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1. Introduction

Given

two dissipative, continuous maps f�1 : Rd ! Rd,

a switching or control sequence

s = (..., s�n, ..., s0, ...sn, ...) 2 f�1,+1gZ,

the corresponding (discrete) time-switched system is de�ned as

xn+1 = fsn(xn).

Time-switched systems (or switching systems) are an instance of
non-autonomous dynamical systems.
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1. Introduction

Remark. S = f�1,+1gZ endowed with

distS (s, s0) = ∑
n2Z

2�jnj
��sn � s0n

�� ,

is a compact metric space.

Set
Complexity(control) := htop(σ)

where
σ : (� � � , sn, sn+1, � � � ) 7! (� � � , sn+1, sn+2, � � � ).

is the shift on S .
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1. Introduction

Let Σ̃ be the shift on the �entire solutions�of the switched dynamics. Set

Complexity(switched dynamics) := htop(Σ̃).

Result. Under some provisos,

Complexity(control) � Complexity(switched dynamics)

Corollary. (Complexity increase via switching) If

Complexity(control) > htop(f+), htop(f�)

then
Complexity(switched dynamics) > h(f+), h(f�).
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1. Introduction

In general, the emergence of di¤erent properties to those of the
constituent maps via switching is called Parrondo�s paradox.

Original version1: Switching two loosing games can produce a
winning game.

Dynamical version2: Periodic switching of chaotic maps can produce
order.

A possible topological version: Switching of noncomplex dynamics
can produce a complex dynamics.

1J.M.R. Parrondo, G.P. Harner, D. Abbott, Phys. Rev. Lett. 85 (2000).
2J. Almeida, D. Peralta-Salas, M. Romera, Physica D 200 (2006).
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2. Switching systems

Switching systems can be studied by means of cocycle maps, which are
continuous maps

ϕ : N0 � f�1,+1gZ �Rd ! Rd

with

ϕ(0, s, x0) = x0

ϕ(n, s, x0) = fsn�1 � � � � � fs1 � fs0(x0), n � 1.

Then (cocycle property)

ϕ(n+ k, s, x0) = ϕ(n, σks, ϕ(k, s,x0)), 8n, k � 0.

Def.3 (σ, ϕ) is a skew product �ow on f�1,+1gZ �Rd

3P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems, AMS, 2010.
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2. Switching systems

Def. An entire solution of (σ, ϕ) is a map χ : S ! Rd such that

χ(σns) = ϕ(n, s, χ(s)) for all n � 0.

More generally,
χ(σns) = ϕ(n� k, σks, χ(σks)),

for all s 2 S and n, k 2 Z with k � n.

Interpretation. χ(s) is the point of the orbit

fχ(σns) : n 2 Zg

at time n = 0.
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2. Switching systems

Def. The space K of compact subsets of Rd is a complete metric space
with the Hausdor¤ metric

distH(A, B) := maxfρ(A, B), ρ(B, A)g

where ρ(A, B) is the Hausdor¤ semi-distance de�ned by

ρ(A, B) := max
a2A

dist(a, B), dist(a, B) := min
b2B

ja� bj .
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2. Switching systems

Def. A pullback attractor is a family of nonempty compact subsets,

A = fA(s), s 2 Sg � K,

which

(i) is ϕ-invariant, i.e.,

ϕ(n, s, A(s)) = A(σns), n � 0,

(ii) pullback attracts, i.e.

distH
�

ϕ(n, σ�ns, D), A(s)
�
! 0 for n ! ∞

for every nonempty bounded subset D � Rd.

The A(s) are called the component sets of the attractor A.
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2. Switching systems

Remarks.

The component sets A(s) consist of entire solutions bounded in the
past.

Pullback attractors exist under more general conditions than forward
attractors.
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3. Simple case: 1D a¢ ne constituent maps

Constituent maps: f�1 : R ! R,

f�1(x) = θ�x� 1 (0 < θ+, θ� < 1, θ+ 6= θ�).

Remark: htop(f�1) = 0.
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3. Simple case: 1D a¢ ne constituent maps

The component sets of the attractor A = fA(s) : s 2Sg are
singletons:

A(s) = fχ(s)g with χ(s) 2
� �1

1� θ�
,

1
1� θ+

�
,

where χ(s) are the entire solutions of the skew product (σ, ϕ).
Thus, Hausdor¤ distance = Hausdor¤ semidistance = Euclidean
distance:

distH (χ(s), χ(s�)) = ρ (χ(s), χ(s�)) = jχ(s)� χ(s�)j .

It follows that the mapping

S ! A =
h
�1

1�θ�
, 1

1�θ+

i
s 7! χ(s)

is continuous.
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3. Simple case: 1D a¢ ne constituent maps

Proposition. De�ne

Φ : S ! AZ

s 7! (χ(σns))n2Z

(a) Then Φ is 1-to-1 and bicontinuous.
(b) If Σ is the shift on AZ, then

S σ! S
Φ # # Φ

AZ Σ! AZ

commutes.

Here

dist ((χ(σns))n2Z, (χ(σns�))n2Z) := ∑
n2Z

jχ(σns)� χ(σns�)j
2jnj
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3. Simple case: 1D a¢ ne constituent maps

Therefore

htop(ΣjΦ(S)) = htop(σ) := Complexity(control).

Call
Complexity(switched dynamics) := htop(ΣjΦ(S)).

Thus:

Complexity(switched dynamics) = Complexity(control).

Corollary. Su¢ cient condition for entropy increase via switching : If

htop(σ) > 0

then
Complexity(switched dynamics) > 0 = htop(f�).
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4. General case

General assumptions for switched dynamics on Rd, d � 1:

The constituent mappings have attractors.

The switched dynamics has a pullback attractor

A = fA(s) : s 2Sg

such that A(s) are nonempty, uniformly bounded compact subsets of
Rd, i.e., there is a closed ball B̄R(0) � Rd, such that

A(s) � B̄R(0), 8s 2 S .

Call KR the family of nonempty compact subsets of Rd contained in
B̄R(0).
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4. General case

Technical di¢ culties:

The component sets A(s) are not singletons in general.
distH(A(s), A(s�)) is not continuous.

Proposition4. The map s 7! A(s) is upper semi-continuous in
(KR, distH), i.e.,

ρ (A(s), A(s�))! 0 as distS (s, s�)! 0,

here ρ (�, �) is the Hausdor¤ semi-distance.

4P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems , AMS, 2010.
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4. General case

To replicate the approach in the a¢ ne case, some additional assumptions
seem necessary:

1 First possibility. Guarantee that

Φ : s 7! (A(σns))n2Z

is Borel bimeasurable.
2 Second possibility. Guarantee that s ! A(s) is continuous.

Remarks.

There are several su¢ cient conditions for (1). For example, (2)
implies (1).
There are several su¢ cient conditions for (2). For example, suppose
that

distH(ϕ(n, σ�ns, D), A(s))! 0

uniformly in s for some nonempty set D � Rd.
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4. General case

Consider
Φ : S ! KZ

R
s 7! (A(σns))n2Z

where

distAZ((A(σns))n2Z, (A(σns�))n2Z = ∑
n2Z

distH (A(σns), A(σns�))
2jnj

Remark. If χ(s) is an entire solution and χ(s) 2 A(s), then

(χ(σns))n2Z 2 (A(σns))n2Z.

We call (A(σns))n2Z the lumped trajectory.
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4. General case

Proposition. If one of the assumptions (1) or (2) holds and

Φ : S ! KZ
R

s 7! (A(σns))n2Z

is 1-to-1, then Φ a homeomorphism from S to Φ(S), and the diagram

S σ! S
Φ # # Φ

KZ
R

Σ! KZ
R

commutes, where σ is the shift on S and Σ is the shift on KZ
R (the

lumped dynamics).

There are several su¢ cient conditions5 for the injectivity of Φ.

5J.M.A., P.E. Kloeden, A. Giménez, Entropy 15 (2013).
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4. General case

Hence (as in the 1D a¢ ne case)

htop(σ) = htop(ΣjΦ(S)) =: Complexity(lumped dynamics).

Consider the shift on the lumped trajectories

Σ : (A(σns))n2Z 7! (A(σn+1s))n2Z

and the shift on the sharp trajectories

Σ̃ : (χ(σns))n2Z 7! (χ(σn+1s))n2Z.

Then

htop(ΣjΦ(S)) � htop( Σ̃
��
Φ(S)) =: Complexity(switched dynamics).
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4. General case

In sum:

Complexity(control) = Complexity(lumped dynamics)

and

Complexity(lumped dynamics) � Complexity(switched dynamics).

Thus

Complexity(control) � Complexity(switched dynamics).

Corollary. (Entropy increase via switching) If htop(σ) > htop(f�), then

Complexity(switched dynamics) � htop(f�)
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5. Conclusion

We provided a su¢ cient condition for the topological entropy of a
switching system to increase wrt to the topological entropy of its two
constituent maps.

Generalization to more than two constituent maps possible.

The complexity of non-autonomous systems, as measured by the
topological entropy, can be studied via pullback attractors.
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