivatives DT"~(0~) = DT"+(0")
The pre-matching set is
(T} TULT ) )

The pre-matching partition are the complementary domains of the
prematching set; it plays the role of Markov partition.

Not Markov but Matching

Theorem: If T has matching, then the density p = % is constant

on each element of the pre-matching partition.

Not Markov but Matching

Theorem: If T has matching, then the density p = % is constant

on each element of the pre-matching partition.

Definition: The matching index is A = k4 — K_.

Theorem: On every parameter interval where matching occurs,
topological and metric entropy

decreasing if A > 0;
hu(TB) and htop(Tg) are constant if A =0;
increasing  if A <0,

as function of 3.
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Let F be the first return map
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The return time is 7.

Figure: Entropy h,(Tg) for 5 € [4.6,6] (I) and 8 € [5.29,5.33] (r).

Entropy seems constant on the parameter interval [2,5]; it is filled
with countably many intervals on which A = 0.
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Remarks on the Proof
Let F be the first return map
+
to a nice interval J > Tg*w ).

The return time is 7.

F is independent of 3, and has only linear branches, so it
preserves Lebesgue measure \.

v

» The proportion of branches using r in their return time

decreases as 3 increases.

» By Abramov's formula h,(T3) = ﬁh)\(F) is monotone in 3.

» The periods of periodic points in J change by A if k, is used
instead of k_. This proportion decreases as /3 increases.
Topological entropy is the exponential growth rate

1
htop(Tg) = lim ;#{n—periodic points},

so it is monotone in 5.
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Matching is Lebesgue typical

Theorem: The parameter set where matching occurs is open and
dense and has full Lebesgue measure.

Observations towards the proof:
» Let rp(x) =#{0<i<n:T"(x)>0}. If riy,(07) = rpy(0T)
then T™(0~) — T"(0") are a multiple of 2 apart.
> Let Jg = [%,2]. For x € Jg, both x and Tg(x) € [0, 2].
» Therefore, if T™(07) € Jg, either T™(0~) or T™1(07) will
match with orb(0T).

» Hence we need to estimate the measure of the set of 5 such
that orb(07) avoids Jg, and in particular is not dense.
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Non-matching?

Is there always matching?

No. Eg. for 5 =5, = 4% and 8 = 4%—2, there is no matching.
There is a sequence 3, N\, 5 for which there is no matching.
There is Cantor sets in (2,5] and (5, 6], accumulating on 5 resp. 6

of non-matching parameters.

Theorem: The non-matching set E has Hausdorff dimension 1.
The left neighborhood of 3 = 6 is responsible for this:

dimy(E \ (6 —¢,6)) < 1 for every ¢ > 0.

Hausdorff dimension proof

Let 3=6—cand F:[-5,2—5] — [~5,2] the first entrance map.




Hausdorff dimension proof

Let 3=6—cand F:[-5,2— 5] = [-5,2] the first entrance map.
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Up to the interval [—5, 0] which moves directly into Jg, this is a
quadrupling map.
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Hausdorff dimension proof

Let K. be the set of points
that remain in [0,2 — §]
for all iterates of F.

v

dimy(K:) > 1ase — 0.

v

If orb(0F) remain in K., then there is no matching.
In fact, orb(07) C K. iff orb(0") C K.
dimy{s : orb(07) € K.} = dimy(Kz).

v

v
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Other slopes

Generalize to slope s

T(x) To(x)=x+s if x <0,
X) =
g Tg(x):ﬁ—sx if x> 0.

For s = 3(v/5+ 1) and v/2 + 1 and some other, large intervals of
matching has been observed.

. bmsn

Figure: h,(Tg) for s = Y51, 3 € [4.6,6] (1) and 5 € [5.29,5.33] (r).
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This is no coincidence.

Generalize to slope s
Ta(x) = T[i(x):x—l-s ifXSO,
Ty(x)=pB—sx ifx>0.

For s = %(\/5 +1) and V2 + 1 and some other, large intervals of
matching has been observed.

Figure: h,(Tg) for s = @ B €[4.6,6] (I Iand ﬁle [5.2:9,5.33]I (r).

Note that these slopes are quadratic Pisot numbers.

Other slopes Other slopes
This is no coincidence. Tg preserves the ring H = Z[f3, 3s, s]. This is no coincidence. Ty preserves the ring H = Z[3, 3s, s].
For matching, we need
#{0<i<rk :T(O)>0}=#{0<i<rk :T'(07)>0},
so we look at the first return map F:
F :[0,s] — [0, s] ’ F:[0,8] —=1[0,8 F:[0,s] — [0, ]

s

matching any matching??  typical matching?
Figure: Return map F for 6 <s, s < 3 <3+ /5, and 8 > 3+ /5.




Other slopes

This is no coincidence. Tg preserves the ring H = Z[f3, 3s, s|.
For matching, we need

#{0<i<r :T(O)>0}=#{0<i<k :T(07)>0},

so we look at the first return map F:

B
F:[0,s] = [0,9] F:0,8 =103 F:[0,s] — [0, s]

s

matching any matching??  typical matching?

Figure: Return map F for 6 <'s, s < 3 < 3+ /5, and > 3 + /5.
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Other slopes

F act affinely on H. Restricted to orb(0F), we need to iterate

() =G ) E)+ (5,

where 7,(0%) is the branch number containing F"(0%), starting

B)-Q e (2)-()er

Matching occurs if there is n such that:

(o) = (orio)

on- i i — Vb4l
Question: Does this happen Lebesgue typically for s = ¥==7
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